amba-pl08x.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the file
  23. * called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29. * channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Only the former works sanely with scatter lists, so we only implement
  70. * the DMAC flow control method. However, peripherals which use the LBREQ
  71. * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72. * these hardware restrictions prevents them from using scatter DMA.
  73. *
  74. * Global TODO:
  75. * - Break out common code from arch/arm/mach-s3c64xx and share
  76. */
  77. #include <linux/amba/bus.h>
  78. #include <linux/amba/pl08x.h>
  79. #include <linux/debugfs.h>
  80. #include <linux/delay.h>
  81. #include <linux/device.h>
  82. #include <linux/dmaengine.h>
  83. #include <linux/dmapool.h>
  84. #include <linux/init.h>
  85. #include <linux/interrupt.h>
  86. #include <linux/module.h>
  87. #include <linux/pm_runtime.h>
  88. #include <linux/seq_file.h>
  89. #include <linux/slab.h>
  90. #include <asm/hardware/pl080.h>
  91. #define DRIVER_NAME "pl08xdmac"
  92. /**
  93. * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  94. * @channels: the number of channels available in this variant
  95. * @dualmaster: whether this version supports dual AHB masters or not.
  96. */
  97. struct vendor_data {
  98. u8 channels;
  99. bool dualmaster;
  100. };
  101. /*
  102. * PL08X private data structures
  103. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  104. * start & end do not - their bus bit info is in cctl. Also note that these
  105. * are fixed 32-bit quantities.
  106. */
  107. struct pl08x_lli {
  108. u32 src;
  109. u32 dst;
  110. u32 lli;
  111. u32 cctl;
  112. };
  113. /**
  114. * struct pl08x_driver_data - the local state holder for the PL08x
  115. * @slave: slave engine for this instance
  116. * @memcpy: memcpy engine for this instance
  117. * @base: virtual memory base (remapped) for the PL08x
  118. * @adev: the corresponding AMBA (PrimeCell) bus entry
  119. * @vd: vendor data for this PL08x variant
  120. * @pd: platform data passed in from the platform/machine
  121. * @phy_chans: array of data for the physical channels
  122. * @pool: a pool for the LLI descriptors
  123. * @pool_ctr: counter of LLIs in the pool
  124. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
  125. * fetches
  126. * @mem_buses: set to indicate memory transfers on AHB2.
  127. * @lock: a spinlock for this struct
  128. */
  129. struct pl08x_driver_data {
  130. struct dma_device slave;
  131. struct dma_device memcpy;
  132. void __iomem *base;
  133. struct amba_device *adev;
  134. const struct vendor_data *vd;
  135. struct pl08x_platform_data *pd;
  136. struct pl08x_phy_chan *phy_chans;
  137. struct dma_pool *pool;
  138. int pool_ctr;
  139. u8 lli_buses;
  140. u8 mem_buses;
  141. spinlock_t lock;
  142. };
  143. /*
  144. * PL08X specific defines
  145. */
  146. /* Size (bytes) of each LLI buffer allocated for one transfer */
  147. # define PL08X_LLI_TSFR_SIZE 0x2000
  148. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  149. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  150. #define PL08X_ALIGN 8
  151. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  152. {
  153. return container_of(chan, struct pl08x_dma_chan, chan);
  154. }
  155. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  156. {
  157. return container_of(tx, struct pl08x_txd, tx);
  158. }
  159. /*
  160. * Physical channel handling
  161. */
  162. /* Whether a certain channel is busy or not */
  163. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  164. {
  165. unsigned int val;
  166. val = readl(ch->base + PL080_CH_CONFIG);
  167. return val & PL080_CONFIG_ACTIVE;
  168. }
  169. /*
  170. * Set the initial DMA register values i.e. those for the first LLI
  171. * The next LLI pointer and the configuration interrupt bit have
  172. * been set when the LLIs were constructed. Poke them into the hardware
  173. * and start the transfer.
  174. */
  175. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  176. struct pl08x_txd *txd)
  177. {
  178. struct pl08x_driver_data *pl08x = plchan->host;
  179. struct pl08x_phy_chan *phychan = plchan->phychan;
  180. struct pl08x_lli *lli = &txd->llis_va[0];
  181. u32 val;
  182. plchan->at = txd;
  183. /* Wait for channel inactive */
  184. while (pl08x_phy_channel_busy(phychan))
  185. cpu_relax();
  186. dev_vdbg(&pl08x->adev->dev,
  187. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  188. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  189. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  190. txd->ccfg);
  191. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  192. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  193. writel(lli->lli, phychan->base + PL080_CH_LLI);
  194. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  195. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  196. /* Enable the DMA channel */
  197. /* Do not access config register until channel shows as disabled */
  198. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  199. cpu_relax();
  200. /* Do not access config register until channel shows as inactive */
  201. val = readl(phychan->base + PL080_CH_CONFIG);
  202. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  203. val = readl(phychan->base + PL080_CH_CONFIG);
  204. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  205. }
  206. /*
  207. * Pause the channel by setting the HALT bit.
  208. *
  209. * For M->P transfers, pause the DMAC first and then stop the peripheral -
  210. * the FIFO can only drain if the peripheral is still requesting data.
  211. * (note: this can still timeout if the DMAC FIFO never drains of data.)
  212. *
  213. * For P->M transfers, disable the peripheral first to stop it filling
  214. * the DMAC FIFO, and then pause the DMAC.
  215. */
  216. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  217. {
  218. u32 val;
  219. int timeout;
  220. /* Set the HALT bit and wait for the FIFO to drain */
  221. val = readl(ch->base + PL080_CH_CONFIG);
  222. val |= PL080_CONFIG_HALT;
  223. writel(val, ch->base + PL080_CH_CONFIG);
  224. /* Wait for channel inactive */
  225. for (timeout = 1000; timeout; timeout--) {
  226. if (!pl08x_phy_channel_busy(ch))
  227. break;
  228. udelay(1);
  229. }
  230. if (pl08x_phy_channel_busy(ch))
  231. pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
  232. }
  233. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  234. {
  235. u32 val;
  236. /* Clear the HALT bit */
  237. val = readl(ch->base + PL080_CH_CONFIG);
  238. val &= ~PL080_CONFIG_HALT;
  239. writel(val, ch->base + PL080_CH_CONFIG);
  240. }
  241. /*
  242. * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
  243. * clears any pending interrupt status. This should not be used for
  244. * an on-going transfer, but as a method of shutting down a channel
  245. * (eg, when it's no longer used) or terminating a transfer.
  246. */
  247. static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
  248. struct pl08x_phy_chan *ch)
  249. {
  250. u32 val = readl(ch->base + PL080_CH_CONFIG);
  251. val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
  252. PL080_CONFIG_TC_IRQ_MASK);
  253. writel(val, ch->base + PL080_CH_CONFIG);
  254. writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
  255. writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
  256. }
  257. static inline u32 get_bytes_in_cctl(u32 cctl)
  258. {
  259. /* The source width defines the number of bytes */
  260. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  261. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  262. case PL080_WIDTH_8BIT:
  263. break;
  264. case PL080_WIDTH_16BIT:
  265. bytes *= 2;
  266. break;
  267. case PL080_WIDTH_32BIT:
  268. bytes *= 4;
  269. break;
  270. }
  271. return bytes;
  272. }
  273. /* The channel should be paused when calling this */
  274. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  275. {
  276. struct pl08x_phy_chan *ch;
  277. struct pl08x_txd *txd;
  278. unsigned long flags;
  279. size_t bytes = 0;
  280. spin_lock_irqsave(&plchan->lock, flags);
  281. ch = plchan->phychan;
  282. txd = plchan->at;
  283. /*
  284. * Follow the LLIs to get the number of remaining
  285. * bytes in the currently active transaction.
  286. */
  287. if (ch && txd) {
  288. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  289. /* First get the remaining bytes in the active transfer */
  290. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  291. if (clli) {
  292. struct pl08x_lli *llis_va = txd->llis_va;
  293. dma_addr_t llis_bus = txd->llis_bus;
  294. int index;
  295. BUG_ON(clli < llis_bus || clli >= llis_bus +
  296. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  297. /*
  298. * Locate the next LLI - as this is an array,
  299. * it's simple maths to find.
  300. */
  301. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  302. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  303. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  304. /*
  305. * A LLI pointer of 0 terminates the LLI list
  306. */
  307. if (!llis_va[index].lli)
  308. break;
  309. }
  310. }
  311. }
  312. /* Sum up all queued transactions */
  313. if (!list_empty(&plchan->pend_list)) {
  314. struct pl08x_txd *txdi;
  315. list_for_each_entry(txdi, &plchan->pend_list, node) {
  316. bytes += txdi->len;
  317. }
  318. }
  319. spin_unlock_irqrestore(&plchan->lock, flags);
  320. return bytes;
  321. }
  322. /*
  323. * Allocate a physical channel for a virtual channel
  324. *
  325. * Try to locate a physical channel to be used for this transfer. If all
  326. * are taken return NULL and the requester will have to cope by using
  327. * some fallback PIO mode or retrying later.
  328. */
  329. static struct pl08x_phy_chan *
  330. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  331. struct pl08x_dma_chan *virt_chan)
  332. {
  333. struct pl08x_phy_chan *ch = NULL;
  334. unsigned long flags;
  335. int i;
  336. for (i = 0; i < pl08x->vd->channels; i++) {
  337. ch = &pl08x->phy_chans[i];
  338. spin_lock_irqsave(&ch->lock, flags);
  339. if (!ch->serving) {
  340. ch->serving = virt_chan;
  341. ch->signal = -1;
  342. spin_unlock_irqrestore(&ch->lock, flags);
  343. break;
  344. }
  345. spin_unlock_irqrestore(&ch->lock, flags);
  346. }
  347. if (i == pl08x->vd->channels) {
  348. /* No physical channel available, cope with it */
  349. return NULL;
  350. }
  351. pm_runtime_get_sync(&pl08x->adev->dev);
  352. return ch;
  353. }
  354. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  355. struct pl08x_phy_chan *ch)
  356. {
  357. unsigned long flags;
  358. spin_lock_irqsave(&ch->lock, flags);
  359. /* Stop the channel and clear its interrupts */
  360. pl08x_terminate_phy_chan(pl08x, ch);
  361. pm_runtime_put(&pl08x->adev->dev);
  362. /* Mark it as free */
  363. ch->serving = NULL;
  364. spin_unlock_irqrestore(&ch->lock, flags);
  365. }
  366. /*
  367. * LLI handling
  368. */
  369. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  370. {
  371. switch (coded) {
  372. case PL080_WIDTH_8BIT:
  373. return 1;
  374. case PL080_WIDTH_16BIT:
  375. return 2;
  376. case PL080_WIDTH_32BIT:
  377. return 4;
  378. default:
  379. break;
  380. }
  381. BUG();
  382. return 0;
  383. }
  384. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  385. size_t tsize)
  386. {
  387. u32 retbits = cctl;
  388. /* Remove all src, dst and transfer size bits */
  389. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  390. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  391. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  392. /* Then set the bits according to the parameters */
  393. switch (srcwidth) {
  394. case 1:
  395. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  396. break;
  397. case 2:
  398. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  399. break;
  400. case 4:
  401. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  402. break;
  403. default:
  404. BUG();
  405. break;
  406. }
  407. switch (dstwidth) {
  408. case 1:
  409. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  410. break;
  411. case 2:
  412. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  413. break;
  414. case 4:
  415. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  416. break;
  417. default:
  418. BUG();
  419. break;
  420. }
  421. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  422. return retbits;
  423. }
  424. struct pl08x_lli_build_data {
  425. struct pl08x_txd *txd;
  426. struct pl08x_bus_data srcbus;
  427. struct pl08x_bus_data dstbus;
  428. size_t remainder;
  429. u32 lli_bus;
  430. };
  431. /*
  432. * Autoselect a master bus to use for the transfer. Slave will be the chosen as
  433. * victim in case src & dest are not similarly aligned. i.e. If after aligning
  434. * masters address with width requirements of transfer (by sending few byte by
  435. * byte data), slave is still not aligned, then its width will be reduced to
  436. * BYTE.
  437. * - prefers the destination bus if both available
  438. * - if fixed address on one bus the other will be chosen
  439. */
  440. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  441. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  442. {
  443. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  444. *mbus = &bd->srcbus;
  445. *sbus = &bd->dstbus;
  446. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  447. *mbus = &bd->dstbus;
  448. *sbus = &bd->srcbus;
  449. } else {
  450. if (bd->dstbus.buswidth == 4) {
  451. *mbus = &bd->dstbus;
  452. *sbus = &bd->srcbus;
  453. } else if (bd->srcbus.buswidth == 4) {
  454. *mbus = &bd->srcbus;
  455. *sbus = &bd->dstbus;
  456. } else if (bd->dstbus.buswidth == 2) {
  457. *mbus = &bd->dstbus;
  458. *sbus = &bd->srcbus;
  459. } else if (bd->srcbus.buswidth == 2) {
  460. *mbus = &bd->srcbus;
  461. *sbus = &bd->dstbus;
  462. } else {
  463. /* bd->srcbus.buswidth == 1 */
  464. *mbus = &bd->dstbus;
  465. *sbus = &bd->srcbus;
  466. }
  467. }
  468. }
  469. /*
  470. * Fills in one LLI for a certain transfer descriptor and advance the counter
  471. */
  472. static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
  473. int num_llis, int len, u32 cctl)
  474. {
  475. struct pl08x_lli *llis_va = bd->txd->llis_va;
  476. dma_addr_t llis_bus = bd->txd->llis_bus;
  477. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  478. llis_va[num_llis].cctl = cctl;
  479. llis_va[num_llis].src = bd->srcbus.addr;
  480. llis_va[num_llis].dst = bd->dstbus.addr;
  481. llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
  482. sizeof(struct pl08x_lli);
  483. llis_va[num_llis].lli |= bd->lli_bus;
  484. if (cctl & PL080_CONTROL_SRC_INCR)
  485. bd->srcbus.addr += len;
  486. if (cctl & PL080_CONTROL_DST_INCR)
  487. bd->dstbus.addr += len;
  488. BUG_ON(bd->remainder < len);
  489. bd->remainder -= len;
  490. }
  491. static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
  492. u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
  493. {
  494. *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
  495. pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
  496. (*total_bytes) += len;
  497. }
  498. /*
  499. * This fills in the table of LLIs for the transfer descriptor
  500. * Note that we assume we never have to change the burst sizes
  501. * Return 0 for error
  502. */
  503. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  504. struct pl08x_txd *txd)
  505. {
  506. struct pl08x_bus_data *mbus, *sbus;
  507. struct pl08x_lli_build_data bd;
  508. int num_llis = 0;
  509. u32 cctl, early_bytes = 0;
  510. size_t max_bytes_per_lli, total_bytes = 0;
  511. struct pl08x_lli *llis_va;
  512. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
  513. if (!txd->llis_va) {
  514. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  515. return 0;
  516. }
  517. pl08x->pool_ctr++;
  518. /* Get the default CCTL */
  519. cctl = txd->cctl;
  520. bd.txd = txd;
  521. bd.srcbus.addr = txd->src_addr;
  522. bd.dstbus.addr = txd->dst_addr;
  523. bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
  524. /* Find maximum width of the source bus */
  525. bd.srcbus.maxwidth =
  526. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  527. PL080_CONTROL_SWIDTH_SHIFT);
  528. /* Find maximum width of the destination bus */
  529. bd.dstbus.maxwidth =
  530. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  531. PL080_CONTROL_DWIDTH_SHIFT);
  532. /* Set up the bus widths to the maximum */
  533. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  534. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  535. /* We need to count this down to zero */
  536. bd.remainder = txd->len;
  537. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  538. dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
  539. bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
  540. bd.srcbus.buswidth,
  541. bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
  542. bd.dstbus.buswidth,
  543. bd.remainder);
  544. dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
  545. mbus == &bd.srcbus ? "src" : "dst",
  546. sbus == &bd.srcbus ? "src" : "dst");
  547. /*
  548. * Send byte by byte for following cases
  549. * - Less than a bus width available
  550. * - until master bus is aligned
  551. */
  552. if (bd.remainder < mbus->buswidth)
  553. early_bytes = bd.remainder;
  554. else if ((mbus->addr) % (mbus->buswidth)) {
  555. early_bytes = mbus->buswidth - (mbus->addr) % (mbus->buswidth);
  556. if ((bd.remainder - early_bytes) < mbus->buswidth)
  557. early_bytes = bd.remainder;
  558. }
  559. if (early_bytes) {
  560. dev_vdbg(&pl08x->adev->dev, "%s byte width LLIs "
  561. "(remain 0x%08x)\n", __func__, bd.remainder);
  562. prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
  563. &total_bytes);
  564. }
  565. if (bd.remainder) {
  566. /*
  567. * Master now aligned
  568. * - if slave is not then we must set its width down
  569. */
  570. if (sbus->addr % sbus->buswidth) {
  571. dev_dbg(&pl08x->adev->dev,
  572. "%s set down bus width to one byte\n",
  573. __func__);
  574. sbus->buswidth = 1;
  575. }
  576. /* Bytes transferred = tsize * src width, not MIN(buswidths) */
  577. max_bytes_per_lli = bd.srcbus.buswidth *
  578. PL080_CONTROL_TRANSFER_SIZE_MASK;
  579. /*
  580. * Make largest possible LLIs until less than one bus
  581. * width left
  582. */
  583. while (bd.remainder > (mbus->buswidth - 1)) {
  584. size_t lli_len, tsize;
  585. /*
  586. * If enough left try to send max possible,
  587. * otherwise try to send the remainder
  588. */
  589. lli_len = min(bd.remainder, max_bytes_per_lli);
  590. /*
  591. * Check against minimum bus alignment: Calculate actual
  592. * transfer size in relation to bus width and get a
  593. * maximum remainder of the smallest bus width - 1
  594. */
  595. tsize = lli_len / min(mbus->buswidth, sbus->buswidth);
  596. lli_len = tsize * min(mbus->buswidth, sbus->buswidth);
  597. dev_vdbg(&pl08x->adev->dev,
  598. "%s fill lli with single lli chunk of "
  599. "size 0x%08zx (remainder 0x%08zx)\n",
  600. __func__, lli_len, bd.remainder);
  601. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  602. bd.dstbus.buswidth, tsize);
  603. pl08x_fill_lli_for_desc(&bd, num_llis++, lli_len, cctl);
  604. total_bytes += lli_len;
  605. }
  606. /*
  607. * Send any odd bytes
  608. */
  609. if (bd.remainder) {
  610. dev_vdbg(&pl08x->adev->dev,
  611. "%s align with boundary, send odd bytes (remain %zu)\n",
  612. __func__, bd.remainder);
  613. prep_byte_width_lli(&bd, &cctl, bd.remainder,
  614. num_llis++, &total_bytes);
  615. }
  616. }
  617. if (total_bytes != txd->len) {
  618. dev_err(&pl08x->adev->dev,
  619. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  620. __func__, total_bytes, txd->len);
  621. return 0;
  622. }
  623. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  624. dev_err(&pl08x->adev->dev,
  625. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  626. __func__, (u32) MAX_NUM_TSFR_LLIS);
  627. return 0;
  628. }
  629. llis_va = txd->llis_va;
  630. /* The final LLI terminates the LLI. */
  631. llis_va[num_llis - 1].lli = 0;
  632. /* The final LLI element shall also fire an interrupt. */
  633. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  634. #ifdef VERBOSE_DEBUG
  635. {
  636. int i;
  637. dev_vdbg(&pl08x->adev->dev,
  638. "%-3s %-9s %-10s %-10s %-10s %s\n",
  639. "lli", "", "csrc", "cdst", "clli", "cctl");
  640. for (i = 0; i < num_llis; i++) {
  641. dev_vdbg(&pl08x->adev->dev,
  642. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  643. i, &llis_va[i], llis_va[i].src,
  644. llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
  645. );
  646. }
  647. }
  648. #endif
  649. return num_llis;
  650. }
  651. /* You should call this with the struct pl08x lock held */
  652. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  653. struct pl08x_txd *txd)
  654. {
  655. /* Free the LLI */
  656. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  657. pl08x->pool_ctr--;
  658. kfree(txd);
  659. }
  660. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  661. struct pl08x_dma_chan *plchan)
  662. {
  663. struct pl08x_txd *txdi = NULL;
  664. struct pl08x_txd *next;
  665. if (!list_empty(&plchan->pend_list)) {
  666. list_for_each_entry_safe(txdi,
  667. next, &plchan->pend_list, node) {
  668. list_del(&txdi->node);
  669. pl08x_free_txd(pl08x, txdi);
  670. }
  671. }
  672. }
  673. /*
  674. * The DMA ENGINE API
  675. */
  676. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  677. {
  678. return 0;
  679. }
  680. static void pl08x_free_chan_resources(struct dma_chan *chan)
  681. {
  682. }
  683. /*
  684. * This should be called with the channel plchan->lock held
  685. */
  686. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  687. struct pl08x_txd *txd)
  688. {
  689. struct pl08x_driver_data *pl08x = plchan->host;
  690. struct pl08x_phy_chan *ch;
  691. int ret;
  692. /* Check if we already have a channel */
  693. if (plchan->phychan)
  694. return 0;
  695. ch = pl08x_get_phy_channel(pl08x, plchan);
  696. if (!ch) {
  697. /* No physical channel available, cope with it */
  698. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  699. return -EBUSY;
  700. }
  701. /*
  702. * OK we have a physical channel: for memcpy() this is all we
  703. * need, but for slaves the physical signals may be muxed!
  704. * Can the platform allow us to use this channel?
  705. */
  706. if (plchan->slave && pl08x->pd->get_signal) {
  707. ret = pl08x->pd->get_signal(plchan);
  708. if (ret < 0) {
  709. dev_dbg(&pl08x->adev->dev,
  710. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  711. ch->id, plchan->name);
  712. /* Release physical channel & return */
  713. pl08x_put_phy_channel(pl08x, ch);
  714. return -EBUSY;
  715. }
  716. ch->signal = ret;
  717. /* Assign the flow control signal to this channel */
  718. if (txd->direction == DMA_TO_DEVICE)
  719. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  720. else if (txd->direction == DMA_FROM_DEVICE)
  721. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  722. }
  723. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  724. ch->id,
  725. ch->signal,
  726. plchan->name);
  727. plchan->phychan_hold++;
  728. plchan->phychan = ch;
  729. return 0;
  730. }
  731. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  732. {
  733. struct pl08x_driver_data *pl08x = plchan->host;
  734. if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
  735. pl08x->pd->put_signal(plchan);
  736. plchan->phychan->signal = -1;
  737. }
  738. pl08x_put_phy_channel(pl08x, plchan->phychan);
  739. plchan->phychan = NULL;
  740. }
  741. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  742. {
  743. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  744. struct pl08x_txd *txd = to_pl08x_txd(tx);
  745. unsigned long flags;
  746. spin_lock_irqsave(&plchan->lock, flags);
  747. plchan->chan.cookie += 1;
  748. if (plchan->chan.cookie < 0)
  749. plchan->chan.cookie = 1;
  750. tx->cookie = plchan->chan.cookie;
  751. /* Put this onto the pending list */
  752. list_add_tail(&txd->node, &plchan->pend_list);
  753. /*
  754. * If there was no physical channel available for this memcpy,
  755. * stack the request up and indicate that the channel is waiting
  756. * for a free physical channel.
  757. */
  758. if (!plchan->slave && !plchan->phychan) {
  759. /* Do this memcpy whenever there is a channel ready */
  760. plchan->state = PL08X_CHAN_WAITING;
  761. plchan->waiting = txd;
  762. } else {
  763. plchan->phychan_hold--;
  764. }
  765. spin_unlock_irqrestore(&plchan->lock, flags);
  766. return tx->cookie;
  767. }
  768. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  769. struct dma_chan *chan, unsigned long flags)
  770. {
  771. struct dma_async_tx_descriptor *retval = NULL;
  772. return retval;
  773. }
  774. /*
  775. * Code accessing dma_async_is_complete() in a tight loop may give problems.
  776. * If slaves are relying on interrupts to signal completion this function
  777. * must not be called with interrupts disabled.
  778. */
  779. static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
  780. dma_cookie_t cookie, struct dma_tx_state *txstate)
  781. {
  782. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  783. dma_cookie_t last_used;
  784. dma_cookie_t last_complete;
  785. enum dma_status ret;
  786. u32 bytesleft = 0;
  787. last_used = plchan->chan.cookie;
  788. last_complete = plchan->lc;
  789. ret = dma_async_is_complete(cookie, last_complete, last_used);
  790. if (ret == DMA_SUCCESS) {
  791. dma_set_tx_state(txstate, last_complete, last_used, 0);
  792. return ret;
  793. }
  794. /*
  795. * This cookie not complete yet
  796. */
  797. last_used = plchan->chan.cookie;
  798. last_complete = plchan->lc;
  799. /* Get number of bytes left in the active transactions and queue */
  800. bytesleft = pl08x_getbytes_chan(plchan);
  801. dma_set_tx_state(txstate, last_complete, last_used,
  802. bytesleft);
  803. if (plchan->state == PL08X_CHAN_PAUSED)
  804. return DMA_PAUSED;
  805. /* Whether waiting or running, we're in progress */
  806. return DMA_IN_PROGRESS;
  807. }
  808. /* PrimeCell DMA extension */
  809. struct burst_table {
  810. u32 burstwords;
  811. u32 reg;
  812. };
  813. static const struct burst_table burst_sizes[] = {
  814. {
  815. .burstwords = 256,
  816. .reg = PL080_BSIZE_256,
  817. },
  818. {
  819. .burstwords = 128,
  820. .reg = PL080_BSIZE_128,
  821. },
  822. {
  823. .burstwords = 64,
  824. .reg = PL080_BSIZE_64,
  825. },
  826. {
  827. .burstwords = 32,
  828. .reg = PL080_BSIZE_32,
  829. },
  830. {
  831. .burstwords = 16,
  832. .reg = PL080_BSIZE_16,
  833. },
  834. {
  835. .burstwords = 8,
  836. .reg = PL080_BSIZE_8,
  837. },
  838. {
  839. .burstwords = 4,
  840. .reg = PL080_BSIZE_4,
  841. },
  842. {
  843. .burstwords = 0,
  844. .reg = PL080_BSIZE_1,
  845. },
  846. };
  847. /*
  848. * Given the source and destination available bus masks, select which
  849. * will be routed to each port. We try to have source and destination
  850. * on separate ports, but always respect the allowable settings.
  851. */
  852. static u32 pl08x_select_bus(u8 src, u8 dst)
  853. {
  854. u32 cctl = 0;
  855. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  856. cctl |= PL080_CONTROL_DST_AHB2;
  857. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  858. cctl |= PL080_CONTROL_SRC_AHB2;
  859. return cctl;
  860. }
  861. static u32 pl08x_cctl(u32 cctl)
  862. {
  863. cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  864. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  865. PL080_CONTROL_PROT_MASK);
  866. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  867. return cctl | PL080_CONTROL_PROT_SYS;
  868. }
  869. static u32 pl08x_width(enum dma_slave_buswidth width)
  870. {
  871. switch (width) {
  872. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  873. return PL080_WIDTH_8BIT;
  874. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  875. return PL080_WIDTH_16BIT;
  876. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  877. return PL080_WIDTH_32BIT;
  878. default:
  879. return ~0;
  880. }
  881. }
  882. static u32 pl08x_burst(u32 maxburst)
  883. {
  884. int i;
  885. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  886. if (burst_sizes[i].burstwords <= maxburst)
  887. break;
  888. return burst_sizes[i].reg;
  889. }
  890. static int dma_set_runtime_config(struct dma_chan *chan,
  891. struct dma_slave_config *config)
  892. {
  893. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  894. struct pl08x_driver_data *pl08x = plchan->host;
  895. enum dma_slave_buswidth addr_width;
  896. u32 width, burst, maxburst;
  897. u32 cctl = 0;
  898. if (!plchan->slave)
  899. return -EINVAL;
  900. /* Transfer direction */
  901. plchan->runtime_direction = config->direction;
  902. if (config->direction == DMA_TO_DEVICE) {
  903. addr_width = config->dst_addr_width;
  904. maxburst = config->dst_maxburst;
  905. } else if (config->direction == DMA_FROM_DEVICE) {
  906. addr_width = config->src_addr_width;
  907. maxburst = config->src_maxburst;
  908. } else {
  909. dev_err(&pl08x->adev->dev,
  910. "bad runtime_config: alien transfer direction\n");
  911. return -EINVAL;
  912. }
  913. width = pl08x_width(addr_width);
  914. if (width == ~0) {
  915. dev_err(&pl08x->adev->dev,
  916. "bad runtime_config: alien address width\n");
  917. return -EINVAL;
  918. }
  919. cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
  920. cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
  921. /*
  922. * If this channel will only request single transfers, set this
  923. * down to ONE element. Also select one element if no maxburst
  924. * is specified.
  925. */
  926. if (plchan->cd->single)
  927. maxburst = 1;
  928. burst = pl08x_burst(maxburst);
  929. cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
  930. cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
  931. if (plchan->runtime_direction == DMA_FROM_DEVICE) {
  932. plchan->src_addr = config->src_addr;
  933. plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
  934. pl08x_select_bus(plchan->cd->periph_buses,
  935. pl08x->mem_buses);
  936. } else {
  937. plchan->dst_addr = config->dst_addr;
  938. plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
  939. pl08x_select_bus(pl08x->mem_buses,
  940. plchan->cd->periph_buses);
  941. }
  942. dev_dbg(&pl08x->adev->dev,
  943. "configured channel %s (%s) for %s, data width %d, "
  944. "maxburst %d words, LE, CCTL=0x%08x\n",
  945. dma_chan_name(chan), plchan->name,
  946. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  947. addr_width,
  948. maxburst,
  949. cctl);
  950. return 0;
  951. }
  952. /*
  953. * Slave transactions callback to the slave device to allow
  954. * synchronization of slave DMA signals with the DMAC enable
  955. */
  956. static void pl08x_issue_pending(struct dma_chan *chan)
  957. {
  958. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  959. unsigned long flags;
  960. spin_lock_irqsave(&plchan->lock, flags);
  961. /* Something is already active, or we're waiting for a channel... */
  962. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  963. spin_unlock_irqrestore(&plchan->lock, flags);
  964. return;
  965. }
  966. /* Take the first element in the queue and execute it */
  967. if (!list_empty(&plchan->pend_list)) {
  968. struct pl08x_txd *next;
  969. next = list_first_entry(&plchan->pend_list,
  970. struct pl08x_txd,
  971. node);
  972. list_del(&next->node);
  973. plchan->state = PL08X_CHAN_RUNNING;
  974. pl08x_start_txd(plchan, next);
  975. }
  976. spin_unlock_irqrestore(&plchan->lock, flags);
  977. }
  978. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  979. struct pl08x_txd *txd)
  980. {
  981. struct pl08x_driver_data *pl08x = plchan->host;
  982. unsigned long flags;
  983. int num_llis, ret;
  984. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  985. if (!num_llis) {
  986. kfree(txd);
  987. return -EINVAL;
  988. }
  989. spin_lock_irqsave(&plchan->lock, flags);
  990. /*
  991. * See if we already have a physical channel allocated,
  992. * else this is the time to try to get one.
  993. */
  994. ret = prep_phy_channel(plchan, txd);
  995. if (ret) {
  996. /*
  997. * No physical channel was available.
  998. *
  999. * memcpy transfers can be sorted out at submission time.
  1000. *
  1001. * Slave transfers may have been denied due to platform
  1002. * channel muxing restrictions. Since there is no guarantee
  1003. * that this will ever be resolved, and the signal must be
  1004. * acquired AFTER acquiring the physical channel, we will let
  1005. * them be NACK:ed with -EBUSY here. The drivers can retry
  1006. * the prep() call if they are eager on doing this using DMA.
  1007. */
  1008. if (plchan->slave) {
  1009. pl08x_free_txd_list(pl08x, plchan);
  1010. pl08x_free_txd(pl08x, txd);
  1011. spin_unlock_irqrestore(&plchan->lock, flags);
  1012. return -EBUSY;
  1013. }
  1014. } else
  1015. /*
  1016. * Else we're all set, paused and ready to roll, status
  1017. * will switch to PL08X_CHAN_RUNNING when we call
  1018. * issue_pending(). If there is something running on the
  1019. * channel already we don't change its state.
  1020. */
  1021. if (plchan->state == PL08X_CHAN_IDLE)
  1022. plchan->state = PL08X_CHAN_PAUSED;
  1023. spin_unlock_irqrestore(&plchan->lock, flags);
  1024. return 0;
  1025. }
  1026. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
  1027. unsigned long flags)
  1028. {
  1029. struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  1030. if (txd) {
  1031. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1032. txd->tx.flags = flags;
  1033. txd->tx.tx_submit = pl08x_tx_submit;
  1034. INIT_LIST_HEAD(&txd->node);
  1035. /* Always enable error and terminal interrupts */
  1036. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1037. PL080_CONFIG_TC_IRQ_MASK;
  1038. }
  1039. return txd;
  1040. }
  1041. /*
  1042. * Initialize a descriptor to be used by memcpy submit
  1043. */
  1044. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1045. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1046. size_t len, unsigned long flags)
  1047. {
  1048. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1049. struct pl08x_driver_data *pl08x = plchan->host;
  1050. struct pl08x_txd *txd;
  1051. int ret;
  1052. txd = pl08x_get_txd(plchan, flags);
  1053. if (!txd) {
  1054. dev_err(&pl08x->adev->dev,
  1055. "%s no memory for descriptor\n", __func__);
  1056. return NULL;
  1057. }
  1058. txd->direction = DMA_NONE;
  1059. txd->src_addr = src;
  1060. txd->dst_addr = dest;
  1061. txd->len = len;
  1062. /* Set platform data for m2m */
  1063. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1064. txd->cctl = pl08x->pd->memcpy_channel.cctl &
  1065. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1066. /* Both to be incremented or the code will break */
  1067. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1068. if (pl08x->vd->dualmaster)
  1069. txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
  1070. pl08x->mem_buses);
  1071. ret = pl08x_prep_channel_resources(plchan, txd);
  1072. if (ret)
  1073. return NULL;
  1074. return &txd->tx;
  1075. }
  1076. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1077. struct dma_chan *chan, struct scatterlist *sgl,
  1078. unsigned int sg_len, enum dma_data_direction direction,
  1079. unsigned long flags)
  1080. {
  1081. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1082. struct pl08x_driver_data *pl08x = plchan->host;
  1083. struct pl08x_txd *txd;
  1084. int ret;
  1085. /*
  1086. * Current implementation ASSUMES only one sg
  1087. */
  1088. if (sg_len != 1) {
  1089. dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
  1090. __func__);
  1091. BUG();
  1092. }
  1093. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1094. __func__, sgl->length, plchan->name);
  1095. txd = pl08x_get_txd(plchan, flags);
  1096. if (!txd) {
  1097. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1098. return NULL;
  1099. }
  1100. if (direction != plchan->runtime_direction)
  1101. dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
  1102. "the direction configured for the PrimeCell\n",
  1103. __func__);
  1104. /*
  1105. * Set up addresses, the PrimeCell configured address
  1106. * will take precedence since this may configure the
  1107. * channel target address dynamically at runtime.
  1108. */
  1109. txd->direction = direction;
  1110. txd->len = sgl->length;
  1111. if (direction == DMA_TO_DEVICE) {
  1112. txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1113. txd->cctl = plchan->dst_cctl;
  1114. txd->src_addr = sgl->dma_address;
  1115. txd->dst_addr = plchan->dst_addr;
  1116. } else if (direction == DMA_FROM_DEVICE) {
  1117. txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1118. txd->cctl = plchan->src_cctl;
  1119. txd->src_addr = plchan->src_addr;
  1120. txd->dst_addr = sgl->dma_address;
  1121. } else {
  1122. dev_err(&pl08x->adev->dev,
  1123. "%s direction unsupported\n", __func__);
  1124. return NULL;
  1125. }
  1126. ret = pl08x_prep_channel_resources(plchan, txd);
  1127. if (ret)
  1128. return NULL;
  1129. return &txd->tx;
  1130. }
  1131. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1132. unsigned long arg)
  1133. {
  1134. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1135. struct pl08x_driver_data *pl08x = plchan->host;
  1136. unsigned long flags;
  1137. int ret = 0;
  1138. /* Controls applicable to inactive channels */
  1139. if (cmd == DMA_SLAVE_CONFIG) {
  1140. return dma_set_runtime_config(chan,
  1141. (struct dma_slave_config *)arg);
  1142. }
  1143. /*
  1144. * Anything succeeds on channels with no physical allocation and
  1145. * no queued transfers.
  1146. */
  1147. spin_lock_irqsave(&plchan->lock, flags);
  1148. if (!plchan->phychan && !plchan->at) {
  1149. spin_unlock_irqrestore(&plchan->lock, flags);
  1150. return 0;
  1151. }
  1152. switch (cmd) {
  1153. case DMA_TERMINATE_ALL:
  1154. plchan->state = PL08X_CHAN_IDLE;
  1155. if (plchan->phychan) {
  1156. pl08x_terminate_phy_chan(pl08x, plchan->phychan);
  1157. /*
  1158. * Mark physical channel as free and free any slave
  1159. * signal
  1160. */
  1161. release_phy_channel(plchan);
  1162. }
  1163. /* Dequeue jobs and free LLIs */
  1164. if (plchan->at) {
  1165. pl08x_free_txd(pl08x, plchan->at);
  1166. plchan->at = NULL;
  1167. }
  1168. /* Dequeue jobs not yet fired as well */
  1169. pl08x_free_txd_list(pl08x, plchan);
  1170. break;
  1171. case DMA_PAUSE:
  1172. pl08x_pause_phy_chan(plchan->phychan);
  1173. plchan->state = PL08X_CHAN_PAUSED;
  1174. break;
  1175. case DMA_RESUME:
  1176. pl08x_resume_phy_chan(plchan->phychan);
  1177. plchan->state = PL08X_CHAN_RUNNING;
  1178. break;
  1179. default:
  1180. /* Unknown command */
  1181. ret = -ENXIO;
  1182. break;
  1183. }
  1184. spin_unlock_irqrestore(&plchan->lock, flags);
  1185. return ret;
  1186. }
  1187. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1188. {
  1189. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1190. char *name = chan_id;
  1191. /* Check that the channel is not taken! */
  1192. if (!strcmp(plchan->name, name))
  1193. return true;
  1194. return false;
  1195. }
  1196. /*
  1197. * Just check that the device is there and active
  1198. * TODO: turn this bit on/off depending on the number of physical channels
  1199. * actually used, if it is zero... well shut it off. That will save some
  1200. * power. Cut the clock at the same time.
  1201. */
  1202. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1203. {
  1204. writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
  1205. }
  1206. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  1207. {
  1208. struct device *dev = txd->tx.chan->device->dev;
  1209. if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1210. if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  1211. dma_unmap_single(dev, txd->src_addr, txd->len,
  1212. DMA_TO_DEVICE);
  1213. else
  1214. dma_unmap_page(dev, txd->src_addr, txd->len,
  1215. DMA_TO_DEVICE);
  1216. }
  1217. if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1218. if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  1219. dma_unmap_single(dev, txd->dst_addr, txd->len,
  1220. DMA_FROM_DEVICE);
  1221. else
  1222. dma_unmap_page(dev, txd->dst_addr, txd->len,
  1223. DMA_FROM_DEVICE);
  1224. }
  1225. }
  1226. static void pl08x_tasklet(unsigned long data)
  1227. {
  1228. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1229. struct pl08x_driver_data *pl08x = plchan->host;
  1230. struct pl08x_txd *txd;
  1231. unsigned long flags;
  1232. spin_lock_irqsave(&plchan->lock, flags);
  1233. txd = plchan->at;
  1234. plchan->at = NULL;
  1235. if (txd) {
  1236. /* Update last completed */
  1237. plchan->lc = txd->tx.cookie;
  1238. }
  1239. /* If a new descriptor is queued, set it up plchan->at is NULL here */
  1240. if (!list_empty(&plchan->pend_list)) {
  1241. struct pl08x_txd *next;
  1242. next = list_first_entry(&plchan->pend_list,
  1243. struct pl08x_txd,
  1244. node);
  1245. list_del(&next->node);
  1246. pl08x_start_txd(plchan, next);
  1247. } else if (plchan->phychan_hold) {
  1248. /*
  1249. * This channel is still in use - we have a new txd being
  1250. * prepared and will soon be queued. Don't give up the
  1251. * physical channel.
  1252. */
  1253. } else {
  1254. struct pl08x_dma_chan *waiting = NULL;
  1255. /*
  1256. * No more jobs, so free up the physical channel
  1257. * Free any allocated signal on slave transfers too
  1258. */
  1259. release_phy_channel(plchan);
  1260. plchan->state = PL08X_CHAN_IDLE;
  1261. /*
  1262. * And NOW before anyone else can grab that free:d up
  1263. * physical channel, see if there is some memcpy pending
  1264. * that seriously needs to start because of being stacked
  1265. * up while we were choking the physical channels with data.
  1266. */
  1267. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1268. chan.device_node) {
  1269. if (waiting->state == PL08X_CHAN_WAITING &&
  1270. waiting->waiting != NULL) {
  1271. int ret;
  1272. /* This should REALLY not fail now */
  1273. ret = prep_phy_channel(waiting,
  1274. waiting->waiting);
  1275. BUG_ON(ret);
  1276. waiting->phychan_hold--;
  1277. waiting->state = PL08X_CHAN_RUNNING;
  1278. waiting->waiting = NULL;
  1279. pl08x_issue_pending(&waiting->chan);
  1280. break;
  1281. }
  1282. }
  1283. }
  1284. spin_unlock_irqrestore(&plchan->lock, flags);
  1285. if (txd) {
  1286. dma_async_tx_callback callback = txd->tx.callback;
  1287. void *callback_param = txd->tx.callback_param;
  1288. /* Don't try to unmap buffers on slave channels */
  1289. if (!plchan->slave)
  1290. pl08x_unmap_buffers(txd);
  1291. /* Free the descriptor */
  1292. spin_lock_irqsave(&plchan->lock, flags);
  1293. pl08x_free_txd(pl08x, txd);
  1294. spin_unlock_irqrestore(&plchan->lock, flags);
  1295. /* Callback to signal completion */
  1296. if (callback)
  1297. callback(callback_param);
  1298. }
  1299. }
  1300. static irqreturn_t pl08x_irq(int irq, void *dev)
  1301. {
  1302. struct pl08x_driver_data *pl08x = dev;
  1303. u32 mask = 0, err, tc, i;
  1304. /* check & clear - ERR & TC interrupts */
  1305. err = readl(pl08x->base + PL080_ERR_STATUS);
  1306. if (err) {
  1307. dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
  1308. __func__, err);
  1309. writel(err, pl08x->base + PL080_ERR_CLEAR);
  1310. }
  1311. tc = readl(pl08x->base + PL080_INT_STATUS);
  1312. if (tc)
  1313. writel(tc, pl08x->base + PL080_TC_CLEAR);
  1314. if (!err && !tc)
  1315. return IRQ_NONE;
  1316. for (i = 0; i < pl08x->vd->channels; i++) {
  1317. if (((1 << i) & err) || ((1 << i) & tc)) {
  1318. /* Locate physical channel */
  1319. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1320. struct pl08x_dma_chan *plchan = phychan->serving;
  1321. if (!plchan) {
  1322. dev_err(&pl08x->adev->dev,
  1323. "%s Error TC interrupt on unused channel: 0x%08x\n",
  1324. __func__, i);
  1325. continue;
  1326. }
  1327. /* Schedule tasklet on this channel */
  1328. tasklet_schedule(&plchan->tasklet);
  1329. mask |= (1 << i);
  1330. }
  1331. }
  1332. return mask ? IRQ_HANDLED : IRQ_NONE;
  1333. }
  1334. static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
  1335. {
  1336. u32 cctl = pl08x_cctl(chan->cd->cctl);
  1337. chan->slave = true;
  1338. chan->name = chan->cd->bus_id;
  1339. chan->src_addr = chan->cd->addr;
  1340. chan->dst_addr = chan->cd->addr;
  1341. chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
  1342. pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
  1343. chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
  1344. pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
  1345. }
  1346. /*
  1347. * Initialise the DMAC memcpy/slave channels.
  1348. * Make a local wrapper to hold required data
  1349. */
  1350. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1351. struct dma_device *dmadev, unsigned int channels, bool slave)
  1352. {
  1353. struct pl08x_dma_chan *chan;
  1354. int i;
  1355. INIT_LIST_HEAD(&dmadev->channels);
  1356. /*
  1357. * Register as many many memcpy as we have physical channels,
  1358. * we won't always be able to use all but the code will have
  1359. * to cope with that situation.
  1360. */
  1361. for (i = 0; i < channels; i++) {
  1362. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1363. if (!chan) {
  1364. dev_err(&pl08x->adev->dev,
  1365. "%s no memory for channel\n", __func__);
  1366. return -ENOMEM;
  1367. }
  1368. chan->host = pl08x;
  1369. chan->state = PL08X_CHAN_IDLE;
  1370. if (slave) {
  1371. chan->cd = &pl08x->pd->slave_channels[i];
  1372. pl08x_dma_slave_init(chan);
  1373. } else {
  1374. chan->cd = &pl08x->pd->memcpy_channel;
  1375. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1376. if (!chan->name) {
  1377. kfree(chan);
  1378. return -ENOMEM;
  1379. }
  1380. }
  1381. if (chan->cd->circular_buffer) {
  1382. dev_err(&pl08x->adev->dev,
  1383. "channel %s: circular buffers not supported\n",
  1384. chan->name);
  1385. kfree(chan);
  1386. continue;
  1387. }
  1388. dev_dbg(&pl08x->adev->dev,
  1389. "initialize virtual channel \"%s\"\n",
  1390. chan->name);
  1391. chan->chan.device = dmadev;
  1392. chan->chan.cookie = 0;
  1393. chan->lc = 0;
  1394. spin_lock_init(&chan->lock);
  1395. INIT_LIST_HEAD(&chan->pend_list);
  1396. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1397. (unsigned long) chan);
  1398. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1399. }
  1400. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1401. i, slave ? "slave" : "memcpy");
  1402. return i;
  1403. }
  1404. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1405. {
  1406. struct pl08x_dma_chan *chan = NULL;
  1407. struct pl08x_dma_chan *next;
  1408. list_for_each_entry_safe(chan,
  1409. next, &dmadev->channels, chan.device_node) {
  1410. list_del(&chan->chan.device_node);
  1411. kfree(chan);
  1412. }
  1413. }
  1414. #ifdef CONFIG_DEBUG_FS
  1415. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1416. {
  1417. switch (state) {
  1418. case PL08X_CHAN_IDLE:
  1419. return "idle";
  1420. case PL08X_CHAN_RUNNING:
  1421. return "running";
  1422. case PL08X_CHAN_PAUSED:
  1423. return "paused";
  1424. case PL08X_CHAN_WAITING:
  1425. return "waiting";
  1426. default:
  1427. break;
  1428. }
  1429. return "UNKNOWN STATE";
  1430. }
  1431. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1432. {
  1433. struct pl08x_driver_data *pl08x = s->private;
  1434. struct pl08x_dma_chan *chan;
  1435. struct pl08x_phy_chan *ch;
  1436. unsigned long flags;
  1437. int i;
  1438. seq_printf(s, "PL08x physical channels:\n");
  1439. seq_printf(s, "CHANNEL:\tUSER:\n");
  1440. seq_printf(s, "--------\t-----\n");
  1441. for (i = 0; i < pl08x->vd->channels; i++) {
  1442. struct pl08x_dma_chan *virt_chan;
  1443. ch = &pl08x->phy_chans[i];
  1444. spin_lock_irqsave(&ch->lock, flags);
  1445. virt_chan = ch->serving;
  1446. seq_printf(s, "%d\t\t%s\n",
  1447. ch->id, virt_chan ? virt_chan->name : "(none)");
  1448. spin_unlock_irqrestore(&ch->lock, flags);
  1449. }
  1450. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1451. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1452. seq_printf(s, "--------\t------\n");
  1453. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1454. seq_printf(s, "%s\t\t%s\n", chan->name,
  1455. pl08x_state_str(chan->state));
  1456. }
  1457. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1458. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1459. seq_printf(s, "--------\t------\n");
  1460. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1461. seq_printf(s, "%s\t\t%s\n", chan->name,
  1462. pl08x_state_str(chan->state));
  1463. }
  1464. return 0;
  1465. }
  1466. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1467. {
  1468. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1469. }
  1470. static const struct file_operations pl08x_debugfs_operations = {
  1471. .open = pl08x_debugfs_open,
  1472. .read = seq_read,
  1473. .llseek = seq_lseek,
  1474. .release = single_release,
  1475. };
  1476. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1477. {
  1478. /* Expose a simple debugfs interface to view all clocks */
  1479. (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
  1480. S_IFREG | S_IRUGO, NULL, pl08x,
  1481. &pl08x_debugfs_operations);
  1482. }
  1483. #else
  1484. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1485. {
  1486. }
  1487. #endif
  1488. static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
  1489. {
  1490. struct pl08x_driver_data *pl08x;
  1491. const struct vendor_data *vd = id->data;
  1492. int ret = 0;
  1493. int i;
  1494. ret = amba_request_regions(adev, NULL);
  1495. if (ret)
  1496. return ret;
  1497. /* Create the driver state holder */
  1498. pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
  1499. if (!pl08x) {
  1500. ret = -ENOMEM;
  1501. goto out_no_pl08x;
  1502. }
  1503. pm_runtime_set_active(&adev->dev);
  1504. pm_runtime_enable(&adev->dev);
  1505. /* Initialize memcpy engine */
  1506. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1507. pl08x->memcpy.dev = &adev->dev;
  1508. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1509. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1510. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1511. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1512. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1513. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1514. pl08x->memcpy.device_control = pl08x_control;
  1515. /* Initialize slave engine */
  1516. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1517. pl08x->slave.dev = &adev->dev;
  1518. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1519. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1520. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1521. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1522. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1523. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1524. pl08x->slave.device_control = pl08x_control;
  1525. /* Get the platform data */
  1526. pl08x->pd = dev_get_platdata(&adev->dev);
  1527. if (!pl08x->pd) {
  1528. dev_err(&adev->dev, "no platform data supplied\n");
  1529. goto out_no_platdata;
  1530. }
  1531. /* Assign useful pointers to the driver state */
  1532. pl08x->adev = adev;
  1533. pl08x->vd = vd;
  1534. /* By default, AHB1 only. If dualmaster, from platform */
  1535. pl08x->lli_buses = PL08X_AHB1;
  1536. pl08x->mem_buses = PL08X_AHB1;
  1537. if (pl08x->vd->dualmaster) {
  1538. pl08x->lli_buses = pl08x->pd->lli_buses;
  1539. pl08x->mem_buses = pl08x->pd->mem_buses;
  1540. }
  1541. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1542. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1543. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1544. if (!pl08x->pool) {
  1545. ret = -ENOMEM;
  1546. goto out_no_lli_pool;
  1547. }
  1548. spin_lock_init(&pl08x->lock);
  1549. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1550. if (!pl08x->base) {
  1551. ret = -ENOMEM;
  1552. goto out_no_ioremap;
  1553. }
  1554. /* Turn on the PL08x */
  1555. pl08x_ensure_on(pl08x);
  1556. /* Attach the interrupt handler */
  1557. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1558. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1559. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1560. DRIVER_NAME, pl08x);
  1561. if (ret) {
  1562. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1563. __func__, adev->irq[0]);
  1564. goto out_no_irq;
  1565. }
  1566. /* Initialize physical channels */
  1567. pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
  1568. GFP_KERNEL);
  1569. if (!pl08x->phy_chans) {
  1570. dev_err(&adev->dev, "%s failed to allocate "
  1571. "physical channel holders\n",
  1572. __func__);
  1573. goto out_no_phychans;
  1574. }
  1575. for (i = 0; i < vd->channels; i++) {
  1576. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1577. ch->id = i;
  1578. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1579. spin_lock_init(&ch->lock);
  1580. ch->serving = NULL;
  1581. ch->signal = -1;
  1582. dev_dbg(&adev->dev, "physical channel %d is %s\n",
  1583. i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1584. }
  1585. /* Register as many memcpy channels as there are physical channels */
  1586. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1587. pl08x->vd->channels, false);
  1588. if (ret <= 0) {
  1589. dev_warn(&pl08x->adev->dev,
  1590. "%s failed to enumerate memcpy channels - %d\n",
  1591. __func__, ret);
  1592. goto out_no_memcpy;
  1593. }
  1594. pl08x->memcpy.chancnt = ret;
  1595. /* Register slave channels */
  1596. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1597. pl08x->pd->num_slave_channels, true);
  1598. if (ret <= 0) {
  1599. dev_warn(&pl08x->adev->dev,
  1600. "%s failed to enumerate slave channels - %d\n",
  1601. __func__, ret);
  1602. goto out_no_slave;
  1603. }
  1604. pl08x->slave.chancnt = ret;
  1605. ret = dma_async_device_register(&pl08x->memcpy);
  1606. if (ret) {
  1607. dev_warn(&pl08x->adev->dev,
  1608. "%s failed to register memcpy as an async device - %d\n",
  1609. __func__, ret);
  1610. goto out_no_memcpy_reg;
  1611. }
  1612. ret = dma_async_device_register(&pl08x->slave);
  1613. if (ret) {
  1614. dev_warn(&pl08x->adev->dev,
  1615. "%s failed to register slave as an async device - %d\n",
  1616. __func__, ret);
  1617. goto out_no_slave_reg;
  1618. }
  1619. amba_set_drvdata(adev, pl08x);
  1620. init_pl08x_debugfs(pl08x);
  1621. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1622. amba_part(adev), amba_rev(adev),
  1623. (unsigned long long)adev->res.start, adev->irq[0]);
  1624. pm_runtime_put(&adev->dev);
  1625. return 0;
  1626. out_no_slave_reg:
  1627. dma_async_device_unregister(&pl08x->memcpy);
  1628. out_no_memcpy_reg:
  1629. pl08x_free_virtual_channels(&pl08x->slave);
  1630. out_no_slave:
  1631. pl08x_free_virtual_channels(&pl08x->memcpy);
  1632. out_no_memcpy:
  1633. kfree(pl08x->phy_chans);
  1634. out_no_phychans:
  1635. free_irq(adev->irq[0], pl08x);
  1636. out_no_irq:
  1637. iounmap(pl08x->base);
  1638. out_no_ioremap:
  1639. dma_pool_destroy(pl08x->pool);
  1640. out_no_lli_pool:
  1641. out_no_platdata:
  1642. pm_runtime_put(&adev->dev);
  1643. pm_runtime_disable(&adev->dev);
  1644. kfree(pl08x);
  1645. out_no_pl08x:
  1646. amba_release_regions(adev);
  1647. return ret;
  1648. }
  1649. /* PL080 has 8 channels and the PL080 have just 2 */
  1650. static struct vendor_data vendor_pl080 = {
  1651. .channels = 8,
  1652. .dualmaster = true,
  1653. };
  1654. static struct vendor_data vendor_pl081 = {
  1655. .channels = 2,
  1656. .dualmaster = false,
  1657. };
  1658. static struct amba_id pl08x_ids[] = {
  1659. /* PL080 */
  1660. {
  1661. .id = 0x00041080,
  1662. .mask = 0x000fffff,
  1663. .data = &vendor_pl080,
  1664. },
  1665. /* PL081 */
  1666. {
  1667. .id = 0x00041081,
  1668. .mask = 0x000fffff,
  1669. .data = &vendor_pl081,
  1670. },
  1671. /* Nomadik 8815 PL080 variant */
  1672. {
  1673. .id = 0x00280880,
  1674. .mask = 0x00ffffff,
  1675. .data = &vendor_pl080,
  1676. },
  1677. { 0, 0 },
  1678. };
  1679. static struct amba_driver pl08x_amba_driver = {
  1680. .drv.name = DRIVER_NAME,
  1681. .id_table = pl08x_ids,
  1682. .probe = pl08x_probe,
  1683. };
  1684. static int __init pl08x_init(void)
  1685. {
  1686. int retval;
  1687. retval = amba_driver_register(&pl08x_amba_driver);
  1688. if (retval)
  1689. printk(KERN_WARNING DRIVER_NAME
  1690. "failed to register as an AMBA device (%d)\n",
  1691. retval);
  1692. return retval;
  1693. }
  1694. subsys_initcall(pl08x_init);