x86.c 157 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  77. #else
  78. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  79. #endif
  80. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  81. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  82. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  83. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  84. struct kvm_cpuid_entry2 __user *entries);
  85. struct kvm_x86_ops *kvm_x86_ops;
  86. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  87. int ignore_msrs = 0;
  88. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  89. #define KVM_NR_SHARED_MSRS 16
  90. struct kvm_shared_msrs_global {
  91. int nr;
  92. u32 msrs[KVM_NR_SHARED_MSRS];
  93. };
  94. struct kvm_shared_msrs {
  95. struct user_return_notifier urn;
  96. bool registered;
  97. struct kvm_shared_msr_values {
  98. u64 host;
  99. u64 curr;
  100. } values[KVM_NR_SHARED_MSRS];
  101. };
  102. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  103. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  104. struct kvm_stats_debugfs_item debugfs_entries[] = {
  105. { "pf_fixed", VCPU_STAT(pf_fixed) },
  106. { "pf_guest", VCPU_STAT(pf_guest) },
  107. { "tlb_flush", VCPU_STAT(tlb_flush) },
  108. { "invlpg", VCPU_STAT(invlpg) },
  109. { "exits", VCPU_STAT(exits) },
  110. { "io_exits", VCPU_STAT(io_exits) },
  111. { "mmio_exits", VCPU_STAT(mmio_exits) },
  112. { "signal_exits", VCPU_STAT(signal_exits) },
  113. { "irq_window", VCPU_STAT(irq_window_exits) },
  114. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  115. { "halt_exits", VCPU_STAT(halt_exits) },
  116. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  117. { "hypercalls", VCPU_STAT(hypercalls) },
  118. { "request_irq", VCPU_STAT(request_irq_exits) },
  119. { "irq_exits", VCPU_STAT(irq_exits) },
  120. { "host_state_reload", VCPU_STAT(host_state_reload) },
  121. { "efer_reload", VCPU_STAT(efer_reload) },
  122. { "fpu_reload", VCPU_STAT(fpu_reload) },
  123. { "insn_emulation", VCPU_STAT(insn_emulation) },
  124. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  125. { "irq_injections", VCPU_STAT(irq_injections) },
  126. { "nmi_injections", VCPU_STAT(nmi_injections) },
  127. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  128. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  129. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  130. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  131. { "mmu_flooded", VM_STAT(mmu_flooded) },
  132. { "mmu_recycled", VM_STAT(mmu_recycled) },
  133. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  134. { "mmu_unsync", VM_STAT(mmu_unsync) },
  135. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  136. { "largepages", VM_STAT(lpages) },
  137. { NULL }
  138. };
  139. u64 __read_mostly host_xcr0;
  140. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  141. {
  142. int i;
  143. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  144. vcpu->arch.apf.gfns[i] = ~0;
  145. }
  146. static void kvm_on_user_return(struct user_return_notifier *urn)
  147. {
  148. unsigned slot;
  149. struct kvm_shared_msrs *locals
  150. = container_of(urn, struct kvm_shared_msrs, urn);
  151. struct kvm_shared_msr_values *values;
  152. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  153. values = &locals->values[slot];
  154. if (values->host != values->curr) {
  155. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  156. values->curr = values->host;
  157. }
  158. }
  159. locals->registered = false;
  160. user_return_notifier_unregister(urn);
  161. }
  162. static void shared_msr_update(unsigned slot, u32 msr)
  163. {
  164. struct kvm_shared_msrs *smsr;
  165. u64 value;
  166. smsr = &__get_cpu_var(shared_msrs);
  167. /* only read, and nobody should modify it at this time,
  168. * so don't need lock */
  169. if (slot >= shared_msrs_global.nr) {
  170. printk(KERN_ERR "kvm: invalid MSR slot!");
  171. return;
  172. }
  173. rdmsrl_safe(msr, &value);
  174. smsr->values[slot].host = value;
  175. smsr->values[slot].curr = value;
  176. }
  177. void kvm_define_shared_msr(unsigned slot, u32 msr)
  178. {
  179. if (slot >= shared_msrs_global.nr)
  180. shared_msrs_global.nr = slot + 1;
  181. shared_msrs_global.msrs[slot] = msr;
  182. /* we need ensured the shared_msr_global have been updated */
  183. smp_wmb();
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  186. static void kvm_shared_msr_cpu_online(void)
  187. {
  188. unsigned i;
  189. for (i = 0; i < shared_msrs_global.nr; ++i)
  190. shared_msr_update(i, shared_msrs_global.msrs[i]);
  191. }
  192. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  196. return;
  197. smsr->values[slot].curr = value;
  198. wrmsrl(shared_msrs_global.msrs[slot], value);
  199. if (!smsr->registered) {
  200. smsr->urn.on_user_return = kvm_on_user_return;
  201. user_return_notifier_register(&smsr->urn);
  202. smsr->registered = true;
  203. }
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  206. static void drop_user_return_notifiers(void *ignore)
  207. {
  208. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  209. if (smsr->registered)
  210. kvm_on_user_return(&smsr->urn);
  211. }
  212. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  213. {
  214. if (irqchip_in_kernel(vcpu->kvm))
  215. return vcpu->arch.apic_base;
  216. else
  217. return vcpu->arch.apic_base;
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  220. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  221. {
  222. /* TODO: reserve bits check */
  223. if (irqchip_in_kernel(vcpu->kvm))
  224. kvm_lapic_set_base(vcpu, data);
  225. else
  226. vcpu->arch.apic_base = data;
  227. }
  228. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  229. #define EXCPT_BENIGN 0
  230. #define EXCPT_CONTRIBUTORY 1
  231. #define EXCPT_PF 2
  232. static int exception_class(int vector)
  233. {
  234. switch (vector) {
  235. case PF_VECTOR:
  236. return EXCPT_PF;
  237. case DE_VECTOR:
  238. case TS_VECTOR:
  239. case NP_VECTOR:
  240. case SS_VECTOR:
  241. case GP_VECTOR:
  242. return EXCPT_CONTRIBUTORY;
  243. default:
  244. break;
  245. }
  246. return EXCPT_BENIGN;
  247. }
  248. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  249. unsigned nr, bool has_error, u32 error_code,
  250. bool reinject)
  251. {
  252. u32 prev_nr;
  253. int class1, class2;
  254. kvm_make_request(KVM_REQ_EVENT, vcpu);
  255. if (!vcpu->arch.exception.pending) {
  256. queue:
  257. vcpu->arch.exception.pending = true;
  258. vcpu->arch.exception.has_error_code = has_error;
  259. vcpu->arch.exception.nr = nr;
  260. vcpu->arch.exception.error_code = error_code;
  261. vcpu->arch.exception.reinject = reinject;
  262. return;
  263. }
  264. /* to check exception */
  265. prev_nr = vcpu->arch.exception.nr;
  266. if (prev_nr == DF_VECTOR) {
  267. /* triple fault -> shutdown */
  268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  269. return;
  270. }
  271. class1 = exception_class(prev_nr);
  272. class2 = exception_class(nr);
  273. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  274. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  275. /* generate double fault per SDM Table 5-5 */
  276. vcpu->arch.exception.pending = true;
  277. vcpu->arch.exception.has_error_code = true;
  278. vcpu->arch.exception.nr = DF_VECTOR;
  279. vcpu->arch.exception.error_code = 0;
  280. } else
  281. /* replace previous exception with a new one in a hope
  282. that instruction re-execution will regenerate lost
  283. exception */
  284. goto queue;
  285. }
  286. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  287. {
  288. kvm_multiple_exception(vcpu, nr, false, 0, false);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  291. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0, true);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  296. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  297. {
  298. if (err)
  299. kvm_inject_gp(vcpu, 0);
  300. else
  301. kvm_x86_ops->skip_emulated_instruction(vcpu);
  302. }
  303. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  304. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  305. {
  306. ++vcpu->stat.pf_guest;
  307. vcpu->arch.cr2 = fault->address;
  308. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  309. }
  310. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  311. {
  312. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  313. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  314. else
  315. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  316. }
  317. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  318. {
  319. kvm_make_request(KVM_REQ_NMI, vcpu);
  320. kvm_make_request(KVM_REQ_EVENT, vcpu);
  321. }
  322. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  323. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  324. {
  325. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  326. }
  327. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  328. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  329. {
  330. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  331. }
  332. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  333. /*
  334. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  335. * a #GP and return false.
  336. */
  337. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  338. {
  339. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  340. return true;
  341. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  342. return false;
  343. }
  344. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  345. /*
  346. * This function will be used to read from the physical memory of the currently
  347. * running guest. The difference to kvm_read_guest_page is that this function
  348. * can read from guest physical or from the guest's guest physical memory.
  349. */
  350. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  351. gfn_t ngfn, void *data, int offset, int len,
  352. u32 access)
  353. {
  354. gfn_t real_gfn;
  355. gpa_t ngpa;
  356. ngpa = gfn_to_gpa(ngfn);
  357. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  358. if (real_gfn == UNMAPPED_GVA)
  359. return -EFAULT;
  360. real_gfn = gpa_to_gfn(real_gfn);
  361. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  362. }
  363. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  364. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  365. void *data, int offset, int len, u32 access)
  366. {
  367. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  368. data, offset, len, access);
  369. }
  370. /*
  371. * Load the pae pdptrs. Return true is they are all valid.
  372. */
  373. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  374. {
  375. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  376. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  377. int i;
  378. int ret;
  379. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  380. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  381. offset * sizeof(u64), sizeof(pdpte),
  382. PFERR_USER_MASK|PFERR_WRITE_MASK);
  383. if (ret < 0) {
  384. ret = 0;
  385. goto out;
  386. }
  387. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  388. if (is_present_gpte(pdpte[i]) &&
  389. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  390. ret = 0;
  391. goto out;
  392. }
  393. }
  394. ret = 1;
  395. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  396. __set_bit(VCPU_EXREG_PDPTR,
  397. (unsigned long *)&vcpu->arch.regs_avail);
  398. __set_bit(VCPU_EXREG_PDPTR,
  399. (unsigned long *)&vcpu->arch.regs_dirty);
  400. out:
  401. return ret;
  402. }
  403. EXPORT_SYMBOL_GPL(load_pdptrs);
  404. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  405. {
  406. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  407. bool changed = true;
  408. int offset;
  409. gfn_t gfn;
  410. int r;
  411. if (is_long_mode(vcpu) || !is_pae(vcpu))
  412. return false;
  413. if (!test_bit(VCPU_EXREG_PDPTR,
  414. (unsigned long *)&vcpu->arch.regs_avail))
  415. return true;
  416. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  417. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  418. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  419. PFERR_USER_MASK | PFERR_WRITE_MASK);
  420. if (r < 0)
  421. goto out;
  422. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  423. out:
  424. return changed;
  425. }
  426. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  427. {
  428. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  429. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  430. X86_CR0_CD | X86_CR0_NW;
  431. cr0 |= X86_CR0_ET;
  432. #ifdef CONFIG_X86_64
  433. if (cr0 & 0xffffffff00000000UL)
  434. return 1;
  435. #endif
  436. cr0 &= ~CR0_RESERVED_BITS;
  437. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  438. return 1;
  439. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  440. return 1;
  441. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  442. #ifdef CONFIG_X86_64
  443. if ((vcpu->arch.efer & EFER_LME)) {
  444. int cs_db, cs_l;
  445. if (!is_pae(vcpu))
  446. return 1;
  447. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  448. if (cs_l)
  449. return 1;
  450. } else
  451. #endif
  452. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  453. kvm_read_cr3(vcpu)))
  454. return 1;
  455. }
  456. kvm_x86_ops->set_cr0(vcpu, cr0);
  457. if ((cr0 ^ old_cr0) & X86_CR0_PG)
  458. kvm_clear_async_pf_completion_queue(vcpu);
  459. if ((cr0 ^ old_cr0) & update_bits)
  460. kvm_mmu_reset_context(vcpu);
  461. return 0;
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  464. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  465. {
  466. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_lmsw);
  469. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  470. {
  471. u64 xcr0;
  472. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  473. if (index != XCR_XFEATURE_ENABLED_MASK)
  474. return 1;
  475. xcr0 = xcr;
  476. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  477. return 1;
  478. if (!(xcr0 & XSTATE_FP))
  479. return 1;
  480. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  481. return 1;
  482. if (xcr0 & ~host_xcr0)
  483. return 1;
  484. vcpu->arch.xcr0 = xcr0;
  485. vcpu->guest_xcr0_loaded = 0;
  486. return 0;
  487. }
  488. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  489. {
  490. if (__kvm_set_xcr(vcpu, index, xcr)) {
  491. kvm_inject_gp(vcpu, 0);
  492. return 1;
  493. }
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  497. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_cpuid_entry2 *best;
  500. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  501. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  502. }
  503. static void update_cpuid(struct kvm_vcpu *vcpu)
  504. {
  505. struct kvm_cpuid_entry2 *best;
  506. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  507. if (!best)
  508. return;
  509. /* Update OSXSAVE bit */
  510. if (cpu_has_xsave && best->function == 0x1) {
  511. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  512. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  513. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  514. }
  515. }
  516. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  517. {
  518. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  519. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  520. if (cr4 & CR4_RESERVED_BITS)
  521. return 1;
  522. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  523. return 1;
  524. if (is_long_mode(vcpu)) {
  525. if (!(cr4 & X86_CR4_PAE))
  526. return 1;
  527. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  528. && ((cr4 ^ old_cr4) & pdptr_bits)
  529. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  530. kvm_read_cr3(vcpu)))
  531. return 1;
  532. if (cr4 & X86_CR4_VMXE)
  533. return 1;
  534. kvm_x86_ops->set_cr4(vcpu, cr4);
  535. if ((cr4 ^ old_cr4) & pdptr_bits)
  536. kvm_mmu_reset_context(vcpu);
  537. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  538. update_cpuid(vcpu);
  539. return 0;
  540. }
  541. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  542. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  543. {
  544. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  545. kvm_mmu_sync_roots(vcpu);
  546. kvm_mmu_flush_tlb(vcpu);
  547. return 0;
  548. }
  549. if (is_long_mode(vcpu)) {
  550. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  551. return 1;
  552. } else {
  553. if (is_pae(vcpu)) {
  554. if (cr3 & CR3_PAE_RESERVED_BITS)
  555. return 1;
  556. if (is_paging(vcpu) &&
  557. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  558. return 1;
  559. }
  560. /*
  561. * We don't check reserved bits in nonpae mode, because
  562. * this isn't enforced, and VMware depends on this.
  563. */
  564. }
  565. /*
  566. * Does the new cr3 value map to physical memory? (Note, we
  567. * catch an invalid cr3 even in real-mode, because it would
  568. * cause trouble later on when we turn on paging anyway.)
  569. *
  570. * A real CPU would silently accept an invalid cr3 and would
  571. * attempt to use it - with largely undefined (and often hard
  572. * to debug) behavior on the guest side.
  573. */
  574. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  575. return 1;
  576. vcpu->arch.cr3 = cr3;
  577. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  578. vcpu->arch.mmu.new_cr3(vcpu);
  579. return 0;
  580. }
  581. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  582. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  583. {
  584. if (cr8 & CR8_RESERVED_BITS)
  585. return 1;
  586. if (irqchip_in_kernel(vcpu->kvm))
  587. kvm_lapic_set_tpr(vcpu, cr8);
  588. else
  589. vcpu->arch.cr8 = cr8;
  590. return 0;
  591. }
  592. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  593. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  594. {
  595. if (irqchip_in_kernel(vcpu->kvm))
  596. return kvm_lapic_get_cr8(vcpu);
  597. else
  598. return vcpu->arch.cr8;
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  601. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  602. {
  603. switch (dr) {
  604. case 0 ... 3:
  605. vcpu->arch.db[dr] = val;
  606. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  607. vcpu->arch.eff_db[dr] = val;
  608. break;
  609. case 4:
  610. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  611. return 1; /* #UD */
  612. /* fall through */
  613. case 6:
  614. if (val & 0xffffffff00000000ULL)
  615. return -1; /* #GP */
  616. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  617. break;
  618. case 5:
  619. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  620. return 1; /* #UD */
  621. /* fall through */
  622. default: /* 7 */
  623. if (val & 0xffffffff00000000ULL)
  624. return -1; /* #GP */
  625. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  626. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  627. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  628. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  629. }
  630. break;
  631. }
  632. return 0;
  633. }
  634. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  635. {
  636. int res;
  637. res = __kvm_set_dr(vcpu, dr, val);
  638. if (res > 0)
  639. kvm_queue_exception(vcpu, UD_VECTOR);
  640. else if (res < 0)
  641. kvm_inject_gp(vcpu, 0);
  642. return res;
  643. }
  644. EXPORT_SYMBOL_GPL(kvm_set_dr);
  645. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  646. {
  647. switch (dr) {
  648. case 0 ... 3:
  649. *val = vcpu->arch.db[dr];
  650. break;
  651. case 4:
  652. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  653. return 1;
  654. /* fall through */
  655. case 6:
  656. *val = vcpu->arch.dr6;
  657. break;
  658. case 5:
  659. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  660. return 1;
  661. /* fall through */
  662. default: /* 7 */
  663. *val = vcpu->arch.dr7;
  664. break;
  665. }
  666. return 0;
  667. }
  668. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  669. {
  670. if (_kvm_get_dr(vcpu, dr, val)) {
  671. kvm_queue_exception(vcpu, UD_VECTOR);
  672. return 1;
  673. }
  674. return 0;
  675. }
  676. EXPORT_SYMBOL_GPL(kvm_get_dr);
  677. /*
  678. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  679. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  680. *
  681. * This list is modified at module load time to reflect the
  682. * capabilities of the host cpu. This capabilities test skips MSRs that are
  683. * kvm-specific. Those are put in the beginning of the list.
  684. */
  685. #define KVM_SAVE_MSRS_BEGIN 8
  686. static u32 msrs_to_save[] = {
  687. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  688. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  689. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  690. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  691. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  692. MSR_STAR,
  693. #ifdef CONFIG_X86_64
  694. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  695. #endif
  696. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  697. };
  698. static unsigned num_msrs_to_save;
  699. static u32 emulated_msrs[] = {
  700. MSR_IA32_MISC_ENABLE,
  701. MSR_IA32_MCG_STATUS,
  702. MSR_IA32_MCG_CTL,
  703. };
  704. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  705. {
  706. u64 old_efer = vcpu->arch.efer;
  707. if (efer & efer_reserved_bits)
  708. return 1;
  709. if (is_paging(vcpu)
  710. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  711. return 1;
  712. if (efer & EFER_FFXSR) {
  713. struct kvm_cpuid_entry2 *feat;
  714. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  715. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  716. return 1;
  717. }
  718. if (efer & EFER_SVME) {
  719. struct kvm_cpuid_entry2 *feat;
  720. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  721. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  722. return 1;
  723. }
  724. efer &= ~EFER_LMA;
  725. efer |= vcpu->arch.efer & EFER_LMA;
  726. kvm_x86_ops->set_efer(vcpu, efer);
  727. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  728. /* Update reserved bits */
  729. if ((efer ^ old_efer) & EFER_NX)
  730. kvm_mmu_reset_context(vcpu);
  731. return 0;
  732. }
  733. void kvm_enable_efer_bits(u64 mask)
  734. {
  735. efer_reserved_bits &= ~mask;
  736. }
  737. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  738. /*
  739. * Writes msr value into into the appropriate "register".
  740. * Returns 0 on success, non-0 otherwise.
  741. * Assumes vcpu_load() was already called.
  742. */
  743. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  744. {
  745. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  746. }
  747. /*
  748. * Adapt set_msr() to msr_io()'s calling convention
  749. */
  750. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  751. {
  752. return kvm_set_msr(vcpu, index, *data);
  753. }
  754. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  755. {
  756. int version;
  757. int r;
  758. struct pvclock_wall_clock wc;
  759. struct timespec boot;
  760. if (!wall_clock)
  761. return;
  762. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  763. if (r)
  764. return;
  765. if (version & 1)
  766. ++version; /* first time write, random junk */
  767. ++version;
  768. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  769. /*
  770. * The guest calculates current wall clock time by adding
  771. * system time (updated by kvm_guest_time_update below) to the
  772. * wall clock specified here. guest system time equals host
  773. * system time for us, thus we must fill in host boot time here.
  774. */
  775. getboottime(&boot);
  776. wc.sec = boot.tv_sec;
  777. wc.nsec = boot.tv_nsec;
  778. wc.version = version;
  779. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  780. version++;
  781. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  782. }
  783. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  784. {
  785. uint32_t quotient, remainder;
  786. /* Don't try to replace with do_div(), this one calculates
  787. * "(dividend << 32) / divisor" */
  788. __asm__ ( "divl %4"
  789. : "=a" (quotient), "=d" (remainder)
  790. : "0" (0), "1" (dividend), "r" (divisor) );
  791. return quotient;
  792. }
  793. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  794. s8 *pshift, u32 *pmultiplier)
  795. {
  796. uint64_t scaled64;
  797. int32_t shift = 0;
  798. uint64_t tps64;
  799. uint32_t tps32;
  800. tps64 = base_khz * 1000LL;
  801. scaled64 = scaled_khz * 1000LL;
  802. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  803. tps64 >>= 1;
  804. shift--;
  805. }
  806. tps32 = (uint32_t)tps64;
  807. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  808. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  809. scaled64 >>= 1;
  810. else
  811. tps32 <<= 1;
  812. shift++;
  813. }
  814. *pshift = shift;
  815. *pmultiplier = div_frac(scaled64, tps32);
  816. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  817. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  818. }
  819. static inline u64 get_kernel_ns(void)
  820. {
  821. struct timespec ts;
  822. WARN_ON(preemptible());
  823. ktime_get_ts(&ts);
  824. monotonic_to_bootbased(&ts);
  825. return timespec_to_ns(&ts);
  826. }
  827. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  828. unsigned long max_tsc_khz;
  829. static inline int kvm_tsc_changes_freq(void)
  830. {
  831. int cpu = get_cpu();
  832. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  833. cpufreq_quick_get(cpu) != 0;
  834. put_cpu();
  835. return ret;
  836. }
  837. static inline u64 nsec_to_cycles(u64 nsec)
  838. {
  839. u64 ret;
  840. WARN_ON(preemptible());
  841. if (kvm_tsc_changes_freq())
  842. printk_once(KERN_WARNING
  843. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  844. ret = nsec * __this_cpu_read(cpu_tsc_khz);
  845. do_div(ret, USEC_PER_SEC);
  846. return ret;
  847. }
  848. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  849. {
  850. /* Compute a scale to convert nanoseconds in TSC cycles */
  851. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  852. &kvm->arch.virtual_tsc_shift,
  853. &kvm->arch.virtual_tsc_mult);
  854. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  855. }
  856. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  857. {
  858. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  859. vcpu->kvm->arch.virtual_tsc_mult,
  860. vcpu->kvm->arch.virtual_tsc_shift);
  861. tsc += vcpu->arch.last_tsc_write;
  862. return tsc;
  863. }
  864. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  865. {
  866. struct kvm *kvm = vcpu->kvm;
  867. u64 offset, ns, elapsed;
  868. unsigned long flags;
  869. s64 sdiff;
  870. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  871. offset = data - native_read_tsc();
  872. ns = get_kernel_ns();
  873. elapsed = ns - kvm->arch.last_tsc_nsec;
  874. sdiff = data - kvm->arch.last_tsc_write;
  875. if (sdiff < 0)
  876. sdiff = -sdiff;
  877. /*
  878. * Special case: close write to TSC within 5 seconds of
  879. * another CPU is interpreted as an attempt to synchronize
  880. * The 5 seconds is to accomodate host load / swapping as
  881. * well as any reset of TSC during the boot process.
  882. *
  883. * In that case, for a reliable TSC, we can match TSC offsets,
  884. * or make a best guest using elapsed value.
  885. */
  886. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  887. elapsed < 5ULL * NSEC_PER_SEC) {
  888. if (!check_tsc_unstable()) {
  889. offset = kvm->arch.last_tsc_offset;
  890. pr_debug("kvm: matched tsc offset for %llu\n", data);
  891. } else {
  892. u64 delta = nsec_to_cycles(elapsed);
  893. offset += delta;
  894. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  895. }
  896. ns = kvm->arch.last_tsc_nsec;
  897. }
  898. kvm->arch.last_tsc_nsec = ns;
  899. kvm->arch.last_tsc_write = data;
  900. kvm->arch.last_tsc_offset = offset;
  901. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  902. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  903. /* Reset of TSC must disable overshoot protection below */
  904. vcpu->arch.hv_clock.tsc_timestamp = 0;
  905. vcpu->arch.last_tsc_write = data;
  906. vcpu->arch.last_tsc_nsec = ns;
  907. }
  908. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  909. static int kvm_guest_time_update(struct kvm_vcpu *v)
  910. {
  911. unsigned long flags;
  912. struct kvm_vcpu_arch *vcpu = &v->arch;
  913. void *shared_kaddr;
  914. unsigned long this_tsc_khz;
  915. s64 kernel_ns, max_kernel_ns;
  916. u64 tsc_timestamp;
  917. /* Keep irq disabled to prevent changes to the clock */
  918. local_irq_save(flags);
  919. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  920. kernel_ns = get_kernel_ns();
  921. this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
  922. if (unlikely(this_tsc_khz == 0)) {
  923. local_irq_restore(flags);
  924. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  925. return 1;
  926. }
  927. /*
  928. * We may have to catch up the TSC to match elapsed wall clock
  929. * time for two reasons, even if kvmclock is used.
  930. * 1) CPU could have been running below the maximum TSC rate
  931. * 2) Broken TSC compensation resets the base at each VCPU
  932. * entry to avoid unknown leaps of TSC even when running
  933. * again on the same CPU. This may cause apparent elapsed
  934. * time to disappear, and the guest to stand still or run
  935. * very slowly.
  936. */
  937. if (vcpu->tsc_catchup) {
  938. u64 tsc = compute_guest_tsc(v, kernel_ns);
  939. if (tsc > tsc_timestamp) {
  940. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  941. tsc_timestamp = tsc;
  942. }
  943. }
  944. local_irq_restore(flags);
  945. if (!vcpu->time_page)
  946. return 0;
  947. /*
  948. * Time as measured by the TSC may go backwards when resetting the base
  949. * tsc_timestamp. The reason for this is that the TSC resolution is
  950. * higher than the resolution of the other clock scales. Thus, many
  951. * possible measurments of the TSC correspond to one measurement of any
  952. * other clock, and so a spread of values is possible. This is not a
  953. * problem for the computation of the nanosecond clock; with TSC rates
  954. * around 1GHZ, there can only be a few cycles which correspond to one
  955. * nanosecond value, and any path through this code will inevitably
  956. * take longer than that. However, with the kernel_ns value itself,
  957. * the precision may be much lower, down to HZ granularity. If the
  958. * first sampling of TSC against kernel_ns ends in the low part of the
  959. * range, and the second in the high end of the range, we can get:
  960. *
  961. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  962. *
  963. * As the sampling errors potentially range in the thousands of cycles,
  964. * it is possible such a time value has already been observed by the
  965. * guest. To protect against this, we must compute the system time as
  966. * observed by the guest and ensure the new system time is greater.
  967. */
  968. max_kernel_ns = 0;
  969. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  970. max_kernel_ns = vcpu->last_guest_tsc -
  971. vcpu->hv_clock.tsc_timestamp;
  972. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  973. vcpu->hv_clock.tsc_to_system_mul,
  974. vcpu->hv_clock.tsc_shift);
  975. max_kernel_ns += vcpu->last_kernel_ns;
  976. }
  977. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  978. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  979. &vcpu->hv_clock.tsc_shift,
  980. &vcpu->hv_clock.tsc_to_system_mul);
  981. vcpu->hw_tsc_khz = this_tsc_khz;
  982. }
  983. if (max_kernel_ns > kernel_ns)
  984. kernel_ns = max_kernel_ns;
  985. /* With all the info we got, fill in the values */
  986. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  987. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  988. vcpu->last_kernel_ns = kernel_ns;
  989. vcpu->last_guest_tsc = tsc_timestamp;
  990. vcpu->hv_clock.flags = 0;
  991. /*
  992. * The interface expects us to write an even number signaling that the
  993. * update is finished. Since the guest won't see the intermediate
  994. * state, we just increase by 2 at the end.
  995. */
  996. vcpu->hv_clock.version += 2;
  997. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  998. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  999. sizeof(vcpu->hv_clock));
  1000. kunmap_atomic(shared_kaddr, KM_USER0);
  1001. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1002. return 0;
  1003. }
  1004. static bool msr_mtrr_valid(unsigned msr)
  1005. {
  1006. switch (msr) {
  1007. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1008. case MSR_MTRRfix64K_00000:
  1009. case MSR_MTRRfix16K_80000:
  1010. case MSR_MTRRfix16K_A0000:
  1011. case MSR_MTRRfix4K_C0000:
  1012. case MSR_MTRRfix4K_C8000:
  1013. case MSR_MTRRfix4K_D0000:
  1014. case MSR_MTRRfix4K_D8000:
  1015. case MSR_MTRRfix4K_E0000:
  1016. case MSR_MTRRfix4K_E8000:
  1017. case MSR_MTRRfix4K_F0000:
  1018. case MSR_MTRRfix4K_F8000:
  1019. case MSR_MTRRdefType:
  1020. case MSR_IA32_CR_PAT:
  1021. return true;
  1022. case 0x2f8:
  1023. return true;
  1024. }
  1025. return false;
  1026. }
  1027. static bool valid_pat_type(unsigned t)
  1028. {
  1029. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1030. }
  1031. static bool valid_mtrr_type(unsigned t)
  1032. {
  1033. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1034. }
  1035. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1036. {
  1037. int i;
  1038. if (!msr_mtrr_valid(msr))
  1039. return false;
  1040. if (msr == MSR_IA32_CR_PAT) {
  1041. for (i = 0; i < 8; i++)
  1042. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1043. return false;
  1044. return true;
  1045. } else if (msr == MSR_MTRRdefType) {
  1046. if (data & ~0xcff)
  1047. return false;
  1048. return valid_mtrr_type(data & 0xff);
  1049. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1050. for (i = 0; i < 8 ; i++)
  1051. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1052. return false;
  1053. return true;
  1054. }
  1055. /* variable MTRRs */
  1056. return valid_mtrr_type(data & 0xff);
  1057. }
  1058. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1059. {
  1060. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1061. if (!mtrr_valid(vcpu, msr, data))
  1062. return 1;
  1063. if (msr == MSR_MTRRdefType) {
  1064. vcpu->arch.mtrr_state.def_type = data;
  1065. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1066. } else if (msr == MSR_MTRRfix64K_00000)
  1067. p[0] = data;
  1068. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1069. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1070. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1071. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1072. else if (msr == MSR_IA32_CR_PAT)
  1073. vcpu->arch.pat = data;
  1074. else { /* Variable MTRRs */
  1075. int idx, is_mtrr_mask;
  1076. u64 *pt;
  1077. idx = (msr - 0x200) / 2;
  1078. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1079. if (!is_mtrr_mask)
  1080. pt =
  1081. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1082. else
  1083. pt =
  1084. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1085. *pt = data;
  1086. }
  1087. kvm_mmu_reset_context(vcpu);
  1088. return 0;
  1089. }
  1090. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1091. {
  1092. u64 mcg_cap = vcpu->arch.mcg_cap;
  1093. unsigned bank_num = mcg_cap & 0xff;
  1094. switch (msr) {
  1095. case MSR_IA32_MCG_STATUS:
  1096. vcpu->arch.mcg_status = data;
  1097. break;
  1098. case MSR_IA32_MCG_CTL:
  1099. if (!(mcg_cap & MCG_CTL_P))
  1100. return 1;
  1101. if (data != 0 && data != ~(u64)0)
  1102. return -1;
  1103. vcpu->arch.mcg_ctl = data;
  1104. break;
  1105. default:
  1106. if (msr >= MSR_IA32_MC0_CTL &&
  1107. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1108. u32 offset = msr - MSR_IA32_MC0_CTL;
  1109. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1110. * some Linux kernels though clear bit 10 in bank 4 to
  1111. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1112. * this to avoid an uncatched #GP in the guest
  1113. */
  1114. if ((offset & 0x3) == 0 &&
  1115. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1116. return -1;
  1117. vcpu->arch.mce_banks[offset] = data;
  1118. break;
  1119. }
  1120. return 1;
  1121. }
  1122. return 0;
  1123. }
  1124. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1125. {
  1126. struct kvm *kvm = vcpu->kvm;
  1127. int lm = is_long_mode(vcpu);
  1128. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1129. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1130. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1131. : kvm->arch.xen_hvm_config.blob_size_32;
  1132. u32 page_num = data & ~PAGE_MASK;
  1133. u64 page_addr = data & PAGE_MASK;
  1134. u8 *page;
  1135. int r;
  1136. r = -E2BIG;
  1137. if (page_num >= blob_size)
  1138. goto out;
  1139. r = -ENOMEM;
  1140. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1141. if (!page)
  1142. goto out;
  1143. r = -EFAULT;
  1144. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1145. goto out_free;
  1146. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1147. goto out_free;
  1148. r = 0;
  1149. out_free:
  1150. kfree(page);
  1151. out:
  1152. return r;
  1153. }
  1154. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1155. {
  1156. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1157. }
  1158. static bool kvm_hv_msr_partition_wide(u32 msr)
  1159. {
  1160. bool r = false;
  1161. switch (msr) {
  1162. case HV_X64_MSR_GUEST_OS_ID:
  1163. case HV_X64_MSR_HYPERCALL:
  1164. r = true;
  1165. break;
  1166. }
  1167. return r;
  1168. }
  1169. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1170. {
  1171. struct kvm *kvm = vcpu->kvm;
  1172. switch (msr) {
  1173. case HV_X64_MSR_GUEST_OS_ID:
  1174. kvm->arch.hv_guest_os_id = data;
  1175. /* setting guest os id to zero disables hypercall page */
  1176. if (!kvm->arch.hv_guest_os_id)
  1177. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1178. break;
  1179. case HV_X64_MSR_HYPERCALL: {
  1180. u64 gfn;
  1181. unsigned long addr;
  1182. u8 instructions[4];
  1183. /* if guest os id is not set hypercall should remain disabled */
  1184. if (!kvm->arch.hv_guest_os_id)
  1185. break;
  1186. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1187. kvm->arch.hv_hypercall = data;
  1188. break;
  1189. }
  1190. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1191. addr = gfn_to_hva(kvm, gfn);
  1192. if (kvm_is_error_hva(addr))
  1193. return 1;
  1194. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1195. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1196. if (copy_to_user((void __user *)addr, instructions, 4))
  1197. return 1;
  1198. kvm->arch.hv_hypercall = data;
  1199. break;
  1200. }
  1201. default:
  1202. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1203. "data 0x%llx\n", msr, data);
  1204. return 1;
  1205. }
  1206. return 0;
  1207. }
  1208. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1209. {
  1210. switch (msr) {
  1211. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1212. unsigned long addr;
  1213. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1214. vcpu->arch.hv_vapic = data;
  1215. break;
  1216. }
  1217. addr = gfn_to_hva(vcpu->kvm, data >>
  1218. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1219. if (kvm_is_error_hva(addr))
  1220. return 1;
  1221. if (clear_user((void __user *)addr, PAGE_SIZE))
  1222. return 1;
  1223. vcpu->arch.hv_vapic = data;
  1224. break;
  1225. }
  1226. case HV_X64_MSR_EOI:
  1227. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1228. case HV_X64_MSR_ICR:
  1229. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1230. case HV_X64_MSR_TPR:
  1231. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1232. default:
  1233. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1234. "data 0x%llx\n", msr, data);
  1235. return 1;
  1236. }
  1237. return 0;
  1238. }
  1239. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1240. {
  1241. gpa_t gpa = data & ~0x3f;
  1242. /* Bits 2:5 are resrved, Should be zero */
  1243. if (data & 0x3c)
  1244. return 1;
  1245. vcpu->arch.apf.msr_val = data;
  1246. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1247. kvm_clear_async_pf_completion_queue(vcpu);
  1248. kvm_async_pf_hash_reset(vcpu);
  1249. return 0;
  1250. }
  1251. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1252. return 1;
  1253. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1254. kvm_async_pf_wakeup_all(vcpu);
  1255. return 0;
  1256. }
  1257. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1258. {
  1259. if (vcpu->arch.time_page) {
  1260. kvm_release_page_dirty(vcpu->arch.time_page);
  1261. vcpu->arch.time_page = NULL;
  1262. }
  1263. }
  1264. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1265. {
  1266. switch (msr) {
  1267. case MSR_EFER:
  1268. return set_efer(vcpu, data);
  1269. case MSR_K7_HWCR:
  1270. data &= ~(u64)0x40; /* ignore flush filter disable */
  1271. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1272. if (data != 0) {
  1273. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1274. data);
  1275. return 1;
  1276. }
  1277. break;
  1278. case MSR_FAM10H_MMIO_CONF_BASE:
  1279. if (data != 0) {
  1280. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1281. "0x%llx\n", data);
  1282. return 1;
  1283. }
  1284. break;
  1285. case MSR_AMD64_NB_CFG:
  1286. break;
  1287. case MSR_IA32_DEBUGCTLMSR:
  1288. if (!data) {
  1289. /* We support the non-activated case already */
  1290. break;
  1291. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1292. /* Values other than LBR and BTF are vendor-specific,
  1293. thus reserved and should throw a #GP */
  1294. return 1;
  1295. }
  1296. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1297. __func__, data);
  1298. break;
  1299. case MSR_IA32_UCODE_REV:
  1300. case MSR_IA32_UCODE_WRITE:
  1301. case MSR_VM_HSAVE_PA:
  1302. case MSR_AMD64_PATCH_LOADER:
  1303. break;
  1304. case 0x200 ... 0x2ff:
  1305. return set_msr_mtrr(vcpu, msr, data);
  1306. case MSR_IA32_APICBASE:
  1307. kvm_set_apic_base(vcpu, data);
  1308. break;
  1309. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1310. return kvm_x2apic_msr_write(vcpu, msr, data);
  1311. case MSR_IA32_MISC_ENABLE:
  1312. vcpu->arch.ia32_misc_enable_msr = data;
  1313. break;
  1314. case MSR_KVM_WALL_CLOCK_NEW:
  1315. case MSR_KVM_WALL_CLOCK:
  1316. vcpu->kvm->arch.wall_clock = data;
  1317. kvm_write_wall_clock(vcpu->kvm, data);
  1318. break;
  1319. case MSR_KVM_SYSTEM_TIME_NEW:
  1320. case MSR_KVM_SYSTEM_TIME: {
  1321. kvmclock_reset(vcpu);
  1322. vcpu->arch.time = data;
  1323. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1324. /* we verify if the enable bit is set... */
  1325. if (!(data & 1))
  1326. break;
  1327. /* ...but clean it before doing the actual write */
  1328. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1329. vcpu->arch.time_page =
  1330. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1331. if (is_error_page(vcpu->arch.time_page)) {
  1332. kvm_release_page_clean(vcpu->arch.time_page);
  1333. vcpu->arch.time_page = NULL;
  1334. }
  1335. break;
  1336. }
  1337. case MSR_KVM_ASYNC_PF_EN:
  1338. if (kvm_pv_enable_async_pf(vcpu, data))
  1339. return 1;
  1340. break;
  1341. case MSR_IA32_MCG_CTL:
  1342. case MSR_IA32_MCG_STATUS:
  1343. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1344. return set_msr_mce(vcpu, msr, data);
  1345. /* Performance counters are not protected by a CPUID bit,
  1346. * so we should check all of them in the generic path for the sake of
  1347. * cross vendor migration.
  1348. * Writing a zero into the event select MSRs disables them,
  1349. * which we perfectly emulate ;-). Any other value should be at least
  1350. * reported, some guests depend on them.
  1351. */
  1352. case MSR_P6_EVNTSEL0:
  1353. case MSR_P6_EVNTSEL1:
  1354. case MSR_K7_EVNTSEL0:
  1355. case MSR_K7_EVNTSEL1:
  1356. case MSR_K7_EVNTSEL2:
  1357. case MSR_K7_EVNTSEL3:
  1358. if (data != 0)
  1359. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1360. "0x%x data 0x%llx\n", msr, data);
  1361. break;
  1362. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1363. * so we ignore writes to make it happy.
  1364. */
  1365. case MSR_P6_PERFCTR0:
  1366. case MSR_P6_PERFCTR1:
  1367. case MSR_K7_PERFCTR0:
  1368. case MSR_K7_PERFCTR1:
  1369. case MSR_K7_PERFCTR2:
  1370. case MSR_K7_PERFCTR3:
  1371. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1372. "0x%x data 0x%llx\n", msr, data);
  1373. break;
  1374. case MSR_K7_CLK_CTL:
  1375. /*
  1376. * Ignore all writes to this no longer documented MSR.
  1377. * Writes are only relevant for old K7 processors,
  1378. * all pre-dating SVM, but a recommended workaround from
  1379. * AMD for these chips. It is possible to speicify the
  1380. * affected processor models on the command line, hence
  1381. * the need to ignore the workaround.
  1382. */
  1383. break;
  1384. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1385. if (kvm_hv_msr_partition_wide(msr)) {
  1386. int r;
  1387. mutex_lock(&vcpu->kvm->lock);
  1388. r = set_msr_hyperv_pw(vcpu, msr, data);
  1389. mutex_unlock(&vcpu->kvm->lock);
  1390. return r;
  1391. } else
  1392. return set_msr_hyperv(vcpu, msr, data);
  1393. break;
  1394. case MSR_IA32_BBL_CR_CTL3:
  1395. /* Drop writes to this legacy MSR -- see rdmsr
  1396. * counterpart for further detail.
  1397. */
  1398. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1399. break;
  1400. default:
  1401. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1402. return xen_hvm_config(vcpu, data);
  1403. if (!ignore_msrs) {
  1404. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1405. msr, data);
  1406. return 1;
  1407. } else {
  1408. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1409. msr, data);
  1410. break;
  1411. }
  1412. }
  1413. return 0;
  1414. }
  1415. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1416. /*
  1417. * Reads an msr value (of 'msr_index') into 'pdata'.
  1418. * Returns 0 on success, non-0 otherwise.
  1419. * Assumes vcpu_load() was already called.
  1420. */
  1421. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1422. {
  1423. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1424. }
  1425. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1426. {
  1427. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1428. if (!msr_mtrr_valid(msr))
  1429. return 1;
  1430. if (msr == MSR_MTRRdefType)
  1431. *pdata = vcpu->arch.mtrr_state.def_type +
  1432. (vcpu->arch.mtrr_state.enabled << 10);
  1433. else if (msr == MSR_MTRRfix64K_00000)
  1434. *pdata = p[0];
  1435. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1436. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1437. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1438. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1439. else if (msr == MSR_IA32_CR_PAT)
  1440. *pdata = vcpu->arch.pat;
  1441. else { /* Variable MTRRs */
  1442. int idx, is_mtrr_mask;
  1443. u64 *pt;
  1444. idx = (msr - 0x200) / 2;
  1445. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1446. if (!is_mtrr_mask)
  1447. pt =
  1448. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1449. else
  1450. pt =
  1451. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1452. *pdata = *pt;
  1453. }
  1454. return 0;
  1455. }
  1456. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1457. {
  1458. u64 data;
  1459. u64 mcg_cap = vcpu->arch.mcg_cap;
  1460. unsigned bank_num = mcg_cap & 0xff;
  1461. switch (msr) {
  1462. case MSR_IA32_P5_MC_ADDR:
  1463. case MSR_IA32_P5_MC_TYPE:
  1464. data = 0;
  1465. break;
  1466. case MSR_IA32_MCG_CAP:
  1467. data = vcpu->arch.mcg_cap;
  1468. break;
  1469. case MSR_IA32_MCG_CTL:
  1470. if (!(mcg_cap & MCG_CTL_P))
  1471. return 1;
  1472. data = vcpu->arch.mcg_ctl;
  1473. break;
  1474. case MSR_IA32_MCG_STATUS:
  1475. data = vcpu->arch.mcg_status;
  1476. break;
  1477. default:
  1478. if (msr >= MSR_IA32_MC0_CTL &&
  1479. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1480. u32 offset = msr - MSR_IA32_MC0_CTL;
  1481. data = vcpu->arch.mce_banks[offset];
  1482. break;
  1483. }
  1484. return 1;
  1485. }
  1486. *pdata = data;
  1487. return 0;
  1488. }
  1489. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1490. {
  1491. u64 data = 0;
  1492. struct kvm *kvm = vcpu->kvm;
  1493. switch (msr) {
  1494. case HV_X64_MSR_GUEST_OS_ID:
  1495. data = kvm->arch.hv_guest_os_id;
  1496. break;
  1497. case HV_X64_MSR_HYPERCALL:
  1498. data = kvm->arch.hv_hypercall;
  1499. break;
  1500. default:
  1501. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1502. return 1;
  1503. }
  1504. *pdata = data;
  1505. return 0;
  1506. }
  1507. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1508. {
  1509. u64 data = 0;
  1510. switch (msr) {
  1511. case HV_X64_MSR_VP_INDEX: {
  1512. int r;
  1513. struct kvm_vcpu *v;
  1514. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1515. if (v == vcpu)
  1516. data = r;
  1517. break;
  1518. }
  1519. case HV_X64_MSR_EOI:
  1520. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1521. case HV_X64_MSR_ICR:
  1522. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1523. case HV_X64_MSR_TPR:
  1524. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1525. default:
  1526. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1527. return 1;
  1528. }
  1529. *pdata = data;
  1530. return 0;
  1531. }
  1532. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1533. {
  1534. u64 data;
  1535. switch (msr) {
  1536. case MSR_IA32_PLATFORM_ID:
  1537. case MSR_IA32_UCODE_REV:
  1538. case MSR_IA32_EBL_CR_POWERON:
  1539. case MSR_IA32_DEBUGCTLMSR:
  1540. case MSR_IA32_LASTBRANCHFROMIP:
  1541. case MSR_IA32_LASTBRANCHTOIP:
  1542. case MSR_IA32_LASTINTFROMIP:
  1543. case MSR_IA32_LASTINTTOIP:
  1544. case MSR_K8_SYSCFG:
  1545. case MSR_K7_HWCR:
  1546. case MSR_VM_HSAVE_PA:
  1547. case MSR_P6_PERFCTR0:
  1548. case MSR_P6_PERFCTR1:
  1549. case MSR_P6_EVNTSEL0:
  1550. case MSR_P6_EVNTSEL1:
  1551. case MSR_K7_EVNTSEL0:
  1552. case MSR_K7_PERFCTR0:
  1553. case MSR_K8_INT_PENDING_MSG:
  1554. case MSR_AMD64_NB_CFG:
  1555. case MSR_FAM10H_MMIO_CONF_BASE:
  1556. data = 0;
  1557. break;
  1558. case MSR_MTRRcap:
  1559. data = 0x500 | KVM_NR_VAR_MTRR;
  1560. break;
  1561. case 0x200 ... 0x2ff:
  1562. return get_msr_mtrr(vcpu, msr, pdata);
  1563. case 0xcd: /* fsb frequency */
  1564. data = 3;
  1565. break;
  1566. /*
  1567. * MSR_EBC_FREQUENCY_ID
  1568. * Conservative value valid for even the basic CPU models.
  1569. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1570. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1571. * and 266MHz for model 3, or 4. Set Core Clock
  1572. * Frequency to System Bus Frequency Ratio to 1 (bits
  1573. * 31:24) even though these are only valid for CPU
  1574. * models > 2, however guests may end up dividing or
  1575. * multiplying by zero otherwise.
  1576. */
  1577. case MSR_EBC_FREQUENCY_ID:
  1578. data = 1 << 24;
  1579. break;
  1580. case MSR_IA32_APICBASE:
  1581. data = kvm_get_apic_base(vcpu);
  1582. break;
  1583. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1584. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1585. break;
  1586. case MSR_IA32_MISC_ENABLE:
  1587. data = vcpu->arch.ia32_misc_enable_msr;
  1588. break;
  1589. case MSR_IA32_PERF_STATUS:
  1590. /* TSC increment by tick */
  1591. data = 1000ULL;
  1592. /* CPU multiplier */
  1593. data |= (((uint64_t)4ULL) << 40);
  1594. break;
  1595. case MSR_EFER:
  1596. data = vcpu->arch.efer;
  1597. break;
  1598. case MSR_KVM_WALL_CLOCK:
  1599. case MSR_KVM_WALL_CLOCK_NEW:
  1600. data = vcpu->kvm->arch.wall_clock;
  1601. break;
  1602. case MSR_KVM_SYSTEM_TIME:
  1603. case MSR_KVM_SYSTEM_TIME_NEW:
  1604. data = vcpu->arch.time;
  1605. break;
  1606. case MSR_KVM_ASYNC_PF_EN:
  1607. data = vcpu->arch.apf.msr_val;
  1608. break;
  1609. case MSR_IA32_P5_MC_ADDR:
  1610. case MSR_IA32_P5_MC_TYPE:
  1611. case MSR_IA32_MCG_CAP:
  1612. case MSR_IA32_MCG_CTL:
  1613. case MSR_IA32_MCG_STATUS:
  1614. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1615. return get_msr_mce(vcpu, msr, pdata);
  1616. case MSR_K7_CLK_CTL:
  1617. /*
  1618. * Provide expected ramp-up count for K7. All other
  1619. * are set to zero, indicating minimum divisors for
  1620. * every field.
  1621. *
  1622. * This prevents guest kernels on AMD host with CPU
  1623. * type 6, model 8 and higher from exploding due to
  1624. * the rdmsr failing.
  1625. */
  1626. data = 0x20000000;
  1627. break;
  1628. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1629. if (kvm_hv_msr_partition_wide(msr)) {
  1630. int r;
  1631. mutex_lock(&vcpu->kvm->lock);
  1632. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1633. mutex_unlock(&vcpu->kvm->lock);
  1634. return r;
  1635. } else
  1636. return get_msr_hyperv(vcpu, msr, pdata);
  1637. break;
  1638. case MSR_IA32_BBL_CR_CTL3:
  1639. /* This legacy MSR exists but isn't fully documented in current
  1640. * silicon. It is however accessed by winxp in very narrow
  1641. * scenarios where it sets bit #19, itself documented as
  1642. * a "reserved" bit. Best effort attempt to source coherent
  1643. * read data here should the balance of the register be
  1644. * interpreted by the guest:
  1645. *
  1646. * L2 cache control register 3: 64GB range, 256KB size,
  1647. * enabled, latency 0x1, configured
  1648. */
  1649. data = 0xbe702111;
  1650. break;
  1651. default:
  1652. if (!ignore_msrs) {
  1653. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1654. return 1;
  1655. } else {
  1656. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1657. data = 0;
  1658. }
  1659. break;
  1660. }
  1661. *pdata = data;
  1662. return 0;
  1663. }
  1664. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1665. /*
  1666. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1667. *
  1668. * @return number of msrs set successfully.
  1669. */
  1670. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1671. struct kvm_msr_entry *entries,
  1672. int (*do_msr)(struct kvm_vcpu *vcpu,
  1673. unsigned index, u64 *data))
  1674. {
  1675. int i, idx;
  1676. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1677. for (i = 0; i < msrs->nmsrs; ++i)
  1678. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1679. break;
  1680. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1681. return i;
  1682. }
  1683. /*
  1684. * Read or write a bunch of msrs. Parameters are user addresses.
  1685. *
  1686. * @return number of msrs set successfully.
  1687. */
  1688. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1689. int (*do_msr)(struct kvm_vcpu *vcpu,
  1690. unsigned index, u64 *data),
  1691. int writeback)
  1692. {
  1693. struct kvm_msrs msrs;
  1694. struct kvm_msr_entry *entries;
  1695. int r, n;
  1696. unsigned size;
  1697. r = -EFAULT;
  1698. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1699. goto out;
  1700. r = -E2BIG;
  1701. if (msrs.nmsrs >= MAX_IO_MSRS)
  1702. goto out;
  1703. r = -ENOMEM;
  1704. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1705. entries = kmalloc(size, GFP_KERNEL);
  1706. if (!entries)
  1707. goto out;
  1708. r = -EFAULT;
  1709. if (copy_from_user(entries, user_msrs->entries, size))
  1710. goto out_free;
  1711. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1712. if (r < 0)
  1713. goto out_free;
  1714. r = -EFAULT;
  1715. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1716. goto out_free;
  1717. r = n;
  1718. out_free:
  1719. kfree(entries);
  1720. out:
  1721. return r;
  1722. }
  1723. int kvm_dev_ioctl_check_extension(long ext)
  1724. {
  1725. int r;
  1726. switch (ext) {
  1727. case KVM_CAP_IRQCHIP:
  1728. case KVM_CAP_HLT:
  1729. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1730. case KVM_CAP_SET_TSS_ADDR:
  1731. case KVM_CAP_EXT_CPUID:
  1732. case KVM_CAP_CLOCKSOURCE:
  1733. case KVM_CAP_PIT:
  1734. case KVM_CAP_NOP_IO_DELAY:
  1735. case KVM_CAP_MP_STATE:
  1736. case KVM_CAP_SYNC_MMU:
  1737. case KVM_CAP_USER_NMI:
  1738. case KVM_CAP_REINJECT_CONTROL:
  1739. case KVM_CAP_IRQ_INJECT_STATUS:
  1740. case KVM_CAP_ASSIGN_DEV_IRQ:
  1741. case KVM_CAP_IRQFD:
  1742. case KVM_CAP_IOEVENTFD:
  1743. case KVM_CAP_PIT2:
  1744. case KVM_CAP_PIT_STATE2:
  1745. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1746. case KVM_CAP_XEN_HVM:
  1747. case KVM_CAP_ADJUST_CLOCK:
  1748. case KVM_CAP_VCPU_EVENTS:
  1749. case KVM_CAP_HYPERV:
  1750. case KVM_CAP_HYPERV_VAPIC:
  1751. case KVM_CAP_HYPERV_SPIN:
  1752. case KVM_CAP_PCI_SEGMENT:
  1753. case KVM_CAP_DEBUGREGS:
  1754. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1755. case KVM_CAP_XSAVE:
  1756. case KVM_CAP_ASYNC_PF:
  1757. r = 1;
  1758. break;
  1759. case KVM_CAP_COALESCED_MMIO:
  1760. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1761. break;
  1762. case KVM_CAP_VAPIC:
  1763. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1764. break;
  1765. case KVM_CAP_NR_VCPUS:
  1766. r = KVM_MAX_VCPUS;
  1767. break;
  1768. case KVM_CAP_NR_MEMSLOTS:
  1769. r = KVM_MEMORY_SLOTS;
  1770. break;
  1771. case KVM_CAP_PV_MMU: /* obsolete */
  1772. r = 0;
  1773. break;
  1774. case KVM_CAP_IOMMU:
  1775. r = iommu_found();
  1776. break;
  1777. case KVM_CAP_MCE:
  1778. r = KVM_MAX_MCE_BANKS;
  1779. break;
  1780. case KVM_CAP_XCRS:
  1781. r = cpu_has_xsave;
  1782. break;
  1783. default:
  1784. r = 0;
  1785. break;
  1786. }
  1787. return r;
  1788. }
  1789. long kvm_arch_dev_ioctl(struct file *filp,
  1790. unsigned int ioctl, unsigned long arg)
  1791. {
  1792. void __user *argp = (void __user *)arg;
  1793. long r;
  1794. switch (ioctl) {
  1795. case KVM_GET_MSR_INDEX_LIST: {
  1796. struct kvm_msr_list __user *user_msr_list = argp;
  1797. struct kvm_msr_list msr_list;
  1798. unsigned n;
  1799. r = -EFAULT;
  1800. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1801. goto out;
  1802. n = msr_list.nmsrs;
  1803. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1804. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1805. goto out;
  1806. r = -E2BIG;
  1807. if (n < msr_list.nmsrs)
  1808. goto out;
  1809. r = -EFAULT;
  1810. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1811. num_msrs_to_save * sizeof(u32)))
  1812. goto out;
  1813. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1814. &emulated_msrs,
  1815. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1816. goto out;
  1817. r = 0;
  1818. break;
  1819. }
  1820. case KVM_GET_SUPPORTED_CPUID: {
  1821. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1822. struct kvm_cpuid2 cpuid;
  1823. r = -EFAULT;
  1824. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1825. goto out;
  1826. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1827. cpuid_arg->entries);
  1828. if (r)
  1829. goto out;
  1830. r = -EFAULT;
  1831. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1832. goto out;
  1833. r = 0;
  1834. break;
  1835. }
  1836. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1837. u64 mce_cap;
  1838. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1839. r = -EFAULT;
  1840. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1841. goto out;
  1842. r = 0;
  1843. break;
  1844. }
  1845. default:
  1846. r = -EINVAL;
  1847. }
  1848. out:
  1849. return r;
  1850. }
  1851. static void wbinvd_ipi(void *garbage)
  1852. {
  1853. wbinvd();
  1854. }
  1855. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1856. {
  1857. return vcpu->kvm->arch.iommu_domain &&
  1858. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1859. }
  1860. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1861. {
  1862. /* Address WBINVD may be executed by guest */
  1863. if (need_emulate_wbinvd(vcpu)) {
  1864. if (kvm_x86_ops->has_wbinvd_exit())
  1865. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1866. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1867. smp_call_function_single(vcpu->cpu,
  1868. wbinvd_ipi, NULL, 1);
  1869. }
  1870. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1871. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1872. /* Make sure TSC doesn't go backwards */
  1873. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1874. native_read_tsc() - vcpu->arch.last_host_tsc;
  1875. if (tsc_delta < 0)
  1876. mark_tsc_unstable("KVM discovered backwards TSC");
  1877. if (check_tsc_unstable()) {
  1878. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1879. vcpu->arch.tsc_catchup = 1;
  1880. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1881. }
  1882. if (vcpu->cpu != cpu)
  1883. kvm_migrate_timers(vcpu);
  1884. vcpu->cpu = cpu;
  1885. }
  1886. }
  1887. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1888. {
  1889. kvm_x86_ops->vcpu_put(vcpu);
  1890. kvm_put_guest_fpu(vcpu);
  1891. vcpu->arch.last_host_tsc = native_read_tsc();
  1892. }
  1893. static int is_efer_nx(void)
  1894. {
  1895. unsigned long long efer = 0;
  1896. rdmsrl_safe(MSR_EFER, &efer);
  1897. return efer & EFER_NX;
  1898. }
  1899. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1900. {
  1901. int i;
  1902. struct kvm_cpuid_entry2 *e, *entry;
  1903. entry = NULL;
  1904. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1905. e = &vcpu->arch.cpuid_entries[i];
  1906. if (e->function == 0x80000001) {
  1907. entry = e;
  1908. break;
  1909. }
  1910. }
  1911. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1912. entry->edx &= ~(1 << 20);
  1913. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1914. }
  1915. }
  1916. /* when an old userspace process fills a new kernel module */
  1917. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1918. struct kvm_cpuid *cpuid,
  1919. struct kvm_cpuid_entry __user *entries)
  1920. {
  1921. int r, i;
  1922. struct kvm_cpuid_entry *cpuid_entries;
  1923. r = -E2BIG;
  1924. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1925. goto out;
  1926. r = -ENOMEM;
  1927. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1928. if (!cpuid_entries)
  1929. goto out;
  1930. r = -EFAULT;
  1931. if (copy_from_user(cpuid_entries, entries,
  1932. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1933. goto out_free;
  1934. for (i = 0; i < cpuid->nent; i++) {
  1935. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1936. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1937. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1938. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1939. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1940. vcpu->arch.cpuid_entries[i].index = 0;
  1941. vcpu->arch.cpuid_entries[i].flags = 0;
  1942. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1943. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1944. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1945. }
  1946. vcpu->arch.cpuid_nent = cpuid->nent;
  1947. cpuid_fix_nx_cap(vcpu);
  1948. r = 0;
  1949. kvm_apic_set_version(vcpu);
  1950. kvm_x86_ops->cpuid_update(vcpu);
  1951. update_cpuid(vcpu);
  1952. out_free:
  1953. vfree(cpuid_entries);
  1954. out:
  1955. return r;
  1956. }
  1957. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1958. struct kvm_cpuid2 *cpuid,
  1959. struct kvm_cpuid_entry2 __user *entries)
  1960. {
  1961. int r;
  1962. r = -E2BIG;
  1963. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1964. goto out;
  1965. r = -EFAULT;
  1966. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1967. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1968. goto out;
  1969. vcpu->arch.cpuid_nent = cpuid->nent;
  1970. kvm_apic_set_version(vcpu);
  1971. kvm_x86_ops->cpuid_update(vcpu);
  1972. update_cpuid(vcpu);
  1973. return 0;
  1974. out:
  1975. return r;
  1976. }
  1977. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1978. struct kvm_cpuid2 *cpuid,
  1979. struct kvm_cpuid_entry2 __user *entries)
  1980. {
  1981. int r;
  1982. r = -E2BIG;
  1983. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1984. goto out;
  1985. r = -EFAULT;
  1986. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1987. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1988. goto out;
  1989. return 0;
  1990. out:
  1991. cpuid->nent = vcpu->arch.cpuid_nent;
  1992. return r;
  1993. }
  1994. static void cpuid_mask(u32 *word, int wordnum)
  1995. {
  1996. *word &= boot_cpu_data.x86_capability[wordnum];
  1997. }
  1998. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1999. u32 index)
  2000. {
  2001. entry->function = function;
  2002. entry->index = index;
  2003. cpuid_count(entry->function, entry->index,
  2004. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2005. entry->flags = 0;
  2006. }
  2007. #define F(x) bit(X86_FEATURE_##x)
  2008. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2009. u32 index, int *nent, int maxnent)
  2010. {
  2011. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2012. #ifdef CONFIG_X86_64
  2013. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2014. ? F(GBPAGES) : 0;
  2015. unsigned f_lm = F(LM);
  2016. #else
  2017. unsigned f_gbpages = 0;
  2018. unsigned f_lm = 0;
  2019. #endif
  2020. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2021. /* cpuid 1.edx */
  2022. const u32 kvm_supported_word0_x86_features =
  2023. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2024. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2025. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2026. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2027. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2028. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2029. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2030. 0 /* HTT, TM, Reserved, PBE */;
  2031. /* cpuid 0x80000001.edx */
  2032. const u32 kvm_supported_word1_x86_features =
  2033. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2034. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2035. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2036. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2037. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2038. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2039. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2040. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2041. /* cpuid 1.ecx */
  2042. const u32 kvm_supported_word4_x86_features =
  2043. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2044. 0 /* DS-CPL, VMX, SMX, EST */ |
  2045. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2046. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2047. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2048. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2049. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2050. F(F16C);
  2051. /* cpuid 0x80000001.ecx */
  2052. const u32 kvm_supported_word6_x86_features =
  2053. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2054. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2055. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2056. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2057. /* all calls to cpuid_count() should be made on the same cpu */
  2058. get_cpu();
  2059. do_cpuid_1_ent(entry, function, index);
  2060. ++*nent;
  2061. switch (function) {
  2062. case 0:
  2063. entry->eax = min(entry->eax, (u32)0xd);
  2064. break;
  2065. case 1:
  2066. entry->edx &= kvm_supported_word0_x86_features;
  2067. cpuid_mask(&entry->edx, 0);
  2068. entry->ecx &= kvm_supported_word4_x86_features;
  2069. cpuid_mask(&entry->ecx, 4);
  2070. /* we support x2apic emulation even if host does not support
  2071. * it since we emulate x2apic in software */
  2072. entry->ecx |= F(X2APIC);
  2073. break;
  2074. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2075. * may return different values. This forces us to get_cpu() before
  2076. * issuing the first command, and also to emulate this annoying behavior
  2077. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2078. case 2: {
  2079. int t, times = entry->eax & 0xff;
  2080. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2081. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2082. for (t = 1; t < times && *nent < maxnent; ++t) {
  2083. do_cpuid_1_ent(&entry[t], function, 0);
  2084. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2085. ++*nent;
  2086. }
  2087. break;
  2088. }
  2089. /* function 4 and 0xb have additional index. */
  2090. case 4: {
  2091. int i, cache_type;
  2092. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2093. /* read more entries until cache_type is zero */
  2094. for (i = 1; *nent < maxnent; ++i) {
  2095. cache_type = entry[i - 1].eax & 0x1f;
  2096. if (!cache_type)
  2097. break;
  2098. do_cpuid_1_ent(&entry[i], function, i);
  2099. entry[i].flags |=
  2100. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2101. ++*nent;
  2102. }
  2103. break;
  2104. }
  2105. case 0xb: {
  2106. int i, level_type;
  2107. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2108. /* read more entries until level_type is zero */
  2109. for (i = 1; *nent < maxnent; ++i) {
  2110. level_type = entry[i - 1].ecx & 0xff00;
  2111. if (!level_type)
  2112. break;
  2113. do_cpuid_1_ent(&entry[i], function, i);
  2114. entry[i].flags |=
  2115. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2116. ++*nent;
  2117. }
  2118. break;
  2119. }
  2120. case 0xd: {
  2121. int i;
  2122. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2123. for (i = 1; *nent < maxnent; ++i) {
  2124. if (entry[i - 1].eax == 0 && i != 2)
  2125. break;
  2126. do_cpuid_1_ent(&entry[i], function, i);
  2127. entry[i].flags |=
  2128. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2129. ++*nent;
  2130. }
  2131. break;
  2132. }
  2133. case KVM_CPUID_SIGNATURE: {
  2134. char signature[12] = "KVMKVMKVM\0\0";
  2135. u32 *sigptr = (u32 *)signature;
  2136. entry->eax = 0;
  2137. entry->ebx = sigptr[0];
  2138. entry->ecx = sigptr[1];
  2139. entry->edx = sigptr[2];
  2140. break;
  2141. }
  2142. case KVM_CPUID_FEATURES:
  2143. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2144. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2145. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2146. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2147. entry->ebx = 0;
  2148. entry->ecx = 0;
  2149. entry->edx = 0;
  2150. break;
  2151. case 0x80000000:
  2152. entry->eax = min(entry->eax, 0x8000001a);
  2153. break;
  2154. case 0x80000001:
  2155. entry->edx &= kvm_supported_word1_x86_features;
  2156. cpuid_mask(&entry->edx, 1);
  2157. entry->ecx &= kvm_supported_word6_x86_features;
  2158. cpuid_mask(&entry->ecx, 6);
  2159. break;
  2160. }
  2161. kvm_x86_ops->set_supported_cpuid(function, entry);
  2162. put_cpu();
  2163. }
  2164. #undef F
  2165. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2166. struct kvm_cpuid_entry2 __user *entries)
  2167. {
  2168. struct kvm_cpuid_entry2 *cpuid_entries;
  2169. int limit, nent = 0, r = -E2BIG;
  2170. u32 func;
  2171. if (cpuid->nent < 1)
  2172. goto out;
  2173. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2174. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2175. r = -ENOMEM;
  2176. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2177. if (!cpuid_entries)
  2178. goto out;
  2179. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2180. limit = cpuid_entries[0].eax;
  2181. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2182. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2183. &nent, cpuid->nent);
  2184. r = -E2BIG;
  2185. if (nent >= cpuid->nent)
  2186. goto out_free;
  2187. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2188. limit = cpuid_entries[nent - 1].eax;
  2189. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2190. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2191. &nent, cpuid->nent);
  2192. r = -E2BIG;
  2193. if (nent >= cpuid->nent)
  2194. goto out_free;
  2195. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2196. cpuid->nent);
  2197. r = -E2BIG;
  2198. if (nent >= cpuid->nent)
  2199. goto out_free;
  2200. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2201. cpuid->nent);
  2202. r = -E2BIG;
  2203. if (nent >= cpuid->nent)
  2204. goto out_free;
  2205. r = -EFAULT;
  2206. if (copy_to_user(entries, cpuid_entries,
  2207. nent * sizeof(struct kvm_cpuid_entry2)))
  2208. goto out_free;
  2209. cpuid->nent = nent;
  2210. r = 0;
  2211. out_free:
  2212. vfree(cpuid_entries);
  2213. out:
  2214. return r;
  2215. }
  2216. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2217. struct kvm_lapic_state *s)
  2218. {
  2219. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2220. return 0;
  2221. }
  2222. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2223. struct kvm_lapic_state *s)
  2224. {
  2225. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2226. kvm_apic_post_state_restore(vcpu);
  2227. update_cr8_intercept(vcpu);
  2228. return 0;
  2229. }
  2230. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2231. struct kvm_interrupt *irq)
  2232. {
  2233. if (irq->irq < 0 || irq->irq >= 256)
  2234. return -EINVAL;
  2235. if (irqchip_in_kernel(vcpu->kvm))
  2236. return -ENXIO;
  2237. kvm_queue_interrupt(vcpu, irq->irq, false);
  2238. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2239. return 0;
  2240. }
  2241. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2242. {
  2243. kvm_inject_nmi(vcpu);
  2244. return 0;
  2245. }
  2246. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2247. struct kvm_tpr_access_ctl *tac)
  2248. {
  2249. if (tac->flags)
  2250. return -EINVAL;
  2251. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2252. return 0;
  2253. }
  2254. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2255. u64 mcg_cap)
  2256. {
  2257. int r;
  2258. unsigned bank_num = mcg_cap & 0xff, bank;
  2259. r = -EINVAL;
  2260. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2261. goto out;
  2262. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2263. goto out;
  2264. r = 0;
  2265. vcpu->arch.mcg_cap = mcg_cap;
  2266. /* Init IA32_MCG_CTL to all 1s */
  2267. if (mcg_cap & MCG_CTL_P)
  2268. vcpu->arch.mcg_ctl = ~(u64)0;
  2269. /* Init IA32_MCi_CTL to all 1s */
  2270. for (bank = 0; bank < bank_num; bank++)
  2271. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2272. out:
  2273. return r;
  2274. }
  2275. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2276. struct kvm_x86_mce *mce)
  2277. {
  2278. u64 mcg_cap = vcpu->arch.mcg_cap;
  2279. unsigned bank_num = mcg_cap & 0xff;
  2280. u64 *banks = vcpu->arch.mce_banks;
  2281. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2282. return -EINVAL;
  2283. /*
  2284. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2285. * reporting is disabled
  2286. */
  2287. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2288. vcpu->arch.mcg_ctl != ~(u64)0)
  2289. return 0;
  2290. banks += 4 * mce->bank;
  2291. /*
  2292. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2293. * reporting is disabled for the bank
  2294. */
  2295. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2296. return 0;
  2297. if (mce->status & MCI_STATUS_UC) {
  2298. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2299. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2300. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2301. return 0;
  2302. }
  2303. if (banks[1] & MCI_STATUS_VAL)
  2304. mce->status |= MCI_STATUS_OVER;
  2305. banks[2] = mce->addr;
  2306. banks[3] = mce->misc;
  2307. vcpu->arch.mcg_status = mce->mcg_status;
  2308. banks[1] = mce->status;
  2309. kvm_queue_exception(vcpu, MC_VECTOR);
  2310. } else if (!(banks[1] & MCI_STATUS_VAL)
  2311. || !(banks[1] & MCI_STATUS_UC)) {
  2312. if (banks[1] & MCI_STATUS_VAL)
  2313. mce->status |= MCI_STATUS_OVER;
  2314. banks[2] = mce->addr;
  2315. banks[3] = mce->misc;
  2316. banks[1] = mce->status;
  2317. } else
  2318. banks[1] |= MCI_STATUS_OVER;
  2319. return 0;
  2320. }
  2321. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2322. struct kvm_vcpu_events *events)
  2323. {
  2324. events->exception.injected =
  2325. vcpu->arch.exception.pending &&
  2326. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2327. events->exception.nr = vcpu->arch.exception.nr;
  2328. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2329. events->exception.pad = 0;
  2330. events->exception.error_code = vcpu->arch.exception.error_code;
  2331. events->interrupt.injected =
  2332. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2333. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2334. events->interrupt.soft = 0;
  2335. events->interrupt.shadow =
  2336. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2337. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2338. events->nmi.injected = vcpu->arch.nmi_injected;
  2339. events->nmi.pending = vcpu->arch.nmi_pending;
  2340. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2341. events->nmi.pad = 0;
  2342. events->sipi_vector = vcpu->arch.sipi_vector;
  2343. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2344. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2345. | KVM_VCPUEVENT_VALID_SHADOW);
  2346. memset(&events->reserved, 0, sizeof(events->reserved));
  2347. }
  2348. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2349. struct kvm_vcpu_events *events)
  2350. {
  2351. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2352. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2353. | KVM_VCPUEVENT_VALID_SHADOW))
  2354. return -EINVAL;
  2355. vcpu->arch.exception.pending = events->exception.injected;
  2356. vcpu->arch.exception.nr = events->exception.nr;
  2357. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2358. vcpu->arch.exception.error_code = events->exception.error_code;
  2359. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2360. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2361. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2362. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2363. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2364. events->interrupt.shadow);
  2365. vcpu->arch.nmi_injected = events->nmi.injected;
  2366. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2367. vcpu->arch.nmi_pending = events->nmi.pending;
  2368. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2369. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2370. vcpu->arch.sipi_vector = events->sipi_vector;
  2371. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2372. return 0;
  2373. }
  2374. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2375. struct kvm_debugregs *dbgregs)
  2376. {
  2377. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2378. dbgregs->dr6 = vcpu->arch.dr6;
  2379. dbgregs->dr7 = vcpu->arch.dr7;
  2380. dbgregs->flags = 0;
  2381. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2382. }
  2383. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2384. struct kvm_debugregs *dbgregs)
  2385. {
  2386. if (dbgregs->flags)
  2387. return -EINVAL;
  2388. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2389. vcpu->arch.dr6 = dbgregs->dr6;
  2390. vcpu->arch.dr7 = dbgregs->dr7;
  2391. return 0;
  2392. }
  2393. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2394. struct kvm_xsave *guest_xsave)
  2395. {
  2396. if (cpu_has_xsave)
  2397. memcpy(guest_xsave->region,
  2398. &vcpu->arch.guest_fpu.state->xsave,
  2399. xstate_size);
  2400. else {
  2401. memcpy(guest_xsave->region,
  2402. &vcpu->arch.guest_fpu.state->fxsave,
  2403. sizeof(struct i387_fxsave_struct));
  2404. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2405. XSTATE_FPSSE;
  2406. }
  2407. }
  2408. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2409. struct kvm_xsave *guest_xsave)
  2410. {
  2411. u64 xstate_bv =
  2412. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2413. if (cpu_has_xsave)
  2414. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2415. guest_xsave->region, xstate_size);
  2416. else {
  2417. if (xstate_bv & ~XSTATE_FPSSE)
  2418. return -EINVAL;
  2419. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2420. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2421. }
  2422. return 0;
  2423. }
  2424. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2425. struct kvm_xcrs *guest_xcrs)
  2426. {
  2427. if (!cpu_has_xsave) {
  2428. guest_xcrs->nr_xcrs = 0;
  2429. return;
  2430. }
  2431. guest_xcrs->nr_xcrs = 1;
  2432. guest_xcrs->flags = 0;
  2433. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2434. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2435. }
  2436. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2437. struct kvm_xcrs *guest_xcrs)
  2438. {
  2439. int i, r = 0;
  2440. if (!cpu_has_xsave)
  2441. return -EINVAL;
  2442. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2443. return -EINVAL;
  2444. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2445. /* Only support XCR0 currently */
  2446. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2447. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2448. guest_xcrs->xcrs[0].value);
  2449. break;
  2450. }
  2451. if (r)
  2452. r = -EINVAL;
  2453. return r;
  2454. }
  2455. long kvm_arch_vcpu_ioctl(struct file *filp,
  2456. unsigned int ioctl, unsigned long arg)
  2457. {
  2458. struct kvm_vcpu *vcpu = filp->private_data;
  2459. void __user *argp = (void __user *)arg;
  2460. int r;
  2461. union {
  2462. struct kvm_lapic_state *lapic;
  2463. struct kvm_xsave *xsave;
  2464. struct kvm_xcrs *xcrs;
  2465. void *buffer;
  2466. } u;
  2467. u.buffer = NULL;
  2468. switch (ioctl) {
  2469. case KVM_GET_LAPIC: {
  2470. r = -EINVAL;
  2471. if (!vcpu->arch.apic)
  2472. goto out;
  2473. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2474. r = -ENOMEM;
  2475. if (!u.lapic)
  2476. goto out;
  2477. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2478. if (r)
  2479. goto out;
  2480. r = -EFAULT;
  2481. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2482. goto out;
  2483. r = 0;
  2484. break;
  2485. }
  2486. case KVM_SET_LAPIC: {
  2487. r = -EINVAL;
  2488. if (!vcpu->arch.apic)
  2489. goto out;
  2490. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2491. r = -ENOMEM;
  2492. if (!u.lapic)
  2493. goto out;
  2494. r = -EFAULT;
  2495. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2496. goto out;
  2497. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2498. if (r)
  2499. goto out;
  2500. r = 0;
  2501. break;
  2502. }
  2503. case KVM_INTERRUPT: {
  2504. struct kvm_interrupt irq;
  2505. r = -EFAULT;
  2506. if (copy_from_user(&irq, argp, sizeof irq))
  2507. goto out;
  2508. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2509. if (r)
  2510. goto out;
  2511. r = 0;
  2512. break;
  2513. }
  2514. case KVM_NMI: {
  2515. r = kvm_vcpu_ioctl_nmi(vcpu);
  2516. if (r)
  2517. goto out;
  2518. r = 0;
  2519. break;
  2520. }
  2521. case KVM_SET_CPUID: {
  2522. struct kvm_cpuid __user *cpuid_arg = argp;
  2523. struct kvm_cpuid cpuid;
  2524. r = -EFAULT;
  2525. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2526. goto out;
  2527. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2528. if (r)
  2529. goto out;
  2530. break;
  2531. }
  2532. case KVM_SET_CPUID2: {
  2533. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2534. struct kvm_cpuid2 cpuid;
  2535. r = -EFAULT;
  2536. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2537. goto out;
  2538. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2539. cpuid_arg->entries);
  2540. if (r)
  2541. goto out;
  2542. break;
  2543. }
  2544. case KVM_GET_CPUID2: {
  2545. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2546. struct kvm_cpuid2 cpuid;
  2547. r = -EFAULT;
  2548. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2549. goto out;
  2550. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2551. cpuid_arg->entries);
  2552. if (r)
  2553. goto out;
  2554. r = -EFAULT;
  2555. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2556. goto out;
  2557. r = 0;
  2558. break;
  2559. }
  2560. case KVM_GET_MSRS:
  2561. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2562. break;
  2563. case KVM_SET_MSRS:
  2564. r = msr_io(vcpu, argp, do_set_msr, 0);
  2565. break;
  2566. case KVM_TPR_ACCESS_REPORTING: {
  2567. struct kvm_tpr_access_ctl tac;
  2568. r = -EFAULT;
  2569. if (copy_from_user(&tac, argp, sizeof tac))
  2570. goto out;
  2571. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2572. if (r)
  2573. goto out;
  2574. r = -EFAULT;
  2575. if (copy_to_user(argp, &tac, sizeof tac))
  2576. goto out;
  2577. r = 0;
  2578. break;
  2579. };
  2580. case KVM_SET_VAPIC_ADDR: {
  2581. struct kvm_vapic_addr va;
  2582. r = -EINVAL;
  2583. if (!irqchip_in_kernel(vcpu->kvm))
  2584. goto out;
  2585. r = -EFAULT;
  2586. if (copy_from_user(&va, argp, sizeof va))
  2587. goto out;
  2588. r = 0;
  2589. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2590. break;
  2591. }
  2592. case KVM_X86_SETUP_MCE: {
  2593. u64 mcg_cap;
  2594. r = -EFAULT;
  2595. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2596. goto out;
  2597. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2598. break;
  2599. }
  2600. case KVM_X86_SET_MCE: {
  2601. struct kvm_x86_mce mce;
  2602. r = -EFAULT;
  2603. if (copy_from_user(&mce, argp, sizeof mce))
  2604. goto out;
  2605. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2606. break;
  2607. }
  2608. case KVM_GET_VCPU_EVENTS: {
  2609. struct kvm_vcpu_events events;
  2610. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2611. r = -EFAULT;
  2612. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2613. break;
  2614. r = 0;
  2615. break;
  2616. }
  2617. case KVM_SET_VCPU_EVENTS: {
  2618. struct kvm_vcpu_events events;
  2619. r = -EFAULT;
  2620. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2621. break;
  2622. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2623. break;
  2624. }
  2625. case KVM_GET_DEBUGREGS: {
  2626. struct kvm_debugregs dbgregs;
  2627. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2628. r = -EFAULT;
  2629. if (copy_to_user(argp, &dbgregs,
  2630. sizeof(struct kvm_debugregs)))
  2631. break;
  2632. r = 0;
  2633. break;
  2634. }
  2635. case KVM_SET_DEBUGREGS: {
  2636. struct kvm_debugregs dbgregs;
  2637. r = -EFAULT;
  2638. if (copy_from_user(&dbgregs, argp,
  2639. sizeof(struct kvm_debugregs)))
  2640. break;
  2641. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2642. break;
  2643. }
  2644. case KVM_GET_XSAVE: {
  2645. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2646. r = -ENOMEM;
  2647. if (!u.xsave)
  2648. break;
  2649. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2650. r = -EFAULT;
  2651. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2652. break;
  2653. r = 0;
  2654. break;
  2655. }
  2656. case KVM_SET_XSAVE: {
  2657. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2658. r = -ENOMEM;
  2659. if (!u.xsave)
  2660. break;
  2661. r = -EFAULT;
  2662. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2663. break;
  2664. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2665. break;
  2666. }
  2667. case KVM_GET_XCRS: {
  2668. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2669. r = -ENOMEM;
  2670. if (!u.xcrs)
  2671. break;
  2672. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2673. r = -EFAULT;
  2674. if (copy_to_user(argp, u.xcrs,
  2675. sizeof(struct kvm_xcrs)))
  2676. break;
  2677. r = 0;
  2678. break;
  2679. }
  2680. case KVM_SET_XCRS: {
  2681. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2682. r = -ENOMEM;
  2683. if (!u.xcrs)
  2684. break;
  2685. r = -EFAULT;
  2686. if (copy_from_user(u.xcrs, argp,
  2687. sizeof(struct kvm_xcrs)))
  2688. break;
  2689. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2690. break;
  2691. }
  2692. default:
  2693. r = -EINVAL;
  2694. }
  2695. out:
  2696. kfree(u.buffer);
  2697. return r;
  2698. }
  2699. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2700. {
  2701. int ret;
  2702. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2703. return -1;
  2704. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2705. return ret;
  2706. }
  2707. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2708. u64 ident_addr)
  2709. {
  2710. kvm->arch.ept_identity_map_addr = ident_addr;
  2711. return 0;
  2712. }
  2713. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2714. u32 kvm_nr_mmu_pages)
  2715. {
  2716. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2717. return -EINVAL;
  2718. mutex_lock(&kvm->slots_lock);
  2719. spin_lock(&kvm->mmu_lock);
  2720. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2721. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2722. spin_unlock(&kvm->mmu_lock);
  2723. mutex_unlock(&kvm->slots_lock);
  2724. return 0;
  2725. }
  2726. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2727. {
  2728. return kvm->arch.n_max_mmu_pages;
  2729. }
  2730. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2731. {
  2732. int r;
  2733. r = 0;
  2734. switch (chip->chip_id) {
  2735. case KVM_IRQCHIP_PIC_MASTER:
  2736. memcpy(&chip->chip.pic,
  2737. &pic_irqchip(kvm)->pics[0],
  2738. sizeof(struct kvm_pic_state));
  2739. break;
  2740. case KVM_IRQCHIP_PIC_SLAVE:
  2741. memcpy(&chip->chip.pic,
  2742. &pic_irqchip(kvm)->pics[1],
  2743. sizeof(struct kvm_pic_state));
  2744. break;
  2745. case KVM_IRQCHIP_IOAPIC:
  2746. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2747. break;
  2748. default:
  2749. r = -EINVAL;
  2750. break;
  2751. }
  2752. return r;
  2753. }
  2754. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2755. {
  2756. int r;
  2757. r = 0;
  2758. switch (chip->chip_id) {
  2759. case KVM_IRQCHIP_PIC_MASTER:
  2760. spin_lock(&pic_irqchip(kvm)->lock);
  2761. memcpy(&pic_irqchip(kvm)->pics[0],
  2762. &chip->chip.pic,
  2763. sizeof(struct kvm_pic_state));
  2764. spin_unlock(&pic_irqchip(kvm)->lock);
  2765. break;
  2766. case KVM_IRQCHIP_PIC_SLAVE:
  2767. spin_lock(&pic_irqchip(kvm)->lock);
  2768. memcpy(&pic_irqchip(kvm)->pics[1],
  2769. &chip->chip.pic,
  2770. sizeof(struct kvm_pic_state));
  2771. spin_unlock(&pic_irqchip(kvm)->lock);
  2772. break;
  2773. case KVM_IRQCHIP_IOAPIC:
  2774. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2775. break;
  2776. default:
  2777. r = -EINVAL;
  2778. break;
  2779. }
  2780. kvm_pic_update_irq(pic_irqchip(kvm));
  2781. return r;
  2782. }
  2783. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2784. {
  2785. int r = 0;
  2786. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2787. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2788. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2789. return r;
  2790. }
  2791. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2792. {
  2793. int r = 0;
  2794. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2795. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2796. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2797. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2798. return r;
  2799. }
  2800. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2801. {
  2802. int r = 0;
  2803. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2804. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2805. sizeof(ps->channels));
  2806. ps->flags = kvm->arch.vpit->pit_state.flags;
  2807. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2808. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2809. return r;
  2810. }
  2811. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2812. {
  2813. int r = 0, start = 0;
  2814. u32 prev_legacy, cur_legacy;
  2815. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2816. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2817. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2818. if (!prev_legacy && cur_legacy)
  2819. start = 1;
  2820. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2821. sizeof(kvm->arch.vpit->pit_state.channels));
  2822. kvm->arch.vpit->pit_state.flags = ps->flags;
  2823. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2824. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2825. return r;
  2826. }
  2827. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2828. struct kvm_reinject_control *control)
  2829. {
  2830. if (!kvm->arch.vpit)
  2831. return -ENXIO;
  2832. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2833. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2834. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2835. return 0;
  2836. }
  2837. /*
  2838. * Get (and clear) the dirty memory log for a memory slot.
  2839. */
  2840. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2841. struct kvm_dirty_log *log)
  2842. {
  2843. int r, i;
  2844. struct kvm_memory_slot *memslot;
  2845. unsigned long n;
  2846. unsigned long is_dirty = 0;
  2847. mutex_lock(&kvm->slots_lock);
  2848. r = -EINVAL;
  2849. if (log->slot >= KVM_MEMORY_SLOTS)
  2850. goto out;
  2851. memslot = &kvm->memslots->memslots[log->slot];
  2852. r = -ENOENT;
  2853. if (!memslot->dirty_bitmap)
  2854. goto out;
  2855. n = kvm_dirty_bitmap_bytes(memslot);
  2856. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2857. is_dirty = memslot->dirty_bitmap[i];
  2858. /* If nothing is dirty, don't bother messing with page tables. */
  2859. if (is_dirty) {
  2860. struct kvm_memslots *slots, *old_slots;
  2861. unsigned long *dirty_bitmap;
  2862. dirty_bitmap = memslot->dirty_bitmap_head;
  2863. if (memslot->dirty_bitmap == dirty_bitmap)
  2864. dirty_bitmap += n / sizeof(long);
  2865. memset(dirty_bitmap, 0, n);
  2866. r = -ENOMEM;
  2867. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2868. if (!slots)
  2869. goto out;
  2870. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2871. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2872. slots->generation++;
  2873. old_slots = kvm->memslots;
  2874. rcu_assign_pointer(kvm->memslots, slots);
  2875. synchronize_srcu_expedited(&kvm->srcu);
  2876. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2877. kfree(old_slots);
  2878. spin_lock(&kvm->mmu_lock);
  2879. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2880. spin_unlock(&kvm->mmu_lock);
  2881. r = -EFAULT;
  2882. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2883. goto out;
  2884. } else {
  2885. r = -EFAULT;
  2886. if (clear_user(log->dirty_bitmap, n))
  2887. goto out;
  2888. }
  2889. r = 0;
  2890. out:
  2891. mutex_unlock(&kvm->slots_lock);
  2892. return r;
  2893. }
  2894. long kvm_arch_vm_ioctl(struct file *filp,
  2895. unsigned int ioctl, unsigned long arg)
  2896. {
  2897. struct kvm *kvm = filp->private_data;
  2898. void __user *argp = (void __user *)arg;
  2899. int r = -ENOTTY;
  2900. /*
  2901. * This union makes it completely explicit to gcc-3.x
  2902. * that these two variables' stack usage should be
  2903. * combined, not added together.
  2904. */
  2905. union {
  2906. struct kvm_pit_state ps;
  2907. struct kvm_pit_state2 ps2;
  2908. struct kvm_pit_config pit_config;
  2909. } u;
  2910. switch (ioctl) {
  2911. case KVM_SET_TSS_ADDR:
  2912. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2913. if (r < 0)
  2914. goto out;
  2915. break;
  2916. case KVM_SET_IDENTITY_MAP_ADDR: {
  2917. u64 ident_addr;
  2918. r = -EFAULT;
  2919. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2920. goto out;
  2921. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2922. if (r < 0)
  2923. goto out;
  2924. break;
  2925. }
  2926. case KVM_SET_NR_MMU_PAGES:
  2927. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2928. if (r)
  2929. goto out;
  2930. break;
  2931. case KVM_GET_NR_MMU_PAGES:
  2932. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2933. break;
  2934. case KVM_CREATE_IRQCHIP: {
  2935. struct kvm_pic *vpic;
  2936. mutex_lock(&kvm->lock);
  2937. r = -EEXIST;
  2938. if (kvm->arch.vpic)
  2939. goto create_irqchip_unlock;
  2940. r = -ENOMEM;
  2941. vpic = kvm_create_pic(kvm);
  2942. if (vpic) {
  2943. r = kvm_ioapic_init(kvm);
  2944. if (r) {
  2945. mutex_lock(&kvm->slots_lock);
  2946. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2947. &vpic->dev);
  2948. mutex_unlock(&kvm->slots_lock);
  2949. kfree(vpic);
  2950. goto create_irqchip_unlock;
  2951. }
  2952. } else
  2953. goto create_irqchip_unlock;
  2954. smp_wmb();
  2955. kvm->arch.vpic = vpic;
  2956. smp_wmb();
  2957. r = kvm_setup_default_irq_routing(kvm);
  2958. if (r) {
  2959. mutex_lock(&kvm->slots_lock);
  2960. mutex_lock(&kvm->irq_lock);
  2961. kvm_ioapic_destroy(kvm);
  2962. kvm_destroy_pic(kvm);
  2963. mutex_unlock(&kvm->irq_lock);
  2964. mutex_unlock(&kvm->slots_lock);
  2965. }
  2966. create_irqchip_unlock:
  2967. mutex_unlock(&kvm->lock);
  2968. break;
  2969. }
  2970. case KVM_CREATE_PIT:
  2971. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2972. goto create_pit;
  2973. case KVM_CREATE_PIT2:
  2974. r = -EFAULT;
  2975. if (copy_from_user(&u.pit_config, argp,
  2976. sizeof(struct kvm_pit_config)))
  2977. goto out;
  2978. create_pit:
  2979. mutex_lock(&kvm->slots_lock);
  2980. r = -EEXIST;
  2981. if (kvm->arch.vpit)
  2982. goto create_pit_unlock;
  2983. r = -ENOMEM;
  2984. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2985. if (kvm->arch.vpit)
  2986. r = 0;
  2987. create_pit_unlock:
  2988. mutex_unlock(&kvm->slots_lock);
  2989. break;
  2990. case KVM_IRQ_LINE_STATUS:
  2991. case KVM_IRQ_LINE: {
  2992. struct kvm_irq_level irq_event;
  2993. r = -EFAULT;
  2994. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2995. goto out;
  2996. r = -ENXIO;
  2997. if (irqchip_in_kernel(kvm)) {
  2998. __s32 status;
  2999. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3000. irq_event.irq, irq_event.level);
  3001. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3002. r = -EFAULT;
  3003. irq_event.status = status;
  3004. if (copy_to_user(argp, &irq_event,
  3005. sizeof irq_event))
  3006. goto out;
  3007. }
  3008. r = 0;
  3009. }
  3010. break;
  3011. }
  3012. case KVM_GET_IRQCHIP: {
  3013. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3014. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3015. r = -ENOMEM;
  3016. if (!chip)
  3017. goto out;
  3018. r = -EFAULT;
  3019. if (copy_from_user(chip, argp, sizeof *chip))
  3020. goto get_irqchip_out;
  3021. r = -ENXIO;
  3022. if (!irqchip_in_kernel(kvm))
  3023. goto get_irqchip_out;
  3024. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3025. if (r)
  3026. goto get_irqchip_out;
  3027. r = -EFAULT;
  3028. if (copy_to_user(argp, chip, sizeof *chip))
  3029. goto get_irqchip_out;
  3030. r = 0;
  3031. get_irqchip_out:
  3032. kfree(chip);
  3033. if (r)
  3034. goto out;
  3035. break;
  3036. }
  3037. case KVM_SET_IRQCHIP: {
  3038. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3039. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3040. r = -ENOMEM;
  3041. if (!chip)
  3042. goto out;
  3043. r = -EFAULT;
  3044. if (copy_from_user(chip, argp, sizeof *chip))
  3045. goto set_irqchip_out;
  3046. r = -ENXIO;
  3047. if (!irqchip_in_kernel(kvm))
  3048. goto set_irqchip_out;
  3049. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3050. if (r)
  3051. goto set_irqchip_out;
  3052. r = 0;
  3053. set_irqchip_out:
  3054. kfree(chip);
  3055. if (r)
  3056. goto out;
  3057. break;
  3058. }
  3059. case KVM_GET_PIT: {
  3060. r = -EFAULT;
  3061. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3062. goto out;
  3063. r = -ENXIO;
  3064. if (!kvm->arch.vpit)
  3065. goto out;
  3066. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3067. if (r)
  3068. goto out;
  3069. r = -EFAULT;
  3070. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3071. goto out;
  3072. r = 0;
  3073. break;
  3074. }
  3075. case KVM_SET_PIT: {
  3076. r = -EFAULT;
  3077. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3078. goto out;
  3079. r = -ENXIO;
  3080. if (!kvm->arch.vpit)
  3081. goto out;
  3082. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3083. if (r)
  3084. goto out;
  3085. r = 0;
  3086. break;
  3087. }
  3088. case KVM_GET_PIT2: {
  3089. r = -ENXIO;
  3090. if (!kvm->arch.vpit)
  3091. goto out;
  3092. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3093. if (r)
  3094. goto out;
  3095. r = -EFAULT;
  3096. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3097. goto out;
  3098. r = 0;
  3099. break;
  3100. }
  3101. case KVM_SET_PIT2: {
  3102. r = -EFAULT;
  3103. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3104. goto out;
  3105. r = -ENXIO;
  3106. if (!kvm->arch.vpit)
  3107. goto out;
  3108. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3109. if (r)
  3110. goto out;
  3111. r = 0;
  3112. break;
  3113. }
  3114. case KVM_REINJECT_CONTROL: {
  3115. struct kvm_reinject_control control;
  3116. r = -EFAULT;
  3117. if (copy_from_user(&control, argp, sizeof(control)))
  3118. goto out;
  3119. r = kvm_vm_ioctl_reinject(kvm, &control);
  3120. if (r)
  3121. goto out;
  3122. r = 0;
  3123. break;
  3124. }
  3125. case KVM_XEN_HVM_CONFIG: {
  3126. r = -EFAULT;
  3127. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3128. sizeof(struct kvm_xen_hvm_config)))
  3129. goto out;
  3130. r = -EINVAL;
  3131. if (kvm->arch.xen_hvm_config.flags)
  3132. goto out;
  3133. r = 0;
  3134. break;
  3135. }
  3136. case KVM_SET_CLOCK: {
  3137. struct kvm_clock_data user_ns;
  3138. u64 now_ns;
  3139. s64 delta;
  3140. r = -EFAULT;
  3141. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3142. goto out;
  3143. r = -EINVAL;
  3144. if (user_ns.flags)
  3145. goto out;
  3146. r = 0;
  3147. local_irq_disable();
  3148. now_ns = get_kernel_ns();
  3149. delta = user_ns.clock - now_ns;
  3150. local_irq_enable();
  3151. kvm->arch.kvmclock_offset = delta;
  3152. break;
  3153. }
  3154. case KVM_GET_CLOCK: {
  3155. struct kvm_clock_data user_ns;
  3156. u64 now_ns;
  3157. local_irq_disable();
  3158. now_ns = get_kernel_ns();
  3159. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3160. local_irq_enable();
  3161. user_ns.flags = 0;
  3162. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3163. r = -EFAULT;
  3164. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3165. goto out;
  3166. r = 0;
  3167. break;
  3168. }
  3169. default:
  3170. ;
  3171. }
  3172. out:
  3173. return r;
  3174. }
  3175. static void kvm_init_msr_list(void)
  3176. {
  3177. u32 dummy[2];
  3178. unsigned i, j;
  3179. /* skip the first msrs in the list. KVM-specific */
  3180. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3181. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3182. continue;
  3183. if (j < i)
  3184. msrs_to_save[j] = msrs_to_save[i];
  3185. j++;
  3186. }
  3187. num_msrs_to_save = j;
  3188. }
  3189. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3190. const void *v)
  3191. {
  3192. if (vcpu->arch.apic &&
  3193. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3194. return 0;
  3195. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3196. }
  3197. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3198. {
  3199. if (vcpu->arch.apic &&
  3200. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3201. return 0;
  3202. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3203. }
  3204. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3205. struct kvm_segment *var, int seg)
  3206. {
  3207. kvm_x86_ops->set_segment(vcpu, var, seg);
  3208. }
  3209. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3210. struct kvm_segment *var, int seg)
  3211. {
  3212. kvm_x86_ops->get_segment(vcpu, var, seg);
  3213. }
  3214. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3215. {
  3216. return gpa;
  3217. }
  3218. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3219. {
  3220. gpa_t t_gpa;
  3221. struct x86_exception exception;
  3222. BUG_ON(!mmu_is_nested(vcpu));
  3223. /* NPT walks are always user-walks */
  3224. access |= PFERR_USER_MASK;
  3225. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3226. return t_gpa;
  3227. }
  3228. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3229. struct x86_exception *exception)
  3230. {
  3231. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3232. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3233. }
  3234. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3235. struct x86_exception *exception)
  3236. {
  3237. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3238. access |= PFERR_FETCH_MASK;
  3239. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3240. }
  3241. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3242. struct x86_exception *exception)
  3243. {
  3244. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3245. access |= PFERR_WRITE_MASK;
  3246. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3247. }
  3248. /* uses this to access any guest's mapped memory without checking CPL */
  3249. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3250. struct x86_exception *exception)
  3251. {
  3252. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3253. }
  3254. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3255. struct kvm_vcpu *vcpu, u32 access,
  3256. struct x86_exception *exception)
  3257. {
  3258. void *data = val;
  3259. int r = X86EMUL_CONTINUE;
  3260. while (bytes) {
  3261. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3262. exception);
  3263. unsigned offset = addr & (PAGE_SIZE-1);
  3264. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3265. int ret;
  3266. if (gpa == UNMAPPED_GVA)
  3267. return X86EMUL_PROPAGATE_FAULT;
  3268. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3269. if (ret < 0) {
  3270. r = X86EMUL_IO_NEEDED;
  3271. goto out;
  3272. }
  3273. bytes -= toread;
  3274. data += toread;
  3275. addr += toread;
  3276. }
  3277. out:
  3278. return r;
  3279. }
  3280. /* used for instruction fetching */
  3281. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3282. struct kvm_vcpu *vcpu,
  3283. struct x86_exception *exception)
  3284. {
  3285. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3286. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3287. access | PFERR_FETCH_MASK,
  3288. exception);
  3289. }
  3290. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3291. struct kvm_vcpu *vcpu,
  3292. struct x86_exception *exception)
  3293. {
  3294. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3295. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3296. exception);
  3297. }
  3298. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3299. struct kvm_vcpu *vcpu,
  3300. struct x86_exception *exception)
  3301. {
  3302. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3303. }
  3304. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3305. unsigned int bytes,
  3306. struct kvm_vcpu *vcpu,
  3307. struct x86_exception *exception)
  3308. {
  3309. void *data = val;
  3310. int r = X86EMUL_CONTINUE;
  3311. while (bytes) {
  3312. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3313. PFERR_WRITE_MASK,
  3314. exception);
  3315. unsigned offset = addr & (PAGE_SIZE-1);
  3316. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3317. int ret;
  3318. if (gpa == UNMAPPED_GVA)
  3319. return X86EMUL_PROPAGATE_FAULT;
  3320. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3321. if (ret < 0) {
  3322. r = X86EMUL_IO_NEEDED;
  3323. goto out;
  3324. }
  3325. bytes -= towrite;
  3326. data += towrite;
  3327. addr += towrite;
  3328. }
  3329. out:
  3330. return r;
  3331. }
  3332. static int emulator_read_emulated(unsigned long addr,
  3333. void *val,
  3334. unsigned int bytes,
  3335. struct x86_exception *exception,
  3336. struct kvm_vcpu *vcpu)
  3337. {
  3338. gpa_t gpa;
  3339. if (vcpu->mmio_read_completed) {
  3340. memcpy(val, vcpu->mmio_data, bytes);
  3341. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3342. vcpu->mmio_phys_addr, *(u64 *)val);
  3343. vcpu->mmio_read_completed = 0;
  3344. return X86EMUL_CONTINUE;
  3345. }
  3346. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3347. if (gpa == UNMAPPED_GVA)
  3348. return X86EMUL_PROPAGATE_FAULT;
  3349. /* For APIC access vmexit */
  3350. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3351. goto mmio;
  3352. if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
  3353. == X86EMUL_CONTINUE)
  3354. return X86EMUL_CONTINUE;
  3355. mmio:
  3356. /*
  3357. * Is this MMIO handled locally?
  3358. */
  3359. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3360. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3361. return X86EMUL_CONTINUE;
  3362. }
  3363. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3364. vcpu->mmio_needed = 1;
  3365. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3366. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3367. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3368. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3369. return X86EMUL_IO_NEEDED;
  3370. }
  3371. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3372. const void *val, int bytes)
  3373. {
  3374. int ret;
  3375. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3376. if (ret < 0)
  3377. return 0;
  3378. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3379. return 1;
  3380. }
  3381. static int emulator_write_emulated_onepage(unsigned long addr,
  3382. const void *val,
  3383. unsigned int bytes,
  3384. struct x86_exception *exception,
  3385. struct kvm_vcpu *vcpu)
  3386. {
  3387. gpa_t gpa;
  3388. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3389. if (gpa == UNMAPPED_GVA)
  3390. return X86EMUL_PROPAGATE_FAULT;
  3391. /* For APIC access vmexit */
  3392. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3393. goto mmio;
  3394. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3395. return X86EMUL_CONTINUE;
  3396. mmio:
  3397. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3398. /*
  3399. * Is this MMIO handled locally?
  3400. */
  3401. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3402. return X86EMUL_CONTINUE;
  3403. vcpu->mmio_needed = 1;
  3404. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3405. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3406. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3407. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3408. memcpy(vcpu->run->mmio.data, val, bytes);
  3409. return X86EMUL_CONTINUE;
  3410. }
  3411. int emulator_write_emulated(unsigned long addr,
  3412. const void *val,
  3413. unsigned int bytes,
  3414. struct x86_exception *exception,
  3415. struct kvm_vcpu *vcpu)
  3416. {
  3417. /* Crossing a page boundary? */
  3418. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3419. int rc, now;
  3420. now = -addr & ~PAGE_MASK;
  3421. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3422. vcpu);
  3423. if (rc != X86EMUL_CONTINUE)
  3424. return rc;
  3425. addr += now;
  3426. val += now;
  3427. bytes -= now;
  3428. }
  3429. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3430. vcpu);
  3431. }
  3432. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3433. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3434. #ifdef CONFIG_X86_64
  3435. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3436. #else
  3437. # define CMPXCHG64(ptr, old, new) \
  3438. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3439. #endif
  3440. static int emulator_cmpxchg_emulated(unsigned long addr,
  3441. const void *old,
  3442. const void *new,
  3443. unsigned int bytes,
  3444. struct x86_exception *exception,
  3445. struct kvm_vcpu *vcpu)
  3446. {
  3447. gpa_t gpa;
  3448. struct page *page;
  3449. char *kaddr;
  3450. bool exchanged;
  3451. /* guests cmpxchg8b have to be emulated atomically */
  3452. if (bytes > 8 || (bytes & (bytes - 1)))
  3453. goto emul_write;
  3454. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3455. if (gpa == UNMAPPED_GVA ||
  3456. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3457. goto emul_write;
  3458. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3459. goto emul_write;
  3460. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3461. if (is_error_page(page)) {
  3462. kvm_release_page_clean(page);
  3463. goto emul_write;
  3464. }
  3465. kaddr = kmap_atomic(page, KM_USER0);
  3466. kaddr += offset_in_page(gpa);
  3467. switch (bytes) {
  3468. case 1:
  3469. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3470. break;
  3471. case 2:
  3472. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3473. break;
  3474. case 4:
  3475. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3476. break;
  3477. case 8:
  3478. exchanged = CMPXCHG64(kaddr, old, new);
  3479. break;
  3480. default:
  3481. BUG();
  3482. }
  3483. kunmap_atomic(kaddr, KM_USER0);
  3484. kvm_release_page_dirty(page);
  3485. if (!exchanged)
  3486. return X86EMUL_CMPXCHG_FAILED;
  3487. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3488. return X86EMUL_CONTINUE;
  3489. emul_write:
  3490. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3491. return emulator_write_emulated(addr, new, bytes, exception, vcpu);
  3492. }
  3493. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3494. {
  3495. /* TODO: String I/O for in kernel device */
  3496. int r;
  3497. if (vcpu->arch.pio.in)
  3498. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3499. vcpu->arch.pio.size, pd);
  3500. else
  3501. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3502. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3503. pd);
  3504. return r;
  3505. }
  3506. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3507. unsigned int count, struct kvm_vcpu *vcpu)
  3508. {
  3509. if (vcpu->arch.pio.count)
  3510. goto data_avail;
  3511. trace_kvm_pio(0, port, size, count);
  3512. vcpu->arch.pio.port = port;
  3513. vcpu->arch.pio.in = 1;
  3514. vcpu->arch.pio.count = count;
  3515. vcpu->arch.pio.size = size;
  3516. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3517. data_avail:
  3518. memcpy(val, vcpu->arch.pio_data, size * count);
  3519. vcpu->arch.pio.count = 0;
  3520. return 1;
  3521. }
  3522. vcpu->run->exit_reason = KVM_EXIT_IO;
  3523. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3524. vcpu->run->io.size = size;
  3525. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3526. vcpu->run->io.count = count;
  3527. vcpu->run->io.port = port;
  3528. return 0;
  3529. }
  3530. static int emulator_pio_out_emulated(int size, unsigned short port,
  3531. const void *val, unsigned int count,
  3532. struct kvm_vcpu *vcpu)
  3533. {
  3534. trace_kvm_pio(1, port, size, count);
  3535. vcpu->arch.pio.port = port;
  3536. vcpu->arch.pio.in = 0;
  3537. vcpu->arch.pio.count = count;
  3538. vcpu->arch.pio.size = size;
  3539. memcpy(vcpu->arch.pio_data, val, size * count);
  3540. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3541. vcpu->arch.pio.count = 0;
  3542. return 1;
  3543. }
  3544. vcpu->run->exit_reason = KVM_EXIT_IO;
  3545. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3546. vcpu->run->io.size = size;
  3547. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3548. vcpu->run->io.count = count;
  3549. vcpu->run->io.port = port;
  3550. return 0;
  3551. }
  3552. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3553. {
  3554. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3555. }
  3556. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3557. {
  3558. kvm_mmu_invlpg(vcpu, address);
  3559. return X86EMUL_CONTINUE;
  3560. }
  3561. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3562. {
  3563. if (!need_emulate_wbinvd(vcpu))
  3564. return X86EMUL_CONTINUE;
  3565. if (kvm_x86_ops->has_wbinvd_exit()) {
  3566. int cpu = get_cpu();
  3567. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3568. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3569. wbinvd_ipi, NULL, 1);
  3570. put_cpu();
  3571. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3572. } else
  3573. wbinvd();
  3574. return X86EMUL_CONTINUE;
  3575. }
  3576. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3577. int emulate_clts(struct kvm_vcpu *vcpu)
  3578. {
  3579. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3580. kvm_x86_ops->fpu_activate(vcpu);
  3581. return X86EMUL_CONTINUE;
  3582. }
  3583. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3584. {
  3585. return _kvm_get_dr(vcpu, dr, dest);
  3586. }
  3587. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3588. {
  3589. return __kvm_set_dr(vcpu, dr, value);
  3590. }
  3591. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3592. {
  3593. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3594. }
  3595. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3596. {
  3597. unsigned long value;
  3598. switch (cr) {
  3599. case 0:
  3600. value = kvm_read_cr0(vcpu);
  3601. break;
  3602. case 2:
  3603. value = vcpu->arch.cr2;
  3604. break;
  3605. case 3:
  3606. value = kvm_read_cr3(vcpu);
  3607. break;
  3608. case 4:
  3609. value = kvm_read_cr4(vcpu);
  3610. break;
  3611. case 8:
  3612. value = kvm_get_cr8(vcpu);
  3613. break;
  3614. default:
  3615. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3616. return 0;
  3617. }
  3618. return value;
  3619. }
  3620. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3621. {
  3622. int res = 0;
  3623. switch (cr) {
  3624. case 0:
  3625. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3626. break;
  3627. case 2:
  3628. vcpu->arch.cr2 = val;
  3629. break;
  3630. case 3:
  3631. res = kvm_set_cr3(vcpu, val);
  3632. break;
  3633. case 4:
  3634. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3635. break;
  3636. case 8:
  3637. res = kvm_set_cr8(vcpu, val);
  3638. break;
  3639. default:
  3640. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3641. res = -1;
  3642. }
  3643. return res;
  3644. }
  3645. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3646. {
  3647. return kvm_x86_ops->get_cpl(vcpu);
  3648. }
  3649. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3650. {
  3651. kvm_x86_ops->get_gdt(vcpu, dt);
  3652. }
  3653. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3654. {
  3655. kvm_x86_ops->get_idt(vcpu, dt);
  3656. }
  3657. static unsigned long emulator_get_cached_segment_base(int seg,
  3658. struct kvm_vcpu *vcpu)
  3659. {
  3660. return get_segment_base(vcpu, seg);
  3661. }
  3662. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3663. struct kvm_vcpu *vcpu)
  3664. {
  3665. struct kvm_segment var;
  3666. kvm_get_segment(vcpu, &var, seg);
  3667. if (var.unusable)
  3668. return false;
  3669. if (var.g)
  3670. var.limit >>= 12;
  3671. set_desc_limit(desc, var.limit);
  3672. set_desc_base(desc, (unsigned long)var.base);
  3673. desc->type = var.type;
  3674. desc->s = var.s;
  3675. desc->dpl = var.dpl;
  3676. desc->p = var.present;
  3677. desc->avl = var.avl;
  3678. desc->l = var.l;
  3679. desc->d = var.db;
  3680. desc->g = var.g;
  3681. return true;
  3682. }
  3683. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3684. struct kvm_vcpu *vcpu)
  3685. {
  3686. struct kvm_segment var;
  3687. /* needed to preserve selector */
  3688. kvm_get_segment(vcpu, &var, seg);
  3689. var.base = get_desc_base(desc);
  3690. var.limit = get_desc_limit(desc);
  3691. if (desc->g)
  3692. var.limit = (var.limit << 12) | 0xfff;
  3693. var.type = desc->type;
  3694. var.present = desc->p;
  3695. var.dpl = desc->dpl;
  3696. var.db = desc->d;
  3697. var.s = desc->s;
  3698. var.l = desc->l;
  3699. var.g = desc->g;
  3700. var.avl = desc->avl;
  3701. var.present = desc->p;
  3702. var.unusable = !var.present;
  3703. var.padding = 0;
  3704. kvm_set_segment(vcpu, &var, seg);
  3705. return;
  3706. }
  3707. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3708. {
  3709. struct kvm_segment kvm_seg;
  3710. kvm_get_segment(vcpu, &kvm_seg, seg);
  3711. return kvm_seg.selector;
  3712. }
  3713. static void emulator_set_segment_selector(u16 sel, int seg,
  3714. struct kvm_vcpu *vcpu)
  3715. {
  3716. struct kvm_segment kvm_seg;
  3717. kvm_get_segment(vcpu, &kvm_seg, seg);
  3718. kvm_seg.selector = sel;
  3719. kvm_set_segment(vcpu, &kvm_seg, seg);
  3720. }
  3721. static struct x86_emulate_ops emulate_ops = {
  3722. .read_std = kvm_read_guest_virt_system,
  3723. .write_std = kvm_write_guest_virt_system,
  3724. .fetch = kvm_fetch_guest_virt,
  3725. .read_emulated = emulator_read_emulated,
  3726. .write_emulated = emulator_write_emulated,
  3727. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3728. .pio_in_emulated = emulator_pio_in_emulated,
  3729. .pio_out_emulated = emulator_pio_out_emulated,
  3730. .get_cached_descriptor = emulator_get_cached_descriptor,
  3731. .set_cached_descriptor = emulator_set_cached_descriptor,
  3732. .get_segment_selector = emulator_get_segment_selector,
  3733. .set_segment_selector = emulator_set_segment_selector,
  3734. .get_cached_segment_base = emulator_get_cached_segment_base,
  3735. .get_gdt = emulator_get_gdt,
  3736. .get_idt = emulator_get_idt,
  3737. .get_cr = emulator_get_cr,
  3738. .set_cr = emulator_set_cr,
  3739. .cpl = emulator_get_cpl,
  3740. .get_dr = emulator_get_dr,
  3741. .set_dr = emulator_set_dr,
  3742. .set_msr = kvm_set_msr,
  3743. .get_msr = kvm_get_msr,
  3744. };
  3745. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3746. {
  3747. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3748. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3749. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3750. vcpu->arch.regs_dirty = ~0;
  3751. }
  3752. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3753. {
  3754. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3755. /*
  3756. * an sti; sti; sequence only disable interrupts for the first
  3757. * instruction. So, if the last instruction, be it emulated or
  3758. * not, left the system with the INT_STI flag enabled, it
  3759. * means that the last instruction is an sti. We should not
  3760. * leave the flag on in this case. The same goes for mov ss
  3761. */
  3762. if (!(int_shadow & mask))
  3763. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3764. }
  3765. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3766. {
  3767. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3768. if (ctxt->exception.vector == PF_VECTOR)
  3769. kvm_propagate_fault(vcpu, &ctxt->exception);
  3770. else if (ctxt->exception.error_code_valid)
  3771. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3772. ctxt->exception.error_code);
  3773. else
  3774. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3775. }
  3776. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3777. {
  3778. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3779. int cs_db, cs_l;
  3780. cache_all_regs(vcpu);
  3781. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3782. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3783. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3784. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3785. vcpu->arch.emulate_ctxt.mode =
  3786. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3787. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3788. ? X86EMUL_MODE_VM86 : cs_l
  3789. ? X86EMUL_MODE_PROT64 : cs_db
  3790. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3791. memset(c, 0, sizeof(struct decode_cache));
  3792. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3793. }
  3794. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3795. {
  3796. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3797. int ret;
  3798. init_emulate_ctxt(vcpu);
  3799. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3800. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3801. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3802. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3803. if (ret != X86EMUL_CONTINUE)
  3804. return EMULATE_FAIL;
  3805. vcpu->arch.emulate_ctxt.eip = c->eip;
  3806. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3807. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3808. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3809. if (irq == NMI_VECTOR)
  3810. vcpu->arch.nmi_pending = false;
  3811. else
  3812. vcpu->arch.interrupt.pending = false;
  3813. return EMULATE_DONE;
  3814. }
  3815. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3816. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3817. {
  3818. int r = EMULATE_DONE;
  3819. ++vcpu->stat.insn_emulation_fail;
  3820. trace_kvm_emulate_insn_failed(vcpu);
  3821. if (!is_guest_mode(vcpu)) {
  3822. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3823. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3824. vcpu->run->internal.ndata = 0;
  3825. r = EMULATE_FAIL;
  3826. }
  3827. kvm_queue_exception(vcpu, UD_VECTOR);
  3828. return r;
  3829. }
  3830. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3831. {
  3832. gpa_t gpa;
  3833. if (tdp_enabled)
  3834. return false;
  3835. /*
  3836. * if emulation was due to access to shadowed page table
  3837. * and it failed try to unshadow page and re-entetr the
  3838. * guest to let CPU execute the instruction.
  3839. */
  3840. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3841. return true;
  3842. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3843. if (gpa == UNMAPPED_GVA)
  3844. return true; /* let cpu generate fault */
  3845. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3846. return true;
  3847. return false;
  3848. }
  3849. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3850. unsigned long cr2,
  3851. int emulation_type,
  3852. void *insn,
  3853. int insn_len)
  3854. {
  3855. int r;
  3856. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3857. kvm_clear_exception_queue(vcpu);
  3858. vcpu->arch.mmio_fault_cr2 = cr2;
  3859. /*
  3860. * TODO: fix emulate.c to use guest_read/write_register
  3861. * instead of direct ->regs accesses, can save hundred cycles
  3862. * on Intel for instructions that don't read/change RSP, for
  3863. * for example.
  3864. */
  3865. cache_all_regs(vcpu);
  3866. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3867. init_emulate_ctxt(vcpu);
  3868. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3869. vcpu->arch.emulate_ctxt.have_exception = false;
  3870. vcpu->arch.emulate_ctxt.perm_ok = false;
  3871. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  3872. = emulation_type & EMULTYPE_TRAP_UD;
  3873. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  3874. trace_kvm_emulate_insn_start(vcpu);
  3875. ++vcpu->stat.insn_emulation;
  3876. if (r) {
  3877. if (emulation_type & EMULTYPE_TRAP_UD)
  3878. return EMULATE_FAIL;
  3879. if (reexecute_instruction(vcpu, cr2))
  3880. return EMULATE_DONE;
  3881. if (emulation_type & EMULTYPE_SKIP)
  3882. return EMULATE_FAIL;
  3883. return handle_emulation_failure(vcpu);
  3884. }
  3885. }
  3886. if (emulation_type & EMULTYPE_SKIP) {
  3887. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3888. return EMULATE_DONE;
  3889. }
  3890. /* this is needed for vmware backdor interface to work since it
  3891. changes registers values during IO operation */
  3892. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3893. restart:
  3894. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3895. if (r == EMULATION_FAILED) {
  3896. if (reexecute_instruction(vcpu, cr2))
  3897. return EMULATE_DONE;
  3898. return handle_emulation_failure(vcpu);
  3899. }
  3900. if (vcpu->arch.emulate_ctxt.have_exception) {
  3901. inject_emulated_exception(vcpu);
  3902. r = EMULATE_DONE;
  3903. } else if (vcpu->arch.pio.count) {
  3904. if (!vcpu->arch.pio.in)
  3905. vcpu->arch.pio.count = 0;
  3906. r = EMULATE_DO_MMIO;
  3907. } else if (vcpu->mmio_needed) {
  3908. if (vcpu->mmio_is_write)
  3909. vcpu->mmio_needed = 0;
  3910. r = EMULATE_DO_MMIO;
  3911. } else if (r == EMULATION_RESTART)
  3912. goto restart;
  3913. else
  3914. r = EMULATE_DONE;
  3915. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3916. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3917. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3918. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3919. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3920. return r;
  3921. }
  3922. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  3923. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3924. {
  3925. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3926. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3927. /* do not return to emulator after return from userspace */
  3928. vcpu->arch.pio.count = 0;
  3929. return ret;
  3930. }
  3931. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3932. static void tsc_bad(void *info)
  3933. {
  3934. __this_cpu_write(cpu_tsc_khz, 0);
  3935. }
  3936. static void tsc_khz_changed(void *data)
  3937. {
  3938. struct cpufreq_freqs *freq = data;
  3939. unsigned long khz = 0;
  3940. if (data)
  3941. khz = freq->new;
  3942. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3943. khz = cpufreq_quick_get(raw_smp_processor_id());
  3944. if (!khz)
  3945. khz = tsc_khz;
  3946. __this_cpu_write(cpu_tsc_khz, khz);
  3947. }
  3948. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3949. void *data)
  3950. {
  3951. struct cpufreq_freqs *freq = data;
  3952. struct kvm *kvm;
  3953. struct kvm_vcpu *vcpu;
  3954. int i, send_ipi = 0;
  3955. /*
  3956. * We allow guests to temporarily run on slowing clocks,
  3957. * provided we notify them after, or to run on accelerating
  3958. * clocks, provided we notify them before. Thus time never
  3959. * goes backwards.
  3960. *
  3961. * However, we have a problem. We can't atomically update
  3962. * the frequency of a given CPU from this function; it is
  3963. * merely a notifier, which can be called from any CPU.
  3964. * Changing the TSC frequency at arbitrary points in time
  3965. * requires a recomputation of local variables related to
  3966. * the TSC for each VCPU. We must flag these local variables
  3967. * to be updated and be sure the update takes place with the
  3968. * new frequency before any guests proceed.
  3969. *
  3970. * Unfortunately, the combination of hotplug CPU and frequency
  3971. * change creates an intractable locking scenario; the order
  3972. * of when these callouts happen is undefined with respect to
  3973. * CPU hotplug, and they can race with each other. As such,
  3974. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3975. * undefined; you can actually have a CPU frequency change take
  3976. * place in between the computation of X and the setting of the
  3977. * variable. To protect against this problem, all updates of
  3978. * the per_cpu tsc_khz variable are done in an interrupt
  3979. * protected IPI, and all callers wishing to update the value
  3980. * must wait for a synchronous IPI to complete (which is trivial
  3981. * if the caller is on the CPU already). This establishes the
  3982. * necessary total order on variable updates.
  3983. *
  3984. * Note that because a guest time update may take place
  3985. * anytime after the setting of the VCPU's request bit, the
  3986. * correct TSC value must be set before the request. However,
  3987. * to ensure the update actually makes it to any guest which
  3988. * starts running in hardware virtualization between the set
  3989. * and the acquisition of the spinlock, we must also ping the
  3990. * CPU after setting the request bit.
  3991. *
  3992. */
  3993. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3994. return 0;
  3995. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3996. return 0;
  3997. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3998. raw_spin_lock(&kvm_lock);
  3999. list_for_each_entry(kvm, &vm_list, vm_list) {
  4000. kvm_for_each_vcpu(i, vcpu, kvm) {
  4001. if (vcpu->cpu != freq->cpu)
  4002. continue;
  4003. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4004. if (vcpu->cpu != smp_processor_id())
  4005. send_ipi = 1;
  4006. }
  4007. }
  4008. raw_spin_unlock(&kvm_lock);
  4009. if (freq->old < freq->new && send_ipi) {
  4010. /*
  4011. * We upscale the frequency. Must make the guest
  4012. * doesn't see old kvmclock values while running with
  4013. * the new frequency, otherwise we risk the guest sees
  4014. * time go backwards.
  4015. *
  4016. * In case we update the frequency for another cpu
  4017. * (which might be in guest context) send an interrupt
  4018. * to kick the cpu out of guest context. Next time
  4019. * guest context is entered kvmclock will be updated,
  4020. * so the guest will not see stale values.
  4021. */
  4022. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4023. }
  4024. return 0;
  4025. }
  4026. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4027. .notifier_call = kvmclock_cpufreq_notifier
  4028. };
  4029. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4030. unsigned long action, void *hcpu)
  4031. {
  4032. unsigned int cpu = (unsigned long)hcpu;
  4033. switch (action) {
  4034. case CPU_ONLINE:
  4035. case CPU_DOWN_FAILED:
  4036. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4037. break;
  4038. case CPU_DOWN_PREPARE:
  4039. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4040. break;
  4041. }
  4042. return NOTIFY_OK;
  4043. }
  4044. static struct notifier_block kvmclock_cpu_notifier_block = {
  4045. .notifier_call = kvmclock_cpu_notifier,
  4046. .priority = -INT_MAX
  4047. };
  4048. static void kvm_timer_init(void)
  4049. {
  4050. int cpu;
  4051. max_tsc_khz = tsc_khz;
  4052. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4053. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4054. #ifdef CONFIG_CPU_FREQ
  4055. struct cpufreq_policy policy;
  4056. memset(&policy, 0, sizeof(policy));
  4057. cpu = get_cpu();
  4058. cpufreq_get_policy(&policy, cpu);
  4059. if (policy.cpuinfo.max_freq)
  4060. max_tsc_khz = policy.cpuinfo.max_freq;
  4061. put_cpu();
  4062. #endif
  4063. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4064. CPUFREQ_TRANSITION_NOTIFIER);
  4065. }
  4066. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4067. for_each_online_cpu(cpu)
  4068. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4069. }
  4070. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4071. static int kvm_is_in_guest(void)
  4072. {
  4073. return percpu_read(current_vcpu) != NULL;
  4074. }
  4075. static int kvm_is_user_mode(void)
  4076. {
  4077. int user_mode = 3;
  4078. if (percpu_read(current_vcpu))
  4079. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4080. return user_mode != 0;
  4081. }
  4082. static unsigned long kvm_get_guest_ip(void)
  4083. {
  4084. unsigned long ip = 0;
  4085. if (percpu_read(current_vcpu))
  4086. ip = kvm_rip_read(percpu_read(current_vcpu));
  4087. return ip;
  4088. }
  4089. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4090. .is_in_guest = kvm_is_in_guest,
  4091. .is_user_mode = kvm_is_user_mode,
  4092. .get_guest_ip = kvm_get_guest_ip,
  4093. };
  4094. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4095. {
  4096. percpu_write(current_vcpu, vcpu);
  4097. }
  4098. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4099. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4100. {
  4101. percpu_write(current_vcpu, NULL);
  4102. }
  4103. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4104. int kvm_arch_init(void *opaque)
  4105. {
  4106. int r;
  4107. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4108. if (kvm_x86_ops) {
  4109. printk(KERN_ERR "kvm: already loaded the other module\n");
  4110. r = -EEXIST;
  4111. goto out;
  4112. }
  4113. if (!ops->cpu_has_kvm_support()) {
  4114. printk(KERN_ERR "kvm: no hardware support\n");
  4115. r = -EOPNOTSUPP;
  4116. goto out;
  4117. }
  4118. if (ops->disabled_by_bios()) {
  4119. printk(KERN_ERR "kvm: disabled by bios\n");
  4120. r = -EOPNOTSUPP;
  4121. goto out;
  4122. }
  4123. r = kvm_mmu_module_init();
  4124. if (r)
  4125. goto out;
  4126. kvm_init_msr_list();
  4127. kvm_x86_ops = ops;
  4128. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4129. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4130. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4131. kvm_timer_init();
  4132. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4133. if (cpu_has_xsave)
  4134. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4135. return 0;
  4136. out:
  4137. return r;
  4138. }
  4139. void kvm_arch_exit(void)
  4140. {
  4141. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4142. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4143. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4144. CPUFREQ_TRANSITION_NOTIFIER);
  4145. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4146. kvm_x86_ops = NULL;
  4147. kvm_mmu_module_exit();
  4148. }
  4149. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4150. {
  4151. ++vcpu->stat.halt_exits;
  4152. if (irqchip_in_kernel(vcpu->kvm)) {
  4153. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4154. return 1;
  4155. } else {
  4156. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4157. return 0;
  4158. }
  4159. }
  4160. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4161. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4162. unsigned long a1)
  4163. {
  4164. if (is_long_mode(vcpu))
  4165. return a0;
  4166. else
  4167. return a0 | ((gpa_t)a1 << 32);
  4168. }
  4169. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4170. {
  4171. u64 param, ingpa, outgpa, ret;
  4172. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4173. bool fast, longmode;
  4174. int cs_db, cs_l;
  4175. /*
  4176. * hypercall generates UD from non zero cpl and real mode
  4177. * per HYPER-V spec
  4178. */
  4179. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4180. kvm_queue_exception(vcpu, UD_VECTOR);
  4181. return 0;
  4182. }
  4183. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4184. longmode = is_long_mode(vcpu) && cs_l == 1;
  4185. if (!longmode) {
  4186. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4187. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4188. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4189. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4190. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4191. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4192. }
  4193. #ifdef CONFIG_X86_64
  4194. else {
  4195. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4196. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4197. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4198. }
  4199. #endif
  4200. code = param & 0xffff;
  4201. fast = (param >> 16) & 0x1;
  4202. rep_cnt = (param >> 32) & 0xfff;
  4203. rep_idx = (param >> 48) & 0xfff;
  4204. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4205. switch (code) {
  4206. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4207. kvm_vcpu_on_spin(vcpu);
  4208. break;
  4209. default:
  4210. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4211. break;
  4212. }
  4213. ret = res | (((u64)rep_done & 0xfff) << 32);
  4214. if (longmode) {
  4215. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4216. } else {
  4217. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4218. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4219. }
  4220. return 1;
  4221. }
  4222. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4223. {
  4224. unsigned long nr, a0, a1, a2, a3, ret;
  4225. int r = 1;
  4226. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4227. return kvm_hv_hypercall(vcpu);
  4228. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4229. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4230. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4231. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4232. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4233. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4234. if (!is_long_mode(vcpu)) {
  4235. nr &= 0xFFFFFFFF;
  4236. a0 &= 0xFFFFFFFF;
  4237. a1 &= 0xFFFFFFFF;
  4238. a2 &= 0xFFFFFFFF;
  4239. a3 &= 0xFFFFFFFF;
  4240. }
  4241. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4242. ret = -KVM_EPERM;
  4243. goto out;
  4244. }
  4245. switch (nr) {
  4246. case KVM_HC_VAPIC_POLL_IRQ:
  4247. ret = 0;
  4248. break;
  4249. case KVM_HC_MMU_OP:
  4250. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4251. break;
  4252. default:
  4253. ret = -KVM_ENOSYS;
  4254. break;
  4255. }
  4256. out:
  4257. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4258. ++vcpu->stat.hypercalls;
  4259. return r;
  4260. }
  4261. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4262. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4263. {
  4264. char instruction[3];
  4265. unsigned long rip = kvm_rip_read(vcpu);
  4266. /*
  4267. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4268. * to ensure that the updated hypercall appears atomically across all
  4269. * VCPUs.
  4270. */
  4271. kvm_mmu_zap_all(vcpu->kvm);
  4272. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4273. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4274. }
  4275. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4276. {
  4277. struct desc_ptr dt = { limit, base };
  4278. kvm_x86_ops->set_gdt(vcpu, &dt);
  4279. }
  4280. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4281. {
  4282. struct desc_ptr dt = { limit, base };
  4283. kvm_x86_ops->set_idt(vcpu, &dt);
  4284. }
  4285. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4286. {
  4287. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4288. int j, nent = vcpu->arch.cpuid_nent;
  4289. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4290. /* when no next entry is found, the current entry[i] is reselected */
  4291. for (j = i + 1; ; j = (j + 1) % nent) {
  4292. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4293. if (ej->function == e->function) {
  4294. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4295. return j;
  4296. }
  4297. }
  4298. return 0; /* silence gcc, even though control never reaches here */
  4299. }
  4300. /* find an entry with matching function, matching index (if needed), and that
  4301. * should be read next (if it's stateful) */
  4302. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4303. u32 function, u32 index)
  4304. {
  4305. if (e->function != function)
  4306. return 0;
  4307. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4308. return 0;
  4309. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4310. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4311. return 0;
  4312. return 1;
  4313. }
  4314. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4315. u32 function, u32 index)
  4316. {
  4317. int i;
  4318. struct kvm_cpuid_entry2 *best = NULL;
  4319. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4320. struct kvm_cpuid_entry2 *e;
  4321. e = &vcpu->arch.cpuid_entries[i];
  4322. if (is_matching_cpuid_entry(e, function, index)) {
  4323. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4324. move_to_next_stateful_cpuid_entry(vcpu, i);
  4325. best = e;
  4326. break;
  4327. }
  4328. /*
  4329. * Both basic or both extended?
  4330. */
  4331. if (((e->function ^ function) & 0x80000000) == 0)
  4332. if (!best || e->function > best->function)
  4333. best = e;
  4334. }
  4335. return best;
  4336. }
  4337. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4338. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4339. {
  4340. struct kvm_cpuid_entry2 *best;
  4341. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4342. if (!best || best->eax < 0x80000008)
  4343. goto not_found;
  4344. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4345. if (best)
  4346. return best->eax & 0xff;
  4347. not_found:
  4348. return 36;
  4349. }
  4350. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4351. {
  4352. u32 function, index;
  4353. struct kvm_cpuid_entry2 *best;
  4354. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4355. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4356. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4357. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4358. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4359. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4360. best = kvm_find_cpuid_entry(vcpu, function, index);
  4361. if (best) {
  4362. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4363. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4364. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4365. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4366. }
  4367. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4368. trace_kvm_cpuid(function,
  4369. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4370. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4371. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4372. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4373. }
  4374. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4375. /*
  4376. * Check if userspace requested an interrupt window, and that the
  4377. * interrupt window is open.
  4378. *
  4379. * No need to exit to userspace if we already have an interrupt queued.
  4380. */
  4381. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4382. {
  4383. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4384. vcpu->run->request_interrupt_window &&
  4385. kvm_arch_interrupt_allowed(vcpu));
  4386. }
  4387. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4388. {
  4389. struct kvm_run *kvm_run = vcpu->run;
  4390. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4391. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4392. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4393. if (irqchip_in_kernel(vcpu->kvm))
  4394. kvm_run->ready_for_interrupt_injection = 1;
  4395. else
  4396. kvm_run->ready_for_interrupt_injection =
  4397. kvm_arch_interrupt_allowed(vcpu) &&
  4398. !kvm_cpu_has_interrupt(vcpu) &&
  4399. !kvm_event_needs_reinjection(vcpu);
  4400. }
  4401. static void vapic_enter(struct kvm_vcpu *vcpu)
  4402. {
  4403. struct kvm_lapic *apic = vcpu->arch.apic;
  4404. struct page *page;
  4405. if (!apic || !apic->vapic_addr)
  4406. return;
  4407. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4408. vcpu->arch.apic->vapic_page = page;
  4409. }
  4410. static void vapic_exit(struct kvm_vcpu *vcpu)
  4411. {
  4412. struct kvm_lapic *apic = vcpu->arch.apic;
  4413. int idx;
  4414. if (!apic || !apic->vapic_addr)
  4415. return;
  4416. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4417. kvm_release_page_dirty(apic->vapic_page);
  4418. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4419. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4420. }
  4421. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4422. {
  4423. int max_irr, tpr;
  4424. if (!kvm_x86_ops->update_cr8_intercept)
  4425. return;
  4426. if (!vcpu->arch.apic)
  4427. return;
  4428. if (!vcpu->arch.apic->vapic_addr)
  4429. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4430. else
  4431. max_irr = -1;
  4432. if (max_irr != -1)
  4433. max_irr >>= 4;
  4434. tpr = kvm_lapic_get_cr8(vcpu);
  4435. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4436. }
  4437. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4438. {
  4439. /* try to reinject previous events if any */
  4440. if (vcpu->arch.exception.pending) {
  4441. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4442. vcpu->arch.exception.has_error_code,
  4443. vcpu->arch.exception.error_code);
  4444. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4445. vcpu->arch.exception.has_error_code,
  4446. vcpu->arch.exception.error_code,
  4447. vcpu->arch.exception.reinject);
  4448. return;
  4449. }
  4450. if (vcpu->arch.nmi_injected) {
  4451. kvm_x86_ops->set_nmi(vcpu);
  4452. return;
  4453. }
  4454. if (vcpu->arch.interrupt.pending) {
  4455. kvm_x86_ops->set_irq(vcpu);
  4456. return;
  4457. }
  4458. /* try to inject new event if pending */
  4459. if (vcpu->arch.nmi_pending) {
  4460. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4461. vcpu->arch.nmi_pending = false;
  4462. vcpu->arch.nmi_injected = true;
  4463. kvm_x86_ops->set_nmi(vcpu);
  4464. }
  4465. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4466. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4467. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4468. false);
  4469. kvm_x86_ops->set_irq(vcpu);
  4470. }
  4471. }
  4472. }
  4473. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4474. {
  4475. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4476. !vcpu->guest_xcr0_loaded) {
  4477. /* kvm_set_xcr() also depends on this */
  4478. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4479. vcpu->guest_xcr0_loaded = 1;
  4480. }
  4481. }
  4482. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4483. {
  4484. if (vcpu->guest_xcr0_loaded) {
  4485. if (vcpu->arch.xcr0 != host_xcr0)
  4486. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4487. vcpu->guest_xcr0_loaded = 0;
  4488. }
  4489. }
  4490. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4491. {
  4492. int r;
  4493. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4494. vcpu->run->request_interrupt_window;
  4495. if (vcpu->requests) {
  4496. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4497. kvm_mmu_unload(vcpu);
  4498. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4499. __kvm_migrate_timers(vcpu);
  4500. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4501. r = kvm_guest_time_update(vcpu);
  4502. if (unlikely(r))
  4503. goto out;
  4504. }
  4505. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4506. kvm_mmu_sync_roots(vcpu);
  4507. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4508. kvm_x86_ops->tlb_flush(vcpu);
  4509. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4510. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4511. r = 0;
  4512. goto out;
  4513. }
  4514. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4515. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4516. r = 0;
  4517. goto out;
  4518. }
  4519. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4520. vcpu->fpu_active = 0;
  4521. kvm_x86_ops->fpu_deactivate(vcpu);
  4522. }
  4523. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4524. /* Page is swapped out. Do synthetic halt */
  4525. vcpu->arch.apf.halted = true;
  4526. r = 1;
  4527. goto out;
  4528. }
  4529. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  4530. vcpu->arch.nmi_pending = true;
  4531. }
  4532. r = kvm_mmu_reload(vcpu);
  4533. if (unlikely(r))
  4534. goto out;
  4535. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4536. inject_pending_event(vcpu);
  4537. /* enable NMI/IRQ window open exits if needed */
  4538. if (vcpu->arch.nmi_pending)
  4539. kvm_x86_ops->enable_nmi_window(vcpu);
  4540. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4541. kvm_x86_ops->enable_irq_window(vcpu);
  4542. if (kvm_lapic_enabled(vcpu)) {
  4543. update_cr8_intercept(vcpu);
  4544. kvm_lapic_sync_to_vapic(vcpu);
  4545. }
  4546. }
  4547. preempt_disable();
  4548. kvm_x86_ops->prepare_guest_switch(vcpu);
  4549. if (vcpu->fpu_active)
  4550. kvm_load_guest_fpu(vcpu);
  4551. kvm_load_guest_xcr0(vcpu);
  4552. vcpu->mode = IN_GUEST_MODE;
  4553. /* We should set ->mode before check ->requests,
  4554. * see the comment in make_all_cpus_request.
  4555. */
  4556. smp_mb();
  4557. local_irq_disable();
  4558. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4559. || need_resched() || signal_pending(current)) {
  4560. vcpu->mode = OUTSIDE_GUEST_MODE;
  4561. smp_wmb();
  4562. local_irq_enable();
  4563. preempt_enable();
  4564. kvm_x86_ops->cancel_injection(vcpu);
  4565. r = 1;
  4566. goto out;
  4567. }
  4568. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4569. kvm_guest_enter();
  4570. if (unlikely(vcpu->arch.switch_db_regs)) {
  4571. set_debugreg(0, 7);
  4572. set_debugreg(vcpu->arch.eff_db[0], 0);
  4573. set_debugreg(vcpu->arch.eff_db[1], 1);
  4574. set_debugreg(vcpu->arch.eff_db[2], 2);
  4575. set_debugreg(vcpu->arch.eff_db[3], 3);
  4576. }
  4577. trace_kvm_entry(vcpu->vcpu_id);
  4578. kvm_x86_ops->run(vcpu);
  4579. /*
  4580. * If the guest has used debug registers, at least dr7
  4581. * will be disabled while returning to the host.
  4582. * If we don't have active breakpoints in the host, we don't
  4583. * care about the messed up debug address registers. But if
  4584. * we have some of them active, restore the old state.
  4585. */
  4586. if (hw_breakpoint_active())
  4587. hw_breakpoint_restore();
  4588. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4589. vcpu->mode = OUTSIDE_GUEST_MODE;
  4590. smp_wmb();
  4591. local_irq_enable();
  4592. ++vcpu->stat.exits;
  4593. /*
  4594. * We must have an instruction between local_irq_enable() and
  4595. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4596. * the interrupt shadow. The stat.exits increment will do nicely.
  4597. * But we need to prevent reordering, hence this barrier():
  4598. */
  4599. barrier();
  4600. kvm_guest_exit();
  4601. preempt_enable();
  4602. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4603. /*
  4604. * Profile KVM exit RIPs:
  4605. */
  4606. if (unlikely(prof_on == KVM_PROFILING)) {
  4607. unsigned long rip = kvm_rip_read(vcpu);
  4608. profile_hit(KVM_PROFILING, (void *)rip);
  4609. }
  4610. kvm_lapic_sync_from_vapic(vcpu);
  4611. r = kvm_x86_ops->handle_exit(vcpu);
  4612. out:
  4613. return r;
  4614. }
  4615. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4616. {
  4617. int r;
  4618. struct kvm *kvm = vcpu->kvm;
  4619. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4620. pr_debug("vcpu %d received sipi with vector # %x\n",
  4621. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4622. kvm_lapic_reset(vcpu);
  4623. r = kvm_arch_vcpu_reset(vcpu);
  4624. if (r)
  4625. return r;
  4626. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4627. }
  4628. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4629. vapic_enter(vcpu);
  4630. r = 1;
  4631. while (r > 0) {
  4632. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4633. !vcpu->arch.apf.halted)
  4634. r = vcpu_enter_guest(vcpu);
  4635. else {
  4636. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4637. kvm_vcpu_block(vcpu);
  4638. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4639. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4640. {
  4641. switch(vcpu->arch.mp_state) {
  4642. case KVM_MP_STATE_HALTED:
  4643. vcpu->arch.mp_state =
  4644. KVM_MP_STATE_RUNNABLE;
  4645. case KVM_MP_STATE_RUNNABLE:
  4646. vcpu->arch.apf.halted = false;
  4647. break;
  4648. case KVM_MP_STATE_SIPI_RECEIVED:
  4649. default:
  4650. r = -EINTR;
  4651. break;
  4652. }
  4653. }
  4654. }
  4655. if (r <= 0)
  4656. break;
  4657. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4658. if (kvm_cpu_has_pending_timer(vcpu))
  4659. kvm_inject_pending_timer_irqs(vcpu);
  4660. if (dm_request_for_irq_injection(vcpu)) {
  4661. r = -EINTR;
  4662. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4663. ++vcpu->stat.request_irq_exits;
  4664. }
  4665. kvm_check_async_pf_completion(vcpu);
  4666. if (signal_pending(current)) {
  4667. r = -EINTR;
  4668. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4669. ++vcpu->stat.signal_exits;
  4670. }
  4671. if (need_resched()) {
  4672. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4673. kvm_resched(vcpu);
  4674. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4675. }
  4676. }
  4677. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4678. vapic_exit(vcpu);
  4679. return r;
  4680. }
  4681. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4682. {
  4683. int r;
  4684. sigset_t sigsaved;
  4685. if (!tsk_used_math(current) && init_fpu(current))
  4686. return -ENOMEM;
  4687. if (vcpu->sigset_active)
  4688. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4689. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4690. kvm_vcpu_block(vcpu);
  4691. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4692. r = -EAGAIN;
  4693. goto out;
  4694. }
  4695. /* re-sync apic's tpr */
  4696. if (!irqchip_in_kernel(vcpu->kvm)) {
  4697. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4698. r = -EINVAL;
  4699. goto out;
  4700. }
  4701. }
  4702. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4703. if (vcpu->mmio_needed) {
  4704. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4705. vcpu->mmio_read_completed = 1;
  4706. vcpu->mmio_needed = 0;
  4707. }
  4708. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4709. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4710. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4711. if (r != EMULATE_DONE) {
  4712. r = 0;
  4713. goto out;
  4714. }
  4715. }
  4716. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4717. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4718. kvm_run->hypercall.ret);
  4719. r = __vcpu_run(vcpu);
  4720. out:
  4721. post_kvm_run_save(vcpu);
  4722. if (vcpu->sigset_active)
  4723. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4724. return r;
  4725. }
  4726. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4727. {
  4728. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4729. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4730. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4731. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4732. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4733. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4734. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4735. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4736. #ifdef CONFIG_X86_64
  4737. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4738. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4739. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4740. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4741. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4742. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4743. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4744. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4745. #endif
  4746. regs->rip = kvm_rip_read(vcpu);
  4747. regs->rflags = kvm_get_rflags(vcpu);
  4748. return 0;
  4749. }
  4750. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4751. {
  4752. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4753. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4754. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4755. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4756. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4757. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4758. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4759. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4760. #ifdef CONFIG_X86_64
  4761. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4762. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4763. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4764. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4765. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4766. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4767. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4768. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4769. #endif
  4770. kvm_rip_write(vcpu, regs->rip);
  4771. kvm_set_rflags(vcpu, regs->rflags);
  4772. vcpu->arch.exception.pending = false;
  4773. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4774. return 0;
  4775. }
  4776. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4777. {
  4778. struct kvm_segment cs;
  4779. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4780. *db = cs.db;
  4781. *l = cs.l;
  4782. }
  4783. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4784. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4785. struct kvm_sregs *sregs)
  4786. {
  4787. struct desc_ptr dt;
  4788. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4789. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4790. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4791. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4792. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4793. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4794. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4795. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4796. kvm_x86_ops->get_idt(vcpu, &dt);
  4797. sregs->idt.limit = dt.size;
  4798. sregs->idt.base = dt.address;
  4799. kvm_x86_ops->get_gdt(vcpu, &dt);
  4800. sregs->gdt.limit = dt.size;
  4801. sregs->gdt.base = dt.address;
  4802. sregs->cr0 = kvm_read_cr0(vcpu);
  4803. sregs->cr2 = vcpu->arch.cr2;
  4804. sregs->cr3 = kvm_read_cr3(vcpu);
  4805. sregs->cr4 = kvm_read_cr4(vcpu);
  4806. sregs->cr8 = kvm_get_cr8(vcpu);
  4807. sregs->efer = vcpu->arch.efer;
  4808. sregs->apic_base = kvm_get_apic_base(vcpu);
  4809. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4810. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4811. set_bit(vcpu->arch.interrupt.nr,
  4812. (unsigned long *)sregs->interrupt_bitmap);
  4813. return 0;
  4814. }
  4815. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4816. struct kvm_mp_state *mp_state)
  4817. {
  4818. mp_state->mp_state = vcpu->arch.mp_state;
  4819. return 0;
  4820. }
  4821. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4822. struct kvm_mp_state *mp_state)
  4823. {
  4824. vcpu->arch.mp_state = mp_state->mp_state;
  4825. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4826. return 0;
  4827. }
  4828. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4829. bool has_error_code, u32 error_code)
  4830. {
  4831. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4832. int ret;
  4833. init_emulate_ctxt(vcpu);
  4834. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4835. tss_selector, reason, has_error_code,
  4836. error_code);
  4837. if (ret)
  4838. return EMULATE_FAIL;
  4839. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4840. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4841. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4842. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4843. return EMULATE_DONE;
  4844. }
  4845. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4846. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4847. struct kvm_sregs *sregs)
  4848. {
  4849. int mmu_reset_needed = 0;
  4850. int pending_vec, max_bits, idx;
  4851. struct desc_ptr dt;
  4852. dt.size = sregs->idt.limit;
  4853. dt.address = sregs->idt.base;
  4854. kvm_x86_ops->set_idt(vcpu, &dt);
  4855. dt.size = sregs->gdt.limit;
  4856. dt.address = sregs->gdt.base;
  4857. kvm_x86_ops->set_gdt(vcpu, &dt);
  4858. vcpu->arch.cr2 = sregs->cr2;
  4859. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  4860. vcpu->arch.cr3 = sregs->cr3;
  4861. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  4862. kvm_set_cr8(vcpu, sregs->cr8);
  4863. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4864. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4865. kvm_set_apic_base(vcpu, sregs->apic_base);
  4866. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4867. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4868. vcpu->arch.cr0 = sregs->cr0;
  4869. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4870. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4871. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4872. update_cpuid(vcpu);
  4873. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4874. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4875. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  4876. mmu_reset_needed = 1;
  4877. }
  4878. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4879. if (mmu_reset_needed)
  4880. kvm_mmu_reset_context(vcpu);
  4881. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4882. pending_vec = find_first_bit(
  4883. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4884. if (pending_vec < max_bits) {
  4885. kvm_queue_interrupt(vcpu, pending_vec, false);
  4886. pr_debug("Set back pending irq %d\n", pending_vec);
  4887. }
  4888. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4889. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4890. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4891. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4892. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4893. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4894. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4895. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4896. update_cr8_intercept(vcpu);
  4897. /* Older userspace won't unhalt the vcpu on reset. */
  4898. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4899. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4900. !is_protmode(vcpu))
  4901. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4902. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4903. return 0;
  4904. }
  4905. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4906. struct kvm_guest_debug *dbg)
  4907. {
  4908. unsigned long rflags;
  4909. int i, r;
  4910. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4911. r = -EBUSY;
  4912. if (vcpu->arch.exception.pending)
  4913. goto out;
  4914. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4915. kvm_queue_exception(vcpu, DB_VECTOR);
  4916. else
  4917. kvm_queue_exception(vcpu, BP_VECTOR);
  4918. }
  4919. /*
  4920. * Read rflags as long as potentially injected trace flags are still
  4921. * filtered out.
  4922. */
  4923. rflags = kvm_get_rflags(vcpu);
  4924. vcpu->guest_debug = dbg->control;
  4925. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4926. vcpu->guest_debug = 0;
  4927. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4928. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4929. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4930. vcpu->arch.switch_db_regs =
  4931. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4932. } else {
  4933. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4934. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4935. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4936. }
  4937. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4938. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4939. get_segment_base(vcpu, VCPU_SREG_CS);
  4940. /*
  4941. * Trigger an rflags update that will inject or remove the trace
  4942. * flags.
  4943. */
  4944. kvm_set_rflags(vcpu, rflags);
  4945. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4946. r = 0;
  4947. out:
  4948. return r;
  4949. }
  4950. /*
  4951. * Translate a guest virtual address to a guest physical address.
  4952. */
  4953. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4954. struct kvm_translation *tr)
  4955. {
  4956. unsigned long vaddr = tr->linear_address;
  4957. gpa_t gpa;
  4958. int idx;
  4959. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4960. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4961. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4962. tr->physical_address = gpa;
  4963. tr->valid = gpa != UNMAPPED_GVA;
  4964. tr->writeable = 1;
  4965. tr->usermode = 0;
  4966. return 0;
  4967. }
  4968. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4969. {
  4970. struct i387_fxsave_struct *fxsave =
  4971. &vcpu->arch.guest_fpu.state->fxsave;
  4972. memcpy(fpu->fpr, fxsave->st_space, 128);
  4973. fpu->fcw = fxsave->cwd;
  4974. fpu->fsw = fxsave->swd;
  4975. fpu->ftwx = fxsave->twd;
  4976. fpu->last_opcode = fxsave->fop;
  4977. fpu->last_ip = fxsave->rip;
  4978. fpu->last_dp = fxsave->rdp;
  4979. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4980. return 0;
  4981. }
  4982. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4983. {
  4984. struct i387_fxsave_struct *fxsave =
  4985. &vcpu->arch.guest_fpu.state->fxsave;
  4986. memcpy(fxsave->st_space, fpu->fpr, 128);
  4987. fxsave->cwd = fpu->fcw;
  4988. fxsave->swd = fpu->fsw;
  4989. fxsave->twd = fpu->ftwx;
  4990. fxsave->fop = fpu->last_opcode;
  4991. fxsave->rip = fpu->last_ip;
  4992. fxsave->rdp = fpu->last_dp;
  4993. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4994. return 0;
  4995. }
  4996. int fx_init(struct kvm_vcpu *vcpu)
  4997. {
  4998. int err;
  4999. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5000. if (err)
  5001. return err;
  5002. fpu_finit(&vcpu->arch.guest_fpu);
  5003. /*
  5004. * Ensure guest xcr0 is valid for loading
  5005. */
  5006. vcpu->arch.xcr0 = XSTATE_FP;
  5007. vcpu->arch.cr0 |= X86_CR0_ET;
  5008. return 0;
  5009. }
  5010. EXPORT_SYMBOL_GPL(fx_init);
  5011. static void fx_free(struct kvm_vcpu *vcpu)
  5012. {
  5013. fpu_free(&vcpu->arch.guest_fpu);
  5014. }
  5015. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5016. {
  5017. if (vcpu->guest_fpu_loaded)
  5018. return;
  5019. /*
  5020. * Restore all possible states in the guest,
  5021. * and assume host would use all available bits.
  5022. * Guest xcr0 would be loaded later.
  5023. */
  5024. kvm_put_guest_xcr0(vcpu);
  5025. vcpu->guest_fpu_loaded = 1;
  5026. unlazy_fpu(current);
  5027. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5028. trace_kvm_fpu(1);
  5029. }
  5030. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5031. {
  5032. kvm_put_guest_xcr0(vcpu);
  5033. if (!vcpu->guest_fpu_loaded)
  5034. return;
  5035. vcpu->guest_fpu_loaded = 0;
  5036. fpu_save_init(&vcpu->arch.guest_fpu);
  5037. ++vcpu->stat.fpu_reload;
  5038. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5039. trace_kvm_fpu(0);
  5040. }
  5041. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5042. {
  5043. kvmclock_reset(vcpu);
  5044. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5045. fx_free(vcpu);
  5046. kvm_x86_ops->vcpu_free(vcpu);
  5047. }
  5048. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5049. unsigned int id)
  5050. {
  5051. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5052. printk_once(KERN_WARNING
  5053. "kvm: SMP vm created on host with unstable TSC; "
  5054. "guest TSC will not be reliable\n");
  5055. return kvm_x86_ops->vcpu_create(kvm, id);
  5056. }
  5057. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5058. {
  5059. int r;
  5060. vcpu->arch.mtrr_state.have_fixed = 1;
  5061. vcpu_load(vcpu);
  5062. r = kvm_arch_vcpu_reset(vcpu);
  5063. if (r == 0)
  5064. r = kvm_mmu_setup(vcpu);
  5065. vcpu_put(vcpu);
  5066. if (r < 0)
  5067. goto free_vcpu;
  5068. return 0;
  5069. free_vcpu:
  5070. kvm_x86_ops->vcpu_free(vcpu);
  5071. return r;
  5072. }
  5073. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5074. {
  5075. vcpu->arch.apf.msr_val = 0;
  5076. vcpu_load(vcpu);
  5077. kvm_mmu_unload(vcpu);
  5078. vcpu_put(vcpu);
  5079. fx_free(vcpu);
  5080. kvm_x86_ops->vcpu_free(vcpu);
  5081. }
  5082. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5083. {
  5084. vcpu->arch.nmi_pending = false;
  5085. vcpu->arch.nmi_injected = false;
  5086. vcpu->arch.switch_db_regs = 0;
  5087. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5088. vcpu->arch.dr6 = DR6_FIXED_1;
  5089. vcpu->arch.dr7 = DR7_FIXED_1;
  5090. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5091. vcpu->arch.apf.msr_val = 0;
  5092. kvmclock_reset(vcpu);
  5093. kvm_clear_async_pf_completion_queue(vcpu);
  5094. kvm_async_pf_hash_reset(vcpu);
  5095. vcpu->arch.apf.halted = false;
  5096. return kvm_x86_ops->vcpu_reset(vcpu);
  5097. }
  5098. int kvm_arch_hardware_enable(void *garbage)
  5099. {
  5100. struct kvm *kvm;
  5101. struct kvm_vcpu *vcpu;
  5102. int i;
  5103. kvm_shared_msr_cpu_online();
  5104. list_for_each_entry(kvm, &vm_list, vm_list)
  5105. kvm_for_each_vcpu(i, vcpu, kvm)
  5106. if (vcpu->cpu == smp_processor_id())
  5107. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5108. return kvm_x86_ops->hardware_enable(garbage);
  5109. }
  5110. void kvm_arch_hardware_disable(void *garbage)
  5111. {
  5112. kvm_x86_ops->hardware_disable(garbage);
  5113. drop_user_return_notifiers(garbage);
  5114. }
  5115. int kvm_arch_hardware_setup(void)
  5116. {
  5117. return kvm_x86_ops->hardware_setup();
  5118. }
  5119. void kvm_arch_hardware_unsetup(void)
  5120. {
  5121. kvm_x86_ops->hardware_unsetup();
  5122. }
  5123. void kvm_arch_check_processor_compat(void *rtn)
  5124. {
  5125. kvm_x86_ops->check_processor_compatibility(rtn);
  5126. }
  5127. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5128. {
  5129. struct page *page;
  5130. struct kvm *kvm;
  5131. int r;
  5132. BUG_ON(vcpu->kvm == NULL);
  5133. kvm = vcpu->kvm;
  5134. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5135. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5136. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5137. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5138. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5139. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5140. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5141. else
  5142. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5143. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5144. if (!page) {
  5145. r = -ENOMEM;
  5146. goto fail;
  5147. }
  5148. vcpu->arch.pio_data = page_address(page);
  5149. if (!kvm->arch.virtual_tsc_khz)
  5150. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5151. r = kvm_mmu_create(vcpu);
  5152. if (r < 0)
  5153. goto fail_free_pio_data;
  5154. if (irqchip_in_kernel(kvm)) {
  5155. r = kvm_create_lapic(vcpu);
  5156. if (r < 0)
  5157. goto fail_mmu_destroy;
  5158. }
  5159. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5160. GFP_KERNEL);
  5161. if (!vcpu->arch.mce_banks) {
  5162. r = -ENOMEM;
  5163. goto fail_free_lapic;
  5164. }
  5165. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5166. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5167. goto fail_free_mce_banks;
  5168. kvm_async_pf_hash_reset(vcpu);
  5169. return 0;
  5170. fail_free_mce_banks:
  5171. kfree(vcpu->arch.mce_banks);
  5172. fail_free_lapic:
  5173. kvm_free_lapic(vcpu);
  5174. fail_mmu_destroy:
  5175. kvm_mmu_destroy(vcpu);
  5176. fail_free_pio_data:
  5177. free_page((unsigned long)vcpu->arch.pio_data);
  5178. fail:
  5179. return r;
  5180. }
  5181. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5182. {
  5183. int idx;
  5184. kfree(vcpu->arch.mce_banks);
  5185. kvm_free_lapic(vcpu);
  5186. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5187. kvm_mmu_destroy(vcpu);
  5188. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5189. free_page((unsigned long)vcpu->arch.pio_data);
  5190. }
  5191. int kvm_arch_init_vm(struct kvm *kvm)
  5192. {
  5193. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5194. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5195. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5196. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5197. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5198. return 0;
  5199. }
  5200. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5201. {
  5202. vcpu_load(vcpu);
  5203. kvm_mmu_unload(vcpu);
  5204. vcpu_put(vcpu);
  5205. }
  5206. static void kvm_free_vcpus(struct kvm *kvm)
  5207. {
  5208. unsigned int i;
  5209. struct kvm_vcpu *vcpu;
  5210. /*
  5211. * Unpin any mmu pages first.
  5212. */
  5213. kvm_for_each_vcpu(i, vcpu, kvm) {
  5214. kvm_clear_async_pf_completion_queue(vcpu);
  5215. kvm_unload_vcpu_mmu(vcpu);
  5216. }
  5217. kvm_for_each_vcpu(i, vcpu, kvm)
  5218. kvm_arch_vcpu_free(vcpu);
  5219. mutex_lock(&kvm->lock);
  5220. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5221. kvm->vcpus[i] = NULL;
  5222. atomic_set(&kvm->online_vcpus, 0);
  5223. mutex_unlock(&kvm->lock);
  5224. }
  5225. void kvm_arch_sync_events(struct kvm *kvm)
  5226. {
  5227. kvm_free_all_assigned_devices(kvm);
  5228. kvm_free_pit(kvm);
  5229. }
  5230. void kvm_arch_destroy_vm(struct kvm *kvm)
  5231. {
  5232. kvm_iommu_unmap_guest(kvm);
  5233. kfree(kvm->arch.vpic);
  5234. kfree(kvm->arch.vioapic);
  5235. kvm_free_vcpus(kvm);
  5236. if (kvm->arch.apic_access_page)
  5237. put_page(kvm->arch.apic_access_page);
  5238. if (kvm->arch.ept_identity_pagetable)
  5239. put_page(kvm->arch.ept_identity_pagetable);
  5240. }
  5241. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5242. struct kvm_memory_slot *memslot,
  5243. struct kvm_memory_slot old,
  5244. struct kvm_userspace_memory_region *mem,
  5245. int user_alloc)
  5246. {
  5247. int npages = memslot->npages;
  5248. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5249. /* Prevent internal slot pages from being moved by fork()/COW. */
  5250. if (memslot->id >= KVM_MEMORY_SLOTS)
  5251. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5252. /*To keep backward compatibility with older userspace,
  5253. *x86 needs to hanlde !user_alloc case.
  5254. */
  5255. if (!user_alloc) {
  5256. if (npages && !old.rmap) {
  5257. unsigned long userspace_addr;
  5258. down_write(&current->mm->mmap_sem);
  5259. userspace_addr = do_mmap(NULL, 0,
  5260. npages * PAGE_SIZE,
  5261. PROT_READ | PROT_WRITE,
  5262. map_flags,
  5263. 0);
  5264. up_write(&current->mm->mmap_sem);
  5265. if (IS_ERR((void *)userspace_addr))
  5266. return PTR_ERR((void *)userspace_addr);
  5267. memslot->userspace_addr = userspace_addr;
  5268. }
  5269. }
  5270. return 0;
  5271. }
  5272. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5273. struct kvm_userspace_memory_region *mem,
  5274. struct kvm_memory_slot old,
  5275. int user_alloc)
  5276. {
  5277. int npages = mem->memory_size >> PAGE_SHIFT;
  5278. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5279. int ret;
  5280. down_write(&current->mm->mmap_sem);
  5281. ret = do_munmap(current->mm, old.userspace_addr,
  5282. old.npages * PAGE_SIZE);
  5283. up_write(&current->mm->mmap_sem);
  5284. if (ret < 0)
  5285. printk(KERN_WARNING
  5286. "kvm_vm_ioctl_set_memory_region: "
  5287. "failed to munmap memory\n");
  5288. }
  5289. spin_lock(&kvm->mmu_lock);
  5290. if (!kvm->arch.n_requested_mmu_pages) {
  5291. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5292. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5293. }
  5294. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5295. spin_unlock(&kvm->mmu_lock);
  5296. }
  5297. void kvm_arch_flush_shadow(struct kvm *kvm)
  5298. {
  5299. kvm_mmu_zap_all(kvm);
  5300. kvm_reload_remote_mmus(kvm);
  5301. }
  5302. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5303. {
  5304. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5305. !vcpu->arch.apf.halted)
  5306. || !list_empty_careful(&vcpu->async_pf.done)
  5307. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5308. || vcpu->arch.nmi_pending ||
  5309. (kvm_arch_interrupt_allowed(vcpu) &&
  5310. kvm_cpu_has_interrupt(vcpu));
  5311. }
  5312. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5313. {
  5314. int me;
  5315. int cpu = vcpu->cpu;
  5316. if (waitqueue_active(&vcpu->wq)) {
  5317. wake_up_interruptible(&vcpu->wq);
  5318. ++vcpu->stat.halt_wakeup;
  5319. }
  5320. me = get_cpu();
  5321. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5322. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5323. smp_send_reschedule(cpu);
  5324. put_cpu();
  5325. }
  5326. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5327. {
  5328. return kvm_x86_ops->interrupt_allowed(vcpu);
  5329. }
  5330. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5331. {
  5332. unsigned long current_rip = kvm_rip_read(vcpu) +
  5333. get_segment_base(vcpu, VCPU_SREG_CS);
  5334. return current_rip == linear_rip;
  5335. }
  5336. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5337. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5338. {
  5339. unsigned long rflags;
  5340. rflags = kvm_x86_ops->get_rflags(vcpu);
  5341. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5342. rflags &= ~X86_EFLAGS_TF;
  5343. return rflags;
  5344. }
  5345. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5346. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5347. {
  5348. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5349. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5350. rflags |= X86_EFLAGS_TF;
  5351. kvm_x86_ops->set_rflags(vcpu, rflags);
  5352. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5353. }
  5354. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5355. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5356. {
  5357. int r;
  5358. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5359. is_error_page(work->page))
  5360. return;
  5361. r = kvm_mmu_reload(vcpu);
  5362. if (unlikely(r))
  5363. return;
  5364. if (!vcpu->arch.mmu.direct_map &&
  5365. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5366. return;
  5367. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5368. }
  5369. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5370. {
  5371. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5372. }
  5373. static inline u32 kvm_async_pf_next_probe(u32 key)
  5374. {
  5375. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5376. }
  5377. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5378. {
  5379. u32 key = kvm_async_pf_hash_fn(gfn);
  5380. while (vcpu->arch.apf.gfns[key] != ~0)
  5381. key = kvm_async_pf_next_probe(key);
  5382. vcpu->arch.apf.gfns[key] = gfn;
  5383. }
  5384. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5385. {
  5386. int i;
  5387. u32 key = kvm_async_pf_hash_fn(gfn);
  5388. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5389. (vcpu->arch.apf.gfns[key] != gfn &&
  5390. vcpu->arch.apf.gfns[key] != ~0); i++)
  5391. key = kvm_async_pf_next_probe(key);
  5392. return key;
  5393. }
  5394. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5395. {
  5396. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5397. }
  5398. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5399. {
  5400. u32 i, j, k;
  5401. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5402. while (true) {
  5403. vcpu->arch.apf.gfns[i] = ~0;
  5404. do {
  5405. j = kvm_async_pf_next_probe(j);
  5406. if (vcpu->arch.apf.gfns[j] == ~0)
  5407. return;
  5408. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5409. /*
  5410. * k lies cyclically in ]i,j]
  5411. * | i.k.j |
  5412. * |....j i.k.| or |.k..j i...|
  5413. */
  5414. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5415. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5416. i = j;
  5417. }
  5418. }
  5419. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5420. {
  5421. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5422. sizeof(val));
  5423. }
  5424. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5425. struct kvm_async_pf *work)
  5426. {
  5427. struct x86_exception fault;
  5428. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5429. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5430. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5431. (vcpu->arch.apf.send_user_only &&
  5432. kvm_x86_ops->get_cpl(vcpu) == 0))
  5433. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5434. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5435. fault.vector = PF_VECTOR;
  5436. fault.error_code_valid = true;
  5437. fault.error_code = 0;
  5438. fault.nested_page_fault = false;
  5439. fault.address = work->arch.token;
  5440. kvm_inject_page_fault(vcpu, &fault);
  5441. }
  5442. }
  5443. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5444. struct kvm_async_pf *work)
  5445. {
  5446. struct x86_exception fault;
  5447. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5448. if (is_error_page(work->page))
  5449. work->arch.token = ~0; /* broadcast wakeup */
  5450. else
  5451. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5452. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5453. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5454. fault.vector = PF_VECTOR;
  5455. fault.error_code_valid = true;
  5456. fault.error_code = 0;
  5457. fault.nested_page_fault = false;
  5458. fault.address = work->arch.token;
  5459. kvm_inject_page_fault(vcpu, &fault);
  5460. }
  5461. vcpu->arch.apf.halted = false;
  5462. }
  5463. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5464. {
  5465. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5466. return true;
  5467. else
  5468. return !kvm_event_needs_reinjection(vcpu) &&
  5469. kvm_x86_ops->interrupt_allowed(vcpu);
  5470. }
  5471. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5472. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5473. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5474. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5475. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5476. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5477. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5478. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5479. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5480. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5481. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5482. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);