arm_arch_timer.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/clockchips.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/of_irq.h>
  19. #include <linux/of_address.h>
  20. #include <linux/io.h>
  21. #include <linux/slab.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/virt.h>
  24. #include <clocksource/arm_arch_timer.h>
  25. #define CNTTIDR 0x08
  26. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  27. #define CNTVCT_LO 0x08
  28. #define CNTVCT_HI 0x0c
  29. #define CNTFRQ 0x10
  30. #define CNTP_TVAL 0x28
  31. #define CNTP_CTL 0x2c
  32. #define CNTV_TVAL 0x38
  33. #define CNTV_CTL 0x3c
  34. #define ARCH_CP15_TIMER BIT(0)
  35. #define ARCH_MEM_TIMER BIT(1)
  36. static unsigned arch_timers_present __initdata;
  37. static void __iomem *arch_counter_base;
  38. struct arch_timer {
  39. void __iomem *base;
  40. struct clock_event_device evt;
  41. };
  42. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  43. static u32 arch_timer_rate;
  44. enum ppi_nr {
  45. PHYS_SECURE_PPI,
  46. PHYS_NONSECURE_PPI,
  47. VIRT_PPI,
  48. HYP_PPI,
  49. MAX_TIMER_PPI
  50. };
  51. static int arch_timer_ppi[MAX_TIMER_PPI];
  52. static struct clock_event_device __percpu *arch_timer_evt;
  53. static bool arch_timer_use_virtual = true;
  54. static bool arch_timer_mem_use_virtual;
  55. /*
  56. * Architected system timer support.
  57. */
  58. static __always_inline
  59. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  60. struct clock_event_device *clk)
  61. {
  62. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  63. struct arch_timer *timer = to_arch_timer(clk);
  64. switch (reg) {
  65. case ARCH_TIMER_REG_CTRL:
  66. writel_relaxed(val, timer->base + CNTP_CTL);
  67. break;
  68. case ARCH_TIMER_REG_TVAL:
  69. writel_relaxed(val, timer->base + CNTP_TVAL);
  70. break;
  71. }
  72. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  73. struct arch_timer *timer = to_arch_timer(clk);
  74. switch (reg) {
  75. case ARCH_TIMER_REG_CTRL:
  76. writel_relaxed(val, timer->base + CNTV_CTL);
  77. break;
  78. case ARCH_TIMER_REG_TVAL:
  79. writel_relaxed(val, timer->base + CNTV_TVAL);
  80. break;
  81. }
  82. } else {
  83. arch_timer_reg_write_cp15(access, reg, val);
  84. }
  85. }
  86. static __always_inline
  87. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  88. struct clock_event_device *clk)
  89. {
  90. u32 val;
  91. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  92. struct arch_timer *timer = to_arch_timer(clk);
  93. switch (reg) {
  94. case ARCH_TIMER_REG_CTRL:
  95. val = readl_relaxed(timer->base + CNTP_CTL);
  96. break;
  97. case ARCH_TIMER_REG_TVAL:
  98. val = readl_relaxed(timer->base + CNTP_TVAL);
  99. break;
  100. }
  101. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  102. struct arch_timer *timer = to_arch_timer(clk);
  103. switch (reg) {
  104. case ARCH_TIMER_REG_CTRL:
  105. val = readl_relaxed(timer->base + CNTV_CTL);
  106. break;
  107. case ARCH_TIMER_REG_TVAL:
  108. val = readl_relaxed(timer->base + CNTV_TVAL);
  109. break;
  110. }
  111. } else {
  112. val = arch_timer_reg_read_cp15(access, reg);
  113. }
  114. return val;
  115. }
  116. static __always_inline irqreturn_t timer_handler(const int access,
  117. struct clock_event_device *evt)
  118. {
  119. unsigned long ctrl;
  120. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  121. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  122. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  123. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  124. evt->event_handler(evt);
  125. return IRQ_HANDLED;
  126. }
  127. return IRQ_NONE;
  128. }
  129. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  130. {
  131. struct clock_event_device *evt = dev_id;
  132. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  133. }
  134. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  135. {
  136. struct clock_event_device *evt = dev_id;
  137. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  138. }
  139. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  140. {
  141. struct clock_event_device *evt = dev_id;
  142. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  143. }
  144. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  145. {
  146. struct clock_event_device *evt = dev_id;
  147. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  148. }
  149. static __always_inline void timer_set_mode(const int access, int mode,
  150. struct clock_event_device *clk)
  151. {
  152. unsigned long ctrl;
  153. switch (mode) {
  154. case CLOCK_EVT_MODE_UNUSED:
  155. case CLOCK_EVT_MODE_SHUTDOWN:
  156. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  157. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  158. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  159. break;
  160. default:
  161. break;
  162. }
  163. }
  164. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  165. struct clock_event_device *clk)
  166. {
  167. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  168. }
  169. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  170. struct clock_event_device *clk)
  171. {
  172. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  173. }
  174. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  175. struct clock_event_device *clk)
  176. {
  177. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  178. }
  179. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  180. struct clock_event_device *clk)
  181. {
  182. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  183. }
  184. static __always_inline void set_next_event(const int access, unsigned long evt,
  185. struct clock_event_device *clk)
  186. {
  187. unsigned long ctrl;
  188. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  189. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  190. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  191. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  192. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  193. }
  194. static int arch_timer_set_next_event_virt(unsigned long evt,
  195. struct clock_event_device *clk)
  196. {
  197. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  198. return 0;
  199. }
  200. static int arch_timer_set_next_event_phys(unsigned long evt,
  201. struct clock_event_device *clk)
  202. {
  203. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  204. return 0;
  205. }
  206. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  207. struct clock_event_device *clk)
  208. {
  209. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  210. return 0;
  211. }
  212. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  213. struct clock_event_device *clk)
  214. {
  215. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  216. return 0;
  217. }
  218. static void __arch_timer_setup(unsigned type,
  219. struct clock_event_device *clk)
  220. {
  221. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  222. if (type == ARCH_CP15_TIMER) {
  223. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  224. clk->name = "arch_sys_timer";
  225. clk->rating = 450;
  226. clk->cpumask = cpumask_of(smp_processor_id());
  227. if (arch_timer_use_virtual) {
  228. clk->irq = arch_timer_ppi[VIRT_PPI];
  229. clk->set_mode = arch_timer_set_mode_virt;
  230. clk->set_next_event = arch_timer_set_next_event_virt;
  231. } else {
  232. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  233. clk->set_mode = arch_timer_set_mode_phys;
  234. clk->set_next_event = arch_timer_set_next_event_phys;
  235. }
  236. } else {
  237. clk->name = "arch_mem_timer";
  238. clk->rating = 400;
  239. clk->cpumask = cpu_all_mask;
  240. if (arch_timer_mem_use_virtual) {
  241. clk->set_mode = arch_timer_set_mode_virt_mem;
  242. clk->set_next_event =
  243. arch_timer_set_next_event_virt_mem;
  244. } else {
  245. clk->set_mode = arch_timer_set_mode_phys_mem;
  246. clk->set_next_event =
  247. arch_timer_set_next_event_phys_mem;
  248. }
  249. }
  250. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  251. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  252. }
  253. static void arch_timer_configure_evtstream(void)
  254. {
  255. int evt_stream_div, pos;
  256. /* Find the closest power of two to the divisor */
  257. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  258. pos = fls(evt_stream_div);
  259. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  260. pos--;
  261. /* enable event stream */
  262. arch_timer_evtstrm_enable(min(pos, 15));
  263. }
  264. static int arch_timer_setup(struct clock_event_device *clk)
  265. {
  266. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  267. if (arch_timer_use_virtual)
  268. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  269. else {
  270. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  271. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  272. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  273. }
  274. arch_counter_set_user_access();
  275. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  276. arch_timer_configure_evtstream();
  277. return 0;
  278. }
  279. static void
  280. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  281. {
  282. /* Who has more than one independent system counter? */
  283. if (arch_timer_rate)
  284. return;
  285. /* Try to determine the frequency from the device tree or CNTFRQ */
  286. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  287. if (cntbase)
  288. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  289. else
  290. arch_timer_rate = arch_timer_get_cntfrq();
  291. }
  292. /* Check the timer frequency. */
  293. if (arch_timer_rate == 0)
  294. pr_warn("Architected timer frequency not available\n");
  295. }
  296. static void arch_timer_banner(unsigned type)
  297. {
  298. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  299. type & ARCH_CP15_TIMER ? "cp15" : "",
  300. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  301. type & ARCH_MEM_TIMER ? "mmio" : "",
  302. (unsigned long)arch_timer_rate / 1000000,
  303. (unsigned long)(arch_timer_rate / 10000) % 100,
  304. type & ARCH_CP15_TIMER ?
  305. arch_timer_use_virtual ? "virt" : "phys" :
  306. "",
  307. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  308. type & ARCH_MEM_TIMER ?
  309. arch_timer_mem_use_virtual ? "virt" : "phys" :
  310. "");
  311. }
  312. u32 arch_timer_get_rate(void)
  313. {
  314. return arch_timer_rate;
  315. }
  316. static u64 arch_counter_get_cntvct_mem(void)
  317. {
  318. u32 vct_lo, vct_hi, tmp_hi;
  319. do {
  320. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  321. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  322. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  323. } while (vct_hi != tmp_hi);
  324. return ((u64) vct_hi << 32) | vct_lo;
  325. }
  326. /*
  327. * Default to cp15 based access because arm64 uses this function for
  328. * sched_clock() before DT is probed and the cp15 method is guaranteed
  329. * to exist on arm64. arm doesn't use this before DT is probed so even
  330. * if we don't have the cp15 accessors we won't have a problem.
  331. */
  332. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  333. static cycle_t arch_counter_read(struct clocksource *cs)
  334. {
  335. return arch_timer_read_counter();
  336. }
  337. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  338. {
  339. return arch_timer_read_counter();
  340. }
  341. static struct clocksource clocksource_counter = {
  342. .name = "arch_sys_counter",
  343. .rating = 400,
  344. .read = arch_counter_read,
  345. .mask = CLOCKSOURCE_MASK(56),
  346. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  347. };
  348. static struct cyclecounter cyclecounter = {
  349. .read = arch_counter_read_cc,
  350. .mask = CLOCKSOURCE_MASK(56),
  351. };
  352. static struct timecounter timecounter;
  353. struct timecounter *arch_timer_get_timecounter(void)
  354. {
  355. return &timecounter;
  356. }
  357. static void __init arch_counter_register(unsigned type)
  358. {
  359. u64 start_count;
  360. /* Register the CP15 based counter if we have one */
  361. if (type & ARCH_CP15_TIMER)
  362. arch_timer_read_counter = arch_counter_get_cntvct;
  363. else
  364. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  365. start_count = arch_timer_read_counter();
  366. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  367. cyclecounter.mult = clocksource_counter.mult;
  368. cyclecounter.shift = clocksource_counter.shift;
  369. timecounter_init(&timecounter, &cyclecounter, start_count);
  370. }
  371. static void arch_timer_stop(struct clock_event_device *clk)
  372. {
  373. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  374. clk->irq, smp_processor_id());
  375. if (arch_timer_use_virtual)
  376. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  377. else {
  378. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  379. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  380. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  381. }
  382. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  383. }
  384. static int arch_timer_cpu_notify(struct notifier_block *self,
  385. unsigned long action, void *hcpu)
  386. {
  387. /*
  388. * Grab cpu pointer in each case to avoid spurious
  389. * preemptible warnings
  390. */
  391. switch (action & ~CPU_TASKS_FROZEN) {
  392. case CPU_STARTING:
  393. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  394. break;
  395. case CPU_DYING:
  396. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  397. break;
  398. }
  399. return NOTIFY_OK;
  400. }
  401. static struct notifier_block arch_timer_cpu_nb = {
  402. .notifier_call = arch_timer_cpu_notify,
  403. };
  404. static int __init arch_timer_register(void)
  405. {
  406. int err;
  407. int ppi;
  408. arch_timer_evt = alloc_percpu(struct clock_event_device);
  409. if (!arch_timer_evt) {
  410. err = -ENOMEM;
  411. goto out;
  412. }
  413. if (arch_timer_use_virtual) {
  414. ppi = arch_timer_ppi[VIRT_PPI];
  415. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  416. "arch_timer", arch_timer_evt);
  417. } else {
  418. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  419. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  420. "arch_timer", arch_timer_evt);
  421. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  422. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  423. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  424. "arch_timer", arch_timer_evt);
  425. if (err)
  426. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  427. arch_timer_evt);
  428. }
  429. }
  430. if (err) {
  431. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  432. ppi, err);
  433. goto out_free;
  434. }
  435. err = register_cpu_notifier(&arch_timer_cpu_nb);
  436. if (err)
  437. goto out_free_irq;
  438. /* Immediately configure the timer on the boot CPU */
  439. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  440. return 0;
  441. out_free_irq:
  442. if (arch_timer_use_virtual)
  443. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  444. else {
  445. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  446. arch_timer_evt);
  447. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  448. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  449. arch_timer_evt);
  450. }
  451. out_free:
  452. free_percpu(arch_timer_evt);
  453. out:
  454. return err;
  455. }
  456. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  457. {
  458. int ret;
  459. irq_handler_t func;
  460. struct arch_timer *t;
  461. t = kzalloc(sizeof(*t), GFP_KERNEL);
  462. if (!t)
  463. return -ENOMEM;
  464. t->base = base;
  465. t->evt.irq = irq;
  466. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  467. if (arch_timer_mem_use_virtual)
  468. func = arch_timer_handler_virt_mem;
  469. else
  470. func = arch_timer_handler_phys_mem;
  471. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  472. if (ret) {
  473. pr_err("arch_timer: Failed to request mem timer irq\n");
  474. kfree(t);
  475. }
  476. return ret;
  477. }
  478. static const struct of_device_id arch_timer_of_match[] __initconst = {
  479. { .compatible = "arm,armv7-timer", },
  480. { .compatible = "arm,armv8-timer", },
  481. {},
  482. };
  483. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  484. { .compatible = "arm,armv7-timer-mem", },
  485. {},
  486. };
  487. static void __init arch_timer_common_init(void)
  488. {
  489. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  490. /* Wait until both nodes are probed if we have two timers */
  491. if ((arch_timers_present & mask) != mask) {
  492. if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
  493. !(arch_timers_present & ARCH_MEM_TIMER))
  494. return;
  495. if (of_find_matching_node(NULL, arch_timer_of_match) &&
  496. !(arch_timers_present & ARCH_CP15_TIMER))
  497. return;
  498. }
  499. arch_timer_banner(arch_timers_present);
  500. arch_counter_register(arch_timers_present);
  501. arch_timer_arch_init();
  502. }
  503. static void __init arch_timer_init(struct device_node *np)
  504. {
  505. int i;
  506. if (arch_timers_present & ARCH_CP15_TIMER) {
  507. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  508. return;
  509. }
  510. arch_timers_present |= ARCH_CP15_TIMER;
  511. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  512. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  513. arch_timer_detect_rate(NULL, np);
  514. /*
  515. * If HYP mode is available, we know that the physical timer
  516. * has been configured to be accessible from PL1. Use it, so
  517. * that a guest can use the virtual timer instead.
  518. *
  519. * If no interrupt provided for virtual timer, we'll have to
  520. * stick to the physical timer. It'd better be accessible...
  521. */
  522. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  523. arch_timer_use_virtual = false;
  524. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  525. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  526. pr_warn("arch_timer: No interrupt available, giving up\n");
  527. return;
  528. }
  529. }
  530. arch_timer_register();
  531. arch_timer_common_init();
  532. }
  533. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  534. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  535. static void __init arch_timer_mem_init(struct device_node *np)
  536. {
  537. struct device_node *frame, *best_frame = NULL;
  538. void __iomem *cntctlbase, *base;
  539. unsigned int irq;
  540. u32 cnttidr;
  541. arch_timers_present |= ARCH_MEM_TIMER;
  542. cntctlbase = of_iomap(np, 0);
  543. if (!cntctlbase) {
  544. pr_err("arch_timer: Can't find CNTCTLBase\n");
  545. return;
  546. }
  547. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  548. iounmap(cntctlbase);
  549. /*
  550. * Try to find a virtual capable frame. Otherwise fall back to a
  551. * physical capable frame.
  552. */
  553. for_each_available_child_of_node(np, frame) {
  554. int n;
  555. if (of_property_read_u32(frame, "frame-number", &n)) {
  556. pr_err("arch_timer: Missing frame-number\n");
  557. of_node_put(best_frame);
  558. of_node_put(frame);
  559. return;
  560. }
  561. if (cnttidr & CNTTIDR_VIRT(n)) {
  562. of_node_put(best_frame);
  563. best_frame = frame;
  564. arch_timer_mem_use_virtual = true;
  565. break;
  566. }
  567. of_node_put(best_frame);
  568. best_frame = of_node_get(frame);
  569. }
  570. base = arch_counter_base = of_iomap(best_frame, 0);
  571. if (!base) {
  572. pr_err("arch_timer: Can't map frame's registers\n");
  573. of_node_put(best_frame);
  574. return;
  575. }
  576. if (arch_timer_mem_use_virtual)
  577. irq = irq_of_parse_and_map(best_frame, 1);
  578. else
  579. irq = irq_of_parse_and_map(best_frame, 0);
  580. of_node_put(best_frame);
  581. if (!irq) {
  582. pr_err("arch_timer: Frame missing %s irq",
  583. arch_timer_mem_use_virtual ? "virt" : "phys");
  584. return;
  585. }
  586. arch_timer_detect_rate(base, np);
  587. arch_timer_mem_register(base, irq);
  588. arch_timer_common_init();
  589. }
  590. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  591. arch_timer_mem_init);