ctree.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include "kerncompat.h"
  4. #include "radix-tree.h"
  5. #include "ctree.h"
  6. #include "disk-io.h"
  7. #include "print-tree.h"
  8. static int split_node(struct ctree_root *root, struct ctree_path *path,
  9. int level);
  10. static int split_leaf(struct ctree_root *root, struct ctree_path *path,
  11. int data_size);
  12. static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
  13. struct tree_buffer *src);
  14. static int balance_node_right(struct ctree_root *root,
  15. struct tree_buffer *dst_buf,
  16. struct tree_buffer *src_buf);
  17. static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
  18. int slot);
  19. inline void init_path(struct ctree_path *p)
  20. {
  21. memset(p, 0, sizeof(*p));
  22. }
  23. void release_path(struct ctree_root *root, struct ctree_path *p)
  24. {
  25. int i;
  26. for (i = 0; i < MAX_LEVEL; i++) {
  27. if (!p->nodes[i])
  28. break;
  29. tree_block_release(root, p->nodes[i]);
  30. }
  31. memset(p, 0, sizeof(*p));
  32. }
  33. int btrfs_cow_block(struct ctree_root *root,
  34. struct tree_buffer *buf,
  35. struct tree_buffer *parent,
  36. int parent_slot,
  37. struct tree_buffer **cow_ret)
  38. {
  39. struct tree_buffer *cow;
  40. if (!list_empty(&buf->dirty)) {
  41. *cow_ret = buf;
  42. return 0;
  43. }
  44. cow = alloc_free_block(root);
  45. memcpy(&cow->node, &buf->node, sizeof(buf->node));
  46. cow->node.header.blocknr = cow->blocknr;
  47. *cow_ret = cow;
  48. btrfs_inc_ref(root, buf);
  49. if (buf == root->node) {
  50. root->node = cow;
  51. cow->count++;
  52. if (buf != root->commit_root)
  53. free_extent(root, buf->blocknr, 1);
  54. tree_block_release(root, buf);
  55. } else {
  56. parent->node.blockptrs[parent_slot] = cow->blocknr;
  57. BUG_ON(list_empty(&parent->dirty));
  58. free_extent(root, buf->blocknr, 1);
  59. }
  60. tree_block_release(root, buf);
  61. return 0;
  62. }
  63. /*
  64. * The leaf data grows from end-to-front in the node.
  65. * this returns the address of the start of the last item,
  66. * which is the stop of the leaf data stack
  67. */
  68. static inline unsigned int leaf_data_end(struct leaf *leaf)
  69. {
  70. unsigned int nr = leaf->header.nritems;
  71. if (nr == 0)
  72. return sizeof(leaf->data);
  73. return leaf->items[nr-1].offset;
  74. }
  75. /*
  76. * The space between the end of the leaf items and
  77. * the start of the leaf data. IOW, how much room
  78. * the leaf has left for both items and data
  79. */
  80. int leaf_free_space(struct leaf *leaf)
  81. {
  82. int data_end = leaf_data_end(leaf);
  83. int nritems = leaf->header.nritems;
  84. char *items_end = (char *)(leaf->items + nritems + 1);
  85. return (char *)(leaf->data + data_end) - (char *)items_end;
  86. }
  87. /*
  88. * compare two keys in a memcmp fashion
  89. */
  90. int comp_keys(struct key *k1, struct key *k2)
  91. {
  92. if (k1->objectid > k2->objectid)
  93. return 1;
  94. if (k1->objectid < k2->objectid)
  95. return -1;
  96. if (k1->flags > k2->flags)
  97. return 1;
  98. if (k1->flags < k2->flags)
  99. return -1;
  100. if (k1->offset > k2->offset)
  101. return 1;
  102. if (k1->offset < k2->offset)
  103. return -1;
  104. return 0;
  105. }
  106. int check_node(struct ctree_path *path, int level)
  107. {
  108. int i;
  109. struct node *parent = NULL;
  110. struct node *node = &path->nodes[level]->node;
  111. int parent_slot;
  112. if (path->nodes[level + 1])
  113. parent = &path->nodes[level + 1]->node;
  114. parent_slot = path->slots[level + 1];
  115. if (parent && node->header.nritems > 0) {
  116. struct key *parent_key;
  117. parent_key = &parent->keys[parent_slot];
  118. BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
  119. BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
  120. }
  121. BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
  122. for (i = 0; i < node->header.nritems - 2; i++) {
  123. BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
  124. }
  125. return 0;
  126. }
  127. int check_leaf(struct ctree_path *path, int level)
  128. {
  129. int i;
  130. struct leaf *leaf = &path->nodes[level]->leaf;
  131. struct node *parent = NULL;
  132. int parent_slot;
  133. if (path->nodes[level + 1])
  134. parent = &path->nodes[level + 1]->node;
  135. parent_slot = path->slots[level + 1];
  136. if (parent && leaf->header.nritems > 0) {
  137. struct key *parent_key;
  138. parent_key = &parent->keys[parent_slot];
  139. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  140. sizeof(struct key)));
  141. BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
  142. }
  143. for (i = 0; i < leaf->header.nritems - 2; i++) {
  144. BUG_ON(comp_keys(&leaf->items[i].key,
  145. &leaf->items[i+1].key) >= 0);
  146. BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
  147. leaf->items[i + 1].size);
  148. if (i == 0) {
  149. BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
  150. LEAF_DATA_SIZE);
  151. }
  152. }
  153. BUG_ON(leaf_free_space(leaf) < 0);
  154. return 0;
  155. }
  156. int check_block(struct ctree_path *path, int level)
  157. {
  158. if (level == 0)
  159. return check_leaf(path, level);
  160. return check_node(path, level);
  161. }
  162. /*
  163. * search for key in the array p. items p are item_size apart
  164. * and there are 'max' items in p
  165. * the slot in the array is returned via slot, and it points to
  166. * the place where you would insert key if it is not found in
  167. * the array.
  168. *
  169. * slot may point to max if the key is bigger than all of the keys
  170. */
  171. int generic_bin_search(char *p, int item_size, struct key *key,
  172. int max, int *slot)
  173. {
  174. int low = 0;
  175. int high = max;
  176. int mid;
  177. int ret;
  178. struct key *tmp;
  179. while(low < high) {
  180. mid = (low + high) / 2;
  181. tmp = (struct key *)(p + mid * item_size);
  182. ret = comp_keys(tmp, key);
  183. if (ret < 0)
  184. low = mid + 1;
  185. else if (ret > 0)
  186. high = mid;
  187. else {
  188. *slot = mid;
  189. return 0;
  190. }
  191. }
  192. *slot = low;
  193. return 1;
  194. }
  195. /*
  196. * simple bin_search frontend that does the right thing for
  197. * leaves vs nodes
  198. */
  199. int bin_search(struct node *c, struct key *key, int *slot)
  200. {
  201. if (is_leaf(c->header.flags)) {
  202. struct leaf *l = (struct leaf *)c;
  203. return generic_bin_search((void *)l->items, sizeof(struct item),
  204. key, c->header.nritems, slot);
  205. } else {
  206. return generic_bin_search((void *)c->keys, sizeof(struct key),
  207. key, c->header.nritems, slot);
  208. }
  209. return -1;
  210. }
  211. struct tree_buffer *read_node_slot(struct ctree_root *root,
  212. struct tree_buffer *parent_buf,
  213. int slot)
  214. {
  215. struct node *node = &parent_buf->node;
  216. if (slot < 0)
  217. return NULL;
  218. if (slot >= node->header.nritems)
  219. return NULL;
  220. return read_tree_block(root, node->blockptrs[slot]);
  221. }
  222. static int balance_level(struct ctree_root *root, struct ctree_path *path,
  223. int level)
  224. {
  225. struct tree_buffer *right_buf;
  226. struct tree_buffer *mid_buf;
  227. struct tree_buffer *left_buf;
  228. struct tree_buffer *parent_buf = NULL;
  229. struct node *right = NULL;
  230. struct node *mid;
  231. struct node *left = NULL;
  232. struct node *parent = NULL;
  233. int ret = 0;
  234. int wret;
  235. int pslot;
  236. int orig_slot = path->slots[level];
  237. u64 orig_ptr;
  238. if (level == 0)
  239. return 0;
  240. mid_buf = path->nodes[level];
  241. mid = &mid_buf->node;
  242. orig_ptr = mid->blockptrs[orig_slot];
  243. if (level < MAX_LEVEL - 1)
  244. parent_buf = path->nodes[level + 1];
  245. pslot = path->slots[level + 1];
  246. if (!parent_buf) {
  247. struct tree_buffer *child;
  248. u64 blocknr = mid_buf->blocknr;
  249. if (mid->header.nritems != 1)
  250. return 0;
  251. /* promote the child to a root */
  252. child = read_node_slot(root, mid_buf, 0);
  253. BUG_ON(!child);
  254. root->node = child;
  255. path->nodes[level] = NULL;
  256. /* once for the path */
  257. tree_block_release(root, mid_buf);
  258. /* once for the root ptr */
  259. tree_block_release(root, mid_buf);
  260. clean_tree_block(root, mid_buf);
  261. return free_extent(root, blocknr, 1);
  262. }
  263. parent = &parent_buf->node;
  264. if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
  265. return 0;
  266. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  267. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  268. /* first, try to make some room in the middle buffer */
  269. if (left_buf) {
  270. btrfs_cow_block(root, left_buf, parent_buf,
  271. pslot - 1, &left_buf);
  272. left = &left_buf->node;
  273. orig_slot += left->header.nritems;
  274. wret = push_node_left(root, left_buf, mid_buf);
  275. if (wret < 0)
  276. ret = wret;
  277. }
  278. /*
  279. * then try to empty the right most buffer into the middle
  280. */
  281. if (right_buf) {
  282. btrfs_cow_block(root, right_buf, parent_buf,
  283. pslot + 1, &right_buf);
  284. right = &right_buf->node;
  285. wret = push_node_left(root, mid_buf, right_buf);
  286. if (wret < 0)
  287. ret = wret;
  288. if (right->header.nritems == 0) {
  289. u64 blocknr = right_buf->blocknr;
  290. tree_block_release(root, right_buf);
  291. clean_tree_block(root, right_buf);
  292. right_buf = NULL;
  293. right = NULL;
  294. wret = del_ptr(root, path, level + 1, pslot + 1);
  295. if (wret)
  296. ret = wret;
  297. wret = free_extent(root, blocknr, 1);
  298. if (wret)
  299. ret = wret;
  300. } else {
  301. memcpy(parent->keys + pslot + 1, right->keys,
  302. sizeof(struct key));
  303. BUG_ON(list_empty(&parent_buf->dirty));
  304. }
  305. }
  306. if (mid->header.nritems == 1) {
  307. /*
  308. * we're not allowed to leave a node with one item in the
  309. * tree during a delete. A deletion from lower in the tree
  310. * could try to delete the only pointer in this node.
  311. * So, pull some keys from the left.
  312. * There has to be a left pointer at this point because
  313. * otherwise we would have pulled some pointers from the
  314. * right
  315. */
  316. BUG_ON(!left_buf);
  317. wret = balance_node_right(root, mid_buf, left_buf);
  318. if (wret < 0)
  319. ret = wret;
  320. BUG_ON(wret == 1);
  321. }
  322. if (mid->header.nritems == 0) {
  323. /* we've managed to empty the middle node, drop it */
  324. u64 blocknr = mid_buf->blocknr;
  325. tree_block_release(root, mid_buf);
  326. clean_tree_block(root, mid_buf);
  327. mid_buf = NULL;
  328. mid = NULL;
  329. wret = del_ptr(root, path, level + 1, pslot);
  330. if (wret)
  331. ret = wret;
  332. wret = free_extent(root, blocknr, 1);
  333. if (wret)
  334. ret = wret;
  335. } else {
  336. /* update the parent key to reflect our changes */
  337. memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
  338. BUG_ON(list_empty(&parent_buf->dirty));
  339. }
  340. /* update the path */
  341. if (left_buf) {
  342. if (left->header.nritems > orig_slot) {
  343. left_buf->count++; // released below
  344. path->nodes[level] = left_buf;
  345. path->slots[level + 1] -= 1;
  346. path->slots[level] = orig_slot;
  347. if (mid_buf)
  348. tree_block_release(root, mid_buf);
  349. } else {
  350. orig_slot -= left->header.nritems;
  351. path->slots[level] = orig_slot;
  352. }
  353. }
  354. /* double check we haven't messed things up */
  355. check_block(path, level);
  356. if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
  357. BUG();
  358. if (right_buf)
  359. tree_block_release(root, right_buf);
  360. if (left_buf)
  361. tree_block_release(root, left_buf);
  362. return ret;
  363. }
  364. /*
  365. * look for key in the tree. path is filled in with nodes along the way
  366. * if key is found, we return zero and you can find the item in the leaf
  367. * level of the path (level 0)
  368. *
  369. * If the key isn't found, the path points to the slot where it should
  370. * be inserted, and 1 is returned. If there are other errors during the
  371. * search a negative error number is returned.
  372. *
  373. * if ins_len > 0, nodes and leaves will be split as we walk down the
  374. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  375. * possible)
  376. */
  377. int search_slot(struct ctree_root *root, struct key *key,
  378. struct ctree_path *p, int ins_len, int cow)
  379. {
  380. struct tree_buffer *b;
  381. struct tree_buffer *cow_buf;
  382. struct node *c;
  383. int slot;
  384. int ret;
  385. int level;
  386. again:
  387. b = root->node;
  388. b->count++;
  389. while (b) {
  390. level = node_level(b->node.header.flags);
  391. if (cow) {
  392. int wret;
  393. wret = btrfs_cow_block(root, b, p->nodes[level + 1],
  394. p->slots[level + 1], &cow_buf);
  395. b = cow_buf;
  396. }
  397. BUG_ON(!cow && ins_len);
  398. c = &b->node;
  399. p->nodes[level] = b;
  400. ret = check_block(p, level);
  401. if (ret)
  402. return -1;
  403. ret = bin_search(c, key, &slot);
  404. if (!is_leaf(c->header.flags)) {
  405. if (ret && slot > 0)
  406. slot -= 1;
  407. p->slots[level] = slot;
  408. if (ins_len > 0 &&
  409. c->header.nritems == NODEPTRS_PER_BLOCK) {
  410. int sret = split_node(root, p, level);
  411. BUG_ON(sret > 0);
  412. if (sret)
  413. return sret;
  414. b = p->nodes[level];
  415. c = &b->node;
  416. slot = p->slots[level];
  417. } else if (ins_len < 0) {
  418. int sret = balance_level(root, p, level);
  419. if (sret)
  420. return sret;
  421. b = p->nodes[level];
  422. if (!b)
  423. goto again;
  424. c = &b->node;
  425. slot = p->slots[level];
  426. BUG_ON(c->header.nritems == 1);
  427. }
  428. b = read_tree_block(root, c->blockptrs[slot]);
  429. } else {
  430. struct leaf *l = (struct leaf *)c;
  431. p->slots[level] = slot;
  432. if (ins_len > 0 && leaf_free_space(l) <
  433. sizeof(struct item) + ins_len) {
  434. int sret = split_leaf(root, p, ins_len);
  435. BUG_ON(sret > 0);
  436. if (sret)
  437. return sret;
  438. }
  439. BUG_ON(root->node->count == 1);
  440. return ret;
  441. }
  442. }
  443. BUG_ON(root->node->count == 1);
  444. return 1;
  445. }
  446. /*
  447. * adjust the pointers going up the tree, starting at level
  448. * making sure the right key of each node is points to 'key'.
  449. * This is used after shifting pointers to the left, so it stops
  450. * fixing up pointers when a given leaf/node is not in slot 0 of the
  451. * higher levels
  452. *
  453. * If this fails to write a tree block, it returns -1, but continues
  454. * fixing up the blocks in ram so the tree is consistent.
  455. */
  456. static int fixup_low_keys(struct ctree_root *root,
  457. struct ctree_path *path, struct key *key,
  458. int level)
  459. {
  460. int i;
  461. int ret = 0;
  462. for (i = level; i < MAX_LEVEL; i++) {
  463. struct node *t;
  464. int tslot = path->slots[i];
  465. if (!path->nodes[i])
  466. break;
  467. t = &path->nodes[i]->node;
  468. memcpy(t->keys + tslot, key, sizeof(*key));
  469. BUG_ON(list_empty(&path->nodes[i]->dirty));
  470. if (tslot != 0)
  471. break;
  472. }
  473. return ret;
  474. }
  475. /*
  476. * try to push data from one node into the next node left in the
  477. * tree.
  478. *
  479. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  480. * error, and > 0 if there was no room in the left hand block.
  481. */
  482. static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
  483. struct tree_buffer *src_buf)
  484. {
  485. struct node *src = &src_buf->node;
  486. struct node *dst = &dst_buf->node;
  487. int push_items = 0;
  488. int src_nritems;
  489. int dst_nritems;
  490. int ret = 0;
  491. src_nritems = src->header.nritems;
  492. dst_nritems = dst->header.nritems;
  493. push_items = NODEPTRS_PER_BLOCK - dst_nritems;
  494. if (push_items <= 0) {
  495. return 1;
  496. }
  497. if (src_nritems < push_items)
  498. push_items = src_nritems;
  499. memcpy(dst->keys + dst_nritems, src->keys,
  500. push_items * sizeof(struct key));
  501. memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
  502. push_items * sizeof(u64));
  503. if (push_items < src_nritems) {
  504. memmove(src->keys, src->keys + push_items,
  505. (src_nritems - push_items) * sizeof(struct key));
  506. memmove(src->blockptrs, src->blockptrs + push_items,
  507. (src_nritems - push_items) * sizeof(u64));
  508. }
  509. src->header.nritems -= push_items;
  510. dst->header.nritems += push_items;
  511. BUG_ON(list_empty(&src_buf->dirty));
  512. BUG_ON(list_empty(&dst_buf->dirty));
  513. return ret;
  514. }
  515. /*
  516. * try to push data from one node into the next node right in the
  517. * tree.
  518. *
  519. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  520. * error, and > 0 if there was no room in the right hand block.
  521. *
  522. * this will only push up to 1/2 the contents of the left node over
  523. */
  524. static int balance_node_right(struct ctree_root *root,
  525. struct tree_buffer *dst_buf,
  526. struct tree_buffer *src_buf)
  527. {
  528. struct node *src = &src_buf->node;
  529. struct node *dst = &dst_buf->node;
  530. int push_items = 0;
  531. int max_push;
  532. int src_nritems;
  533. int dst_nritems;
  534. int ret = 0;
  535. src_nritems = src->header.nritems;
  536. dst_nritems = dst->header.nritems;
  537. push_items = NODEPTRS_PER_BLOCK - dst_nritems;
  538. if (push_items <= 0) {
  539. return 1;
  540. }
  541. max_push = src_nritems / 2 + 1;
  542. /* don't try to empty the node */
  543. if (max_push > src_nritems)
  544. return 1;
  545. if (max_push < push_items)
  546. push_items = max_push;
  547. memmove(dst->keys + push_items, dst->keys,
  548. dst_nritems * sizeof(struct key));
  549. memmove(dst->blockptrs + push_items, dst->blockptrs,
  550. dst_nritems * sizeof(u64));
  551. memcpy(dst->keys, src->keys + src_nritems - push_items,
  552. push_items * sizeof(struct key));
  553. memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
  554. push_items * sizeof(u64));
  555. src->header.nritems -= push_items;
  556. dst->header.nritems += push_items;
  557. BUG_ON(list_empty(&src_buf->dirty));
  558. BUG_ON(list_empty(&dst_buf->dirty));
  559. return ret;
  560. }
  561. /*
  562. * helper function to insert a new root level in the tree.
  563. * A new node is allocated, and a single item is inserted to
  564. * point to the existing root
  565. *
  566. * returns zero on success or < 0 on failure.
  567. */
  568. static int insert_new_root(struct ctree_root *root,
  569. struct ctree_path *path, int level)
  570. {
  571. struct tree_buffer *t;
  572. struct node *lower;
  573. struct node *c;
  574. struct key *lower_key;
  575. BUG_ON(path->nodes[level]);
  576. BUG_ON(path->nodes[level-1] != root->node);
  577. t = alloc_free_block(root);
  578. c = &t->node;
  579. memset(c, 0, sizeof(c));
  580. c->header.nritems = 1;
  581. c->header.flags = node_level(level);
  582. c->header.blocknr = t->blocknr;
  583. c->header.parentid = root->node->node.header.parentid;
  584. lower = &path->nodes[level-1]->node;
  585. if (is_leaf(lower->header.flags))
  586. lower_key = &((struct leaf *)lower)->items[0].key;
  587. else
  588. lower_key = lower->keys;
  589. memcpy(c->keys, lower_key, sizeof(struct key));
  590. c->blockptrs[0] = path->nodes[level-1]->blocknr;
  591. /* the super has an extra ref to root->node */
  592. tree_block_release(root, root->node);
  593. root->node = t;
  594. t->count++;
  595. path->nodes[level] = t;
  596. path->slots[level] = 0;
  597. return 0;
  598. }
  599. /*
  600. * worker function to insert a single pointer in a node.
  601. * the node should have enough room for the pointer already
  602. *
  603. * slot and level indicate where you want the key to go, and
  604. * blocknr is the block the key points to.
  605. *
  606. * returns zero on success and < 0 on any error
  607. */
  608. static int insert_ptr(struct ctree_root *root,
  609. struct ctree_path *path, struct key *key,
  610. u64 blocknr, int slot, int level)
  611. {
  612. struct node *lower;
  613. int nritems;
  614. BUG_ON(!path->nodes[level]);
  615. lower = &path->nodes[level]->node;
  616. nritems = lower->header.nritems;
  617. if (slot > nritems)
  618. BUG();
  619. if (nritems == NODEPTRS_PER_BLOCK)
  620. BUG();
  621. if (slot != nritems) {
  622. memmove(lower->keys + slot + 1, lower->keys + slot,
  623. (nritems - slot) * sizeof(struct key));
  624. memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
  625. (nritems - slot) * sizeof(u64));
  626. }
  627. memcpy(lower->keys + slot, key, sizeof(struct key));
  628. lower->blockptrs[slot] = blocknr;
  629. lower->header.nritems++;
  630. if (lower->keys[1].objectid == 0)
  631. BUG();
  632. BUG_ON(list_empty(&path->nodes[level]->dirty));
  633. return 0;
  634. }
  635. /*
  636. * split the node at the specified level in path in two.
  637. * The path is corrected to point to the appropriate node after the split
  638. *
  639. * Before splitting this tries to make some room in the node by pushing
  640. * left and right, if either one works, it returns right away.
  641. *
  642. * returns 0 on success and < 0 on failure
  643. */
  644. static int split_node(struct ctree_root *root, struct ctree_path *path,
  645. int level)
  646. {
  647. struct tree_buffer *t;
  648. struct node *c;
  649. struct tree_buffer *split_buffer;
  650. struct node *split;
  651. int mid;
  652. int ret;
  653. int wret;
  654. t = path->nodes[level];
  655. c = &t->node;
  656. if (t == root->node) {
  657. /* trying to split the root, lets make a new one */
  658. ret = insert_new_root(root, path, level + 1);
  659. if (ret)
  660. return ret;
  661. }
  662. split_buffer = alloc_free_block(root);
  663. split = &split_buffer->node;
  664. split->header.flags = c->header.flags;
  665. split->header.blocknr = split_buffer->blocknr;
  666. split->header.parentid = root->node->node.header.parentid;
  667. mid = (c->header.nritems + 1) / 2;
  668. memcpy(split->keys, c->keys + mid,
  669. (c->header.nritems - mid) * sizeof(struct key));
  670. memcpy(split->blockptrs, c->blockptrs + mid,
  671. (c->header.nritems - mid) * sizeof(u64));
  672. split->header.nritems = c->header.nritems - mid;
  673. c->header.nritems = mid;
  674. ret = 0;
  675. BUG_ON(list_empty(&t->dirty));
  676. wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
  677. path->slots[level + 1] + 1, level + 1);
  678. if (wret)
  679. ret = wret;
  680. if (path->slots[level] >= mid) {
  681. path->slots[level] -= mid;
  682. tree_block_release(root, t);
  683. path->nodes[level] = split_buffer;
  684. path->slots[level + 1] += 1;
  685. } else {
  686. tree_block_release(root, split_buffer);
  687. }
  688. return ret;
  689. }
  690. /*
  691. * how many bytes are required to store the items in a leaf. start
  692. * and nr indicate which items in the leaf to check. This totals up the
  693. * space used both by the item structs and the item data
  694. */
  695. static int leaf_space_used(struct leaf *l, int start, int nr)
  696. {
  697. int data_len;
  698. int end = start + nr - 1;
  699. if (!nr)
  700. return 0;
  701. data_len = l->items[start].offset + l->items[start].size;
  702. data_len = data_len - l->items[end].offset;
  703. data_len += sizeof(struct item) * nr;
  704. return data_len;
  705. }
  706. /*
  707. * push some data in the path leaf to the right, trying to free up at
  708. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  709. *
  710. * returns 1 if the push failed because the other node didn't have enough
  711. * room, 0 if everything worked out and < 0 if there were major errors.
  712. */
  713. static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
  714. int data_size)
  715. {
  716. struct tree_buffer *left_buf = path->nodes[0];
  717. struct leaf *left = &left_buf->leaf;
  718. struct leaf *right;
  719. struct tree_buffer *right_buf;
  720. struct tree_buffer *upper;
  721. int slot;
  722. int i;
  723. int free_space;
  724. int push_space = 0;
  725. int push_items = 0;
  726. struct item *item;
  727. slot = path->slots[1];
  728. if (!path->nodes[1]) {
  729. return 1;
  730. }
  731. upper = path->nodes[1];
  732. if (slot >= upper->node.header.nritems - 1) {
  733. return 1;
  734. }
  735. right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
  736. right = &right_buf->leaf;
  737. free_space = leaf_free_space(right);
  738. if (free_space < data_size + sizeof(struct item)) {
  739. tree_block_release(root, right_buf);
  740. return 1;
  741. }
  742. /* cow and double check */
  743. btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
  744. right = &right_buf->leaf;
  745. free_space = leaf_free_space(right);
  746. if (free_space < data_size + sizeof(struct item)) {
  747. tree_block_release(root, right_buf);
  748. return 1;
  749. }
  750. for (i = left->header.nritems - 1; i >= 0; i--) {
  751. item = left->items + i;
  752. if (path->slots[0] == i)
  753. push_space += data_size + sizeof(*item);
  754. if (item->size + sizeof(*item) + push_space > free_space)
  755. break;
  756. push_items++;
  757. push_space += item->size + sizeof(*item);
  758. }
  759. if (push_items == 0) {
  760. tree_block_release(root, right_buf);
  761. return 1;
  762. }
  763. /* push left to right */
  764. push_space = left->items[left->header.nritems - push_items].offset +
  765. left->items[left->header.nritems - push_items].size;
  766. push_space -= leaf_data_end(left);
  767. /* make room in the right data area */
  768. memmove(right->data + leaf_data_end(right) - push_space,
  769. right->data + leaf_data_end(right),
  770. LEAF_DATA_SIZE - leaf_data_end(right));
  771. /* copy from the left data area */
  772. memcpy(right->data + LEAF_DATA_SIZE - push_space,
  773. left->data + leaf_data_end(left),
  774. push_space);
  775. memmove(right->items + push_items, right->items,
  776. right->header.nritems * sizeof(struct item));
  777. /* copy the items from left to right */
  778. memcpy(right->items, left->items + left->header.nritems - push_items,
  779. push_items * sizeof(struct item));
  780. /* update the item pointers */
  781. right->header.nritems += push_items;
  782. push_space = LEAF_DATA_SIZE;
  783. for (i = 0; i < right->header.nritems; i++) {
  784. right->items[i].offset = push_space - right->items[i].size;
  785. push_space = right->items[i].offset;
  786. }
  787. left->header.nritems -= push_items;
  788. BUG_ON(list_empty(&left_buf->dirty));
  789. BUG_ON(list_empty(&right_buf->dirty));
  790. memcpy(upper->node.keys + slot + 1,
  791. &right->items[0].key, sizeof(struct key));
  792. BUG_ON(list_empty(&upper->dirty));
  793. /* then fixup the leaf pointer in the path */
  794. if (path->slots[0] >= left->header.nritems) {
  795. path->slots[0] -= left->header.nritems;
  796. tree_block_release(root, path->nodes[0]);
  797. path->nodes[0] = right_buf;
  798. path->slots[1] += 1;
  799. } else {
  800. tree_block_release(root, right_buf);
  801. }
  802. return 0;
  803. }
  804. /*
  805. * push some data in the path leaf to the left, trying to free up at
  806. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  807. */
  808. static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
  809. int data_size)
  810. {
  811. struct tree_buffer *right_buf = path->nodes[0];
  812. struct leaf *right = &right_buf->leaf;
  813. struct tree_buffer *t;
  814. struct leaf *left;
  815. int slot;
  816. int i;
  817. int free_space;
  818. int push_space = 0;
  819. int push_items = 0;
  820. struct item *item;
  821. int old_left_nritems;
  822. int ret = 0;
  823. int wret;
  824. slot = path->slots[1];
  825. if (slot == 0) {
  826. return 1;
  827. }
  828. if (!path->nodes[1]) {
  829. return 1;
  830. }
  831. t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
  832. left = &t->leaf;
  833. free_space = leaf_free_space(left);
  834. if (free_space < data_size + sizeof(struct item)) {
  835. tree_block_release(root, t);
  836. return 1;
  837. }
  838. /* cow and double check */
  839. btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
  840. left = &t->leaf;
  841. free_space = leaf_free_space(left);
  842. if (free_space < data_size + sizeof(struct item)) {
  843. tree_block_release(root, t);
  844. return 1;
  845. }
  846. for (i = 0; i < right->header.nritems; i++) {
  847. item = right->items + i;
  848. if (path->slots[0] == i)
  849. push_space += data_size + sizeof(*item);
  850. if (item->size + sizeof(*item) + push_space > free_space)
  851. break;
  852. push_items++;
  853. push_space += item->size + sizeof(*item);
  854. }
  855. if (push_items == 0) {
  856. tree_block_release(root, t);
  857. return 1;
  858. }
  859. /* push data from right to left */
  860. memcpy(left->items + left->header.nritems,
  861. right->items, push_items * sizeof(struct item));
  862. push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
  863. memcpy(left->data + leaf_data_end(left) - push_space,
  864. right->data + right->items[push_items - 1].offset,
  865. push_space);
  866. old_left_nritems = left->header.nritems;
  867. BUG_ON(old_left_nritems < 0);
  868. for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  869. left->items[i].offset -= LEAF_DATA_SIZE -
  870. left->items[old_left_nritems -1].offset;
  871. }
  872. left->header.nritems += push_items;
  873. /* fixup right node */
  874. push_space = right->items[push_items-1].offset - leaf_data_end(right);
  875. memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
  876. leaf_data_end(right), push_space);
  877. memmove(right->items, right->items + push_items,
  878. (right->header.nritems - push_items) * sizeof(struct item));
  879. right->header.nritems -= push_items;
  880. push_space = LEAF_DATA_SIZE;
  881. for (i = 0; i < right->header.nritems; i++) {
  882. right->items[i].offset = push_space - right->items[i].size;
  883. push_space = right->items[i].offset;
  884. }
  885. BUG_ON(list_empty(&t->dirty));
  886. BUG_ON(list_empty(&right_buf->dirty));
  887. wret = fixup_low_keys(root, path, &right->items[0].key, 1);
  888. if (wret)
  889. ret = wret;
  890. /* then fixup the leaf pointer in the path */
  891. if (path->slots[0] < push_items) {
  892. path->slots[0] += old_left_nritems;
  893. tree_block_release(root, path->nodes[0]);
  894. path->nodes[0] = t;
  895. path->slots[1] -= 1;
  896. } else {
  897. tree_block_release(root, t);
  898. path->slots[0] -= push_items;
  899. }
  900. BUG_ON(path->slots[0] < 0);
  901. return ret;
  902. }
  903. /*
  904. * split the path's leaf in two, making sure there is at least data_size
  905. * available for the resulting leaf level of the path.
  906. *
  907. * returns 0 if all went well and < 0 on failure.
  908. */
  909. static int split_leaf(struct ctree_root *root, struct ctree_path *path,
  910. int data_size)
  911. {
  912. struct tree_buffer *l_buf;
  913. struct leaf *l;
  914. int nritems;
  915. int mid;
  916. int slot;
  917. struct leaf *right;
  918. struct tree_buffer *right_buffer;
  919. int space_needed = data_size + sizeof(struct item);
  920. int data_copy_size;
  921. int rt_data_off;
  922. int i;
  923. int ret;
  924. int wret;
  925. l_buf = path->nodes[0];
  926. l = &l_buf->leaf;
  927. /* did the pushes work? */
  928. if (leaf_free_space(l) >= sizeof(struct item) + data_size)
  929. return 0;
  930. if (!path->nodes[1]) {
  931. ret = insert_new_root(root, path, 1);
  932. if (ret)
  933. return ret;
  934. }
  935. slot = path->slots[0];
  936. nritems = l->header.nritems;
  937. mid = (nritems + 1)/ 2;
  938. right_buffer = alloc_free_block(root);
  939. BUG_ON(!right_buffer);
  940. BUG_ON(mid == nritems);
  941. right = &right_buffer->leaf;
  942. memset(right, 0, sizeof(*right));
  943. if (mid <= slot) {
  944. /* FIXME, just alloc a new leaf here */
  945. if (leaf_space_used(l, mid, nritems - mid) + space_needed >
  946. LEAF_DATA_SIZE)
  947. BUG();
  948. } else {
  949. /* FIXME, just alloc a new leaf here */
  950. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  951. LEAF_DATA_SIZE)
  952. BUG();
  953. }
  954. right->header.nritems = nritems - mid;
  955. right->header.blocknr = right_buffer->blocknr;
  956. right->header.flags = node_level(0);
  957. right->header.parentid = root->node->node.header.parentid;
  958. data_copy_size = l->items[mid].offset + l->items[mid].size -
  959. leaf_data_end(l);
  960. memcpy(right->items, l->items + mid,
  961. (nritems - mid) * sizeof(struct item));
  962. memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
  963. l->data + leaf_data_end(l), data_copy_size);
  964. rt_data_off = LEAF_DATA_SIZE -
  965. (l->items[mid].offset + l->items[mid].size);
  966. for (i = 0; i < right->header.nritems; i++)
  967. right->items[i].offset += rt_data_off;
  968. l->header.nritems = mid;
  969. ret = 0;
  970. wret = insert_ptr(root, path, &right->items[0].key,
  971. right_buffer->blocknr, path->slots[1] + 1, 1);
  972. if (wret)
  973. ret = wret;
  974. BUG_ON(list_empty(&right_buffer->dirty));
  975. BUG_ON(list_empty(&l_buf->dirty));
  976. BUG_ON(path->slots[0] != slot);
  977. if (mid <= slot) {
  978. tree_block_release(root, path->nodes[0]);
  979. path->nodes[0] = right_buffer;
  980. path->slots[0] -= mid;
  981. path->slots[1] += 1;
  982. } else
  983. tree_block_release(root, right_buffer);
  984. BUG_ON(path->slots[0] < 0);
  985. return ret;
  986. }
  987. /*
  988. * Given a key and some data, insert an item into the tree.
  989. * This does all the path init required, making room in the tree if needed.
  990. */
  991. int insert_item(struct ctree_root *root, struct key *key,
  992. void *data, int data_size)
  993. {
  994. int ret = 0;
  995. int slot;
  996. int slot_orig;
  997. struct leaf *leaf;
  998. struct tree_buffer *leaf_buf;
  999. unsigned int nritems;
  1000. unsigned int data_end;
  1001. struct ctree_path path;
  1002. /* create a root if there isn't one */
  1003. if (!root->node)
  1004. BUG();
  1005. init_path(&path);
  1006. ret = search_slot(root, key, &path, data_size, 1);
  1007. if (ret == 0) {
  1008. release_path(root, &path);
  1009. return -EEXIST;
  1010. }
  1011. if (ret < 0)
  1012. goto out;
  1013. slot_orig = path.slots[0];
  1014. leaf_buf = path.nodes[0];
  1015. leaf = &leaf_buf->leaf;
  1016. nritems = leaf->header.nritems;
  1017. data_end = leaf_data_end(leaf);
  1018. if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
  1019. BUG();
  1020. slot = path.slots[0];
  1021. BUG_ON(slot < 0);
  1022. if (slot != nritems) {
  1023. int i;
  1024. unsigned int old_data = leaf->items[slot].offset +
  1025. leaf->items[slot].size;
  1026. /*
  1027. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1028. */
  1029. /* first correct the data pointers */
  1030. for (i = slot; i < nritems; i++)
  1031. leaf->items[i].offset -= data_size;
  1032. /* shift the items */
  1033. memmove(leaf->items + slot + 1, leaf->items + slot,
  1034. (nritems - slot) * sizeof(struct item));
  1035. /* shift the data */
  1036. memmove(leaf->data + data_end - data_size, leaf->data +
  1037. data_end, old_data - data_end);
  1038. data_end = old_data;
  1039. }
  1040. /* copy the new data in */
  1041. memcpy(&leaf->items[slot].key, key, sizeof(struct key));
  1042. leaf->items[slot].offset = data_end - data_size;
  1043. leaf->items[slot].size = data_size;
  1044. memcpy(leaf->data + data_end - data_size, data, data_size);
  1045. leaf->header.nritems += 1;
  1046. ret = 0;
  1047. if (slot == 0)
  1048. ret = fixup_low_keys(root, &path, key, 1);
  1049. BUG_ON(list_empty(&leaf_buf->dirty));
  1050. if (leaf_free_space(leaf) < 0)
  1051. BUG();
  1052. check_leaf(&path, 0);
  1053. out:
  1054. release_path(root, &path);
  1055. return ret;
  1056. }
  1057. /*
  1058. * delete the pointer from a given node.
  1059. *
  1060. * If the delete empties a node, the node is removed from the tree,
  1061. * continuing all the way the root if required. The root is converted into
  1062. * a leaf if all the nodes are emptied.
  1063. */
  1064. static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
  1065. int slot)
  1066. {
  1067. struct node *node;
  1068. struct tree_buffer *parent = path->nodes[level];
  1069. int nritems;
  1070. int ret = 0;
  1071. int wret;
  1072. node = &parent->node;
  1073. nritems = node->header.nritems;
  1074. if (slot != nritems -1) {
  1075. memmove(node->keys + slot, node->keys + slot + 1,
  1076. sizeof(struct key) * (nritems - slot - 1));
  1077. memmove(node->blockptrs + slot,
  1078. node->blockptrs + slot + 1,
  1079. sizeof(u64) * (nritems - slot - 1));
  1080. }
  1081. node->header.nritems--;
  1082. if (node->header.nritems == 0 && parent == root->node) {
  1083. BUG_ON(node_level(root->node->node.header.flags) != 1);
  1084. /* just turn the root into a leaf and break */
  1085. root->node->node.header.flags = node_level(0);
  1086. } else if (slot == 0) {
  1087. wret = fixup_low_keys(root, path, node->keys, level + 1);
  1088. if (wret)
  1089. ret = wret;
  1090. }
  1091. BUG_ON(list_empty(&parent->dirty));
  1092. return ret;
  1093. }
  1094. /*
  1095. * delete the item at the leaf level in path. If that empties
  1096. * the leaf, remove it from the tree
  1097. */
  1098. int del_item(struct ctree_root *root, struct ctree_path *path)
  1099. {
  1100. int slot;
  1101. struct leaf *leaf;
  1102. struct tree_buffer *leaf_buf;
  1103. int doff;
  1104. int dsize;
  1105. int ret = 0;
  1106. int wret;
  1107. leaf_buf = path->nodes[0];
  1108. leaf = &leaf_buf->leaf;
  1109. slot = path->slots[0];
  1110. doff = leaf->items[slot].offset;
  1111. dsize = leaf->items[slot].size;
  1112. if (slot != leaf->header.nritems - 1) {
  1113. int i;
  1114. int data_end = leaf_data_end(leaf);
  1115. memmove(leaf->data + data_end + dsize,
  1116. leaf->data + data_end,
  1117. doff - data_end);
  1118. for (i = slot + 1; i < leaf->header.nritems; i++)
  1119. leaf->items[i].offset += dsize;
  1120. memmove(leaf->items + slot, leaf->items + slot + 1,
  1121. sizeof(struct item) *
  1122. (leaf->header.nritems - slot - 1));
  1123. }
  1124. leaf->header.nritems -= 1;
  1125. /* delete the leaf if we've emptied it */
  1126. if (leaf->header.nritems == 0) {
  1127. if (leaf_buf == root->node) {
  1128. leaf->header.flags = node_level(0);
  1129. BUG_ON(list_empty(&leaf_buf->dirty));
  1130. } else {
  1131. clean_tree_block(root, leaf_buf);
  1132. wret = del_ptr(root, path, 1, path->slots[1]);
  1133. if (wret)
  1134. ret = wret;
  1135. wret = free_extent(root, leaf_buf->blocknr, 1);
  1136. if (wret)
  1137. ret = wret;
  1138. }
  1139. } else {
  1140. int used = leaf_space_used(leaf, 0, leaf->header.nritems);
  1141. if (slot == 0) {
  1142. wret = fixup_low_keys(root, path,
  1143. &leaf->items[0].key, 1);
  1144. if (wret)
  1145. ret = wret;
  1146. }
  1147. BUG_ON(list_empty(&leaf_buf->dirty));
  1148. /* delete the leaf if it is mostly empty */
  1149. if (used < LEAF_DATA_SIZE / 3) {
  1150. /* push_leaf_left fixes the path.
  1151. * make sure the path still points to our leaf
  1152. * for possible call to del_ptr below
  1153. */
  1154. slot = path->slots[1];
  1155. leaf_buf->count++;
  1156. wret = push_leaf_left(root, path, 1);
  1157. if (wret < 0)
  1158. ret = wret;
  1159. if (path->nodes[0] == leaf_buf &&
  1160. leaf->header.nritems) {
  1161. wret = push_leaf_right(root, path, 1);
  1162. if (wret < 0)
  1163. ret = wret;
  1164. }
  1165. if (leaf->header.nritems == 0) {
  1166. u64 blocknr = leaf_buf->blocknr;
  1167. clean_tree_block(root, leaf_buf);
  1168. wret = del_ptr(root, path, 1, slot);
  1169. if (wret)
  1170. ret = wret;
  1171. tree_block_release(root, leaf_buf);
  1172. wret = free_extent(root, blocknr, 1);
  1173. if (wret)
  1174. ret = wret;
  1175. } else {
  1176. tree_block_release(root, leaf_buf);
  1177. }
  1178. }
  1179. }
  1180. return ret;
  1181. }
  1182. /*
  1183. * walk up the tree as far as required to find the next leaf.
  1184. * returns 0 if it found something or 1 if there are no greater leaves.
  1185. * returns < 0 on io errors.
  1186. */
  1187. int next_leaf(struct ctree_root *root, struct ctree_path *path)
  1188. {
  1189. int slot;
  1190. int level = 1;
  1191. u64 blocknr;
  1192. struct tree_buffer *c;
  1193. struct tree_buffer *next = NULL;
  1194. while(level < MAX_LEVEL) {
  1195. if (!path->nodes[level])
  1196. return 1;
  1197. slot = path->slots[level] + 1;
  1198. c = path->nodes[level];
  1199. if (slot >= c->node.header.nritems) {
  1200. level++;
  1201. continue;
  1202. }
  1203. blocknr = c->node.blockptrs[slot];
  1204. if (next)
  1205. tree_block_release(root, next);
  1206. next = read_tree_block(root, blocknr);
  1207. break;
  1208. }
  1209. path->slots[level] = slot;
  1210. while(1) {
  1211. level--;
  1212. c = path->nodes[level];
  1213. tree_block_release(root, c);
  1214. path->nodes[level] = next;
  1215. path->slots[level] = 0;
  1216. if (!level)
  1217. break;
  1218. next = read_tree_block(root, next->node.blockptrs[0]);
  1219. }
  1220. return 0;
  1221. }