page_alloc.c 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <linux/memory.h>
  51. #include <linux/compaction.h>
  52. #include <trace/events/kmem.h>
  53. #include <linux/ftrace_event.h>
  54. #include <asm/tlbflush.h>
  55. #include <asm/div64.h>
  56. #include "internal.h"
  57. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  58. DEFINE_PER_CPU(int, numa_node);
  59. EXPORT_PER_CPU_SYMBOL(numa_node);
  60. #endif
  61. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  62. /*
  63. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  64. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  65. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  66. * defined in <linux/topology.h>.
  67. */
  68. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  69. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  70. #endif
  71. /*
  72. * Array of node states.
  73. */
  74. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  75. [N_POSSIBLE] = NODE_MASK_ALL,
  76. [N_ONLINE] = { { [0] = 1UL } },
  77. #ifndef CONFIG_NUMA
  78. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  79. #ifdef CONFIG_HIGHMEM
  80. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  81. #endif
  82. [N_CPU] = { { [0] = 1UL } },
  83. #endif /* NUMA */
  84. };
  85. EXPORT_SYMBOL(node_states);
  86. unsigned long totalram_pages __read_mostly;
  87. unsigned long totalreserve_pages __read_mostly;
  88. int percpu_pagelist_fraction;
  89. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  90. #ifdef CONFIG_PM_SLEEP
  91. /*
  92. * The following functions are used by the suspend/hibernate code to temporarily
  93. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  94. * while devices are suspended. To avoid races with the suspend/hibernate code,
  95. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  96. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  97. * guaranteed not to run in parallel with that modification).
  98. */
  99. void set_gfp_allowed_mask(gfp_t mask)
  100. {
  101. WARN_ON(!mutex_is_locked(&pm_mutex));
  102. gfp_allowed_mask = mask;
  103. }
  104. gfp_t clear_gfp_allowed_mask(gfp_t mask)
  105. {
  106. gfp_t ret = gfp_allowed_mask;
  107. WARN_ON(!mutex_is_locked(&pm_mutex));
  108. gfp_allowed_mask &= ~mask;
  109. return ret;
  110. }
  111. #endif /* CONFIG_PM_SLEEP */
  112. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  113. int pageblock_order __read_mostly;
  114. #endif
  115. static void __free_pages_ok(struct page *page, unsigned int order);
  116. /*
  117. * results with 256, 32 in the lowmem_reserve sysctl:
  118. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  119. * 1G machine -> (16M dma, 784M normal, 224M high)
  120. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  121. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  122. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  123. *
  124. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  125. * don't need any ZONE_NORMAL reservation
  126. */
  127. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  128. #ifdef CONFIG_ZONE_DMA
  129. 256,
  130. #endif
  131. #ifdef CONFIG_ZONE_DMA32
  132. 256,
  133. #endif
  134. #ifdef CONFIG_HIGHMEM
  135. 32,
  136. #endif
  137. 32,
  138. };
  139. EXPORT_SYMBOL(totalram_pages);
  140. static char * const zone_names[MAX_NR_ZONES] = {
  141. #ifdef CONFIG_ZONE_DMA
  142. "DMA",
  143. #endif
  144. #ifdef CONFIG_ZONE_DMA32
  145. "DMA32",
  146. #endif
  147. "Normal",
  148. #ifdef CONFIG_HIGHMEM
  149. "HighMem",
  150. #endif
  151. "Movable",
  152. };
  153. int min_free_kbytes = 1024;
  154. static unsigned long __meminitdata nr_kernel_pages;
  155. static unsigned long __meminitdata nr_all_pages;
  156. static unsigned long __meminitdata dma_reserve;
  157. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  158. /*
  159. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  160. * ranges of memory (RAM) that may be registered with add_active_range().
  161. * Ranges passed to add_active_range() will be merged if possible
  162. * so the number of times add_active_range() can be called is
  163. * related to the number of nodes and the number of holes
  164. */
  165. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  166. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  167. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  168. #else
  169. #if MAX_NUMNODES >= 32
  170. /* If there can be many nodes, allow up to 50 holes per node */
  171. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  172. #else
  173. /* By default, allow up to 256 distinct regions */
  174. #define MAX_ACTIVE_REGIONS 256
  175. #endif
  176. #endif
  177. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  178. static int __meminitdata nr_nodemap_entries;
  179. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  180. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  181. static unsigned long __initdata required_kernelcore;
  182. static unsigned long __initdata required_movablecore;
  183. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  184. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  185. int movable_zone;
  186. EXPORT_SYMBOL(movable_zone);
  187. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  188. #if MAX_NUMNODES > 1
  189. int nr_node_ids __read_mostly = MAX_NUMNODES;
  190. int nr_online_nodes __read_mostly = 1;
  191. EXPORT_SYMBOL(nr_node_ids);
  192. EXPORT_SYMBOL(nr_online_nodes);
  193. #endif
  194. int page_group_by_mobility_disabled __read_mostly;
  195. static void set_pageblock_migratetype(struct page *page, int migratetype)
  196. {
  197. if (unlikely(page_group_by_mobility_disabled))
  198. migratetype = MIGRATE_UNMOVABLE;
  199. set_pageblock_flags_group(page, (unsigned long)migratetype,
  200. PB_migrate, PB_migrate_end);
  201. }
  202. bool oom_killer_disabled __read_mostly;
  203. #ifdef CONFIG_DEBUG_VM
  204. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  205. {
  206. int ret = 0;
  207. unsigned seq;
  208. unsigned long pfn = page_to_pfn(page);
  209. do {
  210. seq = zone_span_seqbegin(zone);
  211. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  212. ret = 1;
  213. else if (pfn < zone->zone_start_pfn)
  214. ret = 1;
  215. } while (zone_span_seqretry(zone, seq));
  216. return ret;
  217. }
  218. static int page_is_consistent(struct zone *zone, struct page *page)
  219. {
  220. if (!pfn_valid_within(page_to_pfn(page)))
  221. return 0;
  222. if (zone != page_zone(page))
  223. return 0;
  224. return 1;
  225. }
  226. /*
  227. * Temporary debugging check for pages not lying within a given zone.
  228. */
  229. static int bad_range(struct zone *zone, struct page *page)
  230. {
  231. if (page_outside_zone_boundaries(zone, page))
  232. return 1;
  233. if (!page_is_consistent(zone, page))
  234. return 1;
  235. return 0;
  236. }
  237. #else
  238. static inline int bad_range(struct zone *zone, struct page *page)
  239. {
  240. return 0;
  241. }
  242. #endif
  243. static void bad_page(struct page *page)
  244. {
  245. static unsigned long resume;
  246. static unsigned long nr_shown;
  247. static unsigned long nr_unshown;
  248. /* Don't complain about poisoned pages */
  249. if (PageHWPoison(page)) {
  250. __ClearPageBuddy(page);
  251. return;
  252. }
  253. /*
  254. * Allow a burst of 60 reports, then keep quiet for that minute;
  255. * or allow a steady drip of one report per second.
  256. */
  257. if (nr_shown == 60) {
  258. if (time_before(jiffies, resume)) {
  259. nr_unshown++;
  260. goto out;
  261. }
  262. if (nr_unshown) {
  263. printk(KERN_ALERT
  264. "BUG: Bad page state: %lu messages suppressed\n",
  265. nr_unshown);
  266. nr_unshown = 0;
  267. }
  268. nr_shown = 0;
  269. }
  270. if (nr_shown++ == 0)
  271. resume = jiffies + 60 * HZ;
  272. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  273. current->comm, page_to_pfn(page));
  274. dump_page(page);
  275. dump_stack();
  276. out:
  277. /* Leave bad fields for debug, except PageBuddy could make trouble */
  278. __ClearPageBuddy(page);
  279. add_taint(TAINT_BAD_PAGE);
  280. }
  281. /*
  282. * Higher-order pages are called "compound pages". They are structured thusly:
  283. *
  284. * The first PAGE_SIZE page is called the "head page".
  285. *
  286. * The remaining PAGE_SIZE pages are called "tail pages".
  287. *
  288. * All pages have PG_compound set. All pages have their ->private pointing at
  289. * the head page (even the head page has this).
  290. *
  291. * The first tail page's ->lru.next holds the address of the compound page's
  292. * put_page() function. Its ->lru.prev holds the order of allocation.
  293. * This usage means that zero-order pages may not be compound.
  294. */
  295. static void free_compound_page(struct page *page)
  296. {
  297. __free_pages_ok(page, compound_order(page));
  298. }
  299. void prep_compound_page(struct page *page, unsigned long order)
  300. {
  301. int i;
  302. int nr_pages = 1 << order;
  303. set_compound_page_dtor(page, free_compound_page);
  304. set_compound_order(page, order);
  305. __SetPageHead(page);
  306. for (i = 1; i < nr_pages; i++) {
  307. struct page *p = page + i;
  308. __SetPageTail(p);
  309. p->first_page = page;
  310. }
  311. }
  312. static int destroy_compound_page(struct page *page, unsigned long order)
  313. {
  314. int i;
  315. int nr_pages = 1 << order;
  316. int bad = 0;
  317. if (unlikely(compound_order(page) != order) ||
  318. unlikely(!PageHead(page))) {
  319. bad_page(page);
  320. bad++;
  321. }
  322. __ClearPageHead(page);
  323. for (i = 1; i < nr_pages; i++) {
  324. struct page *p = page + i;
  325. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  326. bad_page(page);
  327. bad++;
  328. }
  329. __ClearPageTail(p);
  330. }
  331. return bad;
  332. }
  333. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  334. {
  335. int i;
  336. /*
  337. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  338. * and __GFP_HIGHMEM from hard or soft interrupt context.
  339. */
  340. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  341. for (i = 0; i < (1 << order); i++)
  342. clear_highpage(page + i);
  343. }
  344. static inline void set_page_order(struct page *page, int order)
  345. {
  346. set_page_private(page, order);
  347. __SetPageBuddy(page);
  348. }
  349. static inline void rmv_page_order(struct page *page)
  350. {
  351. __ClearPageBuddy(page);
  352. set_page_private(page, 0);
  353. }
  354. /*
  355. * Locate the struct page for both the matching buddy in our
  356. * pair (buddy1) and the combined O(n+1) page they form (page).
  357. *
  358. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  359. * the following equation:
  360. * B2 = B1 ^ (1 << O)
  361. * For example, if the starting buddy (buddy2) is #8 its order
  362. * 1 buddy is #10:
  363. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  364. *
  365. * 2) Any buddy B will have an order O+1 parent P which
  366. * satisfies the following equation:
  367. * P = B & ~(1 << O)
  368. *
  369. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  370. */
  371. static inline struct page *
  372. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  373. {
  374. unsigned long buddy_idx = page_idx ^ (1 << order);
  375. return page + (buddy_idx - page_idx);
  376. }
  377. static inline unsigned long
  378. __find_combined_index(unsigned long page_idx, unsigned int order)
  379. {
  380. return (page_idx & ~(1 << order));
  381. }
  382. /*
  383. * This function checks whether a page is free && is the buddy
  384. * we can do coalesce a page and its buddy if
  385. * (a) the buddy is not in a hole &&
  386. * (b) the buddy is in the buddy system &&
  387. * (c) a page and its buddy have the same order &&
  388. * (d) a page and its buddy are in the same zone.
  389. *
  390. * For recording whether a page is in the buddy system, we use PG_buddy.
  391. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  392. *
  393. * For recording page's order, we use page_private(page).
  394. */
  395. static inline int page_is_buddy(struct page *page, struct page *buddy,
  396. int order)
  397. {
  398. if (!pfn_valid_within(page_to_pfn(buddy)))
  399. return 0;
  400. if (page_zone_id(page) != page_zone_id(buddy))
  401. return 0;
  402. if (PageBuddy(buddy) && page_order(buddy) == order) {
  403. VM_BUG_ON(page_count(buddy) != 0);
  404. return 1;
  405. }
  406. return 0;
  407. }
  408. /*
  409. * Freeing function for a buddy system allocator.
  410. *
  411. * The concept of a buddy system is to maintain direct-mapped table
  412. * (containing bit values) for memory blocks of various "orders".
  413. * The bottom level table contains the map for the smallest allocatable
  414. * units of memory (here, pages), and each level above it describes
  415. * pairs of units from the levels below, hence, "buddies".
  416. * At a high level, all that happens here is marking the table entry
  417. * at the bottom level available, and propagating the changes upward
  418. * as necessary, plus some accounting needed to play nicely with other
  419. * parts of the VM system.
  420. * At each level, we keep a list of pages, which are heads of continuous
  421. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  422. * order is recorded in page_private(page) field.
  423. * So when we are allocating or freeing one, we can derive the state of the
  424. * other. That is, if we allocate a small block, and both were
  425. * free, the remainder of the region must be split into blocks.
  426. * If a block is freed, and its buddy is also free, then this
  427. * triggers coalescing into a block of larger size.
  428. *
  429. * -- wli
  430. */
  431. static inline void __free_one_page(struct page *page,
  432. struct zone *zone, unsigned int order,
  433. int migratetype)
  434. {
  435. unsigned long page_idx;
  436. unsigned long combined_idx;
  437. struct page *buddy;
  438. if (unlikely(PageCompound(page)))
  439. if (unlikely(destroy_compound_page(page, order)))
  440. return;
  441. VM_BUG_ON(migratetype == -1);
  442. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  443. VM_BUG_ON(page_idx & ((1 << order) - 1));
  444. VM_BUG_ON(bad_range(zone, page));
  445. while (order < MAX_ORDER-1) {
  446. buddy = __page_find_buddy(page, page_idx, order);
  447. if (!page_is_buddy(page, buddy, order))
  448. break;
  449. /* Our buddy is free, merge with it and move up one order. */
  450. list_del(&buddy->lru);
  451. zone->free_area[order].nr_free--;
  452. rmv_page_order(buddy);
  453. combined_idx = __find_combined_index(page_idx, order);
  454. page = page + (combined_idx - page_idx);
  455. page_idx = combined_idx;
  456. order++;
  457. }
  458. set_page_order(page, order);
  459. /*
  460. * If this is not the largest possible page, check if the buddy
  461. * of the next-highest order is free. If it is, it's possible
  462. * that pages are being freed that will coalesce soon. In case,
  463. * that is happening, add the free page to the tail of the list
  464. * so it's less likely to be used soon and more likely to be merged
  465. * as a higher order page
  466. */
  467. if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
  468. struct page *higher_page, *higher_buddy;
  469. combined_idx = __find_combined_index(page_idx, order);
  470. higher_page = page + combined_idx - page_idx;
  471. higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
  472. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  473. list_add_tail(&page->lru,
  474. &zone->free_area[order].free_list[migratetype]);
  475. goto out;
  476. }
  477. }
  478. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  479. out:
  480. zone->free_area[order].nr_free++;
  481. }
  482. /*
  483. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  484. * Page should not be on lru, so no need to fix that up.
  485. * free_pages_check() will verify...
  486. */
  487. static inline void free_page_mlock(struct page *page)
  488. {
  489. __dec_zone_page_state(page, NR_MLOCK);
  490. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  491. }
  492. static inline int free_pages_check(struct page *page)
  493. {
  494. if (unlikely(page_mapcount(page) |
  495. (page->mapping != NULL) |
  496. (atomic_read(&page->_count) != 0) |
  497. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  498. bad_page(page);
  499. return 1;
  500. }
  501. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  502. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  503. return 0;
  504. }
  505. /*
  506. * Frees a number of pages from the PCP lists
  507. * Assumes all pages on list are in same zone, and of same order.
  508. * count is the number of pages to free.
  509. *
  510. * If the zone was previously in an "all pages pinned" state then look to
  511. * see if this freeing clears that state.
  512. *
  513. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  514. * pinned" detection logic.
  515. */
  516. static void free_pcppages_bulk(struct zone *zone, int count,
  517. struct per_cpu_pages *pcp)
  518. {
  519. int migratetype = 0;
  520. int batch_free = 0;
  521. spin_lock(&zone->lock);
  522. zone->all_unreclaimable = 0;
  523. zone->pages_scanned = 0;
  524. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  525. while (count) {
  526. struct page *page;
  527. struct list_head *list;
  528. /*
  529. * Remove pages from lists in a round-robin fashion. A
  530. * batch_free count is maintained that is incremented when an
  531. * empty list is encountered. This is so more pages are freed
  532. * off fuller lists instead of spinning excessively around empty
  533. * lists
  534. */
  535. do {
  536. batch_free++;
  537. if (++migratetype == MIGRATE_PCPTYPES)
  538. migratetype = 0;
  539. list = &pcp->lists[migratetype];
  540. } while (list_empty(list));
  541. do {
  542. page = list_entry(list->prev, struct page, lru);
  543. /* must delete as __free_one_page list manipulates */
  544. list_del(&page->lru);
  545. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  546. __free_one_page(page, zone, 0, page_private(page));
  547. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  548. } while (--count && --batch_free && !list_empty(list));
  549. }
  550. spin_unlock(&zone->lock);
  551. }
  552. static void free_one_page(struct zone *zone, struct page *page, int order,
  553. int migratetype)
  554. {
  555. spin_lock(&zone->lock);
  556. zone->all_unreclaimable = 0;
  557. zone->pages_scanned = 0;
  558. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  559. __free_one_page(page, zone, order, migratetype);
  560. spin_unlock(&zone->lock);
  561. }
  562. static bool free_pages_prepare(struct page *page, unsigned int order)
  563. {
  564. int i;
  565. int bad = 0;
  566. trace_mm_page_free_direct(page, order);
  567. kmemcheck_free_shadow(page, order);
  568. for (i = 0; i < (1 << order); i++) {
  569. struct page *pg = page + i;
  570. if (PageAnon(pg))
  571. pg->mapping = NULL;
  572. bad += free_pages_check(pg);
  573. }
  574. if (bad)
  575. return false;
  576. if (!PageHighMem(page)) {
  577. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  578. debug_check_no_obj_freed(page_address(page),
  579. PAGE_SIZE << order);
  580. }
  581. arch_free_page(page, order);
  582. kernel_map_pages(page, 1 << order, 0);
  583. return true;
  584. }
  585. static void __free_pages_ok(struct page *page, unsigned int order)
  586. {
  587. unsigned long flags;
  588. int wasMlocked = __TestClearPageMlocked(page);
  589. if (!free_pages_prepare(page, order))
  590. return;
  591. local_irq_save(flags);
  592. if (unlikely(wasMlocked))
  593. free_page_mlock(page);
  594. __count_vm_events(PGFREE, 1 << order);
  595. free_one_page(page_zone(page), page, order,
  596. get_pageblock_migratetype(page));
  597. local_irq_restore(flags);
  598. }
  599. /*
  600. * permit the bootmem allocator to evade page validation on high-order frees
  601. */
  602. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  603. {
  604. if (order == 0) {
  605. __ClearPageReserved(page);
  606. set_page_count(page, 0);
  607. set_page_refcounted(page);
  608. __free_page(page);
  609. } else {
  610. int loop;
  611. prefetchw(page);
  612. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  613. struct page *p = &page[loop];
  614. if (loop + 1 < BITS_PER_LONG)
  615. prefetchw(p + 1);
  616. __ClearPageReserved(p);
  617. set_page_count(p, 0);
  618. }
  619. set_page_refcounted(page);
  620. __free_pages(page, order);
  621. }
  622. }
  623. /*
  624. * The order of subdivision here is critical for the IO subsystem.
  625. * Please do not alter this order without good reasons and regression
  626. * testing. Specifically, as large blocks of memory are subdivided,
  627. * the order in which smaller blocks are delivered depends on the order
  628. * they're subdivided in this function. This is the primary factor
  629. * influencing the order in which pages are delivered to the IO
  630. * subsystem according to empirical testing, and this is also justified
  631. * by considering the behavior of a buddy system containing a single
  632. * large block of memory acted on by a series of small allocations.
  633. * This behavior is a critical factor in sglist merging's success.
  634. *
  635. * -- wli
  636. */
  637. static inline void expand(struct zone *zone, struct page *page,
  638. int low, int high, struct free_area *area,
  639. int migratetype)
  640. {
  641. unsigned long size = 1 << high;
  642. while (high > low) {
  643. area--;
  644. high--;
  645. size >>= 1;
  646. VM_BUG_ON(bad_range(zone, &page[size]));
  647. list_add(&page[size].lru, &area->free_list[migratetype]);
  648. area->nr_free++;
  649. set_page_order(&page[size], high);
  650. }
  651. }
  652. /*
  653. * This page is about to be returned from the page allocator
  654. */
  655. static inline int check_new_page(struct page *page)
  656. {
  657. if (unlikely(page_mapcount(page) |
  658. (page->mapping != NULL) |
  659. (atomic_read(&page->_count) != 0) |
  660. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  661. bad_page(page);
  662. return 1;
  663. }
  664. return 0;
  665. }
  666. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  667. {
  668. int i;
  669. for (i = 0; i < (1 << order); i++) {
  670. struct page *p = page + i;
  671. if (unlikely(check_new_page(p)))
  672. return 1;
  673. }
  674. set_page_private(page, 0);
  675. set_page_refcounted(page);
  676. arch_alloc_page(page, order);
  677. kernel_map_pages(page, 1 << order, 1);
  678. if (gfp_flags & __GFP_ZERO)
  679. prep_zero_page(page, order, gfp_flags);
  680. if (order && (gfp_flags & __GFP_COMP))
  681. prep_compound_page(page, order);
  682. return 0;
  683. }
  684. /*
  685. * Go through the free lists for the given migratetype and remove
  686. * the smallest available page from the freelists
  687. */
  688. static inline
  689. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  690. int migratetype)
  691. {
  692. unsigned int current_order;
  693. struct free_area * area;
  694. struct page *page;
  695. /* Find a page of the appropriate size in the preferred list */
  696. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  697. area = &(zone->free_area[current_order]);
  698. if (list_empty(&area->free_list[migratetype]))
  699. continue;
  700. page = list_entry(area->free_list[migratetype].next,
  701. struct page, lru);
  702. list_del(&page->lru);
  703. rmv_page_order(page);
  704. area->nr_free--;
  705. expand(zone, page, order, current_order, area, migratetype);
  706. return page;
  707. }
  708. return NULL;
  709. }
  710. /*
  711. * This array describes the order lists are fallen back to when
  712. * the free lists for the desirable migrate type are depleted
  713. */
  714. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  715. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  716. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  717. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  718. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  719. };
  720. /*
  721. * Move the free pages in a range to the free lists of the requested type.
  722. * Note that start_page and end_pages are not aligned on a pageblock
  723. * boundary. If alignment is required, use move_freepages_block()
  724. */
  725. static int move_freepages(struct zone *zone,
  726. struct page *start_page, struct page *end_page,
  727. int migratetype)
  728. {
  729. struct page *page;
  730. unsigned long order;
  731. int pages_moved = 0;
  732. #ifndef CONFIG_HOLES_IN_ZONE
  733. /*
  734. * page_zone is not safe to call in this context when
  735. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  736. * anyway as we check zone boundaries in move_freepages_block().
  737. * Remove at a later date when no bug reports exist related to
  738. * grouping pages by mobility
  739. */
  740. BUG_ON(page_zone(start_page) != page_zone(end_page));
  741. #endif
  742. for (page = start_page; page <= end_page;) {
  743. /* Make sure we are not inadvertently changing nodes */
  744. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  745. if (!pfn_valid_within(page_to_pfn(page))) {
  746. page++;
  747. continue;
  748. }
  749. if (!PageBuddy(page)) {
  750. page++;
  751. continue;
  752. }
  753. order = page_order(page);
  754. list_del(&page->lru);
  755. list_add(&page->lru,
  756. &zone->free_area[order].free_list[migratetype]);
  757. page += 1 << order;
  758. pages_moved += 1 << order;
  759. }
  760. return pages_moved;
  761. }
  762. static int move_freepages_block(struct zone *zone, struct page *page,
  763. int migratetype)
  764. {
  765. unsigned long start_pfn, end_pfn;
  766. struct page *start_page, *end_page;
  767. start_pfn = page_to_pfn(page);
  768. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  769. start_page = pfn_to_page(start_pfn);
  770. end_page = start_page + pageblock_nr_pages - 1;
  771. end_pfn = start_pfn + pageblock_nr_pages - 1;
  772. /* Do not cross zone boundaries */
  773. if (start_pfn < zone->zone_start_pfn)
  774. start_page = page;
  775. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  776. return 0;
  777. return move_freepages(zone, start_page, end_page, migratetype);
  778. }
  779. static void change_pageblock_range(struct page *pageblock_page,
  780. int start_order, int migratetype)
  781. {
  782. int nr_pageblocks = 1 << (start_order - pageblock_order);
  783. while (nr_pageblocks--) {
  784. set_pageblock_migratetype(pageblock_page, migratetype);
  785. pageblock_page += pageblock_nr_pages;
  786. }
  787. }
  788. /* Remove an element from the buddy allocator from the fallback list */
  789. static inline struct page *
  790. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  791. {
  792. struct free_area * area;
  793. int current_order;
  794. struct page *page;
  795. int migratetype, i;
  796. /* Find the largest possible block of pages in the other list */
  797. for (current_order = MAX_ORDER-1; current_order >= order;
  798. --current_order) {
  799. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  800. migratetype = fallbacks[start_migratetype][i];
  801. /* MIGRATE_RESERVE handled later if necessary */
  802. if (migratetype == MIGRATE_RESERVE)
  803. continue;
  804. area = &(zone->free_area[current_order]);
  805. if (list_empty(&area->free_list[migratetype]))
  806. continue;
  807. page = list_entry(area->free_list[migratetype].next,
  808. struct page, lru);
  809. area->nr_free--;
  810. /*
  811. * If breaking a large block of pages, move all free
  812. * pages to the preferred allocation list. If falling
  813. * back for a reclaimable kernel allocation, be more
  814. * agressive about taking ownership of free pages
  815. */
  816. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  817. start_migratetype == MIGRATE_RECLAIMABLE ||
  818. page_group_by_mobility_disabled) {
  819. unsigned long pages;
  820. pages = move_freepages_block(zone, page,
  821. start_migratetype);
  822. /* Claim the whole block if over half of it is free */
  823. if (pages >= (1 << (pageblock_order-1)) ||
  824. page_group_by_mobility_disabled)
  825. set_pageblock_migratetype(page,
  826. start_migratetype);
  827. migratetype = start_migratetype;
  828. }
  829. /* Remove the page from the freelists */
  830. list_del(&page->lru);
  831. rmv_page_order(page);
  832. /* Take ownership for orders >= pageblock_order */
  833. if (current_order >= pageblock_order)
  834. change_pageblock_range(page, current_order,
  835. start_migratetype);
  836. expand(zone, page, order, current_order, area, migratetype);
  837. trace_mm_page_alloc_extfrag(page, order, current_order,
  838. start_migratetype, migratetype);
  839. return page;
  840. }
  841. }
  842. return NULL;
  843. }
  844. /*
  845. * Do the hard work of removing an element from the buddy allocator.
  846. * Call me with the zone->lock already held.
  847. */
  848. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  849. int migratetype)
  850. {
  851. struct page *page;
  852. retry_reserve:
  853. page = __rmqueue_smallest(zone, order, migratetype);
  854. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  855. page = __rmqueue_fallback(zone, order, migratetype);
  856. /*
  857. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  858. * is used because __rmqueue_smallest is an inline function
  859. * and we want just one call site
  860. */
  861. if (!page) {
  862. migratetype = MIGRATE_RESERVE;
  863. goto retry_reserve;
  864. }
  865. }
  866. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  867. return page;
  868. }
  869. /*
  870. * Obtain a specified number of elements from the buddy allocator, all under
  871. * a single hold of the lock, for efficiency. Add them to the supplied list.
  872. * Returns the number of new pages which were placed at *list.
  873. */
  874. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  875. unsigned long count, struct list_head *list,
  876. int migratetype, int cold)
  877. {
  878. int i;
  879. spin_lock(&zone->lock);
  880. for (i = 0; i < count; ++i) {
  881. struct page *page = __rmqueue(zone, order, migratetype);
  882. if (unlikely(page == NULL))
  883. break;
  884. /*
  885. * Split buddy pages returned by expand() are received here
  886. * in physical page order. The page is added to the callers and
  887. * list and the list head then moves forward. From the callers
  888. * perspective, the linked list is ordered by page number in
  889. * some conditions. This is useful for IO devices that can
  890. * merge IO requests if the physical pages are ordered
  891. * properly.
  892. */
  893. if (likely(cold == 0))
  894. list_add(&page->lru, list);
  895. else
  896. list_add_tail(&page->lru, list);
  897. set_page_private(page, migratetype);
  898. list = &page->lru;
  899. }
  900. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  901. spin_unlock(&zone->lock);
  902. return i;
  903. }
  904. #ifdef CONFIG_NUMA
  905. /*
  906. * Called from the vmstat counter updater to drain pagesets of this
  907. * currently executing processor on remote nodes after they have
  908. * expired.
  909. *
  910. * Note that this function must be called with the thread pinned to
  911. * a single processor.
  912. */
  913. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  914. {
  915. unsigned long flags;
  916. int to_drain;
  917. local_irq_save(flags);
  918. if (pcp->count >= pcp->batch)
  919. to_drain = pcp->batch;
  920. else
  921. to_drain = pcp->count;
  922. free_pcppages_bulk(zone, to_drain, pcp);
  923. pcp->count -= to_drain;
  924. local_irq_restore(flags);
  925. }
  926. #endif
  927. /*
  928. * Drain pages of the indicated processor.
  929. *
  930. * The processor must either be the current processor and the
  931. * thread pinned to the current processor or a processor that
  932. * is not online.
  933. */
  934. static void drain_pages(unsigned int cpu)
  935. {
  936. unsigned long flags;
  937. struct zone *zone;
  938. for_each_populated_zone(zone) {
  939. struct per_cpu_pageset *pset;
  940. struct per_cpu_pages *pcp;
  941. local_irq_save(flags);
  942. pset = per_cpu_ptr(zone->pageset, cpu);
  943. pcp = &pset->pcp;
  944. free_pcppages_bulk(zone, pcp->count, pcp);
  945. pcp->count = 0;
  946. local_irq_restore(flags);
  947. }
  948. }
  949. /*
  950. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  951. */
  952. void drain_local_pages(void *arg)
  953. {
  954. drain_pages(smp_processor_id());
  955. }
  956. /*
  957. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  958. */
  959. void drain_all_pages(void)
  960. {
  961. on_each_cpu(drain_local_pages, NULL, 1);
  962. }
  963. #ifdef CONFIG_HIBERNATION
  964. void mark_free_pages(struct zone *zone)
  965. {
  966. unsigned long pfn, max_zone_pfn;
  967. unsigned long flags;
  968. int order, t;
  969. struct list_head *curr;
  970. if (!zone->spanned_pages)
  971. return;
  972. spin_lock_irqsave(&zone->lock, flags);
  973. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  974. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  975. if (pfn_valid(pfn)) {
  976. struct page *page = pfn_to_page(pfn);
  977. if (!swsusp_page_is_forbidden(page))
  978. swsusp_unset_page_free(page);
  979. }
  980. for_each_migratetype_order(order, t) {
  981. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  982. unsigned long i;
  983. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  984. for (i = 0; i < (1UL << order); i++)
  985. swsusp_set_page_free(pfn_to_page(pfn + i));
  986. }
  987. }
  988. spin_unlock_irqrestore(&zone->lock, flags);
  989. }
  990. #endif /* CONFIG_PM */
  991. /*
  992. * Free a 0-order page
  993. * cold == 1 ? free a cold page : free a hot page
  994. */
  995. void free_hot_cold_page(struct page *page, int cold)
  996. {
  997. struct zone *zone = page_zone(page);
  998. struct per_cpu_pages *pcp;
  999. unsigned long flags;
  1000. int migratetype;
  1001. int wasMlocked = __TestClearPageMlocked(page);
  1002. if (!free_pages_prepare(page, 0))
  1003. return;
  1004. migratetype = get_pageblock_migratetype(page);
  1005. set_page_private(page, migratetype);
  1006. local_irq_save(flags);
  1007. if (unlikely(wasMlocked))
  1008. free_page_mlock(page);
  1009. __count_vm_event(PGFREE);
  1010. /*
  1011. * We only track unmovable, reclaimable and movable on pcp lists.
  1012. * Free ISOLATE pages back to the allocator because they are being
  1013. * offlined but treat RESERVE as movable pages so we can get those
  1014. * areas back if necessary. Otherwise, we may have to free
  1015. * excessively into the page allocator
  1016. */
  1017. if (migratetype >= MIGRATE_PCPTYPES) {
  1018. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1019. free_one_page(zone, page, 0, migratetype);
  1020. goto out;
  1021. }
  1022. migratetype = MIGRATE_MOVABLE;
  1023. }
  1024. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1025. if (cold)
  1026. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1027. else
  1028. list_add(&page->lru, &pcp->lists[migratetype]);
  1029. pcp->count++;
  1030. if (pcp->count >= pcp->high) {
  1031. free_pcppages_bulk(zone, pcp->batch, pcp);
  1032. pcp->count -= pcp->batch;
  1033. }
  1034. out:
  1035. local_irq_restore(flags);
  1036. }
  1037. /*
  1038. * split_page takes a non-compound higher-order page, and splits it into
  1039. * n (1<<order) sub-pages: page[0..n]
  1040. * Each sub-page must be freed individually.
  1041. *
  1042. * Note: this is probably too low level an operation for use in drivers.
  1043. * Please consult with lkml before using this in your driver.
  1044. */
  1045. void split_page(struct page *page, unsigned int order)
  1046. {
  1047. int i;
  1048. VM_BUG_ON(PageCompound(page));
  1049. VM_BUG_ON(!page_count(page));
  1050. #ifdef CONFIG_KMEMCHECK
  1051. /*
  1052. * Split shadow pages too, because free(page[0]) would
  1053. * otherwise free the whole shadow.
  1054. */
  1055. if (kmemcheck_page_is_tracked(page))
  1056. split_page(virt_to_page(page[0].shadow), order);
  1057. #endif
  1058. for (i = 1; i < (1 << order); i++)
  1059. set_page_refcounted(page + i);
  1060. }
  1061. /*
  1062. * Similar to split_page except the page is already free. As this is only
  1063. * being used for migration, the migratetype of the block also changes.
  1064. * As this is called with interrupts disabled, the caller is responsible
  1065. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1066. * are enabled.
  1067. *
  1068. * Note: this is probably too low level an operation for use in drivers.
  1069. * Please consult with lkml before using this in your driver.
  1070. */
  1071. int split_free_page(struct page *page)
  1072. {
  1073. unsigned int order;
  1074. unsigned long watermark;
  1075. struct zone *zone;
  1076. BUG_ON(!PageBuddy(page));
  1077. zone = page_zone(page);
  1078. order = page_order(page);
  1079. /* Obey watermarks as if the page was being allocated */
  1080. watermark = low_wmark_pages(zone) + (1 << order);
  1081. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1082. return 0;
  1083. /* Remove page from free list */
  1084. list_del(&page->lru);
  1085. zone->free_area[order].nr_free--;
  1086. rmv_page_order(page);
  1087. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1088. /* Split into individual pages */
  1089. set_page_refcounted(page);
  1090. split_page(page, order);
  1091. if (order >= pageblock_order - 1) {
  1092. struct page *endpage = page + (1 << order) - 1;
  1093. for (; page < endpage; page += pageblock_nr_pages)
  1094. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1095. }
  1096. return 1 << order;
  1097. }
  1098. /*
  1099. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1100. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1101. * or two.
  1102. */
  1103. static inline
  1104. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1105. struct zone *zone, int order, gfp_t gfp_flags,
  1106. int migratetype)
  1107. {
  1108. unsigned long flags;
  1109. struct page *page;
  1110. int cold = !!(gfp_flags & __GFP_COLD);
  1111. again:
  1112. if (likely(order == 0)) {
  1113. struct per_cpu_pages *pcp;
  1114. struct list_head *list;
  1115. local_irq_save(flags);
  1116. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1117. list = &pcp->lists[migratetype];
  1118. if (list_empty(list)) {
  1119. pcp->count += rmqueue_bulk(zone, 0,
  1120. pcp->batch, list,
  1121. migratetype, cold);
  1122. if (unlikely(list_empty(list)))
  1123. goto failed;
  1124. }
  1125. if (cold)
  1126. page = list_entry(list->prev, struct page, lru);
  1127. else
  1128. page = list_entry(list->next, struct page, lru);
  1129. list_del(&page->lru);
  1130. pcp->count--;
  1131. } else {
  1132. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1133. /*
  1134. * __GFP_NOFAIL is not to be used in new code.
  1135. *
  1136. * All __GFP_NOFAIL callers should be fixed so that they
  1137. * properly detect and handle allocation failures.
  1138. *
  1139. * We most definitely don't want callers attempting to
  1140. * allocate greater than order-1 page units with
  1141. * __GFP_NOFAIL.
  1142. */
  1143. WARN_ON_ONCE(order > 1);
  1144. }
  1145. spin_lock_irqsave(&zone->lock, flags);
  1146. page = __rmqueue(zone, order, migratetype);
  1147. spin_unlock(&zone->lock);
  1148. if (!page)
  1149. goto failed;
  1150. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1151. }
  1152. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1153. zone_statistics(preferred_zone, zone);
  1154. local_irq_restore(flags);
  1155. VM_BUG_ON(bad_range(zone, page));
  1156. if (prep_new_page(page, order, gfp_flags))
  1157. goto again;
  1158. return page;
  1159. failed:
  1160. local_irq_restore(flags);
  1161. return NULL;
  1162. }
  1163. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1164. #define ALLOC_WMARK_MIN WMARK_MIN
  1165. #define ALLOC_WMARK_LOW WMARK_LOW
  1166. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1167. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1168. /* Mask to get the watermark bits */
  1169. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1170. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1171. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1172. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1173. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1174. static struct fail_page_alloc_attr {
  1175. struct fault_attr attr;
  1176. u32 ignore_gfp_highmem;
  1177. u32 ignore_gfp_wait;
  1178. u32 min_order;
  1179. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1180. struct dentry *ignore_gfp_highmem_file;
  1181. struct dentry *ignore_gfp_wait_file;
  1182. struct dentry *min_order_file;
  1183. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1184. } fail_page_alloc = {
  1185. .attr = FAULT_ATTR_INITIALIZER,
  1186. .ignore_gfp_wait = 1,
  1187. .ignore_gfp_highmem = 1,
  1188. .min_order = 1,
  1189. };
  1190. static int __init setup_fail_page_alloc(char *str)
  1191. {
  1192. return setup_fault_attr(&fail_page_alloc.attr, str);
  1193. }
  1194. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1195. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1196. {
  1197. if (order < fail_page_alloc.min_order)
  1198. return 0;
  1199. if (gfp_mask & __GFP_NOFAIL)
  1200. return 0;
  1201. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1202. return 0;
  1203. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1204. return 0;
  1205. return should_fail(&fail_page_alloc.attr, 1 << order);
  1206. }
  1207. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1208. static int __init fail_page_alloc_debugfs(void)
  1209. {
  1210. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1211. struct dentry *dir;
  1212. int err;
  1213. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1214. "fail_page_alloc");
  1215. if (err)
  1216. return err;
  1217. dir = fail_page_alloc.attr.dentries.dir;
  1218. fail_page_alloc.ignore_gfp_wait_file =
  1219. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1220. &fail_page_alloc.ignore_gfp_wait);
  1221. fail_page_alloc.ignore_gfp_highmem_file =
  1222. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1223. &fail_page_alloc.ignore_gfp_highmem);
  1224. fail_page_alloc.min_order_file =
  1225. debugfs_create_u32("min-order", mode, dir,
  1226. &fail_page_alloc.min_order);
  1227. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1228. !fail_page_alloc.ignore_gfp_highmem_file ||
  1229. !fail_page_alloc.min_order_file) {
  1230. err = -ENOMEM;
  1231. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1232. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1233. debugfs_remove(fail_page_alloc.min_order_file);
  1234. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1235. }
  1236. return err;
  1237. }
  1238. late_initcall(fail_page_alloc_debugfs);
  1239. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1240. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1241. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1242. {
  1243. return 0;
  1244. }
  1245. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1246. /*
  1247. * Return 1 if free pages are above 'mark'. This takes into account the order
  1248. * of the allocation.
  1249. */
  1250. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1251. int classzone_idx, int alloc_flags)
  1252. {
  1253. /* free_pages my go negative - that's OK */
  1254. long min = mark;
  1255. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1256. int o;
  1257. if (alloc_flags & ALLOC_HIGH)
  1258. min -= min / 2;
  1259. if (alloc_flags & ALLOC_HARDER)
  1260. min -= min / 4;
  1261. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1262. return 0;
  1263. for (o = 0; o < order; o++) {
  1264. /* At the next order, this order's pages become unavailable */
  1265. free_pages -= z->free_area[o].nr_free << o;
  1266. /* Require fewer higher order pages to be free */
  1267. min >>= 1;
  1268. if (free_pages <= min)
  1269. return 0;
  1270. }
  1271. return 1;
  1272. }
  1273. #ifdef CONFIG_NUMA
  1274. /*
  1275. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1276. * skip over zones that are not allowed by the cpuset, or that have
  1277. * been recently (in last second) found to be nearly full. See further
  1278. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1279. * that have to skip over a lot of full or unallowed zones.
  1280. *
  1281. * If the zonelist cache is present in the passed in zonelist, then
  1282. * returns a pointer to the allowed node mask (either the current
  1283. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1284. *
  1285. * If the zonelist cache is not available for this zonelist, does
  1286. * nothing and returns NULL.
  1287. *
  1288. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1289. * a second since last zap'd) then we zap it out (clear its bits.)
  1290. *
  1291. * We hold off even calling zlc_setup, until after we've checked the
  1292. * first zone in the zonelist, on the theory that most allocations will
  1293. * be satisfied from that first zone, so best to examine that zone as
  1294. * quickly as we can.
  1295. */
  1296. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1297. {
  1298. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1299. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1300. zlc = zonelist->zlcache_ptr;
  1301. if (!zlc)
  1302. return NULL;
  1303. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1304. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1305. zlc->last_full_zap = jiffies;
  1306. }
  1307. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1308. &cpuset_current_mems_allowed :
  1309. &node_states[N_HIGH_MEMORY];
  1310. return allowednodes;
  1311. }
  1312. /*
  1313. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1314. * if it is worth looking at further for free memory:
  1315. * 1) Check that the zone isn't thought to be full (doesn't have its
  1316. * bit set in the zonelist_cache fullzones BITMAP).
  1317. * 2) Check that the zones node (obtained from the zonelist_cache
  1318. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1319. * Return true (non-zero) if zone is worth looking at further, or
  1320. * else return false (zero) if it is not.
  1321. *
  1322. * This check -ignores- the distinction between various watermarks,
  1323. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1324. * found to be full for any variation of these watermarks, it will
  1325. * be considered full for up to one second by all requests, unless
  1326. * we are so low on memory on all allowed nodes that we are forced
  1327. * into the second scan of the zonelist.
  1328. *
  1329. * In the second scan we ignore this zonelist cache and exactly
  1330. * apply the watermarks to all zones, even it is slower to do so.
  1331. * We are low on memory in the second scan, and should leave no stone
  1332. * unturned looking for a free page.
  1333. */
  1334. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1335. nodemask_t *allowednodes)
  1336. {
  1337. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1338. int i; /* index of *z in zonelist zones */
  1339. int n; /* node that zone *z is on */
  1340. zlc = zonelist->zlcache_ptr;
  1341. if (!zlc)
  1342. return 1;
  1343. i = z - zonelist->_zonerefs;
  1344. n = zlc->z_to_n[i];
  1345. /* This zone is worth trying if it is allowed but not full */
  1346. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1347. }
  1348. /*
  1349. * Given 'z' scanning a zonelist, set the corresponding bit in
  1350. * zlc->fullzones, so that subsequent attempts to allocate a page
  1351. * from that zone don't waste time re-examining it.
  1352. */
  1353. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1354. {
  1355. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1356. int i; /* index of *z in zonelist zones */
  1357. zlc = zonelist->zlcache_ptr;
  1358. if (!zlc)
  1359. return;
  1360. i = z - zonelist->_zonerefs;
  1361. set_bit(i, zlc->fullzones);
  1362. }
  1363. #else /* CONFIG_NUMA */
  1364. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1365. {
  1366. return NULL;
  1367. }
  1368. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1369. nodemask_t *allowednodes)
  1370. {
  1371. return 1;
  1372. }
  1373. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1374. {
  1375. }
  1376. #endif /* CONFIG_NUMA */
  1377. /*
  1378. * get_page_from_freelist goes through the zonelist trying to allocate
  1379. * a page.
  1380. */
  1381. static struct page *
  1382. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1383. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1384. struct zone *preferred_zone, int migratetype)
  1385. {
  1386. struct zoneref *z;
  1387. struct page *page = NULL;
  1388. int classzone_idx;
  1389. struct zone *zone;
  1390. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1391. int zlc_active = 0; /* set if using zonelist_cache */
  1392. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1393. classzone_idx = zone_idx(preferred_zone);
  1394. zonelist_scan:
  1395. /*
  1396. * Scan zonelist, looking for a zone with enough free.
  1397. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1398. */
  1399. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1400. high_zoneidx, nodemask) {
  1401. if (NUMA_BUILD && zlc_active &&
  1402. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1403. continue;
  1404. if ((alloc_flags & ALLOC_CPUSET) &&
  1405. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1406. goto try_next_zone;
  1407. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1408. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1409. unsigned long mark;
  1410. int ret;
  1411. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1412. if (zone_watermark_ok(zone, order, mark,
  1413. classzone_idx, alloc_flags))
  1414. goto try_this_zone;
  1415. if (zone_reclaim_mode == 0)
  1416. goto this_zone_full;
  1417. ret = zone_reclaim(zone, gfp_mask, order);
  1418. switch (ret) {
  1419. case ZONE_RECLAIM_NOSCAN:
  1420. /* did not scan */
  1421. goto try_next_zone;
  1422. case ZONE_RECLAIM_FULL:
  1423. /* scanned but unreclaimable */
  1424. goto this_zone_full;
  1425. default:
  1426. /* did we reclaim enough */
  1427. if (!zone_watermark_ok(zone, order, mark,
  1428. classzone_idx, alloc_flags))
  1429. goto this_zone_full;
  1430. }
  1431. }
  1432. try_this_zone:
  1433. page = buffered_rmqueue(preferred_zone, zone, order,
  1434. gfp_mask, migratetype);
  1435. if (page)
  1436. break;
  1437. this_zone_full:
  1438. if (NUMA_BUILD)
  1439. zlc_mark_zone_full(zonelist, z);
  1440. try_next_zone:
  1441. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1442. /*
  1443. * we do zlc_setup after the first zone is tried but only
  1444. * if there are multiple nodes make it worthwhile
  1445. */
  1446. allowednodes = zlc_setup(zonelist, alloc_flags);
  1447. zlc_active = 1;
  1448. did_zlc_setup = 1;
  1449. }
  1450. }
  1451. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1452. /* Disable zlc cache for second zonelist scan */
  1453. zlc_active = 0;
  1454. goto zonelist_scan;
  1455. }
  1456. return page;
  1457. }
  1458. static inline int
  1459. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1460. unsigned long pages_reclaimed)
  1461. {
  1462. /* Do not loop if specifically requested */
  1463. if (gfp_mask & __GFP_NORETRY)
  1464. return 0;
  1465. /*
  1466. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1467. * means __GFP_NOFAIL, but that may not be true in other
  1468. * implementations.
  1469. */
  1470. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1471. return 1;
  1472. /*
  1473. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1474. * specified, then we retry until we no longer reclaim any pages
  1475. * (above), or we've reclaimed an order of pages at least as
  1476. * large as the allocation's order. In both cases, if the
  1477. * allocation still fails, we stop retrying.
  1478. */
  1479. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1480. return 1;
  1481. /*
  1482. * Don't let big-order allocations loop unless the caller
  1483. * explicitly requests that.
  1484. */
  1485. if (gfp_mask & __GFP_NOFAIL)
  1486. return 1;
  1487. return 0;
  1488. }
  1489. static inline struct page *
  1490. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1491. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1492. nodemask_t *nodemask, struct zone *preferred_zone,
  1493. int migratetype)
  1494. {
  1495. struct page *page;
  1496. /* Acquire the OOM killer lock for the zones in zonelist */
  1497. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1498. schedule_timeout_uninterruptible(1);
  1499. return NULL;
  1500. }
  1501. /*
  1502. * Go through the zonelist yet one more time, keep very high watermark
  1503. * here, this is only to catch a parallel oom killing, we must fail if
  1504. * we're still under heavy pressure.
  1505. */
  1506. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1507. order, zonelist, high_zoneidx,
  1508. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1509. preferred_zone, migratetype);
  1510. if (page)
  1511. goto out;
  1512. if (!(gfp_mask & __GFP_NOFAIL)) {
  1513. /* The OOM killer will not help higher order allocs */
  1514. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1515. goto out;
  1516. /* The OOM killer does not needlessly kill tasks for lowmem */
  1517. if (high_zoneidx < ZONE_NORMAL)
  1518. goto out;
  1519. /*
  1520. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1521. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1522. * The caller should handle page allocation failure by itself if
  1523. * it specifies __GFP_THISNODE.
  1524. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1525. */
  1526. if (gfp_mask & __GFP_THISNODE)
  1527. goto out;
  1528. }
  1529. /* Exhausted what can be done so it's blamo time */
  1530. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1531. out:
  1532. clear_zonelist_oom(zonelist, gfp_mask);
  1533. return page;
  1534. }
  1535. #ifdef CONFIG_COMPACTION
  1536. /* Try memory compaction for high-order allocations before reclaim */
  1537. static struct page *
  1538. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1539. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1540. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1541. int migratetype, unsigned long *did_some_progress)
  1542. {
  1543. struct page *page;
  1544. if (!order || compaction_deferred(preferred_zone))
  1545. return NULL;
  1546. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1547. nodemask);
  1548. if (*did_some_progress != COMPACT_SKIPPED) {
  1549. /* Page migration frees to the PCP lists but we want merging */
  1550. drain_pages(get_cpu());
  1551. put_cpu();
  1552. page = get_page_from_freelist(gfp_mask, nodemask,
  1553. order, zonelist, high_zoneidx,
  1554. alloc_flags, preferred_zone,
  1555. migratetype);
  1556. if (page) {
  1557. preferred_zone->compact_considered = 0;
  1558. preferred_zone->compact_defer_shift = 0;
  1559. count_vm_event(COMPACTSUCCESS);
  1560. return page;
  1561. }
  1562. /*
  1563. * It's bad if compaction run occurs and fails.
  1564. * The most likely reason is that pages exist,
  1565. * but not enough to satisfy watermarks.
  1566. */
  1567. count_vm_event(COMPACTFAIL);
  1568. defer_compaction(preferred_zone);
  1569. cond_resched();
  1570. }
  1571. return NULL;
  1572. }
  1573. #else
  1574. static inline struct page *
  1575. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1576. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1577. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1578. int migratetype, unsigned long *did_some_progress)
  1579. {
  1580. return NULL;
  1581. }
  1582. #endif /* CONFIG_COMPACTION */
  1583. /* The really slow allocator path where we enter direct reclaim */
  1584. static inline struct page *
  1585. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1586. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1587. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1588. int migratetype, unsigned long *did_some_progress)
  1589. {
  1590. struct page *page = NULL;
  1591. struct reclaim_state reclaim_state;
  1592. struct task_struct *p = current;
  1593. cond_resched();
  1594. /* We now go into synchronous reclaim */
  1595. cpuset_memory_pressure_bump();
  1596. p->flags |= PF_MEMALLOC;
  1597. lockdep_set_current_reclaim_state(gfp_mask);
  1598. reclaim_state.reclaimed_slab = 0;
  1599. p->reclaim_state = &reclaim_state;
  1600. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1601. p->reclaim_state = NULL;
  1602. lockdep_clear_current_reclaim_state();
  1603. p->flags &= ~PF_MEMALLOC;
  1604. cond_resched();
  1605. if (order != 0)
  1606. drain_all_pages();
  1607. if (likely(*did_some_progress))
  1608. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1609. zonelist, high_zoneidx,
  1610. alloc_flags, preferred_zone,
  1611. migratetype);
  1612. return page;
  1613. }
  1614. /*
  1615. * This is called in the allocator slow-path if the allocation request is of
  1616. * sufficient urgency to ignore watermarks and take other desperate measures
  1617. */
  1618. static inline struct page *
  1619. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1620. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1621. nodemask_t *nodemask, struct zone *preferred_zone,
  1622. int migratetype)
  1623. {
  1624. struct page *page;
  1625. do {
  1626. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1627. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1628. preferred_zone, migratetype);
  1629. if (!page && gfp_mask & __GFP_NOFAIL)
  1630. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1631. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1632. return page;
  1633. }
  1634. static inline
  1635. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1636. enum zone_type high_zoneidx)
  1637. {
  1638. struct zoneref *z;
  1639. struct zone *zone;
  1640. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1641. wakeup_kswapd(zone, order);
  1642. }
  1643. static inline int
  1644. gfp_to_alloc_flags(gfp_t gfp_mask)
  1645. {
  1646. struct task_struct *p = current;
  1647. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1648. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1649. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1650. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1651. /*
  1652. * The caller may dip into page reserves a bit more if the caller
  1653. * cannot run direct reclaim, or if the caller has realtime scheduling
  1654. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1655. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1656. */
  1657. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1658. if (!wait) {
  1659. alloc_flags |= ALLOC_HARDER;
  1660. /*
  1661. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1662. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1663. */
  1664. alloc_flags &= ~ALLOC_CPUSET;
  1665. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1666. alloc_flags |= ALLOC_HARDER;
  1667. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1668. if (!in_interrupt() &&
  1669. ((p->flags & PF_MEMALLOC) ||
  1670. unlikely(test_thread_flag(TIF_MEMDIE))))
  1671. alloc_flags |= ALLOC_NO_WATERMARKS;
  1672. }
  1673. return alloc_flags;
  1674. }
  1675. static inline struct page *
  1676. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1677. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1678. nodemask_t *nodemask, struct zone *preferred_zone,
  1679. int migratetype)
  1680. {
  1681. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1682. struct page *page = NULL;
  1683. int alloc_flags;
  1684. unsigned long pages_reclaimed = 0;
  1685. unsigned long did_some_progress;
  1686. struct task_struct *p = current;
  1687. /*
  1688. * In the slowpath, we sanity check order to avoid ever trying to
  1689. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1690. * be using allocators in order of preference for an area that is
  1691. * too large.
  1692. */
  1693. if (order >= MAX_ORDER) {
  1694. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1695. return NULL;
  1696. }
  1697. /*
  1698. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1699. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1700. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1701. * using a larger set of nodes after it has established that the
  1702. * allowed per node queues are empty and that nodes are
  1703. * over allocated.
  1704. */
  1705. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1706. goto nopage;
  1707. restart:
  1708. wake_all_kswapd(order, zonelist, high_zoneidx);
  1709. /*
  1710. * OK, we're below the kswapd watermark and have kicked background
  1711. * reclaim. Now things get more complex, so set up alloc_flags according
  1712. * to how we want to proceed.
  1713. */
  1714. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1715. /* This is the last chance, in general, before the goto nopage. */
  1716. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1717. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1718. preferred_zone, migratetype);
  1719. if (page)
  1720. goto got_pg;
  1721. rebalance:
  1722. /* Allocate without watermarks if the context allows */
  1723. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1724. page = __alloc_pages_high_priority(gfp_mask, order,
  1725. zonelist, high_zoneidx, nodemask,
  1726. preferred_zone, migratetype);
  1727. if (page)
  1728. goto got_pg;
  1729. }
  1730. /* Atomic allocations - we can't balance anything */
  1731. if (!wait)
  1732. goto nopage;
  1733. /* Avoid recursion of direct reclaim */
  1734. if (p->flags & PF_MEMALLOC)
  1735. goto nopage;
  1736. /* Avoid allocations with no watermarks from looping endlessly */
  1737. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1738. goto nopage;
  1739. /* Try direct compaction */
  1740. page = __alloc_pages_direct_compact(gfp_mask, order,
  1741. zonelist, high_zoneidx,
  1742. nodemask,
  1743. alloc_flags, preferred_zone,
  1744. migratetype, &did_some_progress);
  1745. if (page)
  1746. goto got_pg;
  1747. /* Try direct reclaim and then allocating */
  1748. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1749. zonelist, high_zoneidx,
  1750. nodemask,
  1751. alloc_flags, preferred_zone,
  1752. migratetype, &did_some_progress);
  1753. if (page)
  1754. goto got_pg;
  1755. /*
  1756. * If we failed to make any progress reclaiming, then we are
  1757. * running out of options and have to consider going OOM
  1758. */
  1759. if (!did_some_progress) {
  1760. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1761. if (oom_killer_disabled)
  1762. goto nopage;
  1763. page = __alloc_pages_may_oom(gfp_mask, order,
  1764. zonelist, high_zoneidx,
  1765. nodemask, preferred_zone,
  1766. migratetype);
  1767. if (page)
  1768. goto got_pg;
  1769. if (!(gfp_mask & __GFP_NOFAIL)) {
  1770. /*
  1771. * The oom killer is not called for high-order
  1772. * allocations that may fail, so if no progress
  1773. * is being made, there are no other options and
  1774. * retrying is unlikely to help.
  1775. */
  1776. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1777. goto nopage;
  1778. /*
  1779. * The oom killer is not called for lowmem
  1780. * allocations to prevent needlessly killing
  1781. * innocent tasks.
  1782. */
  1783. if (high_zoneidx < ZONE_NORMAL)
  1784. goto nopage;
  1785. }
  1786. goto restart;
  1787. }
  1788. }
  1789. /* Check if we should retry the allocation */
  1790. pages_reclaimed += did_some_progress;
  1791. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1792. /* Wait for some write requests to complete then retry */
  1793. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1794. goto rebalance;
  1795. }
  1796. nopage:
  1797. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1798. printk(KERN_WARNING "%s: page allocation failure."
  1799. " order:%d, mode:0x%x\n",
  1800. p->comm, order, gfp_mask);
  1801. dump_stack();
  1802. show_mem();
  1803. }
  1804. return page;
  1805. got_pg:
  1806. if (kmemcheck_enabled)
  1807. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1808. return page;
  1809. }
  1810. /*
  1811. * This is the 'heart' of the zoned buddy allocator.
  1812. */
  1813. struct page *
  1814. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1815. struct zonelist *zonelist, nodemask_t *nodemask)
  1816. {
  1817. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1818. struct zone *preferred_zone;
  1819. struct page *page;
  1820. int migratetype = allocflags_to_migratetype(gfp_mask);
  1821. gfp_mask &= gfp_allowed_mask;
  1822. lockdep_trace_alloc(gfp_mask);
  1823. might_sleep_if(gfp_mask & __GFP_WAIT);
  1824. if (should_fail_alloc_page(gfp_mask, order))
  1825. return NULL;
  1826. /*
  1827. * Check the zones suitable for the gfp_mask contain at least one
  1828. * valid zone. It's possible to have an empty zonelist as a result
  1829. * of GFP_THISNODE and a memoryless node
  1830. */
  1831. if (unlikely(!zonelist->_zonerefs->zone))
  1832. return NULL;
  1833. get_mems_allowed();
  1834. /* The preferred zone is used for statistics later */
  1835. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1836. if (!preferred_zone) {
  1837. put_mems_allowed();
  1838. return NULL;
  1839. }
  1840. /* First allocation attempt */
  1841. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1842. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1843. preferred_zone, migratetype);
  1844. if (unlikely(!page))
  1845. page = __alloc_pages_slowpath(gfp_mask, order,
  1846. zonelist, high_zoneidx, nodemask,
  1847. preferred_zone, migratetype);
  1848. put_mems_allowed();
  1849. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1850. return page;
  1851. }
  1852. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1853. /*
  1854. * Common helper functions.
  1855. */
  1856. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1857. {
  1858. struct page *page;
  1859. /*
  1860. * __get_free_pages() returns a 32-bit address, which cannot represent
  1861. * a highmem page
  1862. */
  1863. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1864. page = alloc_pages(gfp_mask, order);
  1865. if (!page)
  1866. return 0;
  1867. return (unsigned long) page_address(page);
  1868. }
  1869. EXPORT_SYMBOL(__get_free_pages);
  1870. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1871. {
  1872. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1873. }
  1874. EXPORT_SYMBOL(get_zeroed_page);
  1875. void __pagevec_free(struct pagevec *pvec)
  1876. {
  1877. int i = pagevec_count(pvec);
  1878. while (--i >= 0) {
  1879. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1880. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1881. }
  1882. }
  1883. void __free_pages(struct page *page, unsigned int order)
  1884. {
  1885. if (put_page_testzero(page)) {
  1886. if (order == 0)
  1887. free_hot_cold_page(page, 0);
  1888. else
  1889. __free_pages_ok(page, order);
  1890. }
  1891. }
  1892. EXPORT_SYMBOL(__free_pages);
  1893. void free_pages(unsigned long addr, unsigned int order)
  1894. {
  1895. if (addr != 0) {
  1896. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1897. __free_pages(virt_to_page((void *)addr), order);
  1898. }
  1899. }
  1900. EXPORT_SYMBOL(free_pages);
  1901. /**
  1902. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1903. * @size: the number of bytes to allocate
  1904. * @gfp_mask: GFP flags for the allocation
  1905. *
  1906. * This function is similar to alloc_pages(), except that it allocates the
  1907. * minimum number of pages to satisfy the request. alloc_pages() can only
  1908. * allocate memory in power-of-two pages.
  1909. *
  1910. * This function is also limited by MAX_ORDER.
  1911. *
  1912. * Memory allocated by this function must be released by free_pages_exact().
  1913. */
  1914. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1915. {
  1916. unsigned int order = get_order(size);
  1917. unsigned long addr;
  1918. addr = __get_free_pages(gfp_mask, order);
  1919. if (addr) {
  1920. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1921. unsigned long used = addr + PAGE_ALIGN(size);
  1922. split_page(virt_to_page((void *)addr), order);
  1923. while (used < alloc_end) {
  1924. free_page(used);
  1925. used += PAGE_SIZE;
  1926. }
  1927. }
  1928. return (void *)addr;
  1929. }
  1930. EXPORT_SYMBOL(alloc_pages_exact);
  1931. /**
  1932. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1933. * @virt: the value returned by alloc_pages_exact.
  1934. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1935. *
  1936. * Release the memory allocated by a previous call to alloc_pages_exact.
  1937. */
  1938. void free_pages_exact(void *virt, size_t size)
  1939. {
  1940. unsigned long addr = (unsigned long)virt;
  1941. unsigned long end = addr + PAGE_ALIGN(size);
  1942. while (addr < end) {
  1943. free_page(addr);
  1944. addr += PAGE_SIZE;
  1945. }
  1946. }
  1947. EXPORT_SYMBOL(free_pages_exact);
  1948. static unsigned int nr_free_zone_pages(int offset)
  1949. {
  1950. struct zoneref *z;
  1951. struct zone *zone;
  1952. /* Just pick one node, since fallback list is circular */
  1953. unsigned int sum = 0;
  1954. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1955. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1956. unsigned long size = zone->present_pages;
  1957. unsigned long high = high_wmark_pages(zone);
  1958. if (size > high)
  1959. sum += size - high;
  1960. }
  1961. return sum;
  1962. }
  1963. /*
  1964. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1965. */
  1966. unsigned int nr_free_buffer_pages(void)
  1967. {
  1968. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1969. }
  1970. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1971. /*
  1972. * Amount of free RAM allocatable within all zones
  1973. */
  1974. unsigned int nr_free_pagecache_pages(void)
  1975. {
  1976. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1977. }
  1978. static inline void show_node(struct zone *zone)
  1979. {
  1980. if (NUMA_BUILD)
  1981. printk("Node %d ", zone_to_nid(zone));
  1982. }
  1983. void si_meminfo(struct sysinfo *val)
  1984. {
  1985. val->totalram = totalram_pages;
  1986. val->sharedram = 0;
  1987. val->freeram = global_page_state(NR_FREE_PAGES);
  1988. val->bufferram = nr_blockdev_pages();
  1989. val->totalhigh = totalhigh_pages;
  1990. val->freehigh = nr_free_highpages();
  1991. val->mem_unit = PAGE_SIZE;
  1992. }
  1993. EXPORT_SYMBOL(si_meminfo);
  1994. #ifdef CONFIG_NUMA
  1995. void si_meminfo_node(struct sysinfo *val, int nid)
  1996. {
  1997. pg_data_t *pgdat = NODE_DATA(nid);
  1998. val->totalram = pgdat->node_present_pages;
  1999. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2000. #ifdef CONFIG_HIGHMEM
  2001. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2002. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2003. NR_FREE_PAGES);
  2004. #else
  2005. val->totalhigh = 0;
  2006. val->freehigh = 0;
  2007. #endif
  2008. val->mem_unit = PAGE_SIZE;
  2009. }
  2010. #endif
  2011. #define K(x) ((x) << (PAGE_SHIFT-10))
  2012. /*
  2013. * Show free area list (used inside shift_scroll-lock stuff)
  2014. * We also calculate the percentage fragmentation. We do this by counting the
  2015. * memory on each free list with the exception of the first item on the list.
  2016. */
  2017. void show_free_areas(void)
  2018. {
  2019. int cpu;
  2020. struct zone *zone;
  2021. for_each_populated_zone(zone) {
  2022. show_node(zone);
  2023. printk("%s per-cpu:\n", zone->name);
  2024. for_each_online_cpu(cpu) {
  2025. struct per_cpu_pageset *pageset;
  2026. pageset = per_cpu_ptr(zone->pageset, cpu);
  2027. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2028. cpu, pageset->pcp.high,
  2029. pageset->pcp.batch, pageset->pcp.count);
  2030. }
  2031. }
  2032. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2033. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2034. " unevictable:%lu"
  2035. " dirty:%lu writeback:%lu unstable:%lu\n"
  2036. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2037. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2038. global_page_state(NR_ACTIVE_ANON),
  2039. global_page_state(NR_INACTIVE_ANON),
  2040. global_page_state(NR_ISOLATED_ANON),
  2041. global_page_state(NR_ACTIVE_FILE),
  2042. global_page_state(NR_INACTIVE_FILE),
  2043. global_page_state(NR_ISOLATED_FILE),
  2044. global_page_state(NR_UNEVICTABLE),
  2045. global_page_state(NR_FILE_DIRTY),
  2046. global_page_state(NR_WRITEBACK),
  2047. global_page_state(NR_UNSTABLE_NFS),
  2048. global_page_state(NR_FREE_PAGES),
  2049. global_page_state(NR_SLAB_RECLAIMABLE),
  2050. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2051. global_page_state(NR_FILE_MAPPED),
  2052. global_page_state(NR_SHMEM),
  2053. global_page_state(NR_PAGETABLE),
  2054. global_page_state(NR_BOUNCE));
  2055. for_each_populated_zone(zone) {
  2056. int i;
  2057. show_node(zone);
  2058. printk("%s"
  2059. " free:%lukB"
  2060. " min:%lukB"
  2061. " low:%lukB"
  2062. " high:%lukB"
  2063. " active_anon:%lukB"
  2064. " inactive_anon:%lukB"
  2065. " active_file:%lukB"
  2066. " inactive_file:%lukB"
  2067. " unevictable:%lukB"
  2068. " isolated(anon):%lukB"
  2069. " isolated(file):%lukB"
  2070. " present:%lukB"
  2071. " mlocked:%lukB"
  2072. " dirty:%lukB"
  2073. " writeback:%lukB"
  2074. " mapped:%lukB"
  2075. " shmem:%lukB"
  2076. " slab_reclaimable:%lukB"
  2077. " slab_unreclaimable:%lukB"
  2078. " kernel_stack:%lukB"
  2079. " pagetables:%lukB"
  2080. " unstable:%lukB"
  2081. " bounce:%lukB"
  2082. " writeback_tmp:%lukB"
  2083. " pages_scanned:%lu"
  2084. " all_unreclaimable? %s"
  2085. "\n",
  2086. zone->name,
  2087. K(zone_page_state(zone, NR_FREE_PAGES)),
  2088. K(min_wmark_pages(zone)),
  2089. K(low_wmark_pages(zone)),
  2090. K(high_wmark_pages(zone)),
  2091. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2092. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2093. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2094. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2095. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2096. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2097. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2098. K(zone->present_pages),
  2099. K(zone_page_state(zone, NR_MLOCK)),
  2100. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2101. K(zone_page_state(zone, NR_WRITEBACK)),
  2102. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2103. K(zone_page_state(zone, NR_SHMEM)),
  2104. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2105. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2106. zone_page_state(zone, NR_KERNEL_STACK) *
  2107. THREAD_SIZE / 1024,
  2108. K(zone_page_state(zone, NR_PAGETABLE)),
  2109. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2110. K(zone_page_state(zone, NR_BOUNCE)),
  2111. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2112. zone->pages_scanned,
  2113. (zone->all_unreclaimable ? "yes" : "no")
  2114. );
  2115. printk("lowmem_reserve[]:");
  2116. for (i = 0; i < MAX_NR_ZONES; i++)
  2117. printk(" %lu", zone->lowmem_reserve[i]);
  2118. printk("\n");
  2119. }
  2120. for_each_populated_zone(zone) {
  2121. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2122. show_node(zone);
  2123. printk("%s: ", zone->name);
  2124. spin_lock_irqsave(&zone->lock, flags);
  2125. for (order = 0; order < MAX_ORDER; order++) {
  2126. nr[order] = zone->free_area[order].nr_free;
  2127. total += nr[order] << order;
  2128. }
  2129. spin_unlock_irqrestore(&zone->lock, flags);
  2130. for (order = 0; order < MAX_ORDER; order++)
  2131. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2132. printk("= %lukB\n", K(total));
  2133. }
  2134. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2135. show_swap_cache_info();
  2136. }
  2137. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2138. {
  2139. zoneref->zone = zone;
  2140. zoneref->zone_idx = zone_idx(zone);
  2141. }
  2142. /*
  2143. * Builds allocation fallback zone lists.
  2144. *
  2145. * Add all populated zones of a node to the zonelist.
  2146. */
  2147. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2148. int nr_zones, enum zone_type zone_type)
  2149. {
  2150. struct zone *zone;
  2151. BUG_ON(zone_type >= MAX_NR_ZONES);
  2152. zone_type++;
  2153. do {
  2154. zone_type--;
  2155. zone = pgdat->node_zones + zone_type;
  2156. if (populated_zone(zone)) {
  2157. zoneref_set_zone(zone,
  2158. &zonelist->_zonerefs[nr_zones++]);
  2159. check_highest_zone(zone_type);
  2160. }
  2161. } while (zone_type);
  2162. return nr_zones;
  2163. }
  2164. /*
  2165. * zonelist_order:
  2166. * 0 = automatic detection of better ordering.
  2167. * 1 = order by ([node] distance, -zonetype)
  2168. * 2 = order by (-zonetype, [node] distance)
  2169. *
  2170. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2171. * the same zonelist. So only NUMA can configure this param.
  2172. */
  2173. #define ZONELIST_ORDER_DEFAULT 0
  2174. #define ZONELIST_ORDER_NODE 1
  2175. #define ZONELIST_ORDER_ZONE 2
  2176. /* zonelist order in the kernel.
  2177. * set_zonelist_order() will set this to NODE or ZONE.
  2178. */
  2179. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2180. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2181. #ifdef CONFIG_NUMA
  2182. /* The value user specified ....changed by config */
  2183. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2184. /* string for sysctl */
  2185. #define NUMA_ZONELIST_ORDER_LEN 16
  2186. char numa_zonelist_order[16] = "default";
  2187. /*
  2188. * interface for configure zonelist ordering.
  2189. * command line option "numa_zonelist_order"
  2190. * = "[dD]efault - default, automatic configuration.
  2191. * = "[nN]ode - order by node locality, then by zone within node
  2192. * = "[zZ]one - order by zone, then by locality within zone
  2193. */
  2194. static int __parse_numa_zonelist_order(char *s)
  2195. {
  2196. if (*s == 'd' || *s == 'D') {
  2197. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2198. } else if (*s == 'n' || *s == 'N') {
  2199. user_zonelist_order = ZONELIST_ORDER_NODE;
  2200. } else if (*s == 'z' || *s == 'Z') {
  2201. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2202. } else {
  2203. printk(KERN_WARNING
  2204. "Ignoring invalid numa_zonelist_order value: "
  2205. "%s\n", s);
  2206. return -EINVAL;
  2207. }
  2208. return 0;
  2209. }
  2210. static __init int setup_numa_zonelist_order(char *s)
  2211. {
  2212. if (s)
  2213. return __parse_numa_zonelist_order(s);
  2214. return 0;
  2215. }
  2216. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2217. /*
  2218. * sysctl handler for numa_zonelist_order
  2219. */
  2220. int numa_zonelist_order_handler(ctl_table *table, int write,
  2221. void __user *buffer, size_t *length,
  2222. loff_t *ppos)
  2223. {
  2224. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2225. int ret;
  2226. static DEFINE_MUTEX(zl_order_mutex);
  2227. mutex_lock(&zl_order_mutex);
  2228. if (write)
  2229. strcpy(saved_string, (char*)table->data);
  2230. ret = proc_dostring(table, write, buffer, length, ppos);
  2231. if (ret)
  2232. goto out;
  2233. if (write) {
  2234. int oldval = user_zonelist_order;
  2235. if (__parse_numa_zonelist_order((char*)table->data)) {
  2236. /*
  2237. * bogus value. restore saved string
  2238. */
  2239. strncpy((char*)table->data, saved_string,
  2240. NUMA_ZONELIST_ORDER_LEN);
  2241. user_zonelist_order = oldval;
  2242. } else if (oldval != user_zonelist_order) {
  2243. mutex_lock(&zonelists_mutex);
  2244. build_all_zonelists(NULL);
  2245. mutex_unlock(&zonelists_mutex);
  2246. }
  2247. }
  2248. out:
  2249. mutex_unlock(&zl_order_mutex);
  2250. return ret;
  2251. }
  2252. #define MAX_NODE_LOAD (nr_online_nodes)
  2253. static int node_load[MAX_NUMNODES];
  2254. /**
  2255. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2256. * @node: node whose fallback list we're appending
  2257. * @used_node_mask: nodemask_t of already used nodes
  2258. *
  2259. * We use a number of factors to determine which is the next node that should
  2260. * appear on a given node's fallback list. The node should not have appeared
  2261. * already in @node's fallback list, and it should be the next closest node
  2262. * according to the distance array (which contains arbitrary distance values
  2263. * from each node to each node in the system), and should also prefer nodes
  2264. * with no CPUs, since presumably they'll have very little allocation pressure
  2265. * on them otherwise.
  2266. * It returns -1 if no node is found.
  2267. */
  2268. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2269. {
  2270. int n, val;
  2271. int min_val = INT_MAX;
  2272. int best_node = -1;
  2273. const struct cpumask *tmp = cpumask_of_node(0);
  2274. /* Use the local node if we haven't already */
  2275. if (!node_isset(node, *used_node_mask)) {
  2276. node_set(node, *used_node_mask);
  2277. return node;
  2278. }
  2279. for_each_node_state(n, N_HIGH_MEMORY) {
  2280. /* Don't want a node to appear more than once */
  2281. if (node_isset(n, *used_node_mask))
  2282. continue;
  2283. /* Use the distance array to find the distance */
  2284. val = node_distance(node, n);
  2285. /* Penalize nodes under us ("prefer the next node") */
  2286. val += (n < node);
  2287. /* Give preference to headless and unused nodes */
  2288. tmp = cpumask_of_node(n);
  2289. if (!cpumask_empty(tmp))
  2290. val += PENALTY_FOR_NODE_WITH_CPUS;
  2291. /* Slight preference for less loaded node */
  2292. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2293. val += node_load[n];
  2294. if (val < min_val) {
  2295. min_val = val;
  2296. best_node = n;
  2297. }
  2298. }
  2299. if (best_node >= 0)
  2300. node_set(best_node, *used_node_mask);
  2301. return best_node;
  2302. }
  2303. /*
  2304. * Build zonelists ordered by node and zones within node.
  2305. * This results in maximum locality--normal zone overflows into local
  2306. * DMA zone, if any--but risks exhausting DMA zone.
  2307. */
  2308. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2309. {
  2310. int j;
  2311. struct zonelist *zonelist;
  2312. zonelist = &pgdat->node_zonelists[0];
  2313. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2314. ;
  2315. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2316. MAX_NR_ZONES - 1);
  2317. zonelist->_zonerefs[j].zone = NULL;
  2318. zonelist->_zonerefs[j].zone_idx = 0;
  2319. }
  2320. /*
  2321. * Build gfp_thisnode zonelists
  2322. */
  2323. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2324. {
  2325. int j;
  2326. struct zonelist *zonelist;
  2327. zonelist = &pgdat->node_zonelists[1];
  2328. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2329. zonelist->_zonerefs[j].zone = NULL;
  2330. zonelist->_zonerefs[j].zone_idx = 0;
  2331. }
  2332. /*
  2333. * Build zonelists ordered by zone and nodes within zones.
  2334. * This results in conserving DMA zone[s] until all Normal memory is
  2335. * exhausted, but results in overflowing to remote node while memory
  2336. * may still exist in local DMA zone.
  2337. */
  2338. static int node_order[MAX_NUMNODES];
  2339. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2340. {
  2341. int pos, j, node;
  2342. int zone_type; /* needs to be signed */
  2343. struct zone *z;
  2344. struct zonelist *zonelist;
  2345. zonelist = &pgdat->node_zonelists[0];
  2346. pos = 0;
  2347. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2348. for (j = 0; j < nr_nodes; j++) {
  2349. node = node_order[j];
  2350. z = &NODE_DATA(node)->node_zones[zone_type];
  2351. if (populated_zone(z)) {
  2352. zoneref_set_zone(z,
  2353. &zonelist->_zonerefs[pos++]);
  2354. check_highest_zone(zone_type);
  2355. }
  2356. }
  2357. }
  2358. zonelist->_zonerefs[pos].zone = NULL;
  2359. zonelist->_zonerefs[pos].zone_idx = 0;
  2360. }
  2361. static int default_zonelist_order(void)
  2362. {
  2363. int nid, zone_type;
  2364. unsigned long low_kmem_size,total_size;
  2365. struct zone *z;
  2366. int average_size;
  2367. /*
  2368. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2369. * If they are really small and used heavily, the system can fall
  2370. * into OOM very easily.
  2371. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2372. */
  2373. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2374. low_kmem_size = 0;
  2375. total_size = 0;
  2376. for_each_online_node(nid) {
  2377. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2378. z = &NODE_DATA(nid)->node_zones[zone_type];
  2379. if (populated_zone(z)) {
  2380. if (zone_type < ZONE_NORMAL)
  2381. low_kmem_size += z->present_pages;
  2382. total_size += z->present_pages;
  2383. } else if (zone_type == ZONE_NORMAL) {
  2384. /*
  2385. * If any node has only lowmem, then node order
  2386. * is preferred to allow kernel allocations
  2387. * locally; otherwise, they can easily infringe
  2388. * on other nodes when there is an abundance of
  2389. * lowmem available to allocate from.
  2390. */
  2391. return ZONELIST_ORDER_NODE;
  2392. }
  2393. }
  2394. }
  2395. if (!low_kmem_size || /* there are no DMA area. */
  2396. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2397. return ZONELIST_ORDER_NODE;
  2398. /*
  2399. * look into each node's config.
  2400. * If there is a node whose DMA/DMA32 memory is very big area on
  2401. * local memory, NODE_ORDER may be suitable.
  2402. */
  2403. average_size = total_size /
  2404. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2405. for_each_online_node(nid) {
  2406. low_kmem_size = 0;
  2407. total_size = 0;
  2408. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2409. z = &NODE_DATA(nid)->node_zones[zone_type];
  2410. if (populated_zone(z)) {
  2411. if (zone_type < ZONE_NORMAL)
  2412. low_kmem_size += z->present_pages;
  2413. total_size += z->present_pages;
  2414. }
  2415. }
  2416. if (low_kmem_size &&
  2417. total_size > average_size && /* ignore small node */
  2418. low_kmem_size > total_size * 70/100)
  2419. return ZONELIST_ORDER_NODE;
  2420. }
  2421. return ZONELIST_ORDER_ZONE;
  2422. }
  2423. static void set_zonelist_order(void)
  2424. {
  2425. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2426. current_zonelist_order = default_zonelist_order();
  2427. else
  2428. current_zonelist_order = user_zonelist_order;
  2429. }
  2430. static void build_zonelists(pg_data_t *pgdat)
  2431. {
  2432. int j, node, load;
  2433. enum zone_type i;
  2434. nodemask_t used_mask;
  2435. int local_node, prev_node;
  2436. struct zonelist *zonelist;
  2437. int order = current_zonelist_order;
  2438. /* initialize zonelists */
  2439. for (i = 0; i < MAX_ZONELISTS; i++) {
  2440. zonelist = pgdat->node_zonelists + i;
  2441. zonelist->_zonerefs[0].zone = NULL;
  2442. zonelist->_zonerefs[0].zone_idx = 0;
  2443. }
  2444. /* NUMA-aware ordering of nodes */
  2445. local_node = pgdat->node_id;
  2446. load = nr_online_nodes;
  2447. prev_node = local_node;
  2448. nodes_clear(used_mask);
  2449. memset(node_order, 0, sizeof(node_order));
  2450. j = 0;
  2451. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2452. int distance = node_distance(local_node, node);
  2453. /*
  2454. * If another node is sufficiently far away then it is better
  2455. * to reclaim pages in a zone before going off node.
  2456. */
  2457. if (distance > RECLAIM_DISTANCE)
  2458. zone_reclaim_mode = 1;
  2459. /*
  2460. * We don't want to pressure a particular node.
  2461. * So adding penalty to the first node in same
  2462. * distance group to make it round-robin.
  2463. */
  2464. if (distance != node_distance(local_node, prev_node))
  2465. node_load[node] = load;
  2466. prev_node = node;
  2467. load--;
  2468. if (order == ZONELIST_ORDER_NODE)
  2469. build_zonelists_in_node_order(pgdat, node);
  2470. else
  2471. node_order[j++] = node; /* remember order */
  2472. }
  2473. if (order == ZONELIST_ORDER_ZONE) {
  2474. /* calculate node order -- i.e., DMA last! */
  2475. build_zonelists_in_zone_order(pgdat, j);
  2476. }
  2477. build_thisnode_zonelists(pgdat);
  2478. }
  2479. /* Construct the zonelist performance cache - see further mmzone.h */
  2480. static void build_zonelist_cache(pg_data_t *pgdat)
  2481. {
  2482. struct zonelist *zonelist;
  2483. struct zonelist_cache *zlc;
  2484. struct zoneref *z;
  2485. zonelist = &pgdat->node_zonelists[0];
  2486. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2487. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2488. for (z = zonelist->_zonerefs; z->zone; z++)
  2489. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2490. }
  2491. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2492. /*
  2493. * Return node id of node used for "local" allocations.
  2494. * I.e., first node id of first zone in arg node's generic zonelist.
  2495. * Used for initializing percpu 'numa_mem', which is used primarily
  2496. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2497. */
  2498. int local_memory_node(int node)
  2499. {
  2500. struct zone *zone;
  2501. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2502. gfp_zone(GFP_KERNEL),
  2503. NULL,
  2504. &zone);
  2505. return zone->node;
  2506. }
  2507. #endif
  2508. #else /* CONFIG_NUMA */
  2509. static void set_zonelist_order(void)
  2510. {
  2511. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2512. }
  2513. static void build_zonelists(pg_data_t *pgdat)
  2514. {
  2515. int node, local_node;
  2516. enum zone_type j;
  2517. struct zonelist *zonelist;
  2518. local_node = pgdat->node_id;
  2519. zonelist = &pgdat->node_zonelists[0];
  2520. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2521. /*
  2522. * Now we build the zonelist so that it contains the zones
  2523. * of all the other nodes.
  2524. * We don't want to pressure a particular node, so when
  2525. * building the zones for node N, we make sure that the
  2526. * zones coming right after the local ones are those from
  2527. * node N+1 (modulo N)
  2528. */
  2529. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2530. if (!node_online(node))
  2531. continue;
  2532. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2533. MAX_NR_ZONES - 1);
  2534. }
  2535. for (node = 0; node < local_node; node++) {
  2536. if (!node_online(node))
  2537. continue;
  2538. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2539. MAX_NR_ZONES - 1);
  2540. }
  2541. zonelist->_zonerefs[j].zone = NULL;
  2542. zonelist->_zonerefs[j].zone_idx = 0;
  2543. }
  2544. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2545. static void build_zonelist_cache(pg_data_t *pgdat)
  2546. {
  2547. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2548. }
  2549. #endif /* CONFIG_NUMA */
  2550. /*
  2551. * Boot pageset table. One per cpu which is going to be used for all
  2552. * zones and all nodes. The parameters will be set in such a way
  2553. * that an item put on a list will immediately be handed over to
  2554. * the buddy list. This is safe since pageset manipulation is done
  2555. * with interrupts disabled.
  2556. *
  2557. * The boot_pagesets must be kept even after bootup is complete for
  2558. * unused processors and/or zones. They do play a role for bootstrapping
  2559. * hotplugged processors.
  2560. *
  2561. * zoneinfo_show() and maybe other functions do
  2562. * not check if the processor is online before following the pageset pointer.
  2563. * Other parts of the kernel may not check if the zone is available.
  2564. */
  2565. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2566. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2567. static void setup_zone_pageset(struct zone *zone);
  2568. /*
  2569. * Global mutex to protect against size modification of zonelists
  2570. * as well as to serialize pageset setup for the new populated zone.
  2571. */
  2572. DEFINE_MUTEX(zonelists_mutex);
  2573. /* return values int ....just for stop_machine() */
  2574. static __init_refok int __build_all_zonelists(void *data)
  2575. {
  2576. int nid;
  2577. int cpu;
  2578. #ifdef CONFIG_NUMA
  2579. memset(node_load, 0, sizeof(node_load));
  2580. #endif
  2581. for_each_online_node(nid) {
  2582. pg_data_t *pgdat = NODE_DATA(nid);
  2583. build_zonelists(pgdat);
  2584. build_zonelist_cache(pgdat);
  2585. }
  2586. #ifdef CONFIG_MEMORY_HOTPLUG
  2587. /* Setup real pagesets for the new zone */
  2588. if (data) {
  2589. struct zone *zone = data;
  2590. setup_zone_pageset(zone);
  2591. }
  2592. #endif
  2593. /*
  2594. * Initialize the boot_pagesets that are going to be used
  2595. * for bootstrapping processors. The real pagesets for
  2596. * each zone will be allocated later when the per cpu
  2597. * allocator is available.
  2598. *
  2599. * boot_pagesets are used also for bootstrapping offline
  2600. * cpus if the system is already booted because the pagesets
  2601. * are needed to initialize allocators on a specific cpu too.
  2602. * F.e. the percpu allocator needs the page allocator which
  2603. * needs the percpu allocator in order to allocate its pagesets
  2604. * (a chicken-egg dilemma).
  2605. */
  2606. for_each_possible_cpu(cpu) {
  2607. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2608. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2609. /*
  2610. * We now know the "local memory node" for each node--
  2611. * i.e., the node of the first zone in the generic zonelist.
  2612. * Set up numa_mem percpu variable for on-line cpus. During
  2613. * boot, only the boot cpu should be on-line; we'll init the
  2614. * secondary cpus' numa_mem as they come on-line. During
  2615. * node/memory hotplug, we'll fixup all on-line cpus.
  2616. */
  2617. if (cpu_online(cpu))
  2618. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2619. #endif
  2620. }
  2621. return 0;
  2622. }
  2623. /*
  2624. * Called with zonelists_mutex held always
  2625. * unless system_state == SYSTEM_BOOTING.
  2626. */
  2627. void build_all_zonelists(void *data)
  2628. {
  2629. set_zonelist_order();
  2630. if (system_state == SYSTEM_BOOTING) {
  2631. __build_all_zonelists(NULL);
  2632. mminit_verify_zonelist();
  2633. cpuset_init_current_mems_allowed();
  2634. } else {
  2635. /* we have to stop all cpus to guarantee there is no user
  2636. of zonelist */
  2637. stop_machine(__build_all_zonelists, data, NULL);
  2638. /* cpuset refresh routine should be here */
  2639. }
  2640. vm_total_pages = nr_free_pagecache_pages();
  2641. /*
  2642. * Disable grouping by mobility if the number of pages in the
  2643. * system is too low to allow the mechanism to work. It would be
  2644. * more accurate, but expensive to check per-zone. This check is
  2645. * made on memory-hotadd so a system can start with mobility
  2646. * disabled and enable it later
  2647. */
  2648. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2649. page_group_by_mobility_disabled = 1;
  2650. else
  2651. page_group_by_mobility_disabled = 0;
  2652. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2653. "Total pages: %ld\n",
  2654. nr_online_nodes,
  2655. zonelist_order_name[current_zonelist_order],
  2656. page_group_by_mobility_disabled ? "off" : "on",
  2657. vm_total_pages);
  2658. #ifdef CONFIG_NUMA
  2659. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2660. #endif
  2661. }
  2662. /*
  2663. * Helper functions to size the waitqueue hash table.
  2664. * Essentially these want to choose hash table sizes sufficiently
  2665. * large so that collisions trying to wait on pages are rare.
  2666. * But in fact, the number of active page waitqueues on typical
  2667. * systems is ridiculously low, less than 200. So this is even
  2668. * conservative, even though it seems large.
  2669. *
  2670. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2671. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2672. */
  2673. #define PAGES_PER_WAITQUEUE 256
  2674. #ifndef CONFIG_MEMORY_HOTPLUG
  2675. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2676. {
  2677. unsigned long size = 1;
  2678. pages /= PAGES_PER_WAITQUEUE;
  2679. while (size < pages)
  2680. size <<= 1;
  2681. /*
  2682. * Once we have dozens or even hundreds of threads sleeping
  2683. * on IO we've got bigger problems than wait queue collision.
  2684. * Limit the size of the wait table to a reasonable size.
  2685. */
  2686. size = min(size, 4096UL);
  2687. return max(size, 4UL);
  2688. }
  2689. #else
  2690. /*
  2691. * A zone's size might be changed by hot-add, so it is not possible to determine
  2692. * a suitable size for its wait_table. So we use the maximum size now.
  2693. *
  2694. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2695. *
  2696. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2697. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2698. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2699. *
  2700. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2701. * or more by the traditional way. (See above). It equals:
  2702. *
  2703. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2704. * ia64(16K page size) : = ( 8G + 4M)byte.
  2705. * powerpc (64K page size) : = (32G +16M)byte.
  2706. */
  2707. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2708. {
  2709. return 4096UL;
  2710. }
  2711. #endif
  2712. /*
  2713. * This is an integer logarithm so that shifts can be used later
  2714. * to extract the more random high bits from the multiplicative
  2715. * hash function before the remainder is taken.
  2716. */
  2717. static inline unsigned long wait_table_bits(unsigned long size)
  2718. {
  2719. return ffz(~size);
  2720. }
  2721. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2722. /*
  2723. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2724. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2725. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2726. * higher will lead to a bigger reserve which will get freed as contiguous
  2727. * blocks as reclaim kicks in
  2728. */
  2729. static void setup_zone_migrate_reserve(struct zone *zone)
  2730. {
  2731. unsigned long start_pfn, pfn, end_pfn;
  2732. struct page *page;
  2733. unsigned long block_migratetype;
  2734. int reserve;
  2735. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2736. start_pfn = zone->zone_start_pfn;
  2737. end_pfn = start_pfn + zone->spanned_pages;
  2738. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2739. pageblock_order;
  2740. /*
  2741. * Reserve blocks are generally in place to help high-order atomic
  2742. * allocations that are short-lived. A min_free_kbytes value that
  2743. * would result in more than 2 reserve blocks for atomic allocations
  2744. * is assumed to be in place to help anti-fragmentation for the
  2745. * future allocation of hugepages at runtime.
  2746. */
  2747. reserve = min(2, reserve);
  2748. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2749. if (!pfn_valid(pfn))
  2750. continue;
  2751. page = pfn_to_page(pfn);
  2752. /* Watch out for overlapping nodes */
  2753. if (page_to_nid(page) != zone_to_nid(zone))
  2754. continue;
  2755. /* Blocks with reserved pages will never free, skip them. */
  2756. if (PageReserved(page))
  2757. continue;
  2758. block_migratetype = get_pageblock_migratetype(page);
  2759. /* If this block is reserved, account for it */
  2760. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2761. reserve--;
  2762. continue;
  2763. }
  2764. /* Suitable for reserving if this block is movable */
  2765. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2766. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2767. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2768. reserve--;
  2769. continue;
  2770. }
  2771. /*
  2772. * If the reserve is met and this is a previous reserved block,
  2773. * take it back
  2774. */
  2775. if (block_migratetype == MIGRATE_RESERVE) {
  2776. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2777. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2778. }
  2779. }
  2780. }
  2781. /*
  2782. * Initially all pages are reserved - free ones are freed
  2783. * up by free_all_bootmem() once the early boot process is
  2784. * done. Non-atomic initialization, single-pass.
  2785. */
  2786. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2787. unsigned long start_pfn, enum memmap_context context)
  2788. {
  2789. struct page *page;
  2790. unsigned long end_pfn = start_pfn + size;
  2791. unsigned long pfn;
  2792. struct zone *z;
  2793. if (highest_memmap_pfn < end_pfn - 1)
  2794. highest_memmap_pfn = end_pfn - 1;
  2795. z = &NODE_DATA(nid)->node_zones[zone];
  2796. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2797. /*
  2798. * There can be holes in boot-time mem_map[]s
  2799. * handed to this function. They do not
  2800. * exist on hotplugged memory.
  2801. */
  2802. if (context == MEMMAP_EARLY) {
  2803. if (!early_pfn_valid(pfn))
  2804. continue;
  2805. if (!early_pfn_in_nid(pfn, nid))
  2806. continue;
  2807. }
  2808. page = pfn_to_page(pfn);
  2809. set_page_links(page, zone, nid, pfn);
  2810. mminit_verify_page_links(page, zone, nid, pfn);
  2811. init_page_count(page);
  2812. reset_page_mapcount(page);
  2813. SetPageReserved(page);
  2814. /*
  2815. * Mark the block movable so that blocks are reserved for
  2816. * movable at startup. This will force kernel allocations
  2817. * to reserve their blocks rather than leaking throughout
  2818. * the address space during boot when many long-lived
  2819. * kernel allocations are made. Later some blocks near
  2820. * the start are marked MIGRATE_RESERVE by
  2821. * setup_zone_migrate_reserve()
  2822. *
  2823. * bitmap is created for zone's valid pfn range. but memmap
  2824. * can be created for invalid pages (for alignment)
  2825. * check here not to call set_pageblock_migratetype() against
  2826. * pfn out of zone.
  2827. */
  2828. if ((z->zone_start_pfn <= pfn)
  2829. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2830. && !(pfn & (pageblock_nr_pages - 1)))
  2831. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2832. INIT_LIST_HEAD(&page->lru);
  2833. #ifdef WANT_PAGE_VIRTUAL
  2834. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2835. if (!is_highmem_idx(zone))
  2836. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2837. #endif
  2838. }
  2839. }
  2840. static void __meminit zone_init_free_lists(struct zone *zone)
  2841. {
  2842. int order, t;
  2843. for_each_migratetype_order(order, t) {
  2844. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2845. zone->free_area[order].nr_free = 0;
  2846. }
  2847. }
  2848. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2849. #define memmap_init(size, nid, zone, start_pfn) \
  2850. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2851. #endif
  2852. static int zone_batchsize(struct zone *zone)
  2853. {
  2854. #ifdef CONFIG_MMU
  2855. int batch;
  2856. /*
  2857. * The per-cpu-pages pools are set to around 1000th of the
  2858. * size of the zone. But no more than 1/2 of a meg.
  2859. *
  2860. * OK, so we don't know how big the cache is. So guess.
  2861. */
  2862. batch = zone->present_pages / 1024;
  2863. if (batch * PAGE_SIZE > 512 * 1024)
  2864. batch = (512 * 1024) / PAGE_SIZE;
  2865. batch /= 4; /* We effectively *= 4 below */
  2866. if (batch < 1)
  2867. batch = 1;
  2868. /*
  2869. * Clamp the batch to a 2^n - 1 value. Having a power
  2870. * of 2 value was found to be more likely to have
  2871. * suboptimal cache aliasing properties in some cases.
  2872. *
  2873. * For example if 2 tasks are alternately allocating
  2874. * batches of pages, one task can end up with a lot
  2875. * of pages of one half of the possible page colors
  2876. * and the other with pages of the other colors.
  2877. */
  2878. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2879. return batch;
  2880. #else
  2881. /* The deferral and batching of frees should be suppressed under NOMMU
  2882. * conditions.
  2883. *
  2884. * The problem is that NOMMU needs to be able to allocate large chunks
  2885. * of contiguous memory as there's no hardware page translation to
  2886. * assemble apparent contiguous memory from discontiguous pages.
  2887. *
  2888. * Queueing large contiguous runs of pages for batching, however,
  2889. * causes the pages to actually be freed in smaller chunks. As there
  2890. * can be a significant delay between the individual batches being
  2891. * recycled, this leads to the once large chunks of space being
  2892. * fragmented and becoming unavailable for high-order allocations.
  2893. */
  2894. return 0;
  2895. #endif
  2896. }
  2897. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2898. {
  2899. struct per_cpu_pages *pcp;
  2900. int migratetype;
  2901. memset(p, 0, sizeof(*p));
  2902. pcp = &p->pcp;
  2903. pcp->count = 0;
  2904. pcp->high = 6 * batch;
  2905. pcp->batch = max(1UL, 1 * batch);
  2906. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2907. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2908. }
  2909. /*
  2910. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2911. * to the value high for the pageset p.
  2912. */
  2913. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2914. unsigned long high)
  2915. {
  2916. struct per_cpu_pages *pcp;
  2917. pcp = &p->pcp;
  2918. pcp->high = high;
  2919. pcp->batch = max(1UL, high/4);
  2920. if ((high/4) > (PAGE_SHIFT * 8))
  2921. pcp->batch = PAGE_SHIFT * 8;
  2922. }
  2923. static __meminit void setup_zone_pageset(struct zone *zone)
  2924. {
  2925. int cpu;
  2926. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2927. for_each_possible_cpu(cpu) {
  2928. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2929. setup_pageset(pcp, zone_batchsize(zone));
  2930. if (percpu_pagelist_fraction)
  2931. setup_pagelist_highmark(pcp,
  2932. (zone->present_pages /
  2933. percpu_pagelist_fraction));
  2934. }
  2935. }
  2936. /*
  2937. * Allocate per cpu pagesets and initialize them.
  2938. * Before this call only boot pagesets were available.
  2939. */
  2940. void __init setup_per_cpu_pageset(void)
  2941. {
  2942. struct zone *zone;
  2943. for_each_populated_zone(zone)
  2944. setup_zone_pageset(zone);
  2945. }
  2946. static noinline __init_refok
  2947. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2948. {
  2949. int i;
  2950. struct pglist_data *pgdat = zone->zone_pgdat;
  2951. size_t alloc_size;
  2952. /*
  2953. * The per-page waitqueue mechanism uses hashed waitqueues
  2954. * per zone.
  2955. */
  2956. zone->wait_table_hash_nr_entries =
  2957. wait_table_hash_nr_entries(zone_size_pages);
  2958. zone->wait_table_bits =
  2959. wait_table_bits(zone->wait_table_hash_nr_entries);
  2960. alloc_size = zone->wait_table_hash_nr_entries
  2961. * sizeof(wait_queue_head_t);
  2962. if (!slab_is_available()) {
  2963. zone->wait_table = (wait_queue_head_t *)
  2964. alloc_bootmem_node(pgdat, alloc_size);
  2965. } else {
  2966. /*
  2967. * This case means that a zone whose size was 0 gets new memory
  2968. * via memory hot-add.
  2969. * But it may be the case that a new node was hot-added. In
  2970. * this case vmalloc() will not be able to use this new node's
  2971. * memory - this wait_table must be initialized to use this new
  2972. * node itself as well.
  2973. * To use this new node's memory, further consideration will be
  2974. * necessary.
  2975. */
  2976. zone->wait_table = vmalloc(alloc_size);
  2977. }
  2978. if (!zone->wait_table)
  2979. return -ENOMEM;
  2980. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2981. init_waitqueue_head(zone->wait_table + i);
  2982. return 0;
  2983. }
  2984. static int __zone_pcp_update(void *data)
  2985. {
  2986. struct zone *zone = data;
  2987. int cpu;
  2988. unsigned long batch = zone_batchsize(zone), flags;
  2989. for_each_possible_cpu(cpu) {
  2990. struct per_cpu_pageset *pset;
  2991. struct per_cpu_pages *pcp;
  2992. pset = per_cpu_ptr(zone->pageset, cpu);
  2993. pcp = &pset->pcp;
  2994. local_irq_save(flags);
  2995. free_pcppages_bulk(zone, pcp->count, pcp);
  2996. setup_pageset(pset, batch);
  2997. local_irq_restore(flags);
  2998. }
  2999. return 0;
  3000. }
  3001. void zone_pcp_update(struct zone *zone)
  3002. {
  3003. stop_machine(__zone_pcp_update, zone, NULL);
  3004. }
  3005. static __meminit void zone_pcp_init(struct zone *zone)
  3006. {
  3007. /*
  3008. * per cpu subsystem is not up at this point. The following code
  3009. * relies on the ability of the linker to provide the
  3010. * offset of a (static) per cpu variable into the per cpu area.
  3011. */
  3012. zone->pageset = &boot_pageset;
  3013. if (zone->present_pages)
  3014. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3015. zone->name, zone->present_pages,
  3016. zone_batchsize(zone));
  3017. }
  3018. __meminit int init_currently_empty_zone(struct zone *zone,
  3019. unsigned long zone_start_pfn,
  3020. unsigned long size,
  3021. enum memmap_context context)
  3022. {
  3023. struct pglist_data *pgdat = zone->zone_pgdat;
  3024. int ret;
  3025. ret = zone_wait_table_init(zone, size);
  3026. if (ret)
  3027. return ret;
  3028. pgdat->nr_zones = zone_idx(zone) + 1;
  3029. zone->zone_start_pfn = zone_start_pfn;
  3030. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3031. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3032. pgdat->node_id,
  3033. (unsigned long)zone_idx(zone),
  3034. zone_start_pfn, (zone_start_pfn + size));
  3035. zone_init_free_lists(zone);
  3036. return 0;
  3037. }
  3038. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3039. /*
  3040. * Basic iterator support. Return the first range of PFNs for a node
  3041. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3042. */
  3043. static int __meminit first_active_region_index_in_nid(int nid)
  3044. {
  3045. int i;
  3046. for (i = 0; i < nr_nodemap_entries; i++)
  3047. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3048. return i;
  3049. return -1;
  3050. }
  3051. /*
  3052. * Basic iterator support. Return the next active range of PFNs for a node
  3053. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3054. */
  3055. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3056. {
  3057. for (index = index + 1; index < nr_nodemap_entries; index++)
  3058. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3059. return index;
  3060. return -1;
  3061. }
  3062. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3063. /*
  3064. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3065. * Architectures may implement their own version but if add_active_range()
  3066. * was used and there are no special requirements, this is a convenient
  3067. * alternative
  3068. */
  3069. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3070. {
  3071. int i;
  3072. for (i = 0; i < nr_nodemap_entries; i++) {
  3073. unsigned long start_pfn = early_node_map[i].start_pfn;
  3074. unsigned long end_pfn = early_node_map[i].end_pfn;
  3075. if (start_pfn <= pfn && pfn < end_pfn)
  3076. return early_node_map[i].nid;
  3077. }
  3078. /* This is a memory hole */
  3079. return -1;
  3080. }
  3081. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3082. int __meminit early_pfn_to_nid(unsigned long pfn)
  3083. {
  3084. int nid;
  3085. nid = __early_pfn_to_nid(pfn);
  3086. if (nid >= 0)
  3087. return nid;
  3088. /* just returns 0 */
  3089. return 0;
  3090. }
  3091. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3092. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3093. {
  3094. int nid;
  3095. nid = __early_pfn_to_nid(pfn);
  3096. if (nid >= 0 && nid != node)
  3097. return false;
  3098. return true;
  3099. }
  3100. #endif
  3101. /* Basic iterator support to walk early_node_map[] */
  3102. #define for_each_active_range_index_in_nid(i, nid) \
  3103. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3104. i = next_active_region_index_in_nid(i, nid))
  3105. /**
  3106. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3107. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3108. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3109. *
  3110. * If an architecture guarantees that all ranges registered with
  3111. * add_active_ranges() contain no holes and may be freed, this
  3112. * this function may be used instead of calling free_bootmem() manually.
  3113. */
  3114. void __init free_bootmem_with_active_regions(int nid,
  3115. unsigned long max_low_pfn)
  3116. {
  3117. int i;
  3118. for_each_active_range_index_in_nid(i, nid) {
  3119. unsigned long size_pages = 0;
  3120. unsigned long end_pfn = early_node_map[i].end_pfn;
  3121. if (early_node_map[i].start_pfn >= max_low_pfn)
  3122. continue;
  3123. if (end_pfn > max_low_pfn)
  3124. end_pfn = max_low_pfn;
  3125. size_pages = end_pfn - early_node_map[i].start_pfn;
  3126. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3127. PFN_PHYS(early_node_map[i].start_pfn),
  3128. size_pages << PAGE_SHIFT);
  3129. }
  3130. }
  3131. int __init add_from_early_node_map(struct range *range, int az,
  3132. int nr_range, int nid)
  3133. {
  3134. int i;
  3135. u64 start, end;
  3136. /* need to go over early_node_map to find out good range for node */
  3137. for_each_active_range_index_in_nid(i, nid) {
  3138. start = early_node_map[i].start_pfn;
  3139. end = early_node_map[i].end_pfn;
  3140. nr_range = add_range(range, az, nr_range, start, end);
  3141. }
  3142. return nr_range;
  3143. }
  3144. #ifdef CONFIG_NO_BOOTMEM
  3145. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  3146. u64 goal, u64 limit)
  3147. {
  3148. int i;
  3149. void *ptr;
  3150. if (limit > get_max_mapped())
  3151. limit = get_max_mapped();
  3152. /* need to go over early_node_map to find out good range for node */
  3153. for_each_active_range_index_in_nid(i, nid) {
  3154. u64 addr;
  3155. u64 ei_start, ei_last;
  3156. ei_last = early_node_map[i].end_pfn;
  3157. ei_last <<= PAGE_SHIFT;
  3158. ei_start = early_node_map[i].start_pfn;
  3159. ei_start <<= PAGE_SHIFT;
  3160. addr = find_early_area(ei_start, ei_last,
  3161. goal, limit, size, align);
  3162. if (addr == -1ULL)
  3163. continue;
  3164. #if 0
  3165. printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
  3166. nid,
  3167. ei_start, ei_last, goal, limit, size,
  3168. align, addr);
  3169. #endif
  3170. ptr = phys_to_virt(addr);
  3171. memset(ptr, 0, size);
  3172. reserve_early_without_check(addr, addr + size, "BOOTMEM");
  3173. /*
  3174. * The min_count is set to 0 so that bootmem allocated blocks
  3175. * are never reported as leaks.
  3176. */
  3177. kmemleak_alloc(ptr, size, 0, 0);
  3178. return ptr;
  3179. }
  3180. return NULL;
  3181. }
  3182. #endif
  3183. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3184. {
  3185. int i;
  3186. int ret;
  3187. for_each_active_range_index_in_nid(i, nid) {
  3188. ret = work_fn(early_node_map[i].start_pfn,
  3189. early_node_map[i].end_pfn, data);
  3190. if (ret)
  3191. break;
  3192. }
  3193. }
  3194. /**
  3195. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3196. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3197. *
  3198. * If an architecture guarantees that all ranges registered with
  3199. * add_active_ranges() contain no holes and may be freed, this
  3200. * function may be used instead of calling memory_present() manually.
  3201. */
  3202. void __init sparse_memory_present_with_active_regions(int nid)
  3203. {
  3204. int i;
  3205. for_each_active_range_index_in_nid(i, nid)
  3206. memory_present(early_node_map[i].nid,
  3207. early_node_map[i].start_pfn,
  3208. early_node_map[i].end_pfn);
  3209. }
  3210. /**
  3211. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3212. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3213. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3214. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3215. *
  3216. * It returns the start and end page frame of a node based on information
  3217. * provided by an arch calling add_active_range(). If called for a node
  3218. * with no available memory, a warning is printed and the start and end
  3219. * PFNs will be 0.
  3220. */
  3221. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3222. unsigned long *start_pfn, unsigned long *end_pfn)
  3223. {
  3224. int i;
  3225. *start_pfn = -1UL;
  3226. *end_pfn = 0;
  3227. for_each_active_range_index_in_nid(i, nid) {
  3228. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3229. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3230. }
  3231. if (*start_pfn == -1UL)
  3232. *start_pfn = 0;
  3233. }
  3234. /*
  3235. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3236. * assumption is made that zones within a node are ordered in monotonic
  3237. * increasing memory addresses so that the "highest" populated zone is used
  3238. */
  3239. static void __init find_usable_zone_for_movable(void)
  3240. {
  3241. int zone_index;
  3242. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3243. if (zone_index == ZONE_MOVABLE)
  3244. continue;
  3245. if (arch_zone_highest_possible_pfn[zone_index] >
  3246. arch_zone_lowest_possible_pfn[zone_index])
  3247. break;
  3248. }
  3249. VM_BUG_ON(zone_index == -1);
  3250. movable_zone = zone_index;
  3251. }
  3252. /*
  3253. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3254. * because it is sized independant of architecture. Unlike the other zones,
  3255. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3256. * in each node depending on the size of each node and how evenly kernelcore
  3257. * is distributed. This helper function adjusts the zone ranges
  3258. * provided by the architecture for a given node by using the end of the
  3259. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3260. * zones within a node are in order of monotonic increases memory addresses
  3261. */
  3262. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3263. unsigned long zone_type,
  3264. unsigned long node_start_pfn,
  3265. unsigned long node_end_pfn,
  3266. unsigned long *zone_start_pfn,
  3267. unsigned long *zone_end_pfn)
  3268. {
  3269. /* Only adjust if ZONE_MOVABLE is on this node */
  3270. if (zone_movable_pfn[nid]) {
  3271. /* Size ZONE_MOVABLE */
  3272. if (zone_type == ZONE_MOVABLE) {
  3273. *zone_start_pfn = zone_movable_pfn[nid];
  3274. *zone_end_pfn = min(node_end_pfn,
  3275. arch_zone_highest_possible_pfn[movable_zone]);
  3276. /* Adjust for ZONE_MOVABLE starting within this range */
  3277. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3278. *zone_end_pfn > zone_movable_pfn[nid]) {
  3279. *zone_end_pfn = zone_movable_pfn[nid];
  3280. /* Check if this whole range is within ZONE_MOVABLE */
  3281. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3282. *zone_start_pfn = *zone_end_pfn;
  3283. }
  3284. }
  3285. /*
  3286. * Return the number of pages a zone spans in a node, including holes
  3287. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3288. */
  3289. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3290. unsigned long zone_type,
  3291. unsigned long *ignored)
  3292. {
  3293. unsigned long node_start_pfn, node_end_pfn;
  3294. unsigned long zone_start_pfn, zone_end_pfn;
  3295. /* Get the start and end of the node and zone */
  3296. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3297. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3298. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3299. adjust_zone_range_for_zone_movable(nid, zone_type,
  3300. node_start_pfn, node_end_pfn,
  3301. &zone_start_pfn, &zone_end_pfn);
  3302. /* Check that this node has pages within the zone's required range */
  3303. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3304. return 0;
  3305. /* Move the zone boundaries inside the node if necessary */
  3306. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3307. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3308. /* Return the spanned pages */
  3309. return zone_end_pfn - zone_start_pfn;
  3310. }
  3311. /*
  3312. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3313. * then all holes in the requested range will be accounted for.
  3314. */
  3315. unsigned long __meminit __absent_pages_in_range(int nid,
  3316. unsigned long range_start_pfn,
  3317. unsigned long range_end_pfn)
  3318. {
  3319. int i = 0;
  3320. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3321. unsigned long start_pfn;
  3322. /* Find the end_pfn of the first active range of pfns in the node */
  3323. i = first_active_region_index_in_nid(nid);
  3324. if (i == -1)
  3325. return 0;
  3326. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3327. /* Account for ranges before physical memory on this node */
  3328. if (early_node_map[i].start_pfn > range_start_pfn)
  3329. hole_pages = prev_end_pfn - range_start_pfn;
  3330. /* Find all holes for the zone within the node */
  3331. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3332. /* No need to continue if prev_end_pfn is outside the zone */
  3333. if (prev_end_pfn >= range_end_pfn)
  3334. break;
  3335. /* Make sure the end of the zone is not within the hole */
  3336. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3337. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3338. /* Update the hole size cound and move on */
  3339. if (start_pfn > range_start_pfn) {
  3340. BUG_ON(prev_end_pfn > start_pfn);
  3341. hole_pages += start_pfn - prev_end_pfn;
  3342. }
  3343. prev_end_pfn = early_node_map[i].end_pfn;
  3344. }
  3345. /* Account for ranges past physical memory on this node */
  3346. if (range_end_pfn > prev_end_pfn)
  3347. hole_pages += range_end_pfn -
  3348. max(range_start_pfn, prev_end_pfn);
  3349. return hole_pages;
  3350. }
  3351. /**
  3352. * absent_pages_in_range - Return number of page frames in holes within a range
  3353. * @start_pfn: The start PFN to start searching for holes
  3354. * @end_pfn: The end PFN to stop searching for holes
  3355. *
  3356. * It returns the number of pages frames in memory holes within a range.
  3357. */
  3358. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3359. unsigned long end_pfn)
  3360. {
  3361. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3362. }
  3363. /* Return the number of page frames in holes in a zone on a node */
  3364. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3365. unsigned long zone_type,
  3366. unsigned long *ignored)
  3367. {
  3368. unsigned long node_start_pfn, node_end_pfn;
  3369. unsigned long zone_start_pfn, zone_end_pfn;
  3370. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3371. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3372. node_start_pfn);
  3373. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3374. node_end_pfn);
  3375. adjust_zone_range_for_zone_movable(nid, zone_type,
  3376. node_start_pfn, node_end_pfn,
  3377. &zone_start_pfn, &zone_end_pfn);
  3378. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3379. }
  3380. #else
  3381. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3382. unsigned long zone_type,
  3383. unsigned long *zones_size)
  3384. {
  3385. return zones_size[zone_type];
  3386. }
  3387. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3388. unsigned long zone_type,
  3389. unsigned long *zholes_size)
  3390. {
  3391. if (!zholes_size)
  3392. return 0;
  3393. return zholes_size[zone_type];
  3394. }
  3395. #endif
  3396. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3397. unsigned long *zones_size, unsigned long *zholes_size)
  3398. {
  3399. unsigned long realtotalpages, totalpages = 0;
  3400. enum zone_type i;
  3401. for (i = 0; i < MAX_NR_ZONES; i++)
  3402. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3403. zones_size);
  3404. pgdat->node_spanned_pages = totalpages;
  3405. realtotalpages = totalpages;
  3406. for (i = 0; i < MAX_NR_ZONES; i++)
  3407. realtotalpages -=
  3408. zone_absent_pages_in_node(pgdat->node_id, i,
  3409. zholes_size);
  3410. pgdat->node_present_pages = realtotalpages;
  3411. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3412. realtotalpages);
  3413. }
  3414. #ifndef CONFIG_SPARSEMEM
  3415. /*
  3416. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3417. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3418. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3419. * round what is now in bits to nearest long in bits, then return it in
  3420. * bytes.
  3421. */
  3422. static unsigned long __init usemap_size(unsigned long zonesize)
  3423. {
  3424. unsigned long usemapsize;
  3425. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3426. usemapsize = usemapsize >> pageblock_order;
  3427. usemapsize *= NR_PAGEBLOCK_BITS;
  3428. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3429. return usemapsize / 8;
  3430. }
  3431. static void __init setup_usemap(struct pglist_data *pgdat,
  3432. struct zone *zone, unsigned long zonesize)
  3433. {
  3434. unsigned long usemapsize = usemap_size(zonesize);
  3435. zone->pageblock_flags = NULL;
  3436. if (usemapsize)
  3437. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3438. }
  3439. #else
  3440. static void inline setup_usemap(struct pglist_data *pgdat,
  3441. struct zone *zone, unsigned long zonesize) {}
  3442. #endif /* CONFIG_SPARSEMEM */
  3443. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3444. /* Return a sensible default order for the pageblock size. */
  3445. static inline int pageblock_default_order(void)
  3446. {
  3447. if (HPAGE_SHIFT > PAGE_SHIFT)
  3448. return HUGETLB_PAGE_ORDER;
  3449. return MAX_ORDER-1;
  3450. }
  3451. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3452. static inline void __init set_pageblock_order(unsigned int order)
  3453. {
  3454. /* Check that pageblock_nr_pages has not already been setup */
  3455. if (pageblock_order)
  3456. return;
  3457. /*
  3458. * Assume the largest contiguous order of interest is a huge page.
  3459. * This value may be variable depending on boot parameters on IA64
  3460. */
  3461. pageblock_order = order;
  3462. }
  3463. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3464. /*
  3465. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3466. * and pageblock_default_order() are unused as pageblock_order is set
  3467. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3468. * pageblock_order based on the kernel config
  3469. */
  3470. static inline int pageblock_default_order(unsigned int order)
  3471. {
  3472. return MAX_ORDER-1;
  3473. }
  3474. #define set_pageblock_order(x) do {} while (0)
  3475. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3476. /*
  3477. * Set up the zone data structures:
  3478. * - mark all pages reserved
  3479. * - mark all memory queues empty
  3480. * - clear the memory bitmaps
  3481. */
  3482. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3483. unsigned long *zones_size, unsigned long *zholes_size)
  3484. {
  3485. enum zone_type j;
  3486. int nid = pgdat->node_id;
  3487. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3488. int ret;
  3489. pgdat_resize_init(pgdat);
  3490. pgdat->nr_zones = 0;
  3491. init_waitqueue_head(&pgdat->kswapd_wait);
  3492. pgdat->kswapd_max_order = 0;
  3493. pgdat_page_cgroup_init(pgdat);
  3494. for (j = 0; j < MAX_NR_ZONES; j++) {
  3495. struct zone *zone = pgdat->node_zones + j;
  3496. unsigned long size, realsize, memmap_pages;
  3497. enum lru_list l;
  3498. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3499. realsize = size - zone_absent_pages_in_node(nid, j,
  3500. zholes_size);
  3501. /*
  3502. * Adjust realsize so that it accounts for how much memory
  3503. * is used by this zone for memmap. This affects the watermark
  3504. * and per-cpu initialisations
  3505. */
  3506. memmap_pages =
  3507. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3508. if (realsize >= memmap_pages) {
  3509. realsize -= memmap_pages;
  3510. if (memmap_pages)
  3511. printk(KERN_DEBUG
  3512. " %s zone: %lu pages used for memmap\n",
  3513. zone_names[j], memmap_pages);
  3514. } else
  3515. printk(KERN_WARNING
  3516. " %s zone: %lu pages exceeds realsize %lu\n",
  3517. zone_names[j], memmap_pages, realsize);
  3518. /* Account for reserved pages */
  3519. if (j == 0 && realsize > dma_reserve) {
  3520. realsize -= dma_reserve;
  3521. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3522. zone_names[0], dma_reserve);
  3523. }
  3524. if (!is_highmem_idx(j))
  3525. nr_kernel_pages += realsize;
  3526. nr_all_pages += realsize;
  3527. zone->spanned_pages = size;
  3528. zone->present_pages = realsize;
  3529. #ifdef CONFIG_NUMA
  3530. zone->node = nid;
  3531. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3532. / 100;
  3533. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3534. #endif
  3535. zone->name = zone_names[j];
  3536. spin_lock_init(&zone->lock);
  3537. spin_lock_init(&zone->lru_lock);
  3538. zone_seqlock_init(zone);
  3539. zone->zone_pgdat = pgdat;
  3540. zone->prev_priority = DEF_PRIORITY;
  3541. zone_pcp_init(zone);
  3542. for_each_lru(l) {
  3543. INIT_LIST_HEAD(&zone->lru[l].list);
  3544. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3545. }
  3546. zone->reclaim_stat.recent_rotated[0] = 0;
  3547. zone->reclaim_stat.recent_rotated[1] = 0;
  3548. zone->reclaim_stat.recent_scanned[0] = 0;
  3549. zone->reclaim_stat.recent_scanned[1] = 0;
  3550. zap_zone_vm_stats(zone);
  3551. zone->flags = 0;
  3552. if (!size)
  3553. continue;
  3554. set_pageblock_order(pageblock_default_order());
  3555. setup_usemap(pgdat, zone, size);
  3556. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3557. size, MEMMAP_EARLY);
  3558. BUG_ON(ret);
  3559. memmap_init(size, nid, j, zone_start_pfn);
  3560. zone_start_pfn += size;
  3561. }
  3562. }
  3563. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3564. {
  3565. /* Skip empty nodes */
  3566. if (!pgdat->node_spanned_pages)
  3567. return;
  3568. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3569. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3570. if (!pgdat->node_mem_map) {
  3571. unsigned long size, start, end;
  3572. struct page *map;
  3573. /*
  3574. * The zone's endpoints aren't required to be MAX_ORDER
  3575. * aligned but the node_mem_map endpoints must be in order
  3576. * for the buddy allocator to function correctly.
  3577. */
  3578. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3579. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3580. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3581. size = (end - start) * sizeof(struct page);
  3582. map = alloc_remap(pgdat->node_id, size);
  3583. if (!map)
  3584. map = alloc_bootmem_node(pgdat, size);
  3585. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3586. }
  3587. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3588. /*
  3589. * With no DISCONTIG, the global mem_map is just set as node 0's
  3590. */
  3591. if (pgdat == NODE_DATA(0)) {
  3592. mem_map = NODE_DATA(0)->node_mem_map;
  3593. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3594. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3595. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3596. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3597. }
  3598. #endif
  3599. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3600. }
  3601. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3602. unsigned long node_start_pfn, unsigned long *zholes_size)
  3603. {
  3604. pg_data_t *pgdat = NODE_DATA(nid);
  3605. pgdat->node_id = nid;
  3606. pgdat->node_start_pfn = node_start_pfn;
  3607. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3608. alloc_node_mem_map(pgdat);
  3609. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3610. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3611. nid, (unsigned long)pgdat,
  3612. (unsigned long)pgdat->node_mem_map);
  3613. #endif
  3614. free_area_init_core(pgdat, zones_size, zholes_size);
  3615. }
  3616. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3617. #if MAX_NUMNODES > 1
  3618. /*
  3619. * Figure out the number of possible node ids.
  3620. */
  3621. static void __init setup_nr_node_ids(void)
  3622. {
  3623. unsigned int node;
  3624. unsigned int highest = 0;
  3625. for_each_node_mask(node, node_possible_map)
  3626. highest = node;
  3627. nr_node_ids = highest + 1;
  3628. }
  3629. #else
  3630. static inline void setup_nr_node_ids(void)
  3631. {
  3632. }
  3633. #endif
  3634. /**
  3635. * add_active_range - Register a range of PFNs backed by physical memory
  3636. * @nid: The node ID the range resides on
  3637. * @start_pfn: The start PFN of the available physical memory
  3638. * @end_pfn: The end PFN of the available physical memory
  3639. *
  3640. * These ranges are stored in an early_node_map[] and later used by
  3641. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3642. * range spans a memory hole, it is up to the architecture to ensure
  3643. * the memory is not freed by the bootmem allocator. If possible
  3644. * the range being registered will be merged with existing ranges.
  3645. */
  3646. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3647. unsigned long end_pfn)
  3648. {
  3649. int i;
  3650. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3651. "Entering add_active_range(%d, %#lx, %#lx) "
  3652. "%d entries of %d used\n",
  3653. nid, start_pfn, end_pfn,
  3654. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3655. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3656. /* Merge with existing active regions if possible */
  3657. for (i = 0; i < nr_nodemap_entries; i++) {
  3658. if (early_node_map[i].nid != nid)
  3659. continue;
  3660. /* Skip if an existing region covers this new one */
  3661. if (start_pfn >= early_node_map[i].start_pfn &&
  3662. end_pfn <= early_node_map[i].end_pfn)
  3663. return;
  3664. /* Merge forward if suitable */
  3665. if (start_pfn <= early_node_map[i].end_pfn &&
  3666. end_pfn > early_node_map[i].end_pfn) {
  3667. early_node_map[i].end_pfn = end_pfn;
  3668. return;
  3669. }
  3670. /* Merge backward if suitable */
  3671. if (start_pfn < early_node_map[i].start_pfn &&
  3672. end_pfn >= early_node_map[i].start_pfn) {
  3673. early_node_map[i].start_pfn = start_pfn;
  3674. return;
  3675. }
  3676. }
  3677. /* Check that early_node_map is large enough */
  3678. if (i >= MAX_ACTIVE_REGIONS) {
  3679. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3680. MAX_ACTIVE_REGIONS);
  3681. return;
  3682. }
  3683. early_node_map[i].nid = nid;
  3684. early_node_map[i].start_pfn = start_pfn;
  3685. early_node_map[i].end_pfn = end_pfn;
  3686. nr_nodemap_entries = i + 1;
  3687. }
  3688. /**
  3689. * remove_active_range - Shrink an existing registered range of PFNs
  3690. * @nid: The node id the range is on that should be shrunk
  3691. * @start_pfn: The new PFN of the range
  3692. * @end_pfn: The new PFN of the range
  3693. *
  3694. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3695. * The map is kept near the end physical page range that has already been
  3696. * registered. This function allows an arch to shrink an existing registered
  3697. * range.
  3698. */
  3699. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3700. unsigned long end_pfn)
  3701. {
  3702. int i, j;
  3703. int removed = 0;
  3704. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3705. nid, start_pfn, end_pfn);
  3706. /* Find the old active region end and shrink */
  3707. for_each_active_range_index_in_nid(i, nid) {
  3708. if (early_node_map[i].start_pfn >= start_pfn &&
  3709. early_node_map[i].end_pfn <= end_pfn) {
  3710. /* clear it */
  3711. early_node_map[i].start_pfn = 0;
  3712. early_node_map[i].end_pfn = 0;
  3713. removed = 1;
  3714. continue;
  3715. }
  3716. if (early_node_map[i].start_pfn < start_pfn &&
  3717. early_node_map[i].end_pfn > start_pfn) {
  3718. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3719. early_node_map[i].end_pfn = start_pfn;
  3720. if (temp_end_pfn > end_pfn)
  3721. add_active_range(nid, end_pfn, temp_end_pfn);
  3722. continue;
  3723. }
  3724. if (early_node_map[i].start_pfn >= start_pfn &&
  3725. early_node_map[i].end_pfn > end_pfn &&
  3726. early_node_map[i].start_pfn < end_pfn) {
  3727. early_node_map[i].start_pfn = end_pfn;
  3728. continue;
  3729. }
  3730. }
  3731. if (!removed)
  3732. return;
  3733. /* remove the blank ones */
  3734. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3735. if (early_node_map[i].nid != nid)
  3736. continue;
  3737. if (early_node_map[i].end_pfn)
  3738. continue;
  3739. /* we found it, get rid of it */
  3740. for (j = i; j < nr_nodemap_entries - 1; j++)
  3741. memcpy(&early_node_map[j], &early_node_map[j+1],
  3742. sizeof(early_node_map[j]));
  3743. j = nr_nodemap_entries - 1;
  3744. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3745. nr_nodemap_entries--;
  3746. }
  3747. }
  3748. /**
  3749. * remove_all_active_ranges - Remove all currently registered regions
  3750. *
  3751. * During discovery, it may be found that a table like SRAT is invalid
  3752. * and an alternative discovery method must be used. This function removes
  3753. * all currently registered regions.
  3754. */
  3755. void __init remove_all_active_ranges(void)
  3756. {
  3757. memset(early_node_map, 0, sizeof(early_node_map));
  3758. nr_nodemap_entries = 0;
  3759. }
  3760. /* Compare two active node_active_regions */
  3761. static int __init cmp_node_active_region(const void *a, const void *b)
  3762. {
  3763. struct node_active_region *arange = (struct node_active_region *)a;
  3764. struct node_active_region *brange = (struct node_active_region *)b;
  3765. /* Done this way to avoid overflows */
  3766. if (arange->start_pfn > brange->start_pfn)
  3767. return 1;
  3768. if (arange->start_pfn < brange->start_pfn)
  3769. return -1;
  3770. return 0;
  3771. }
  3772. /* sort the node_map by start_pfn */
  3773. void __init sort_node_map(void)
  3774. {
  3775. sort(early_node_map, (size_t)nr_nodemap_entries,
  3776. sizeof(struct node_active_region),
  3777. cmp_node_active_region, NULL);
  3778. }
  3779. /* Find the lowest pfn for a node */
  3780. static unsigned long __init find_min_pfn_for_node(int nid)
  3781. {
  3782. int i;
  3783. unsigned long min_pfn = ULONG_MAX;
  3784. /* Assuming a sorted map, the first range found has the starting pfn */
  3785. for_each_active_range_index_in_nid(i, nid)
  3786. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3787. if (min_pfn == ULONG_MAX) {
  3788. printk(KERN_WARNING
  3789. "Could not find start_pfn for node %d\n", nid);
  3790. return 0;
  3791. }
  3792. return min_pfn;
  3793. }
  3794. /**
  3795. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3796. *
  3797. * It returns the minimum PFN based on information provided via
  3798. * add_active_range().
  3799. */
  3800. unsigned long __init find_min_pfn_with_active_regions(void)
  3801. {
  3802. return find_min_pfn_for_node(MAX_NUMNODES);
  3803. }
  3804. /*
  3805. * early_calculate_totalpages()
  3806. * Sum pages in active regions for movable zone.
  3807. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3808. */
  3809. static unsigned long __init early_calculate_totalpages(void)
  3810. {
  3811. int i;
  3812. unsigned long totalpages = 0;
  3813. for (i = 0; i < nr_nodemap_entries; i++) {
  3814. unsigned long pages = early_node_map[i].end_pfn -
  3815. early_node_map[i].start_pfn;
  3816. totalpages += pages;
  3817. if (pages)
  3818. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3819. }
  3820. return totalpages;
  3821. }
  3822. /*
  3823. * Find the PFN the Movable zone begins in each node. Kernel memory
  3824. * is spread evenly between nodes as long as the nodes have enough
  3825. * memory. When they don't, some nodes will have more kernelcore than
  3826. * others
  3827. */
  3828. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3829. {
  3830. int i, nid;
  3831. unsigned long usable_startpfn;
  3832. unsigned long kernelcore_node, kernelcore_remaining;
  3833. /* save the state before borrow the nodemask */
  3834. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3835. unsigned long totalpages = early_calculate_totalpages();
  3836. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3837. /*
  3838. * If movablecore was specified, calculate what size of
  3839. * kernelcore that corresponds so that memory usable for
  3840. * any allocation type is evenly spread. If both kernelcore
  3841. * and movablecore are specified, then the value of kernelcore
  3842. * will be used for required_kernelcore if it's greater than
  3843. * what movablecore would have allowed.
  3844. */
  3845. if (required_movablecore) {
  3846. unsigned long corepages;
  3847. /*
  3848. * Round-up so that ZONE_MOVABLE is at least as large as what
  3849. * was requested by the user
  3850. */
  3851. required_movablecore =
  3852. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3853. corepages = totalpages - required_movablecore;
  3854. required_kernelcore = max(required_kernelcore, corepages);
  3855. }
  3856. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3857. if (!required_kernelcore)
  3858. goto out;
  3859. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3860. find_usable_zone_for_movable();
  3861. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3862. restart:
  3863. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3864. kernelcore_node = required_kernelcore / usable_nodes;
  3865. for_each_node_state(nid, N_HIGH_MEMORY) {
  3866. /*
  3867. * Recalculate kernelcore_node if the division per node
  3868. * now exceeds what is necessary to satisfy the requested
  3869. * amount of memory for the kernel
  3870. */
  3871. if (required_kernelcore < kernelcore_node)
  3872. kernelcore_node = required_kernelcore / usable_nodes;
  3873. /*
  3874. * As the map is walked, we track how much memory is usable
  3875. * by the kernel using kernelcore_remaining. When it is
  3876. * 0, the rest of the node is usable by ZONE_MOVABLE
  3877. */
  3878. kernelcore_remaining = kernelcore_node;
  3879. /* Go through each range of PFNs within this node */
  3880. for_each_active_range_index_in_nid(i, nid) {
  3881. unsigned long start_pfn, end_pfn;
  3882. unsigned long size_pages;
  3883. start_pfn = max(early_node_map[i].start_pfn,
  3884. zone_movable_pfn[nid]);
  3885. end_pfn = early_node_map[i].end_pfn;
  3886. if (start_pfn >= end_pfn)
  3887. continue;
  3888. /* Account for what is only usable for kernelcore */
  3889. if (start_pfn < usable_startpfn) {
  3890. unsigned long kernel_pages;
  3891. kernel_pages = min(end_pfn, usable_startpfn)
  3892. - start_pfn;
  3893. kernelcore_remaining -= min(kernel_pages,
  3894. kernelcore_remaining);
  3895. required_kernelcore -= min(kernel_pages,
  3896. required_kernelcore);
  3897. /* Continue if range is now fully accounted */
  3898. if (end_pfn <= usable_startpfn) {
  3899. /*
  3900. * Push zone_movable_pfn to the end so
  3901. * that if we have to rebalance
  3902. * kernelcore across nodes, we will
  3903. * not double account here
  3904. */
  3905. zone_movable_pfn[nid] = end_pfn;
  3906. continue;
  3907. }
  3908. start_pfn = usable_startpfn;
  3909. }
  3910. /*
  3911. * The usable PFN range for ZONE_MOVABLE is from
  3912. * start_pfn->end_pfn. Calculate size_pages as the
  3913. * number of pages used as kernelcore
  3914. */
  3915. size_pages = end_pfn - start_pfn;
  3916. if (size_pages > kernelcore_remaining)
  3917. size_pages = kernelcore_remaining;
  3918. zone_movable_pfn[nid] = start_pfn + size_pages;
  3919. /*
  3920. * Some kernelcore has been met, update counts and
  3921. * break if the kernelcore for this node has been
  3922. * satisified
  3923. */
  3924. required_kernelcore -= min(required_kernelcore,
  3925. size_pages);
  3926. kernelcore_remaining -= size_pages;
  3927. if (!kernelcore_remaining)
  3928. break;
  3929. }
  3930. }
  3931. /*
  3932. * If there is still required_kernelcore, we do another pass with one
  3933. * less node in the count. This will push zone_movable_pfn[nid] further
  3934. * along on the nodes that still have memory until kernelcore is
  3935. * satisified
  3936. */
  3937. usable_nodes--;
  3938. if (usable_nodes && required_kernelcore > usable_nodes)
  3939. goto restart;
  3940. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3941. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3942. zone_movable_pfn[nid] =
  3943. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3944. out:
  3945. /* restore the node_state */
  3946. node_states[N_HIGH_MEMORY] = saved_node_state;
  3947. }
  3948. /* Any regular memory on that node ? */
  3949. static void check_for_regular_memory(pg_data_t *pgdat)
  3950. {
  3951. #ifdef CONFIG_HIGHMEM
  3952. enum zone_type zone_type;
  3953. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3954. struct zone *zone = &pgdat->node_zones[zone_type];
  3955. if (zone->present_pages)
  3956. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3957. }
  3958. #endif
  3959. }
  3960. /**
  3961. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3962. * @max_zone_pfn: an array of max PFNs for each zone
  3963. *
  3964. * This will call free_area_init_node() for each active node in the system.
  3965. * Using the page ranges provided by add_active_range(), the size of each
  3966. * zone in each node and their holes is calculated. If the maximum PFN
  3967. * between two adjacent zones match, it is assumed that the zone is empty.
  3968. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3969. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3970. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3971. * at arch_max_dma_pfn.
  3972. */
  3973. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3974. {
  3975. unsigned long nid;
  3976. int i;
  3977. /* Sort early_node_map as initialisation assumes it is sorted */
  3978. sort_node_map();
  3979. /* Record where the zone boundaries are */
  3980. memset(arch_zone_lowest_possible_pfn, 0,
  3981. sizeof(arch_zone_lowest_possible_pfn));
  3982. memset(arch_zone_highest_possible_pfn, 0,
  3983. sizeof(arch_zone_highest_possible_pfn));
  3984. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3985. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3986. for (i = 1; i < MAX_NR_ZONES; i++) {
  3987. if (i == ZONE_MOVABLE)
  3988. continue;
  3989. arch_zone_lowest_possible_pfn[i] =
  3990. arch_zone_highest_possible_pfn[i-1];
  3991. arch_zone_highest_possible_pfn[i] =
  3992. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3993. }
  3994. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3995. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3996. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3997. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3998. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3999. /* Print out the zone ranges */
  4000. printk("Zone PFN ranges:\n");
  4001. for (i = 0; i < MAX_NR_ZONES; i++) {
  4002. if (i == ZONE_MOVABLE)
  4003. continue;
  4004. printk(" %-8s ", zone_names[i]);
  4005. if (arch_zone_lowest_possible_pfn[i] ==
  4006. arch_zone_highest_possible_pfn[i])
  4007. printk("empty\n");
  4008. else
  4009. printk("%0#10lx -> %0#10lx\n",
  4010. arch_zone_lowest_possible_pfn[i],
  4011. arch_zone_highest_possible_pfn[i]);
  4012. }
  4013. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4014. printk("Movable zone start PFN for each node\n");
  4015. for (i = 0; i < MAX_NUMNODES; i++) {
  4016. if (zone_movable_pfn[i])
  4017. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4018. }
  4019. /* Print out the early_node_map[] */
  4020. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4021. for (i = 0; i < nr_nodemap_entries; i++)
  4022. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4023. early_node_map[i].start_pfn,
  4024. early_node_map[i].end_pfn);
  4025. /* Initialise every node */
  4026. mminit_verify_pageflags_layout();
  4027. setup_nr_node_ids();
  4028. for_each_online_node(nid) {
  4029. pg_data_t *pgdat = NODE_DATA(nid);
  4030. free_area_init_node(nid, NULL,
  4031. find_min_pfn_for_node(nid), NULL);
  4032. /* Any memory on that node */
  4033. if (pgdat->node_present_pages)
  4034. node_set_state(nid, N_HIGH_MEMORY);
  4035. check_for_regular_memory(pgdat);
  4036. }
  4037. }
  4038. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4039. {
  4040. unsigned long long coremem;
  4041. if (!p)
  4042. return -EINVAL;
  4043. coremem = memparse(p, &p);
  4044. *core = coremem >> PAGE_SHIFT;
  4045. /* Paranoid check that UL is enough for the coremem value */
  4046. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4047. return 0;
  4048. }
  4049. /*
  4050. * kernelcore=size sets the amount of memory for use for allocations that
  4051. * cannot be reclaimed or migrated.
  4052. */
  4053. static int __init cmdline_parse_kernelcore(char *p)
  4054. {
  4055. return cmdline_parse_core(p, &required_kernelcore);
  4056. }
  4057. /*
  4058. * movablecore=size sets the amount of memory for use for allocations that
  4059. * can be reclaimed or migrated.
  4060. */
  4061. static int __init cmdline_parse_movablecore(char *p)
  4062. {
  4063. return cmdline_parse_core(p, &required_movablecore);
  4064. }
  4065. early_param("kernelcore", cmdline_parse_kernelcore);
  4066. early_param("movablecore", cmdline_parse_movablecore);
  4067. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4068. /**
  4069. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4070. * @new_dma_reserve: The number of pages to mark reserved
  4071. *
  4072. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4073. * In the DMA zone, a significant percentage may be consumed by kernel image
  4074. * and other unfreeable allocations which can skew the watermarks badly. This
  4075. * function may optionally be used to account for unfreeable pages in the
  4076. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4077. * smaller per-cpu batchsize.
  4078. */
  4079. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4080. {
  4081. dma_reserve = new_dma_reserve;
  4082. }
  4083. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4084. struct pglist_data __refdata contig_page_data = {
  4085. #ifndef CONFIG_NO_BOOTMEM
  4086. .bdata = &bootmem_node_data[0]
  4087. #endif
  4088. };
  4089. EXPORT_SYMBOL(contig_page_data);
  4090. #endif
  4091. void __init free_area_init(unsigned long *zones_size)
  4092. {
  4093. free_area_init_node(0, zones_size,
  4094. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4095. }
  4096. static int page_alloc_cpu_notify(struct notifier_block *self,
  4097. unsigned long action, void *hcpu)
  4098. {
  4099. int cpu = (unsigned long)hcpu;
  4100. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4101. drain_pages(cpu);
  4102. /*
  4103. * Spill the event counters of the dead processor
  4104. * into the current processors event counters.
  4105. * This artificially elevates the count of the current
  4106. * processor.
  4107. */
  4108. vm_events_fold_cpu(cpu);
  4109. /*
  4110. * Zero the differential counters of the dead processor
  4111. * so that the vm statistics are consistent.
  4112. *
  4113. * This is only okay since the processor is dead and cannot
  4114. * race with what we are doing.
  4115. */
  4116. refresh_cpu_vm_stats(cpu);
  4117. }
  4118. return NOTIFY_OK;
  4119. }
  4120. void __init page_alloc_init(void)
  4121. {
  4122. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4123. }
  4124. /*
  4125. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4126. * or min_free_kbytes changes.
  4127. */
  4128. static void calculate_totalreserve_pages(void)
  4129. {
  4130. struct pglist_data *pgdat;
  4131. unsigned long reserve_pages = 0;
  4132. enum zone_type i, j;
  4133. for_each_online_pgdat(pgdat) {
  4134. for (i = 0; i < MAX_NR_ZONES; i++) {
  4135. struct zone *zone = pgdat->node_zones + i;
  4136. unsigned long max = 0;
  4137. /* Find valid and maximum lowmem_reserve in the zone */
  4138. for (j = i; j < MAX_NR_ZONES; j++) {
  4139. if (zone->lowmem_reserve[j] > max)
  4140. max = zone->lowmem_reserve[j];
  4141. }
  4142. /* we treat the high watermark as reserved pages. */
  4143. max += high_wmark_pages(zone);
  4144. if (max > zone->present_pages)
  4145. max = zone->present_pages;
  4146. reserve_pages += max;
  4147. }
  4148. }
  4149. totalreserve_pages = reserve_pages;
  4150. }
  4151. /*
  4152. * setup_per_zone_lowmem_reserve - called whenever
  4153. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4154. * has a correct pages reserved value, so an adequate number of
  4155. * pages are left in the zone after a successful __alloc_pages().
  4156. */
  4157. static void setup_per_zone_lowmem_reserve(void)
  4158. {
  4159. struct pglist_data *pgdat;
  4160. enum zone_type j, idx;
  4161. for_each_online_pgdat(pgdat) {
  4162. for (j = 0; j < MAX_NR_ZONES; j++) {
  4163. struct zone *zone = pgdat->node_zones + j;
  4164. unsigned long present_pages = zone->present_pages;
  4165. zone->lowmem_reserve[j] = 0;
  4166. idx = j;
  4167. while (idx) {
  4168. struct zone *lower_zone;
  4169. idx--;
  4170. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4171. sysctl_lowmem_reserve_ratio[idx] = 1;
  4172. lower_zone = pgdat->node_zones + idx;
  4173. lower_zone->lowmem_reserve[j] = present_pages /
  4174. sysctl_lowmem_reserve_ratio[idx];
  4175. present_pages += lower_zone->present_pages;
  4176. }
  4177. }
  4178. }
  4179. /* update totalreserve_pages */
  4180. calculate_totalreserve_pages();
  4181. }
  4182. /**
  4183. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4184. * or when memory is hot-{added|removed}
  4185. *
  4186. * Ensures that the watermark[min,low,high] values for each zone are set
  4187. * correctly with respect to min_free_kbytes.
  4188. */
  4189. void setup_per_zone_wmarks(void)
  4190. {
  4191. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4192. unsigned long lowmem_pages = 0;
  4193. struct zone *zone;
  4194. unsigned long flags;
  4195. /* Calculate total number of !ZONE_HIGHMEM pages */
  4196. for_each_zone(zone) {
  4197. if (!is_highmem(zone))
  4198. lowmem_pages += zone->present_pages;
  4199. }
  4200. for_each_zone(zone) {
  4201. u64 tmp;
  4202. spin_lock_irqsave(&zone->lock, flags);
  4203. tmp = (u64)pages_min * zone->present_pages;
  4204. do_div(tmp, lowmem_pages);
  4205. if (is_highmem(zone)) {
  4206. /*
  4207. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4208. * need highmem pages, so cap pages_min to a small
  4209. * value here.
  4210. *
  4211. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4212. * deltas controls asynch page reclaim, and so should
  4213. * not be capped for highmem.
  4214. */
  4215. int min_pages;
  4216. min_pages = zone->present_pages / 1024;
  4217. if (min_pages < SWAP_CLUSTER_MAX)
  4218. min_pages = SWAP_CLUSTER_MAX;
  4219. if (min_pages > 128)
  4220. min_pages = 128;
  4221. zone->watermark[WMARK_MIN] = min_pages;
  4222. } else {
  4223. /*
  4224. * If it's a lowmem zone, reserve a number of pages
  4225. * proportionate to the zone's size.
  4226. */
  4227. zone->watermark[WMARK_MIN] = tmp;
  4228. }
  4229. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4230. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4231. setup_zone_migrate_reserve(zone);
  4232. spin_unlock_irqrestore(&zone->lock, flags);
  4233. }
  4234. /* update totalreserve_pages */
  4235. calculate_totalreserve_pages();
  4236. }
  4237. /*
  4238. * The inactive anon list should be small enough that the VM never has to
  4239. * do too much work, but large enough that each inactive page has a chance
  4240. * to be referenced again before it is swapped out.
  4241. *
  4242. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4243. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4244. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4245. * the anonymous pages are kept on the inactive list.
  4246. *
  4247. * total target max
  4248. * memory ratio inactive anon
  4249. * -------------------------------------
  4250. * 10MB 1 5MB
  4251. * 100MB 1 50MB
  4252. * 1GB 3 250MB
  4253. * 10GB 10 0.9GB
  4254. * 100GB 31 3GB
  4255. * 1TB 101 10GB
  4256. * 10TB 320 32GB
  4257. */
  4258. void calculate_zone_inactive_ratio(struct zone *zone)
  4259. {
  4260. unsigned int gb, ratio;
  4261. /* Zone size in gigabytes */
  4262. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4263. if (gb)
  4264. ratio = int_sqrt(10 * gb);
  4265. else
  4266. ratio = 1;
  4267. zone->inactive_ratio = ratio;
  4268. }
  4269. static void __init setup_per_zone_inactive_ratio(void)
  4270. {
  4271. struct zone *zone;
  4272. for_each_zone(zone)
  4273. calculate_zone_inactive_ratio(zone);
  4274. }
  4275. /*
  4276. * Initialise min_free_kbytes.
  4277. *
  4278. * For small machines we want it small (128k min). For large machines
  4279. * we want it large (64MB max). But it is not linear, because network
  4280. * bandwidth does not increase linearly with machine size. We use
  4281. *
  4282. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4283. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4284. *
  4285. * which yields
  4286. *
  4287. * 16MB: 512k
  4288. * 32MB: 724k
  4289. * 64MB: 1024k
  4290. * 128MB: 1448k
  4291. * 256MB: 2048k
  4292. * 512MB: 2896k
  4293. * 1024MB: 4096k
  4294. * 2048MB: 5792k
  4295. * 4096MB: 8192k
  4296. * 8192MB: 11584k
  4297. * 16384MB: 16384k
  4298. */
  4299. static int __init init_per_zone_wmark_min(void)
  4300. {
  4301. unsigned long lowmem_kbytes;
  4302. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4303. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4304. if (min_free_kbytes < 128)
  4305. min_free_kbytes = 128;
  4306. if (min_free_kbytes > 65536)
  4307. min_free_kbytes = 65536;
  4308. setup_per_zone_wmarks();
  4309. setup_per_zone_lowmem_reserve();
  4310. setup_per_zone_inactive_ratio();
  4311. return 0;
  4312. }
  4313. module_init(init_per_zone_wmark_min)
  4314. /*
  4315. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4316. * that we can call two helper functions whenever min_free_kbytes
  4317. * changes.
  4318. */
  4319. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4320. void __user *buffer, size_t *length, loff_t *ppos)
  4321. {
  4322. proc_dointvec(table, write, buffer, length, ppos);
  4323. if (write)
  4324. setup_per_zone_wmarks();
  4325. return 0;
  4326. }
  4327. #ifdef CONFIG_NUMA
  4328. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4329. void __user *buffer, size_t *length, loff_t *ppos)
  4330. {
  4331. struct zone *zone;
  4332. int rc;
  4333. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4334. if (rc)
  4335. return rc;
  4336. for_each_zone(zone)
  4337. zone->min_unmapped_pages = (zone->present_pages *
  4338. sysctl_min_unmapped_ratio) / 100;
  4339. return 0;
  4340. }
  4341. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4342. void __user *buffer, size_t *length, loff_t *ppos)
  4343. {
  4344. struct zone *zone;
  4345. int rc;
  4346. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4347. if (rc)
  4348. return rc;
  4349. for_each_zone(zone)
  4350. zone->min_slab_pages = (zone->present_pages *
  4351. sysctl_min_slab_ratio) / 100;
  4352. return 0;
  4353. }
  4354. #endif
  4355. /*
  4356. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4357. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4358. * whenever sysctl_lowmem_reserve_ratio changes.
  4359. *
  4360. * The reserve ratio obviously has absolutely no relation with the
  4361. * minimum watermarks. The lowmem reserve ratio can only make sense
  4362. * if in function of the boot time zone sizes.
  4363. */
  4364. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4365. void __user *buffer, size_t *length, loff_t *ppos)
  4366. {
  4367. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4368. setup_per_zone_lowmem_reserve();
  4369. return 0;
  4370. }
  4371. /*
  4372. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4373. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4374. * can have before it gets flushed back to buddy allocator.
  4375. */
  4376. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4377. void __user *buffer, size_t *length, loff_t *ppos)
  4378. {
  4379. struct zone *zone;
  4380. unsigned int cpu;
  4381. int ret;
  4382. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4383. if (!write || (ret == -EINVAL))
  4384. return ret;
  4385. for_each_populated_zone(zone) {
  4386. for_each_possible_cpu(cpu) {
  4387. unsigned long high;
  4388. high = zone->present_pages / percpu_pagelist_fraction;
  4389. setup_pagelist_highmark(
  4390. per_cpu_ptr(zone->pageset, cpu), high);
  4391. }
  4392. }
  4393. return 0;
  4394. }
  4395. int hashdist = HASHDIST_DEFAULT;
  4396. #ifdef CONFIG_NUMA
  4397. static int __init set_hashdist(char *str)
  4398. {
  4399. if (!str)
  4400. return 0;
  4401. hashdist = simple_strtoul(str, &str, 0);
  4402. return 1;
  4403. }
  4404. __setup("hashdist=", set_hashdist);
  4405. #endif
  4406. /*
  4407. * allocate a large system hash table from bootmem
  4408. * - it is assumed that the hash table must contain an exact power-of-2
  4409. * quantity of entries
  4410. * - limit is the number of hash buckets, not the total allocation size
  4411. */
  4412. void *__init alloc_large_system_hash(const char *tablename,
  4413. unsigned long bucketsize,
  4414. unsigned long numentries,
  4415. int scale,
  4416. int flags,
  4417. unsigned int *_hash_shift,
  4418. unsigned int *_hash_mask,
  4419. unsigned long limit)
  4420. {
  4421. unsigned long long max = limit;
  4422. unsigned long log2qty, size;
  4423. void *table = NULL;
  4424. /* allow the kernel cmdline to have a say */
  4425. if (!numentries) {
  4426. /* round applicable memory size up to nearest megabyte */
  4427. numentries = nr_kernel_pages;
  4428. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4429. numentries >>= 20 - PAGE_SHIFT;
  4430. numentries <<= 20 - PAGE_SHIFT;
  4431. /* limit to 1 bucket per 2^scale bytes of low memory */
  4432. if (scale > PAGE_SHIFT)
  4433. numentries >>= (scale - PAGE_SHIFT);
  4434. else
  4435. numentries <<= (PAGE_SHIFT - scale);
  4436. /* Make sure we've got at least a 0-order allocation.. */
  4437. if (unlikely(flags & HASH_SMALL)) {
  4438. /* Makes no sense without HASH_EARLY */
  4439. WARN_ON(!(flags & HASH_EARLY));
  4440. if (!(numentries >> *_hash_shift)) {
  4441. numentries = 1UL << *_hash_shift;
  4442. BUG_ON(!numentries);
  4443. }
  4444. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4445. numentries = PAGE_SIZE / bucketsize;
  4446. }
  4447. numentries = roundup_pow_of_two(numentries);
  4448. /* limit allocation size to 1/16 total memory by default */
  4449. if (max == 0) {
  4450. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4451. do_div(max, bucketsize);
  4452. }
  4453. if (numentries > max)
  4454. numentries = max;
  4455. log2qty = ilog2(numentries);
  4456. do {
  4457. size = bucketsize << log2qty;
  4458. if (flags & HASH_EARLY)
  4459. table = alloc_bootmem_nopanic(size);
  4460. else if (hashdist)
  4461. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4462. else {
  4463. /*
  4464. * If bucketsize is not a power-of-two, we may free
  4465. * some pages at the end of hash table which
  4466. * alloc_pages_exact() automatically does
  4467. */
  4468. if (get_order(size) < MAX_ORDER) {
  4469. table = alloc_pages_exact(size, GFP_ATOMIC);
  4470. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4471. }
  4472. }
  4473. } while (!table && size > PAGE_SIZE && --log2qty);
  4474. if (!table)
  4475. panic("Failed to allocate %s hash table\n", tablename);
  4476. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4477. tablename,
  4478. (1U << log2qty),
  4479. ilog2(size) - PAGE_SHIFT,
  4480. size);
  4481. if (_hash_shift)
  4482. *_hash_shift = log2qty;
  4483. if (_hash_mask)
  4484. *_hash_mask = (1 << log2qty) - 1;
  4485. return table;
  4486. }
  4487. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4488. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4489. unsigned long pfn)
  4490. {
  4491. #ifdef CONFIG_SPARSEMEM
  4492. return __pfn_to_section(pfn)->pageblock_flags;
  4493. #else
  4494. return zone->pageblock_flags;
  4495. #endif /* CONFIG_SPARSEMEM */
  4496. }
  4497. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4498. {
  4499. #ifdef CONFIG_SPARSEMEM
  4500. pfn &= (PAGES_PER_SECTION-1);
  4501. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4502. #else
  4503. pfn = pfn - zone->zone_start_pfn;
  4504. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4505. #endif /* CONFIG_SPARSEMEM */
  4506. }
  4507. /**
  4508. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4509. * @page: The page within the block of interest
  4510. * @start_bitidx: The first bit of interest to retrieve
  4511. * @end_bitidx: The last bit of interest
  4512. * returns pageblock_bits flags
  4513. */
  4514. unsigned long get_pageblock_flags_group(struct page *page,
  4515. int start_bitidx, int end_bitidx)
  4516. {
  4517. struct zone *zone;
  4518. unsigned long *bitmap;
  4519. unsigned long pfn, bitidx;
  4520. unsigned long flags = 0;
  4521. unsigned long value = 1;
  4522. zone = page_zone(page);
  4523. pfn = page_to_pfn(page);
  4524. bitmap = get_pageblock_bitmap(zone, pfn);
  4525. bitidx = pfn_to_bitidx(zone, pfn);
  4526. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4527. if (test_bit(bitidx + start_bitidx, bitmap))
  4528. flags |= value;
  4529. return flags;
  4530. }
  4531. /**
  4532. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4533. * @page: The page within the block of interest
  4534. * @start_bitidx: The first bit of interest
  4535. * @end_bitidx: The last bit of interest
  4536. * @flags: The flags to set
  4537. */
  4538. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4539. int start_bitidx, int end_bitidx)
  4540. {
  4541. struct zone *zone;
  4542. unsigned long *bitmap;
  4543. unsigned long pfn, bitidx;
  4544. unsigned long value = 1;
  4545. zone = page_zone(page);
  4546. pfn = page_to_pfn(page);
  4547. bitmap = get_pageblock_bitmap(zone, pfn);
  4548. bitidx = pfn_to_bitidx(zone, pfn);
  4549. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4550. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4551. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4552. if (flags & value)
  4553. __set_bit(bitidx + start_bitidx, bitmap);
  4554. else
  4555. __clear_bit(bitidx + start_bitidx, bitmap);
  4556. }
  4557. /*
  4558. * This is designed as sub function...plz see page_isolation.c also.
  4559. * set/clear page block's type to be ISOLATE.
  4560. * page allocater never alloc memory from ISOLATE block.
  4561. */
  4562. int set_migratetype_isolate(struct page *page)
  4563. {
  4564. struct zone *zone;
  4565. struct page *curr_page;
  4566. unsigned long flags, pfn, iter;
  4567. unsigned long immobile = 0;
  4568. struct memory_isolate_notify arg;
  4569. int notifier_ret;
  4570. int ret = -EBUSY;
  4571. int zone_idx;
  4572. zone = page_zone(page);
  4573. zone_idx = zone_idx(zone);
  4574. spin_lock_irqsave(&zone->lock, flags);
  4575. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
  4576. zone_idx == ZONE_MOVABLE) {
  4577. ret = 0;
  4578. goto out;
  4579. }
  4580. pfn = page_to_pfn(page);
  4581. arg.start_pfn = pfn;
  4582. arg.nr_pages = pageblock_nr_pages;
  4583. arg.pages_found = 0;
  4584. /*
  4585. * It may be possible to isolate a pageblock even if the
  4586. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4587. * notifier chain is used by balloon drivers to return the
  4588. * number of pages in a range that are held by the balloon
  4589. * driver to shrink memory. If all the pages are accounted for
  4590. * by balloons, are free, or on the LRU, isolation can continue.
  4591. * Later, for example, when memory hotplug notifier runs, these
  4592. * pages reported as "can be isolated" should be isolated(freed)
  4593. * by the balloon driver through the memory notifier chain.
  4594. */
  4595. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4596. notifier_ret = notifier_to_errno(notifier_ret);
  4597. if (notifier_ret || !arg.pages_found)
  4598. goto out;
  4599. for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
  4600. if (!pfn_valid_within(pfn))
  4601. continue;
  4602. curr_page = pfn_to_page(iter);
  4603. if (!page_count(curr_page) || PageLRU(curr_page))
  4604. continue;
  4605. immobile++;
  4606. }
  4607. if (arg.pages_found == immobile)
  4608. ret = 0;
  4609. out:
  4610. if (!ret) {
  4611. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4612. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4613. }
  4614. spin_unlock_irqrestore(&zone->lock, flags);
  4615. if (!ret)
  4616. drain_all_pages();
  4617. return ret;
  4618. }
  4619. void unset_migratetype_isolate(struct page *page)
  4620. {
  4621. struct zone *zone;
  4622. unsigned long flags;
  4623. zone = page_zone(page);
  4624. spin_lock_irqsave(&zone->lock, flags);
  4625. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4626. goto out;
  4627. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4628. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4629. out:
  4630. spin_unlock_irqrestore(&zone->lock, flags);
  4631. }
  4632. #ifdef CONFIG_MEMORY_HOTREMOVE
  4633. /*
  4634. * All pages in the range must be isolated before calling this.
  4635. */
  4636. void
  4637. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4638. {
  4639. struct page *page;
  4640. struct zone *zone;
  4641. int order, i;
  4642. unsigned long pfn;
  4643. unsigned long flags;
  4644. /* find the first valid pfn */
  4645. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4646. if (pfn_valid(pfn))
  4647. break;
  4648. if (pfn == end_pfn)
  4649. return;
  4650. zone = page_zone(pfn_to_page(pfn));
  4651. spin_lock_irqsave(&zone->lock, flags);
  4652. pfn = start_pfn;
  4653. while (pfn < end_pfn) {
  4654. if (!pfn_valid(pfn)) {
  4655. pfn++;
  4656. continue;
  4657. }
  4658. page = pfn_to_page(pfn);
  4659. BUG_ON(page_count(page));
  4660. BUG_ON(!PageBuddy(page));
  4661. order = page_order(page);
  4662. #ifdef CONFIG_DEBUG_VM
  4663. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4664. pfn, 1 << order, end_pfn);
  4665. #endif
  4666. list_del(&page->lru);
  4667. rmv_page_order(page);
  4668. zone->free_area[order].nr_free--;
  4669. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4670. - (1UL << order));
  4671. for (i = 0; i < (1 << order); i++)
  4672. SetPageReserved((page+i));
  4673. pfn += (1 << order);
  4674. }
  4675. spin_unlock_irqrestore(&zone->lock, flags);
  4676. }
  4677. #endif
  4678. #ifdef CONFIG_MEMORY_FAILURE
  4679. bool is_free_buddy_page(struct page *page)
  4680. {
  4681. struct zone *zone = page_zone(page);
  4682. unsigned long pfn = page_to_pfn(page);
  4683. unsigned long flags;
  4684. int order;
  4685. spin_lock_irqsave(&zone->lock, flags);
  4686. for (order = 0; order < MAX_ORDER; order++) {
  4687. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4688. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4689. break;
  4690. }
  4691. spin_unlock_irqrestore(&zone->lock, flags);
  4692. return order < MAX_ORDER;
  4693. }
  4694. #endif
  4695. static struct trace_print_flags pageflag_names[] = {
  4696. {1UL << PG_locked, "locked" },
  4697. {1UL << PG_error, "error" },
  4698. {1UL << PG_referenced, "referenced" },
  4699. {1UL << PG_uptodate, "uptodate" },
  4700. {1UL << PG_dirty, "dirty" },
  4701. {1UL << PG_lru, "lru" },
  4702. {1UL << PG_active, "active" },
  4703. {1UL << PG_slab, "slab" },
  4704. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4705. {1UL << PG_arch_1, "arch_1" },
  4706. {1UL << PG_reserved, "reserved" },
  4707. {1UL << PG_private, "private" },
  4708. {1UL << PG_private_2, "private_2" },
  4709. {1UL << PG_writeback, "writeback" },
  4710. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4711. {1UL << PG_head, "head" },
  4712. {1UL << PG_tail, "tail" },
  4713. #else
  4714. {1UL << PG_compound, "compound" },
  4715. #endif
  4716. {1UL << PG_swapcache, "swapcache" },
  4717. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4718. {1UL << PG_reclaim, "reclaim" },
  4719. {1UL << PG_buddy, "buddy" },
  4720. {1UL << PG_swapbacked, "swapbacked" },
  4721. {1UL << PG_unevictable, "unevictable" },
  4722. #ifdef CONFIG_MMU
  4723. {1UL << PG_mlocked, "mlocked" },
  4724. #endif
  4725. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4726. {1UL << PG_uncached, "uncached" },
  4727. #endif
  4728. #ifdef CONFIG_MEMORY_FAILURE
  4729. {1UL << PG_hwpoison, "hwpoison" },
  4730. #endif
  4731. {-1UL, NULL },
  4732. };
  4733. static void dump_page_flags(unsigned long flags)
  4734. {
  4735. const char *delim = "";
  4736. unsigned long mask;
  4737. int i;
  4738. printk(KERN_ALERT "page flags: %#lx(", flags);
  4739. /* remove zone id */
  4740. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4741. for (i = 0; pageflag_names[i].name && flags; i++) {
  4742. mask = pageflag_names[i].mask;
  4743. if ((flags & mask) != mask)
  4744. continue;
  4745. flags &= ~mask;
  4746. printk("%s%s", delim, pageflag_names[i].name);
  4747. delim = "|";
  4748. }
  4749. /* check for left over flags */
  4750. if (flags)
  4751. printk("%s%#lx", delim, flags);
  4752. printk(")\n");
  4753. }
  4754. void dump_page(struct page *page)
  4755. {
  4756. printk(KERN_ALERT
  4757. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4758. page, page_count(page), page_mapcount(page),
  4759. page->mapping, page->index);
  4760. dump_page_flags(page->flags);
  4761. }