book3s_hv.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <asm/reg.h>
  34. #include <asm/cputable.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/tlbflush.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/io.h>
  39. #include <asm/kvm_ppc.h>
  40. #include <asm/kvm_book3s.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/lppaca.h>
  43. #include <asm/processor.h>
  44. #include <asm/cputhreads.h>
  45. #include <asm/page.h>
  46. #include <asm/hvcall.h>
  47. #include <asm/switch_to.h>
  48. #include <linux/gfp.h>
  49. #include <linux/vmalloc.h>
  50. #include <linux/highmem.h>
  51. #include <linux/hugetlb.h>
  52. /* #define EXIT_DEBUG */
  53. /* #define EXIT_DEBUG_SIMPLE */
  54. /* #define EXIT_DEBUG_INT */
  55. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  56. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  57. void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  58. {
  59. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  60. local_paca->kvm_hstate.kvm_vcpu = vcpu;
  61. local_paca->kvm_hstate.kvm_vcore = vc;
  62. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  63. vc->stolen_tb += mftb() - vc->preempt_tb;
  64. }
  65. void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  66. {
  67. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  68. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  69. vc->preempt_tb = mftb();
  70. }
  71. void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  72. {
  73. vcpu->arch.shregs.msr = msr;
  74. kvmppc_end_cede(vcpu);
  75. }
  76. void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  77. {
  78. vcpu->arch.pvr = pvr;
  79. }
  80. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  81. {
  82. int r;
  83. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  84. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  85. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  86. for (r = 0; r < 16; ++r)
  87. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  88. r, kvmppc_get_gpr(vcpu, r),
  89. r+16, kvmppc_get_gpr(vcpu, r+16));
  90. pr_err("ctr = %.16lx lr = %.16lx\n",
  91. vcpu->arch.ctr, vcpu->arch.lr);
  92. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  93. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  94. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  95. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  96. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  97. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  98. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  99. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  100. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  101. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  102. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  103. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  104. for (r = 0; r < vcpu->arch.slb_max; ++r)
  105. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  106. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  107. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  108. vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
  109. vcpu->arch.last_inst);
  110. }
  111. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  112. {
  113. int r;
  114. struct kvm_vcpu *v, *ret = NULL;
  115. mutex_lock(&kvm->lock);
  116. kvm_for_each_vcpu(r, v, kvm) {
  117. if (v->vcpu_id == id) {
  118. ret = v;
  119. break;
  120. }
  121. }
  122. mutex_unlock(&kvm->lock);
  123. return ret;
  124. }
  125. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  126. {
  127. vpa->shared_proc = 1;
  128. vpa->yield_count = 1;
  129. }
  130. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  131. unsigned long addr, unsigned long len)
  132. {
  133. /* check address is cacheline aligned */
  134. if (addr & (L1_CACHE_BYTES - 1))
  135. return -EINVAL;
  136. spin_lock(&vcpu->arch.vpa_update_lock);
  137. if (v->next_gpa != addr || v->len != len) {
  138. v->next_gpa = addr;
  139. v->len = addr ? len : 0;
  140. v->update_pending = 1;
  141. }
  142. spin_unlock(&vcpu->arch.vpa_update_lock);
  143. return 0;
  144. }
  145. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  146. struct reg_vpa {
  147. u32 dummy;
  148. union {
  149. u16 hword;
  150. u32 word;
  151. } length;
  152. };
  153. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  154. {
  155. if (vpap->update_pending)
  156. return vpap->next_gpa != 0;
  157. return vpap->pinned_addr != NULL;
  158. }
  159. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  160. unsigned long flags,
  161. unsigned long vcpuid, unsigned long vpa)
  162. {
  163. struct kvm *kvm = vcpu->kvm;
  164. unsigned long len, nb;
  165. void *va;
  166. struct kvm_vcpu *tvcpu;
  167. int err;
  168. int subfunc;
  169. struct kvmppc_vpa *vpap;
  170. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  171. if (!tvcpu)
  172. return H_PARAMETER;
  173. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  174. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  175. subfunc == H_VPA_REG_SLB) {
  176. /* Registering new area - address must be cache-line aligned */
  177. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  178. return H_PARAMETER;
  179. /* convert logical addr to kernel addr and read length */
  180. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  181. if (va == NULL)
  182. return H_PARAMETER;
  183. if (subfunc == H_VPA_REG_VPA)
  184. len = ((struct reg_vpa *)va)->length.hword;
  185. else
  186. len = ((struct reg_vpa *)va)->length.word;
  187. kvmppc_unpin_guest_page(kvm, va);
  188. /* Check length */
  189. if (len > nb || len < sizeof(struct reg_vpa))
  190. return H_PARAMETER;
  191. } else {
  192. vpa = 0;
  193. len = 0;
  194. }
  195. err = H_PARAMETER;
  196. vpap = NULL;
  197. spin_lock(&tvcpu->arch.vpa_update_lock);
  198. switch (subfunc) {
  199. case H_VPA_REG_VPA: /* register VPA */
  200. if (len < sizeof(struct lppaca))
  201. break;
  202. vpap = &tvcpu->arch.vpa;
  203. err = 0;
  204. break;
  205. case H_VPA_REG_DTL: /* register DTL */
  206. if (len < sizeof(struct dtl_entry))
  207. break;
  208. len -= len % sizeof(struct dtl_entry);
  209. /* Check that they have previously registered a VPA */
  210. err = H_RESOURCE;
  211. if (!vpa_is_registered(&tvcpu->arch.vpa))
  212. break;
  213. vpap = &tvcpu->arch.dtl;
  214. err = 0;
  215. break;
  216. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  217. /* Check that they have previously registered a VPA */
  218. err = H_RESOURCE;
  219. if (!vpa_is_registered(&tvcpu->arch.vpa))
  220. break;
  221. vpap = &tvcpu->arch.slb_shadow;
  222. err = 0;
  223. break;
  224. case H_VPA_DEREG_VPA: /* deregister VPA */
  225. /* Check they don't still have a DTL or SLB buf registered */
  226. err = H_RESOURCE;
  227. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  228. vpa_is_registered(&tvcpu->arch.slb_shadow))
  229. break;
  230. vpap = &tvcpu->arch.vpa;
  231. err = 0;
  232. break;
  233. case H_VPA_DEREG_DTL: /* deregister DTL */
  234. vpap = &tvcpu->arch.dtl;
  235. err = 0;
  236. break;
  237. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  238. vpap = &tvcpu->arch.slb_shadow;
  239. err = 0;
  240. break;
  241. }
  242. if (vpap) {
  243. vpap->next_gpa = vpa;
  244. vpap->len = len;
  245. vpap->update_pending = 1;
  246. }
  247. spin_unlock(&tvcpu->arch.vpa_update_lock);
  248. return err;
  249. }
  250. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  251. {
  252. struct kvm *kvm = vcpu->kvm;
  253. void *va;
  254. unsigned long nb;
  255. unsigned long gpa;
  256. /*
  257. * We need to pin the page pointed to by vpap->next_gpa,
  258. * but we can't call kvmppc_pin_guest_page under the lock
  259. * as it does get_user_pages() and down_read(). So we
  260. * have to drop the lock, pin the page, then get the lock
  261. * again and check that a new area didn't get registered
  262. * in the meantime.
  263. */
  264. for (;;) {
  265. gpa = vpap->next_gpa;
  266. spin_unlock(&vcpu->arch.vpa_update_lock);
  267. va = NULL;
  268. nb = 0;
  269. if (gpa)
  270. va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
  271. spin_lock(&vcpu->arch.vpa_update_lock);
  272. if (gpa == vpap->next_gpa)
  273. break;
  274. /* sigh... unpin that one and try again */
  275. if (va)
  276. kvmppc_unpin_guest_page(kvm, va);
  277. }
  278. vpap->update_pending = 0;
  279. if (va && nb < vpap->len) {
  280. /*
  281. * If it's now too short, it must be that userspace
  282. * has changed the mappings underlying guest memory,
  283. * so unregister the region.
  284. */
  285. kvmppc_unpin_guest_page(kvm, va);
  286. va = NULL;
  287. }
  288. if (vpap->pinned_addr)
  289. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
  290. vpap->pinned_addr = va;
  291. if (va)
  292. vpap->pinned_end = va + vpap->len;
  293. }
  294. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  295. {
  296. spin_lock(&vcpu->arch.vpa_update_lock);
  297. if (vcpu->arch.vpa.update_pending) {
  298. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  299. if (vcpu->arch.vpa.pinned_addr)
  300. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  301. }
  302. if (vcpu->arch.dtl.update_pending) {
  303. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  304. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  305. vcpu->arch.dtl_index = 0;
  306. }
  307. if (vcpu->arch.slb_shadow.update_pending)
  308. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  309. spin_unlock(&vcpu->arch.vpa_update_lock);
  310. }
  311. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  312. struct kvmppc_vcore *vc)
  313. {
  314. struct dtl_entry *dt;
  315. struct lppaca *vpa;
  316. unsigned long old_stolen;
  317. dt = vcpu->arch.dtl_ptr;
  318. vpa = vcpu->arch.vpa.pinned_addr;
  319. old_stolen = vcpu->arch.stolen_logged;
  320. vcpu->arch.stolen_logged = vc->stolen_tb;
  321. if (!dt || !vpa)
  322. return;
  323. memset(dt, 0, sizeof(struct dtl_entry));
  324. dt->dispatch_reason = 7;
  325. dt->processor_id = vc->pcpu + vcpu->arch.ptid;
  326. dt->timebase = mftb();
  327. dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
  328. dt->srr0 = kvmppc_get_pc(vcpu);
  329. dt->srr1 = vcpu->arch.shregs.msr;
  330. ++dt;
  331. if (dt == vcpu->arch.dtl.pinned_end)
  332. dt = vcpu->arch.dtl.pinned_addr;
  333. vcpu->arch.dtl_ptr = dt;
  334. /* order writing *dt vs. writing vpa->dtl_idx */
  335. smp_wmb();
  336. vpa->dtl_idx = ++vcpu->arch.dtl_index;
  337. }
  338. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  339. {
  340. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  341. unsigned long target, ret = H_SUCCESS;
  342. struct kvm_vcpu *tvcpu;
  343. int idx;
  344. switch (req) {
  345. case H_ENTER:
  346. idx = srcu_read_lock(&vcpu->kvm->srcu);
  347. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  348. kvmppc_get_gpr(vcpu, 5),
  349. kvmppc_get_gpr(vcpu, 6),
  350. kvmppc_get_gpr(vcpu, 7));
  351. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  352. break;
  353. case H_CEDE:
  354. break;
  355. case H_PROD:
  356. target = kvmppc_get_gpr(vcpu, 4);
  357. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  358. if (!tvcpu) {
  359. ret = H_PARAMETER;
  360. break;
  361. }
  362. tvcpu->arch.prodded = 1;
  363. smp_mb();
  364. if (vcpu->arch.ceded) {
  365. if (waitqueue_active(&vcpu->wq)) {
  366. wake_up_interruptible(&vcpu->wq);
  367. vcpu->stat.halt_wakeup++;
  368. }
  369. }
  370. break;
  371. case H_CONFER:
  372. break;
  373. case H_REGISTER_VPA:
  374. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  375. kvmppc_get_gpr(vcpu, 5),
  376. kvmppc_get_gpr(vcpu, 6));
  377. break;
  378. default:
  379. return RESUME_HOST;
  380. }
  381. kvmppc_set_gpr(vcpu, 3, ret);
  382. vcpu->arch.hcall_needed = 0;
  383. return RESUME_GUEST;
  384. }
  385. static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
  386. struct task_struct *tsk)
  387. {
  388. int r = RESUME_HOST;
  389. int srcu_idx;
  390. vcpu->stat.sum_exits++;
  391. run->exit_reason = KVM_EXIT_UNKNOWN;
  392. run->ready_for_interrupt_injection = 1;
  393. switch (vcpu->arch.trap) {
  394. /* We're good on these - the host merely wanted to get our attention */
  395. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  396. vcpu->stat.dec_exits++;
  397. r = RESUME_GUEST;
  398. break;
  399. case BOOK3S_INTERRUPT_EXTERNAL:
  400. vcpu->stat.ext_intr_exits++;
  401. r = RESUME_GUEST;
  402. break;
  403. case BOOK3S_INTERRUPT_PERFMON:
  404. r = RESUME_GUEST;
  405. break;
  406. case BOOK3S_INTERRUPT_PROGRAM:
  407. {
  408. ulong flags;
  409. /*
  410. * Normally program interrupts are delivered directly
  411. * to the guest by the hardware, but we can get here
  412. * as a result of a hypervisor emulation interrupt
  413. * (e40) getting turned into a 700 by BML RTAS.
  414. */
  415. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  416. kvmppc_core_queue_program(vcpu, flags);
  417. r = RESUME_GUEST;
  418. break;
  419. }
  420. case BOOK3S_INTERRUPT_SYSCALL:
  421. {
  422. /* hcall - punt to userspace */
  423. int i;
  424. if (vcpu->arch.shregs.msr & MSR_PR) {
  425. /* sc 1 from userspace - reflect to guest syscall */
  426. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
  427. r = RESUME_GUEST;
  428. break;
  429. }
  430. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  431. for (i = 0; i < 9; ++i)
  432. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  433. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  434. vcpu->arch.hcall_needed = 1;
  435. r = RESUME_HOST;
  436. break;
  437. }
  438. /*
  439. * We get these next two if the guest accesses a page which it thinks
  440. * it has mapped but which is not actually present, either because
  441. * it is for an emulated I/O device or because the corresonding
  442. * host page has been paged out. Any other HDSI/HISI interrupts
  443. * have been handled already.
  444. */
  445. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  446. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  447. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  448. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  449. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  450. break;
  451. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  452. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  453. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  454. kvmppc_get_pc(vcpu), 0);
  455. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  456. break;
  457. /*
  458. * This occurs if the guest executes an illegal instruction.
  459. * We just generate a program interrupt to the guest, since
  460. * we don't emulate any guest instructions at this stage.
  461. */
  462. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  463. kvmppc_core_queue_program(vcpu, 0x80000);
  464. r = RESUME_GUEST;
  465. break;
  466. default:
  467. kvmppc_dump_regs(vcpu);
  468. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  469. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  470. vcpu->arch.shregs.msr);
  471. r = RESUME_HOST;
  472. BUG();
  473. break;
  474. }
  475. return r;
  476. }
  477. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  478. struct kvm_sregs *sregs)
  479. {
  480. int i;
  481. sregs->pvr = vcpu->arch.pvr;
  482. memset(sregs, 0, sizeof(struct kvm_sregs));
  483. for (i = 0; i < vcpu->arch.slb_max; i++) {
  484. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  485. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  486. }
  487. return 0;
  488. }
  489. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  490. struct kvm_sregs *sregs)
  491. {
  492. int i, j;
  493. kvmppc_set_pvr(vcpu, sregs->pvr);
  494. j = 0;
  495. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  496. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  497. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  498. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  499. ++j;
  500. }
  501. }
  502. vcpu->arch.slb_max = j;
  503. return 0;
  504. }
  505. int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
  506. {
  507. int r = 0;
  508. long int i;
  509. switch (id) {
  510. case KVM_REG_PPC_HIOR:
  511. *val = get_reg_val(id, 0);
  512. break;
  513. case KVM_REG_PPC_DABR:
  514. *val = get_reg_val(id, vcpu->arch.dabr);
  515. break;
  516. case KVM_REG_PPC_DSCR:
  517. *val = get_reg_val(id, vcpu->arch.dscr);
  518. break;
  519. case KVM_REG_PPC_PURR:
  520. *val = get_reg_val(id, vcpu->arch.purr);
  521. break;
  522. case KVM_REG_PPC_SPURR:
  523. *val = get_reg_val(id, vcpu->arch.spurr);
  524. break;
  525. case KVM_REG_PPC_AMR:
  526. *val = get_reg_val(id, vcpu->arch.amr);
  527. break;
  528. case KVM_REG_PPC_UAMOR:
  529. *val = get_reg_val(id, vcpu->arch.uamor);
  530. break;
  531. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
  532. i = id - KVM_REG_PPC_MMCR0;
  533. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  534. break;
  535. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  536. i = id - KVM_REG_PPC_PMC1;
  537. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  538. break;
  539. #ifdef CONFIG_VSX
  540. case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
  541. if (cpu_has_feature(CPU_FTR_VSX)) {
  542. /* VSX => FP reg i is stored in arch.vsr[2*i] */
  543. long int i = id - KVM_REG_PPC_FPR0;
  544. *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
  545. } else {
  546. /* let generic code handle it */
  547. r = -EINVAL;
  548. }
  549. break;
  550. case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
  551. if (cpu_has_feature(CPU_FTR_VSX)) {
  552. long int i = id - KVM_REG_PPC_VSR0;
  553. val->vsxval[0] = vcpu->arch.vsr[2 * i];
  554. val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
  555. } else {
  556. r = -ENXIO;
  557. }
  558. break;
  559. #endif /* CONFIG_VSX */
  560. case KVM_REG_PPC_VPA_ADDR:
  561. spin_lock(&vcpu->arch.vpa_update_lock);
  562. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  563. spin_unlock(&vcpu->arch.vpa_update_lock);
  564. break;
  565. case KVM_REG_PPC_VPA_SLB:
  566. spin_lock(&vcpu->arch.vpa_update_lock);
  567. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  568. val->vpaval.length = vcpu->arch.slb_shadow.len;
  569. spin_unlock(&vcpu->arch.vpa_update_lock);
  570. break;
  571. case KVM_REG_PPC_VPA_DTL:
  572. spin_lock(&vcpu->arch.vpa_update_lock);
  573. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  574. val->vpaval.length = vcpu->arch.dtl.len;
  575. spin_unlock(&vcpu->arch.vpa_update_lock);
  576. break;
  577. default:
  578. r = -EINVAL;
  579. break;
  580. }
  581. return r;
  582. }
  583. int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
  584. {
  585. int r = 0;
  586. long int i;
  587. unsigned long addr, len;
  588. switch (id) {
  589. case KVM_REG_PPC_HIOR:
  590. /* Only allow this to be set to zero */
  591. if (set_reg_val(id, *val))
  592. r = -EINVAL;
  593. break;
  594. case KVM_REG_PPC_DABR:
  595. vcpu->arch.dabr = set_reg_val(id, *val);
  596. break;
  597. case KVM_REG_PPC_DSCR:
  598. vcpu->arch.dscr = set_reg_val(id, *val);
  599. break;
  600. case KVM_REG_PPC_PURR:
  601. vcpu->arch.purr = set_reg_val(id, *val);
  602. break;
  603. case KVM_REG_PPC_SPURR:
  604. vcpu->arch.spurr = set_reg_val(id, *val);
  605. break;
  606. case KVM_REG_PPC_AMR:
  607. vcpu->arch.amr = set_reg_val(id, *val);
  608. break;
  609. case KVM_REG_PPC_UAMOR:
  610. vcpu->arch.uamor = set_reg_val(id, *val);
  611. break;
  612. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
  613. i = id - KVM_REG_PPC_MMCR0;
  614. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  615. break;
  616. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  617. i = id - KVM_REG_PPC_PMC1;
  618. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  619. break;
  620. #ifdef CONFIG_VSX
  621. case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
  622. if (cpu_has_feature(CPU_FTR_VSX)) {
  623. /* VSX => FP reg i is stored in arch.vsr[2*i] */
  624. long int i = id - KVM_REG_PPC_FPR0;
  625. vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
  626. } else {
  627. /* let generic code handle it */
  628. r = -EINVAL;
  629. }
  630. break;
  631. case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
  632. if (cpu_has_feature(CPU_FTR_VSX)) {
  633. long int i = id - KVM_REG_PPC_VSR0;
  634. vcpu->arch.vsr[2 * i] = val->vsxval[0];
  635. vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
  636. } else {
  637. r = -ENXIO;
  638. }
  639. break;
  640. #endif /* CONFIG_VSX */
  641. case KVM_REG_PPC_VPA_ADDR:
  642. addr = set_reg_val(id, *val);
  643. r = -EINVAL;
  644. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  645. vcpu->arch.dtl.next_gpa))
  646. break;
  647. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  648. break;
  649. case KVM_REG_PPC_VPA_SLB:
  650. addr = val->vpaval.addr;
  651. len = val->vpaval.length;
  652. r = -EINVAL;
  653. if (addr && !vcpu->arch.vpa.next_gpa)
  654. break;
  655. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  656. break;
  657. case KVM_REG_PPC_VPA_DTL:
  658. addr = val->vpaval.addr;
  659. len = val->vpaval.length;
  660. r = -EINVAL;
  661. if (len < sizeof(struct dtl_entry))
  662. break;
  663. if (addr && !vcpu->arch.vpa.next_gpa)
  664. break;
  665. len -= len % sizeof(struct dtl_entry);
  666. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  667. break;
  668. default:
  669. r = -EINVAL;
  670. break;
  671. }
  672. return r;
  673. }
  674. int kvmppc_core_check_processor_compat(void)
  675. {
  676. if (cpu_has_feature(CPU_FTR_HVMODE))
  677. return 0;
  678. return -EIO;
  679. }
  680. struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
  681. {
  682. struct kvm_vcpu *vcpu;
  683. int err = -EINVAL;
  684. int core;
  685. struct kvmppc_vcore *vcore;
  686. core = id / threads_per_core;
  687. if (core >= KVM_MAX_VCORES)
  688. goto out;
  689. err = -ENOMEM;
  690. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  691. if (!vcpu)
  692. goto out;
  693. err = kvm_vcpu_init(vcpu, kvm, id);
  694. if (err)
  695. goto free_vcpu;
  696. vcpu->arch.shared = &vcpu->arch.shregs;
  697. vcpu->arch.last_cpu = -1;
  698. vcpu->arch.mmcr[0] = MMCR0_FC;
  699. vcpu->arch.ctrl = CTRL_RUNLATCH;
  700. /* default to host PVR, since we can't spoof it */
  701. vcpu->arch.pvr = mfspr(SPRN_PVR);
  702. kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
  703. spin_lock_init(&vcpu->arch.vpa_update_lock);
  704. kvmppc_mmu_book3s_hv_init(vcpu);
  705. /*
  706. * We consider the vcpu stopped until we see the first run ioctl for it.
  707. */
  708. vcpu->arch.state = KVMPPC_VCPU_STOPPED;
  709. init_waitqueue_head(&vcpu->arch.cpu_run);
  710. mutex_lock(&kvm->lock);
  711. vcore = kvm->arch.vcores[core];
  712. if (!vcore) {
  713. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  714. if (vcore) {
  715. INIT_LIST_HEAD(&vcore->runnable_threads);
  716. spin_lock_init(&vcore->lock);
  717. init_waitqueue_head(&vcore->wq);
  718. vcore->preempt_tb = mftb();
  719. }
  720. kvm->arch.vcores[core] = vcore;
  721. }
  722. mutex_unlock(&kvm->lock);
  723. if (!vcore)
  724. goto free_vcpu;
  725. spin_lock(&vcore->lock);
  726. ++vcore->num_threads;
  727. spin_unlock(&vcore->lock);
  728. vcpu->arch.vcore = vcore;
  729. vcpu->arch.stolen_logged = vcore->stolen_tb;
  730. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  731. kvmppc_sanity_check(vcpu);
  732. return vcpu;
  733. free_vcpu:
  734. kmem_cache_free(kvm_vcpu_cache, vcpu);
  735. out:
  736. return ERR_PTR(err);
  737. }
  738. void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
  739. {
  740. spin_lock(&vcpu->arch.vpa_update_lock);
  741. if (vcpu->arch.dtl.pinned_addr)
  742. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
  743. if (vcpu->arch.slb_shadow.pinned_addr)
  744. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
  745. if (vcpu->arch.vpa.pinned_addr)
  746. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
  747. spin_unlock(&vcpu->arch.vpa_update_lock);
  748. kvm_vcpu_uninit(vcpu);
  749. kmem_cache_free(kvm_vcpu_cache, vcpu);
  750. }
  751. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  752. {
  753. unsigned long dec_nsec, now;
  754. now = get_tb();
  755. if (now > vcpu->arch.dec_expires) {
  756. /* decrementer has already gone negative */
  757. kvmppc_core_queue_dec(vcpu);
  758. kvmppc_core_prepare_to_enter(vcpu);
  759. return;
  760. }
  761. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  762. / tb_ticks_per_sec;
  763. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  764. HRTIMER_MODE_REL);
  765. vcpu->arch.timer_running = 1;
  766. }
  767. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  768. {
  769. vcpu->arch.ceded = 0;
  770. if (vcpu->arch.timer_running) {
  771. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  772. vcpu->arch.timer_running = 0;
  773. }
  774. }
  775. extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
  776. extern void xics_wake_cpu(int cpu);
  777. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  778. struct kvm_vcpu *vcpu)
  779. {
  780. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  781. return;
  782. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  783. --vc->n_runnable;
  784. ++vc->n_busy;
  785. list_del(&vcpu->arch.run_list);
  786. }
  787. static int kvmppc_grab_hwthread(int cpu)
  788. {
  789. struct paca_struct *tpaca;
  790. long timeout = 1000;
  791. tpaca = &paca[cpu];
  792. /* Ensure the thread won't go into the kernel if it wakes */
  793. tpaca->kvm_hstate.hwthread_req = 1;
  794. /*
  795. * If the thread is already executing in the kernel (e.g. handling
  796. * a stray interrupt), wait for it to get back to nap mode.
  797. * The smp_mb() is to ensure that our setting of hwthread_req
  798. * is visible before we look at hwthread_state, so if this
  799. * races with the code at system_reset_pSeries and the thread
  800. * misses our setting of hwthread_req, we are sure to see its
  801. * setting of hwthread_state, and vice versa.
  802. */
  803. smp_mb();
  804. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  805. if (--timeout <= 0) {
  806. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  807. return -EBUSY;
  808. }
  809. udelay(1);
  810. }
  811. return 0;
  812. }
  813. static void kvmppc_release_hwthread(int cpu)
  814. {
  815. struct paca_struct *tpaca;
  816. tpaca = &paca[cpu];
  817. tpaca->kvm_hstate.hwthread_req = 0;
  818. tpaca->kvm_hstate.kvm_vcpu = NULL;
  819. }
  820. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  821. {
  822. int cpu;
  823. struct paca_struct *tpaca;
  824. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  825. if (vcpu->arch.timer_running) {
  826. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  827. vcpu->arch.timer_running = 0;
  828. }
  829. cpu = vc->pcpu + vcpu->arch.ptid;
  830. tpaca = &paca[cpu];
  831. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  832. tpaca->kvm_hstate.kvm_vcore = vc;
  833. tpaca->kvm_hstate.napping = 0;
  834. vcpu->cpu = vc->pcpu;
  835. smp_wmb();
  836. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  837. if (vcpu->arch.ptid) {
  838. kvmppc_grab_hwthread(cpu);
  839. xics_wake_cpu(cpu);
  840. ++vc->n_woken;
  841. }
  842. #endif
  843. }
  844. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  845. {
  846. int i;
  847. HMT_low();
  848. i = 0;
  849. while (vc->nap_count < vc->n_woken) {
  850. if (++i >= 1000000) {
  851. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  852. vc->nap_count, vc->n_woken);
  853. break;
  854. }
  855. cpu_relax();
  856. }
  857. HMT_medium();
  858. }
  859. /*
  860. * Check that we are on thread 0 and that any other threads in
  861. * this core are off-line.
  862. */
  863. static int on_primary_thread(void)
  864. {
  865. int cpu = smp_processor_id();
  866. int thr = cpu_thread_in_core(cpu);
  867. if (thr)
  868. return 0;
  869. while (++thr < threads_per_core)
  870. if (cpu_online(cpu + thr))
  871. return 0;
  872. return 1;
  873. }
  874. /*
  875. * Run a set of guest threads on a physical core.
  876. * Called with vc->lock held.
  877. */
  878. static int kvmppc_run_core(struct kvmppc_vcore *vc)
  879. {
  880. struct kvm_vcpu *vcpu, *vcpu0, *vnext;
  881. long ret;
  882. u64 now;
  883. int ptid, i, need_vpa_update;
  884. int srcu_idx;
  885. /* don't start if any threads have a signal pending */
  886. need_vpa_update = 0;
  887. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  888. if (signal_pending(vcpu->arch.run_task))
  889. return 0;
  890. need_vpa_update |= vcpu->arch.vpa.update_pending |
  891. vcpu->arch.slb_shadow.update_pending |
  892. vcpu->arch.dtl.update_pending;
  893. }
  894. /*
  895. * Initialize *vc, in particular vc->vcore_state, so we can
  896. * drop the vcore lock if necessary.
  897. */
  898. vc->n_woken = 0;
  899. vc->nap_count = 0;
  900. vc->entry_exit_count = 0;
  901. vc->vcore_state = VCORE_RUNNING;
  902. vc->in_guest = 0;
  903. vc->napping_threads = 0;
  904. /*
  905. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  906. * which can't be called with any spinlocks held.
  907. */
  908. if (need_vpa_update) {
  909. spin_unlock(&vc->lock);
  910. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  911. kvmppc_update_vpas(vcpu);
  912. spin_lock(&vc->lock);
  913. }
  914. /*
  915. * Make sure we are running on thread 0, and that
  916. * secondary threads are offline.
  917. * XXX we should also block attempts to bring any
  918. * secondary threads online.
  919. */
  920. if (threads_per_core > 1 && !on_primary_thread()) {
  921. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  922. vcpu->arch.ret = -EBUSY;
  923. goto out;
  924. }
  925. /*
  926. * Assign physical thread IDs, first to non-ceded vcpus
  927. * and then to ceded ones.
  928. */
  929. ptid = 0;
  930. vcpu0 = NULL;
  931. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  932. if (!vcpu->arch.ceded) {
  933. if (!ptid)
  934. vcpu0 = vcpu;
  935. vcpu->arch.ptid = ptid++;
  936. }
  937. }
  938. if (!vcpu0)
  939. return 0; /* nothing to run */
  940. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  941. if (vcpu->arch.ceded)
  942. vcpu->arch.ptid = ptid++;
  943. vc->stolen_tb += mftb() - vc->preempt_tb;
  944. vc->pcpu = smp_processor_id();
  945. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  946. kvmppc_start_thread(vcpu);
  947. kvmppc_create_dtl_entry(vcpu, vc);
  948. }
  949. /* Grab any remaining hw threads so they can't go into the kernel */
  950. for (i = ptid; i < threads_per_core; ++i)
  951. kvmppc_grab_hwthread(vc->pcpu + i);
  952. preempt_disable();
  953. spin_unlock(&vc->lock);
  954. kvm_guest_enter();
  955. srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
  956. __kvmppc_vcore_entry(NULL, vcpu0);
  957. for (i = 0; i < threads_per_core; ++i)
  958. kvmppc_release_hwthread(vc->pcpu + i);
  959. spin_lock(&vc->lock);
  960. /* disable sending of IPIs on virtual external irqs */
  961. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  962. vcpu->cpu = -1;
  963. /* wait for secondary threads to finish writing their state to memory */
  964. if (vc->nap_count < vc->n_woken)
  965. kvmppc_wait_for_nap(vc);
  966. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  967. vc->vcore_state = VCORE_EXITING;
  968. spin_unlock(&vc->lock);
  969. srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
  970. /* make sure updates to secondary vcpu structs are visible now */
  971. smp_mb();
  972. kvm_guest_exit();
  973. preempt_enable();
  974. kvm_resched(vcpu);
  975. now = get_tb();
  976. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  977. /* cancel pending dec exception if dec is positive */
  978. if (now < vcpu->arch.dec_expires &&
  979. kvmppc_core_pending_dec(vcpu))
  980. kvmppc_core_dequeue_dec(vcpu);
  981. ret = RESUME_GUEST;
  982. if (vcpu->arch.trap)
  983. ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
  984. vcpu->arch.run_task);
  985. vcpu->arch.ret = ret;
  986. vcpu->arch.trap = 0;
  987. if (vcpu->arch.ceded) {
  988. if (ret != RESUME_GUEST)
  989. kvmppc_end_cede(vcpu);
  990. else
  991. kvmppc_set_timer(vcpu);
  992. }
  993. }
  994. spin_lock(&vc->lock);
  995. out:
  996. vc->vcore_state = VCORE_INACTIVE;
  997. vc->preempt_tb = mftb();
  998. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  999. arch.run_list) {
  1000. if (vcpu->arch.ret != RESUME_GUEST) {
  1001. kvmppc_remove_runnable(vc, vcpu);
  1002. wake_up(&vcpu->arch.cpu_run);
  1003. }
  1004. }
  1005. return 1;
  1006. }
  1007. /*
  1008. * Wait for some other vcpu thread to execute us, and
  1009. * wake us up when we need to handle something in the host.
  1010. */
  1011. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1012. {
  1013. DEFINE_WAIT(wait);
  1014. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1015. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1016. schedule();
  1017. finish_wait(&vcpu->arch.cpu_run, &wait);
  1018. }
  1019. /*
  1020. * All the vcpus in this vcore are idle, so wait for a decrementer
  1021. * or external interrupt to one of the vcpus. vc->lock is held.
  1022. */
  1023. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1024. {
  1025. DEFINE_WAIT(wait);
  1026. struct kvm_vcpu *v;
  1027. int all_idle = 1;
  1028. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1029. vc->vcore_state = VCORE_SLEEPING;
  1030. spin_unlock(&vc->lock);
  1031. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1032. if (!v->arch.ceded || v->arch.pending_exceptions) {
  1033. all_idle = 0;
  1034. break;
  1035. }
  1036. }
  1037. if (all_idle)
  1038. schedule();
  1039. finish_wait(&vc->wq, &wait);
  1040. spin_lock(&vc->lock);
  1041. vc->vcore_state = VCORE_INACTIVE;
  1042. }
  1043. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1044. {
  1045. int n_ceded;
  1046. int prev_state;
  1047. struct kvmppc_vcore *vc;
  1048. struct kvm_vcpu *v, *vn;
  1049. kvm_run->exit_reason = 0;
  1050. vcpu->arch.ret = RESUME_GUEST;
  1051. vcpu->arch.trap = 0;
  1052. /*
  1053. * Synchronize with other threads in this virtual core
  1054. */
  1055. vc = vcpu->arch.vcore;
  1056. spin_lock(&vc->lock);
  1057. vcpu->arch.ceded = 0;
  1058. vcpu->arch.run_task = current;
  1059. vcpu->arch.kvm_run = kvm_run;
  1060. prev_state = vcpu->arch.state;
  1061. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1062. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1063. ++vc->n_runnable;
  1064. /*
  1065. * This happens the first time this is called for a vcpu.
  1066. * If the vcore is already running, we may be able to start
  1067. * this thread straight away and have it join in.
  1068. */
  1069. if (prev_state == KVMPPC_VCPU_STOPPED) {
  1070. if (vc->vcore_state == VCORE_RUNNING &&
  1071. VCORE_EXIT_COUNT(vc) == 0) {
  1072. vcpu->arch.ptid = vc->n_runnable - 1;
  1073. kvmppc_start_thread(vcpu);
  1074. }
  1075. } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
  1076. --vc->n_busy;
  1077. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1078. !signal_pending(current)) {
  1079. if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
  1080. spin_unlock(&vc->lock);
  1081. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1082. spin_lock(&vc->lock);
  1083. continue;
  1084. }
  1085. vc->runner = vcpu;
  1086. n_ceded = 0;
  1087. list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
  1088. n_ceded += v->arch.ceded;
  1089. if (n_ceded == vc->n_runnable)
  1090. kvmppc_vcore_blocked(vc);
  1091. else
  1092. kvmppc_run_core(vc);
  1093. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1094. arch.run_list) {
  1095. kvmppc_core_prepare_to_enter(v);
  1096. if (signal_pending(v->arch.run_task)) {
  1097. kvmppc_remove_runnable(vc, v);
  1098. v->stat.signal_exits++;
  1099. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1100. v->arch.ret = -EINTR;
  1101. wake_up(&v->arch.cpu_run);
  1102. }
  1103. }
  1104. vc->runner = NULL;
  1105. }
  1106. if (signal_pending(current)) {
  1107. if (vc->vcore_state == VCORE_RUNNING ||
  1108. vc->vcore_state == VCORE_EXITING) {
  1109. spin_unlock(&vc->lock);
  1110. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1111. spin_lock(&vc->lock);
  1112. }
  1113. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1114. kvmppc_remove_runnable(vc, vcpu);
  1115. vcpu->stat.signal_exits++;
  1116. kvm_run->exit_reason = KVM_EXIT_INTR;
  1117. vcpu->arch.ret = -EINTR;
  1118. }
  1119. }
  1120. spin_unlock(&vc->lock);
  1121. return vcpu->arch.ret;
  1122. }
  1123. int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1124. {
  1125. int r;
  1126. if (!vcpu->arch.sane) {
  1127. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1128. return -EINVAL;
  1129. }
  1130. kvmppc_core_prepare_to_enter(vcpu);
  1131. /* No need to go into the guest when all we'll do is come back out */
  1132. if (signal_pending(current)) {
  1133. run->exit_reason = KVM_EXIT_INTR;
  1134. return -EINTR;
  1135. }
  1136. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1137. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1138. smp_mb();
  1139. /* On the first time here, set up HTAB and VRMA or RMA */
  1140. if (!vcpu->kvm->arch.rma_setup_done) {
  1141. r = kvmppc_hv_setup_htab_rma(vcpu);
  1142. if (r)
  1143. goto out;
  1144. }
  1145. flush_fp_to_thread(current);
  1146. flush_altivec_to_thread(current);
  1147. flush_vsx_to_thread(current);
  1148. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1149. vcpu->arch.pgdir = current->mm->pgd;
  1150. do {
  1151. r = kvmppc_run_vcpu(run, vcpu);
  1152. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1153. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1154. r = kvmppc_pseries_do_hcall(vcpu);
  1155. kvmppc_core_prepare_to_enter(vcpu);
  1156. }
  1157. } while (r == RESUME_GUEST);
  1158. out:
  1159. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1160. return r;
  1161. }
  1162. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1163. Assumes POWER7 or PPC970. */
  1164. static inline int lpcr_rmls(unsigned long rma_size)
  1165. {
  1166. switch (rma_size) {
  1167. case 32ul << 20: /* 32 MB */
  1168. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1169. return 8; /* only supported on POWER7 */
  1170. return -1;
  1171. case 64ul << 20: /* 64 MB */
  1172. return 3;
  1173. case 128ul << 20: /* 128 MB */
  1174. return 7;
  1175. case 256ul << 20: /* 256 MB */
  1176. return 4;
  1177. case 1ul << 30: /* 1 GB */
  1178. return 2;
  1179. case 16ul << 30: /* 16 GB */
  1180. return 1;
  1181. case 256ul << 30: /* 256 GB */
  1182. return 0;
  1183. default:
  1184. return -1;
  1185. }
  1186. }
  1187. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1188. {
  1189. struct kvmppc_linear_info *ri = vma->vm_file->private_data;
  1190. struct page *page;
  1191. if (vmf->pgoff >= ri->npages)
  1192. return VM_FAULT_SIGBUS;
  1193. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1194. get_page(page);
  1195. vmf->page = page;
  1196. return 0;
  1197. }
  1198. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1199. .fault = kvm_rma_fault,
  1200. };
  1201. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1202. {
  1203. vma->vm_flags |= VM_RESERVED;
  1204. vma->vm_ops = &kvm_rma_vm_ops;
  1205. return 0;
  1206. }
  1207. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1208. {
  1209. struct kvmppc_linear_info *ri = filp->private_data;
  1210. kvm_release_rma(ri);
  1211. return 0;
  1212. }
  1213. static struct file_operations kvm_rma_fops = {
  1214. .mmap = kvm_rma_mmap,
  1215. .release = kvm_rma_release,
  1216. };
  1217. long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
  1218. {
  1219. struct kvmppc_linear_info *ri;
  1220. long fd;
  1221. ri = kvm_alloc_rma();
  1222. if (!ri)
  1223. return -ENOMEM;
  1224. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
  1225. if (fd < 0)
  1226. kvm_release_rma(ri);
  1227. ret->rma_size = ri->npages << PAGE_SHIFT;
  1228. return fd;
  1229. }
  1230. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1231. int linux_psize)
  1232. {
  1233. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1234. if (!def->shift)
  1235. return;
  1236. (*sps)->page_shift = def->shift;
  1237. (*sps)->slb_enc = def->sllp;
  1238. (*sps)->enc[0].page_shift = def->shift;
  1239. (*sps)->enc[0].pte_enc = def->penc;
  1240. (*sps)++;
  1241. }
  1242. int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
  1243. {
  1244. struct kvm_ppc_one_seg_page_size *sps;
  1245. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1246. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1247. info->flags |= KVM_PPC_1T_SEGMENTS;
  1248. info->slb_size = mmu_slb_size;
  1249. /* We only support these sizes for now, and no muti-size segments */
  1250. sps = &info->sps[0];
  1251. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1252. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1253. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1254. return 0;
  1255. }
  1256. /*
  1257. * Get (and clear) the dirty memory log for a memory slot.
  1258. */
  1259. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  1260. {
  1261. struct kvm_memory_slot *memslot;
  1262. int r;
  1263. unsigned long n;
  1264. mutex_lock(&kvm->slots_lock);
  1265. r = -EINVAL;
  1266. if (log->slot >= KVM_MEMORY_SLOTS)
  1267. goto out;
  1268. memslot = id_to_memslot(kvm->memslots, log->slot);
  1269. r = -ENOENT;
  1270. if (!memslot->dirty_bitmap)
  1271. goto out;
  1272. n = kvm_dirty_bitmap_bytes(memslot);
  1273. memset(memslot->dirty_bitmap, 0, n);
  1274. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1275. if (r)
  1276. goto out;
  1277. r = -EFAULT;
  1278. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1279. goto out;
  1280. r = 0;
  1281. out:
  1282. mutex_unlock(&kvm->slots_lock);
  1283. return r;
  1284. }
  1285. static unsigned long slb_pgsize_encoding(unsigned long psize)
  1286. {
  1287. unsigned long senc = 0;
  1288. if (psize > 0x1000) {
  1289. senc = SLB_VSID_L;
  1290. if (psize == 0x10000)
  1291. senc |= SLB_VSID_LP_01;
  1292. }
  1293. return senc;
  1294. }
  1295. static void unpin_slot(struct kvm_memory_slot *memslot)
  1296. {
  1297. unsigned long *physp;
  1298. unsigned long j, npages, pfn;
  1299. struct page *page;
  1300. physp = memslot->arch.slot_phys;
  1301. npages = memslot->npages;
  1302. if (!physp)
  1303. return;
  1304. for (j = 0; j < npages; j++) {
  1305. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1306. continue;
  1307. pfn = physp[j] >> PAGE_SHIFT;
  1308. page = pfn_to_page(pfn);
  1309. SetPageDirty(page);
  1310. put_page(page);
  1311. }
  1312. }
  1313. void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
  1314. struct kvm_memory_slot *dont)
  1315. {
  1316. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1317. vfree(free->arch.rmap);
  1318. free->arch.rmap = NULL;
  1319. }
  1320. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1321. unpin_slot(free);
  1322. vfree(free->arch.slot_phys);
  1323. free->arch.slot_phys = NULL;
  1324. }
  1325. }
  1326. int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
  1327. unsigned long npages)
  1328. {
  1329. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1330. if (!slot->arch.rmap)
  1331. return -ENOMEM;
  1332. slot->arch.slot_phys = NULL;
  1333. return 0;
  1334. }
  1335. int kvmppc_core_prepare_memory_region(struct kvm *kvm,
  1336. struct kvm_memory_slot *memslot,
  1337. struct kvm_userspace_memory_region *mem)
  1338. {
  1339. unsigned long *phys;
  1340. /* Allocate a slot_phys array if needed */
  1341. phys = memslot->arch.slot_phys;
  1342. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1343. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1344. if (!phys)
  1345. return -ENOMEM;
  1346. memslot->arch.slot_phys = phys;
  1347. }
  1348. return 0;
  1349. }
  1350. void kvmppc_core_commit_memory_region(struct kvm *kvm,
  1351. struct kvm_userspace_memory_region *mem,
  1352. struct kvm_memory_slot old)
  1353. {
  1354. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1355. struct kvm_memory_slot *memslot;
  1356. if (npages && old.npages) {
  1357. /*
  1358. * If modifying a memslot, reset all the rmap dirty bits.
  1359. * If this is a new memslot, we don't need to do anything
  1360. * since the rmap array starts out as all zeroes,
  1361. * i.e. no pages are dirty.
  1362. */
  1363. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1364. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1365. }
  1366. }
  1367. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  1368. {
  1369. int err = 0;
  1370. struct kvm *kvm = vcpu->kvm;
  1371. struct kvmppc_linear_info *ri = NULL;
  1372. unsigned long hva;
  1373. struct kvm_memory_slot *memslot;
  1374. struct vm_area_struct *vma;
  1375. unsigned long lpcr, senc;
  1376. unsigned long psize, porder;
  1377. unsigned long rma_size;
  1378. unsigned long rmls;
  1379. unsigned long *physp;
  1380. unsigned long i, npages;
  1381. int srcu_idx;
  1382. mutex_lock(&kvm->lock);
  1383. if (kvm->arch.rma_setup_done)
  1384. goto out; /* another vcpu beat us to it */
  1385. /* Allocate hashed page table (if not done already) and reset it */
  1386. if (!kvm->arch.hpt_virt) {
  1387. err = kvmppc_alloc_hpt(kvm, NULL);
  1388. if (err) {
  1389. pr_err("KVM: Couldn't alloc HPT\n");
  1390. goto out;
  1391. }
  1392. }
  1393. /* Look up the memslot for guest physical address 0 */
  1394. srcu_idx = srcu_read_lock(&kvm->srcu);
  1395. memslot = gfn_to_memslot(kvm, 0);
  1396. /* We must have some memory at 0 by now */
  1397. err = -EINVAL;
  1398. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1399. goto out_srcu;
  1400. /* Look up the VMA for the start of this memory slot */
  1401. hva = memslot->userspace_addr;
  1402. down_read(&current->mm->mmap_sem);
  1403. vma = find_vma(current->mm, hva);
  1404. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  1405. goto up_out;
  1406. psize = vma_kernel_pagesize(vma);
  1407. porder = __ilog2(psize);
  1408. /* Is this one of our preallocated RMAs? */
  1409. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  1410. hva == vma->vm_start)
  1411. ri = vma->vm_file->private_data;
  1412. up_read(&current->mm->mmap_sem);
  1413. if (!ri) {
  1414. /* On POWER7, use VRMA; on PPC970, give up */
  1415. err = -EPERM;
  1416. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1417. pr_err("KVM: CPU requires an RMO\n");
  1418. goto out_srcu;
  1419. }
  1420. /* We can handle 4k, 64k or 16M pages in the VRMA */
  1421. err = -EINVAL;
  1422. if (!(psize == 0x1000 || psize == 0x10000 ||
  1423. psize == 0x1000000))
  1424. goto out_srcu;
  1425. /* Update VRMASD field in the LPCR */
  1426. senc = slb_pgsize_encoding(psize);
  1427. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1428. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1429. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1430. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1431. kvm->arch.lpcr = lpcr;
  1432. /* Create HPTEs in the hash page table for the VRMA */
  1433. kvmppc_map_vrma(vcpu, memslot, porder);
  1434. } else {
  1435. /* Set up to use an RMO region */
  1436. rma_size = ri->npages;
  1437. if (rma_size > memslot->npages)
  1438. rma_size = memslot->npages;
  1439. rma_size <<= PAGE_SHIFT;
  1440. rmls = lpcr_rmls(rma_size);
  1441. err = -EINVAL;
  1442. if (rmls < 0) {
  1443. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  1444. goto out_srcu;
  1445. }
  1446. atomic_inc(&ri->use_count);
  1447. kvm->arch.rma = ri;
  1448. /* Update LPCR and RMOR */
  1449. lpcr = kvm->arch.lpcr;
  1450. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1451. /* PPC970; insert RMLS value (split field) in HID4 */
  1452. lpcr &= ~((1ul << HID4_RMLS0_SH) |
  1453. (3ul << HID4_RMLS2_SH));
  1454. lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
  1455. ((rmls & 3) << HID4_RMLS2_SH);
  1456. /* RMOR is also in HID4 */
  1457. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  1458. << HID4_RMOR_SH;
  1459. } else {
  1460. /* POWER7 */
  1461. lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
  1462. lpcr |= rmls << LPCR_RMLS_SH;
  1463. kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
  1464. }
  1465. kvm->arch.lpcr = lpcr;
  1466. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  1467. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  1468. /* Initialize phys addrs of pages in RMO */
  1469. npages = ri->npages;
  1470. porder = __ilog2(npages);
  1471. physp = memslot->arch.slot_phys;
  1472. if (physp) {
  1473. if (npages > memslot->npages)
  1474. npages = memslot->npages;
  1475. spin_lock(&kvm->arch.slot_phys_lock);
  1476. for (i = 0; i < npages; ++i)
  1477. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  1478. porder;
  1479. spin_unlock(&kvm->arch.slot_phys_lock);
  1480. }
  1481. }
  1482. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  1483. smp_wmb();
  1484. kvm->arch.rma_setup_done = 1;
  1485. err = 0;
  1486. out_srcu:
  1487. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1488. out:
  1489. mutex_unlock(&kvm->lock);
  1490. return err;
  1491. up_out:
  1492. up_read(&current->mm->mmap_sem);
  1493. goto out;
  1494. }
  1495. int kvmppc_core_init_vm(struct kvm *kvm)
  1496. {
  1497. unsigned long lpcr, lpid;
  1498. /* Allocate the guest's logical partition ID */
  1499. lpid = kvmppc_alloc_lpid();
  1500. if (lpid < 0)
  1501. return -ENOMEM;
  1502. kvm->arch.lpid = lpid;
  1503. INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
  1504. kvm->arch.rma = NULL;
  1505. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  1506. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1507. /* PPC970; HID4 is effectively the LPCR */
  1508. kvm->arch.host_lpid = 0;
  1509. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  1510. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  1511. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  1512. ((lpid & 0xf) << HID4_LPID5_SH);
  1513. } else {
  1514. /* POWER7; init LPCR for virtual RMA mode */
  1515. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  1516. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  1517. lpcr &= LPCR_PECE | LPCR_LPES;
  1518. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  1519. LPCR_VPM0 | LPCR_VPM1;
  1520. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  1521. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1522. }
  1523. kvm->arch.lpcr = lpcr;
  1524. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  1525. spin_lock_init(&kvm->arch.slot_phys_lock);
  1526. return 0;
  1527. }
  1528. void kvmppc_core_destroy_vm(struct kvm *kvm)
  1529. {
  1530. if (kvm->arch.rma) {
  1531. kvm_release_rma(kvm->arch.rma);
  1532. kvm->arch.rma = NULL;
  1533. }
  1534. kvmppc_free_hpt(kvm);
  1535. WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
  1536. }
  1537. /* These are stubs for now */
  1538. void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
  1539. {
  1540. }
  1541. /* We don't need to emulate any privileged instructions or dcbz */
  1542. int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
  1543. unsigned int inst, int *advance)
  1544. {
  1545. return EMULATE_FAIL;
  1546. }
  1547. int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
  1548. {
  1549. return EMULATE_FAIL;
  1550. }
  1551. int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
  1552. {
  1553. return EMULATE_FAIL;
  1554. }
  1555. static int kvmppc_book3s_hv_init(void)
  1556. {
  1557. int r;
  1558. r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1559. if (r)
  1560. return r;
  1561. r = kvmppc_mmu_hv_init();
  1562. return r;
  1563. }
  1564. static void kvmppc_book3s_hv_exit(void)
  1565. {
  1566. kvm_exit();
  1567. }
  1568. module_init(kvmppc_book3s_hv_init);
  1569. module_exit(kvmppc_book3s_hv_exit);