intel_ringbuffer.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /*
  35. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  36. * over cache flushing.
  37. */
  38. struct pipe_control {
  39. struct drm_i915_gem_object *obj;
  40. volatile u32 *cpu_page;
  41. u32 gtt_offset;
  42. };
  43. static inline int ring_space(struct intel_ring_buffer *ring)
  44. {
  45. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  46. if (space < 0)
  47. space += ring->size;
  48. return space;
  49. }
  50. static int
  51. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  52. u32 invalidate_domains,
  53. u32 flush_domains)
  54. {
  55. u32 cmd;
  56. int ret;
  57. cmd = MI_FLUSH;
  58. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  59. cmd |= MI_NO_WRITE_FLUSH;
  60. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  61. cmd |= MI_READ_FLUSH;
  62. ret = intel_ring_begin(ring, 2);
  63. if (ret)
  64. return ret;
  65. intel_ring_emit(ring, cmd);
  66. intel_ring_emit(ring, MI_NOOP);
  67. intel_ring_advance(ring);
  68. return 0;
  69. }
  70. static int
  71. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  72. u32 invalidate_domains,
  73. u32 flush_domains)
  74. {
  75. struct drm_device *dev = ring->dev;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  106. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  107. cmd &= ~MI_NO_WRITE_FLUSH;
  108. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  109. cmd |= MI_EXE_FLUSH;
  110. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  111. (IS_G4X(dev) || IS_GEN5(dev)))
  112. cmd |= MI_INVALIDATE_ISP;
  113. ret = intel_ring_begin(ring, 2);
  114. if (ret)
  115. return ret;
  116. intel_ring_emit(ring, cmd);
  117. intel_ring_emit(ring, MI_NOOP);
  118. intel_ring_advance(ring);
  119. return 0;
  120. }
  121. /**
  122. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  123. * implementing two workarounds on gen6. From section 1.4.7.1
  124. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  125. *
  126. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  127. * produced by non-pipelined state commands), software needs to first
  128. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  129. * 0.
  130. *
  131. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  132. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  133. *
  134. * And the workaround for these two requires this workaround first:
  135. *
  136. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  137. * BEFORE the pipe-control with a post-sync op and no write-cache
  138. * flushes.
  139. *
  140. * And this last workaround is tricky because of the requirements on
  141. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  142. * volume 2 part 1:
  143. *
  144. * "1 of the following must also be set:
  145. * - Render Target Cache Flush Enable ([12] of DW1)
  146. * - Depth Cache Flush Enable ([0] of DW1)
  147. * - Stall at Pixel Scoreboard ([1] of DW1)
  148. * - Depth Stall ([13] of DW1)
  149. * - Post-Sync Operation ([13] of DW1)
  150. * - Notify Enable ([8] of DW1)"
  151. *
  152. * The cache flushes require the workaround flush that triggered this
  153. * one, so we can't use it. Depth stall would trigger the same.
  154. * Post-sync nonzero is what triggered this second workaround, so we
  155. * can't use that one either. Notify enable is IRQs, which aren't
  156. * really our business. That leaves only stall at scoreboard.
  157. */
  158. static int
  159. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  160. {
  161. struct pipe_control *pc = ring->private;
  162. u32 scratch_addr = pc->gtt_offset + 128;
  163. int ret;
  164. ret = intel_ring_begin(ring, 6);
  165. if (ret)
  166. return ret;
  167. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  168. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  169. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0); /* low dword */
  172. intel_ring_emit(ring, 0); /* high dword */
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. ret = intel_ring_begin(ring, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  180. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, 0);
  183. intel_ring_emit(ring, MI_NOOP);
  184. intel_ring_advance(ring);
  185. return 0;
  186. }
  187. static int
  188. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  189. u32 invalidate_domains, u32 flush_domains)
  190. {
  191. u32 flags = 0;
  192. struct pipe_control *pc = ring->private;
  193. u32 scratch_addr = pc->gtt_offset + 128;
  194. int ret;
  195. /* Force SNB workarounds for PIPE_CONTROL flushes */
  196. ret = intel_emit_post_sync_nonzero_flush(ring);
  197. if (ret)
  198. return ret;
  199. /* Just flush everything. Experiments have shown that reducing the
  200. * number of bits based on the write domains has little performance
  201. * impact.
  202. */
  203. if (flush_domains) {
  204. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  205. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  206. /*
  207. * Ensure that any following seqno writes only happen
  208. * when the render cache is indeed flushed.
  209. */
  210. flags |= PIPE_CONTROL_CS_STALL;
  211. }
  212. if (invalidate_domains) {
  213. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  214. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  218. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  219. /*
  220. * TLB invalidate requires a post-sync write.
  221. */
  222. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  223. }
  224. ret = intel_ring_begin(ring, 4);
  225. if (ret)
  226. return ret;
  227. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  228. intel_ring_emit(ring, flags);
  229. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  230. intel_ring_emit(ring, 0);
  231. intel_ring_advance(ring);
  232. return 0;
  233. }
  234. static int
  235. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  236. {
  237. int ret;
  238. ret = intel_ring_begin(ring, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  243. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  244. intel_ring_emit(ring, 0);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_advance(ring);
  247. return 0;
  248. }
  249. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  250. {
  251. int ret;
  252. if (!ring->fbc_dirty)
  253. return 0;
  254. ret = intel_ring_begin(ring, 4);
  255. if (ret)
  256. return ret;
  257. intel_ring_emit(ring, MI_NOOP);
  258. /* WaFbcNukeOn3DBlt:ivb/hsw */
  259. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  260. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  261. intel_ring_emit(ring, value);
  262. intel_ring_advance(ring);
  263. ring->fbc_dirty = false;
  264. return 0;
  265. }
  266. static int
  267. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  268. u32 invalidate_domains, u32 flush_domains)
  269. {
  270. u32 flags = 0;
  271. struct pipe_control *pc = ring->private;
  272. u32 scratch_addr = pc->gtt_offset + 128;
  273. int ret;
  274. /*
  275. * Ensure that any following seqno writes only happen when the render
  276. * cache is indeed flushed.
  277. *
  278. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  279. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  280. * don't try to be clever and just set it unconditionally.
  281. */
  282. flags |= PIPE_CONTROL_CS_STALL;
  283. /* Just flush everything. Experiments have shown that reducing the
  284. * number of bits based on the write domains has little performance
  285. * impact.
  286. */
  287. if (flush_domains) {
  288. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  289. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  290. }
  291. if (invalidate_domains) {
  292. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  293. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  297. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  298. /*
  299. * TLB invalidate requires a post-sync write.
  300. */
  301. flags |= PIPE_CONTROL_QW_WRITE;
  302. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  303. /* Workaround: we must issue a pipe_control with CS-stall bit
  304. * set before a pipe_control command that has the state cache
  305. * invalidate bit set. */
  306. gen7_render_ring_cs_stall_wa(ring);
  307. }
  308. ret = intel_ring_begin(ring, 4);
  309. if (ret)
  310. return ret;
  311. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  312. intel_ring_emit(ring, flags);
  313. intel_ring_emit(ring, scratch_addr);
  314. intel_ring_emit(ring, 0);
  315. intel_ring_advance(ring);
  316. if (flush_domains)
  317. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  318. return 0;
  319. }
  320. static void ring_write_tail(struct intel_ring_buffer *ring,
  321. u32 value)
  322. {
  323. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  324. I915_WRITE_TAIL(ring, value);
  325. }
  326. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  327. {
  328. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  329. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  330. RING_ACTHD(ring->mmio_base) : ACTHD;
  331. return I915_READ(acthd_reg);
  332. }
  333. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  334. {
  335. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  336. u32 addr;
  337. addr = dev_priv->status_page_dmah->busaddr;
  338. if (INTEL_INFO(ring->dev)->gen >= 4)
  339. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  340. I915_WRITE(HWS_PGA, addr);
  341. }
  342. static int init_ring_common(struct intel_ring_buffer *ring)
  343. {
  344. struct drm_device *dev = ring->dev;
  345. drm_i915_private_t *dev_priv = dev->dev_private;
  346. struct drm_i915_gem_object *obj = ring->obj;
  347. int ret = 0;
  348. u32 head;
  349. if (HAS_FORCE_WAKE(dev))
  350. gen6_gt_force_wake_get(dev_priv);
  351. if (I915_NEED_GFX_HWS(dev))
  352. intel_ring_setup_status_page(ring);
  353. else
  354. ring_setup_phys_status_page(ring);
  355. /* Stop the ring if it's running. */
  356. I915_WRITE_CTL(ring, 0);
  357. I915_WRITE_HEAD(ring, 0);
  358. ring->write_tail(ring, 0);
  359. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  360. /* G45 ring initialization fails to reset head to zero */
  361. if (head != 0) {
  362. DRM_DEBUG_KMS("%s head not reset to zero "
  363. "ctl %08x head %08x tail %08x start %08x\n",
  364. ring->name,
  365. I915_READ_CTL(ring),
  366. I915_READ_HEAD(ring),
  367. I915_READ_TAIL(ring),
  368. I915_READ_START(ring));
  369. I915_WRITE_HEAD(ring, 0);
  370. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  371. DRM_ERROR("failed to set %s head to zero "
  372. "ctl %08x head %08x tail %08x start %08x\n",
  373. ring->name,
  374. I915_READ_CTL(ring),
  375. I915_READ_HEAD(ring),
  376. I915_READ_TAIL(ring),
  377. I915_READ_START(ring));
  378. }
  379. }
  380. /* Initialize the ring. This must happen _after_ we've cleared the ring
  381. * registers with the above sequence (the readback of the HEAD registers
  382. * also enforces ordering), otherwise the hw might lose the new ring
  383. * register values. */
  384. I915_WRITE_START(ring, obj->gtt_offset);
  385. I915_WRITE_CTL(ring,
  386. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  387. | RING_VALID);
  388. /* If the head is still not zero, the ring is dead */
  389. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  390. I915_READ_START(ring) == obj->gtt_offset &&
  391. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  392. DRM_ERROR("%s initialization failed "
  393. "ctl %08x head %08x tail %08x start %08x\n",
  394. ring->name,
  395. I915_READ_CTL(ring),
  396. I915_READ_HEAD(ring),
  397. I915_READ_TAIL(ring),
  398. I915_READ_START(ring));
  399. ret = -EIO;
  400. goto out;
  401. }
  402. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  403. i915_kernel_lost_context(ring->dev);
  404. else {
  405. ring->head = I915_READ_HEAD(ring);
  406. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  407. ring->space = ring_space(ring);
  408. ring->last_retired_head = -1;
  409. }
  410. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  411. out:
  412. if (HAS_FORCE_WAKE(dev))
  413. gen6_gt_force_wake_put(dev_priv);
  414. return ret;
  415. }
  416. static int
  417. init_pipe_control(struct intel_ring_buffer *ring)
  418. {
  419. struct pipe_control *pc;
  420. struct drm_i915_gem_object *obj;
  421. int ret;
  422. if (ring->private)
  423. return 0;
  424. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  425. if (!pc)
  426. return -ENOMEM;
  427. obj = i915_gem_alloc_object(ring->dev, 4096);
  428. if (obj == NULL) {
  429. DRM_ERROR("Failed to allocate seqno page\n");
  430. ret = -ENOMEM;
  431. goto err;
  432. }
  433. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  434. ret = i915_gem_object_pin(obj, 4096, true, false);
  435. if (ret)
  436. goto err_unref;
  437. pc->gtt_offset = obj->gtt_offset;
  438. pc->cpu_page = kmap(sg_page(obj->pages->sgl));
  439. if (pc->cpu_page == NULL) {
  440. ret = -ENOMEM;
  441. goto err_unpin;
  442. }
  443. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  444. ring->name, pc->gtt_offset);
  445. pc->obj = obj;
  446. ring->private = pc;
  447. return 0;
  448. err_unpin:
  449. i915_gem_object_unpin(obj);
  450. err_unref:
  451. drm_gem_object_unreference(&obj->base);
  452. err:
  453. kfree(pc);
  454. return ret;
  455. }
  456. static void
  457. cleanup_pipe_control(struct intel_ring_buffer *ring)
  458. {
  459. struct pipe_control *pc = ring->private;
  460. struct drm_i915_gem_object *obj;
  461. if (!ring->private)
  462. return;
  463. obj = pc->obj;
  464. kunmap(sg_page(obj->pages->sgl));
  465. i915_gem_object_unpin(obj);
  466. drm_gem_object_unreference(&obj->base);
  467. kfree(pc);
  468. ring->private = NULL;
  469. }
  470. static int init_render_ring(struct intel_ring_buffer *ring)
  471. {
  472. struct drm_device *dev = ring->dev;
  473. struct drm_i915_private *dev_priv = dev->dev_private;
  474. int ret = init_ring_common(ring);
  475. if (INTEL_INFO(dev)->gen > 3)
  476. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  477. /* We need to disable the AsyncFlip performance optimisations in order
  478. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  479. * programmed to '1' on all products.
  480. *
  481. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  482. */
  483. if (INTEL_INFO(dev)->gen >= 6)
  484. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  485. /* Required for the hardware to program scanline values for waiting */
  486. if (INTEL_INFO(dev)->gen == 6)
  487. I915_WRITE(GFX_MODE,
  488. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  489. if (IS_GEN7(dev))
  490. I915_WRITE(GFX_MODE_GEN7,
  491. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  492. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  493. if (INTEL_INFO(dev)->gen >= 5) {
  494. ret = init_pipe_control(ring);
  495. if (ret)
  496. return ret;
  497. }
  498. if (IS_GEN6(dev)) {
  499. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  500. * "If this bit is set, STCunit will have LRA as replacement
  501. * policy. [...] This bit must be reset. LRA replacement
  502. * policy is not supported."
  503. */
  504. I915_WRITE(CACHE_MODE_0,
  505. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  506. /* This is not explicitly set for GEN6, so read the register.
  507. * see intel_ring_mi_set_context() for why we care.
  508. * TODO: consider explicitly setting the bit for GEN5
  509. */
  510. ring->itlb_before_ctx_switch =
  511. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  512. }
  513. if (INTEL_INFO(dev)->gen >= 6)
  514. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  515. if (HAS_L3_GPU_CACHE(dev))
  516. I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  517. return ret;
  518. }
  519. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  520. {
  521. struct drm_device *dev = ring->dev;
  522. if (!ring->private)
  523. return;
  524. if (HAS_BROKEN_CS_TLB(dev))
  525. drm_gem_object_unreference(to_gem_object(ring->private));
  526. cleanup_pipe_control(ring);
  527. }
  528. static void
  529. update_mboxes(struct intel_ring_buffer *ring,
  530. u32 mmio_offset)
  531. {
  532. /* NB: In order to be able to do semaphore MBOX updates for varying number
  533. * of rings, it's easiest if we round up each individual update to a
  534. * multiple of 2 (since ring updates must always be a multiple of 2)
  535. * even though the actual update only requires 3 dwords.
  536. */
  537. #define MBOX_UPDATE_DWORDS 4
  538. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  539. intel_ring_emit(ring, mmio_offset);
  540. intel_ring_emit(ring, ring->outstanding_lazy_request);
  541. intel_ring_emit(ring, MI_NOOP);
  542. }
  543. /**
  544. * gen6_add_request - Update the semaphore mailbox registers
  545. *
  546. * @ring - ring that is adding a request
  547. * @seqno - return seqno stuck into the ring
  548. *
  549. * Update the mailbox registers in the *other* rings with the current seqno.
  550. * This acts like a signal in the canonical semaphore.
  551. */
  552. static int
  553. gen6_add_request(struct intel_ring_buffer *ring)
  554. {
  555. struct drm_device *dev = ring->dev;
  556. struct drm_i915_private *dev_priv = dev->dev_private;
  557. struct intel_ring_buffer *useless;
  558. int i, ret;
  559. ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
  560. MBOX_UPDATE_DWORDS) +
  561. 4);
  562. if (ret)
  563. return ret;
  564. #undef MBOX_UPDATE_DWORDS
  565. for_each_ring(useless, dev_priv, i) {
  566. u32 mbox_reg = ring->signal_mbox[i];
  567. if (mbox_reg != GEN6_NOSYNC)
  568. update_mboxes(ring, mbox_reg);
  569. }
  570. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  571. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  572. intel_ring_emit(ring, ring->outstanding_lazy_request);
  573. intel_ring_emit(ring, MI_USER_INTERRUPT);
  574. intel_ring_advance(ring);
  575. return 0;
  576. }
  577. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  578. u32 seqno)
  579. {
  580. struct drm_i915_private *dev_priv = dev->dev_private;
  581. return dev_priv->last_seqno < seqno;
  582. }
  583. /**
  584. * intel_ring_sync - sync the waiter to the signaller on seqno
  585. *
  586. * @waiter - ring that is waiting
  587. * @signaller - ring which has, or will signal
  588. * @seqno - seqno which the waiter will block on
  589. */
  590. static int
  591. gen6_ring_sync(struct intel_ring_buffer *waiter,
  592. struct intel_ring_buffer *signaller,
  593. u32 seqno)
  594. {
  595. int ret;
  596. u32 dw1 = MI_SEMAPHORE_MBOX |
  597. MI_SEMAPHORE_COMPARE |
  598. MI_SEMAPHORE_REGISTER;
  599. /* Throughout all of the GEM code, seqno passed implies our current
  600. * seqno is >= the last seqno executed. However for hardware the
  601. * comparison is strictly greater than.
  602. */
  603. seqno -= 1;
  604. WARN_ON(signaller->semaphore_register[waiter->id] ==
  605. MI_SEMAPHORE_SYNC_INVALID);
  606. ret = intel_ring_begin(waiter, 4);
  607. if (ret)
  608. return ret;
  609. /* If seqno wrap happened, omit the wait with no-ops */
  610. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  611. intel_ring_emit(waiter,
  612. dw1 |
  613. signaller->semaphore_register[waiter->id]);
  614. intel_ring_emit(waiter, seqno);
  615. intel_ring_emit(waiter, 0);
  616. intel_ring_emit(waiter, MI_NOOP);
  617. } else {
  618. intel_ring_emit(waiter, MI_NOOP);
  619. intel_ring_emit(waiter, MI_NOOP);
  620. intel_ring_emit(waiter, MI_NOOP);
  621. intel_ring_emit(waiter, MI_NOOP);
  622. }
  623. intel_ring_advance(waiter);
  624. return 0;
  625. }
  626. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  627. do { \
  628. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  629. PIPE_CONTROL_DEPTH_STALL); \
  630. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  631. intel_ring_emit(ring__, 0); \
  632. intel_ring_emit(ring__, 0); \
  633. } while (0)
  634. static int
  635. pc_render_add_request(struct intel_ring_buffer *ring)
  636. {
  637. struct pipe_control *pc = ring->private;
  638. u32 scratch_addr = pc->gtt_offset + 128;
  639. int ret;
  640. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  641. * incoherent with writes to memory, i.e. completely fubar,
  642. * so we need to use PIPE_NOTIFY instead.
  643. *
  644. * However, we also need to workaround the qword write
  645. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  646. * memory before requesting an interrupt.
  647. */
  648. ret = intel_ring_begin(ring, 32);
  649. if (ret)
  650. return ret;
  651. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  652. PIPE_CONTROL_WRITE_FLUSH |
  653. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  654. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  655. intel_ring_emit(ring, ring->outstanding_lazy_request);
  656. intel_ring_emit(ring, 0);
  657. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  658. scratch_addr += 128; /* write to separate cachelines */
  659. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  660. scratch_addr += 128;
  661. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  662. scratch_addr += 128;
  663. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  664. scratch_addr += 128;
  665. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  666. scratch_addr += 128;
  667. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  668. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  669. PIPE_CONTROL_WRITE_FLUSH |
  670. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  671. PIPE_CONTROL_NOTIFY);
  672. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  673. intel_ring_emit(ring, ring->outstanding_lazy_request);
  674. intel_ring_emit(ring, 0);
  675. intel_ring_advance(ring);
  676. return 0;
  677. }
  678. static u32
  679. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  680. {
  681. /* Workaround to force correct ordering between irq and seqno writes on
  682. * ivb (and maybe also on snb) by reading from a CS register (like
  683. * ACTHD) before reading the status page. */
  684. if (!lazy_coherency)
  685. intel_ring_get_active_head(ring);
  686. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  687. }
  688. static u32
  689. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  690. {
  691. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  692. }
  693. static void
  694. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  695. {
  696. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  697. }
  698. static u32
  699. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  700. {
  701. struct pipe_control *pc = ring->private;
  702. return pc->cpu_page[0];
  703. }
  704. static void
  705. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  706. {
  707. struct pipe_control *pc = ring->private;
  708. pc->cpu_page[0] = seqno;
  709. }
  710. static bool
  711. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  712. {
  713. struct drm_device *dev = ring->dev;
  714. drm_i915_private_t *dev_priv = dev->dev_private;
  715. unsigned long flags;
  716. if (!dev->irq_enabled)
  717. return false;
  718. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  719. if (ring->irq_refcount.gt++ == 0) {
  720. dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
  721. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  722. POSTING_READ(GTIMR);
  723. }
  724. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  725. return true;
  726. }
  727. static void
  728. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  729. {
  730. struct drm_device *dev = ring->dev;
  731. drm_i915_private_t *dev_priv = dev->dev_private;
  732. unsigned long flags;
  733. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  734. if (--ring->irq_refcount.gt == 0) {
  735. dev_priv->gt_irq_mask |= ring->irq_enable_mask;
  736. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  737. POSTING_READ(GTIMR);
  738. }
  739. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  740. }
  741. static bool
  742. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  743. {
  744. struct drm_device *dev = ring->dev;
  745. drm_i915_private_t *dev_priv = dev->dev_private;
  746. unsigned long flags;
  747. if (!dev->irq_enabled)
  748. return false;
  749. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  750. if (ring->irq_refcount.gt++ == 0) {
  751. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  752. I915_WRITE(IMR, dev_priv->irq_mask);
  753. POSTING_READ(IMR);
  754. }
  755. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  756. return true;
  757. }
  758. static void
  759. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  760. {
  761. struct drm_device *dev = ring->dev;
  762. drm_i915_private_t *dev_priv = dev->dev_private;
  763. unsigned long flags;
  764. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  765. if (--ring->irq_refcount.gt == 0) {
  766. dev_priv->irq_mask |= ring->irq_enable_mask;
  767. I915_WRITE(IMR, dev_priv->irq_mask);
  768. POSTING_READ(IMR);
  769. }
  770. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  771. }
  772. static bool
  773. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  774. {
  775. struct drm_device *dev = ring->dev;
  776. drm_i915_private_t *dev_priv = dev->dev_private;
  777. unsigned long flags;
  778. if (!dev->irq_enabled)
  779. return false;
  780. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  781. if (ring->irq_refcount.gt++ == 0) {
  782. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  783. I915_WRITE16(IMR, dev_priv->irq_mask);
  784. POSTING_READ16(IMR);
  785. }
  786. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  787. return true;
  788. }
  789. static void
  790. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  791. {
  792. struct drm_device *dev = ring->dev;
  793. drm_i915_private_t *dev_priv = dev->dev_private;
  794. unsigned long flags;
  795. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  796. if (--ring->irq_refcount.gt == 0) {
  797. dev_priv->irq_mask |= ring->irq_enable_mask;
  798. I915_WRITE16(IMR, dev_priv->irq_mask);
  799. POSTING_READ16(IMR);
  800. }
  801. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  802. }
  803. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  804. {
  805. struct drm_device *dev = ring->dev;
  806. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  807. u32 mmio = 0;
  808. /* The ring status page addresses are no longer next to the rest of
  809. * the ring registers as of gen7.
  810. */
  811. if (IS_GEN7(dev)) {
  812. switch (ring->id) {
  813. case RCS:
  814. mmio = RENDER_HWS_PGA_GEN7;
  815. break;
  816. case BCS:
  817. mmio = BLT_HWS_PGA_GEN7;
  818. break;
  819. case VCS:
  820. mmio = BSD_HWS_PGA_GEN7;
  821. break;
  822. case VECS:
  823. mmio = VEBOX_HWS_PGA_GEN7;
  824. break;
  825. }
  826. } else if (IS_GEN6(ring->dev)) {
  827. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  828. } else {
  829. mmio = RING_HWS_PGA(ring->mmio_base);
  830. }
  831. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  832. POSTING_READ(mmio);
  833. }
  834. static int
  835. bsd_ring_flush(struct intel_ring_buffer *ring,
  836. u32 invalidate_domains,
  837. u32 flush_domains)
  838. {
  839. int ret;
  840. ret = intel_ring_begin(ring, 2);
  841. if (ret)
  842. return ret;
  843. intel_ring_emit(ring, MI_FLUSH);
  844. intel_ring_emit(ring, MI_NOOP);
  845. intel_ring_advance(ring);
  846. return 0;
  847. }
  848. static int
  849. i9xx_add_request(struct intel_ring_buffer *ring)
  850. {
  851. int ret;
  852. ret = intel_ring_begin(ring, 4);
  853. if (ret)
  854. return ret;
  855. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  856. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  857. intel_ring_emit(ring, ring->outstanding_lazy_request);
  858. intel_ring_emit(ring, MI_USER_INTERRUPT);
  859. intel_ring_advance(ring);
  860. return 0;
  861. }
  862. static bool
  863. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  864. {
  865. struct drm_device *dev = ring->dev;
  866. drm_i915_private_t *dev_priv = dev->dev_private;
  867. unsigned long flags;
  868. if (!dev->irq_enabled)
  869. return false;
  870. /* It looks like we need to prevent the gt from suspending while waiting
  871. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  872. * blt/bsd rings on ivb. */
  873. gen6_gt_force_wake_get(dev_priv);
  874. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  875. if (ring->irq_refcount.gt++ == 0) {
  876. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  877. I915_WRITE_IMR(ring,
  878. ~(ring->irq_enable_mask |
  879. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  880. else
  881. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  882. dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
  883. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  884. POSTING_READ(GTIMR);
  885. }
  886. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  887. return true;
  888. }
  889. static void
  890. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  891. {
  892. struct drm_device *dev = ring->dev;
  893. drm_i915_private_t *dev_priv = dev->dev_private;
  894. unsigned long flags;
  895. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  896. if (--ring->irq_refcount.gt == 0) {
  897. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  898. I915_WRITE_IMR(ring,
  899. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  900. else
  901. I915_WRITE_IMR(ring, ~0);
  902. dev_priv->gt_irq_mask |= ring->irq_enable_mask;
  903. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  904. POSTING_READ(GTIMR);
  905. }
  906. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  907. gen6_gt_force_wake_put(dev_priv);
  908. }
  909. static bool
  910. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  911. {
  912. struct drm_device *dev = ring->dev;
  913. struct drm_i915_private *dev_priv = dev->dev_private;
  914. unsigned long flags;
  915. if (!dev->irq_enabled)
  916. return false;
  917. spin_lock_irqsave(&dev_priv->rps.lock, flags);
  918. if (ring->irq_refcount.pm++ == 0) {
  919. u32 pm_imr = I915_READ(GEN6_PMIMR);
  920. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  921. I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
  922. POSTING_READ(GEN6_PMIMR);
  923. }
  924. spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
  925. return true;
  926. }
  927. static void
  928. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  929. {
  930. struct drm_device *dev = ring->dev;
  931. struct drm_i915_private *dev_priv = dev->dev_private;
  932. unsigned long flags;
  933. if (!dev->irq_enabled)
  934. return;
  935. spin_lock_irqsave(&dev_priv->rps.lock, flags);
  936. if (--ring->irq_refcount.pm == 0) {
  937. u32 pm_imr = I915_READ(GEN6_PMIMR);
  938. I915_WRITE_IMR(ring, ~0);
  939. I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
  940. POSTING_READ(GEN6_PMIMR);
  941. }
  942. spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
  943. }
  944. static int
  945. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  946. u32 offset, u32 length,
  947. unsigned flags)
  948. {
  949. int ret;
  950. ret = intel_ring_begin(ring, 2);
  951. if (ret)
  952. return ret;
  953. intel_ring_emit(ring,
  954. MI_BATCH_BUFFER_START |
  955. MI_BATCH_GTT |
  956. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  957. intel_ring_emit(ring, offset);
  958. intel_ring_advance(ring);
  959. return 0;
  960. }
  961. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  962. #define I830_BATCH_LIMIT (256*1024)
  963. static int
  964. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  965. u32 offset, u32 len,
  966. unsigned flags)
  967. {
  968. int ret;
  969. if (flags & I915_DISPATCH_PINNED) {
  970. ret = intel_ring_begin(ring, 4);
  971. if (ret)
  972. return ret;
  973. intel_ring_emit(ring, MI_BATCH_BUFFER);
  974. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  975. intel_ring_emit(ring, offset + len - 8);
  976. intel_ring_emit(ring, MI_NOOP);
  977. intel_ring_advance(ring);
  978. } else {
  979. struct drm_i915_gem_object *obj = ring->private;
  980. u32 cs_offset = obj->gtt_offset;
  981. if (len > I830_BATCH_LIMIT)
  982. return -ENOSPC;
  983. ret = intel_ring_begin(ring, 9+3);
  984. if (ret)
  985. return ret;
  986. /* Blit the batch (which has now all relocs applied) to the stable batch
  987. * scratch bo area (so that the CS never stumbles over its tlb
  988. * invalidation bug) ... */
  989. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  990. XY_SRC_COPY_BLT_WRITE_ALPHA |
  991. XY_SRC_COPY_BLT_WRITE_RGB);
  992. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  993. intel_ring_emit(ring, 0);
  994. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  995. intel_ring_emit(ring, cs_offset);
  996. intel_ring_emit(ring, 0);
  997. intel_ring_emit(ring, 4096);
  998. intel_ring_emit(ring, offset);
  999. intel_ring_emit(ring, MI_FLUSH);
  1000. /* ... and execute it. */
  1001. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1002. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1003. intel_ring_emit(ring, cs_offset + len - 8);
  1004. intel_ring_advance(ring);
  1005. }
  1006. return 0;
  1007. }
  1008. static int
  1009. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1010. u32 offset, u32 len,
  1011. unsigned flags)
  1012. {
  1013. int ret;
  1014. ret = intel_ring_begin(ring, 2);
  1015. if (ret)
  1016. return ret;
  1017. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1018. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1019. intel_ring_advance(ring);
  1020. return 0;
  1021. }
  1022. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1023. {
  1024. struct drm_i915_gem_object *obj;
  1025. obj = ring->status_page.obj;
  1026. if (obj == NULL)
  1027. return;
  1028. kunmap(sg_page(obj->pages->sgl));
  1029. i915_gem_object_unpin(obj);
  1030. drm_gem_object_unreference(&obj->base);
  1031. ring->status_page.obj = NULL;
  1032. }
  1033. static int init_status_page(struct intel_ring_buffer *ring)
  1034. {
  1035. struct drm_device *dev = ring->dev;
  1036. struct drm_i915_gem_object *obj;
  1037. int ret;
  1038. obj = i915_gem_alloc_object(dev, 4096);
  1039. if (obj == NULL) {
  1040. DRM_ERROR("Failed to allocate status page\n");
  1041. ret = -ENOMEM;
  1042. goto err;
  1043. }
  1044. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1045. ret = i915_gem_object_pin(obj, 4096, true, false);
  1046. if (ret != 0) {
  1047. goto err_unref;
  1048. }
  1049. ring->status_page.gfx_addr = obj->gtt_offset;
  1050. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1051. if (ring->status_page.page_addr == NULL) {
  1052. ret = -ENOMEM;
  1053. goto err_unpin;
  1054. }
  1055. ring->status_page.obj = obj;
  1056. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1057. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1058. ring->name, ring->status_page.gfx_addr);
  1059. return 0;
  1060. err_unpin:
  1061. i915_gem_object_unpin(obj);
  1062. err_unref:
  1063. drm_gem_object_unreference(&obj->base);
  1064. err:
  1065. return ret;
  1066. }
  1067. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1068. {
  1069. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1070. if (!dev_priv->status_page_dmah) {
  1071. dev_priv->status_page_dmah =
  1072. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1073. if (!dev_priv->status_page_dmah)
  1074. return -ENOMEM;
  1075. }
  1076. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1077. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1078. return 0;
  1079. }
  1080. static int intel_init_ring_buffer(struct drm_device *dev,
  1081. struct intel_ring_buffer *ring)
  1082. {
  1083. struct drm_i915_gem_object *obj;
  1084. struct drm_i915_private *dev_priv = dev->dev_private;
  1085. int ret;
  1086. ring->dev = dev;
  1087. INIT_LIST_HEAD(&ring->active_list);
  1088. INIT_LIST_HEAD(&ring->request_list);
  1089. ring->size = 32 * PAGE_SIZE;
  1090. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1091. init_waitqueue_head(&ring->irq_queue);
  1092. if (I915_NEED_GFX_HWS(dev)) {
  1093. ret = init_status_page(ring);
  1094. if (ret)
  1095. return ret;
  1096. } else {
  1097. BUG_ON(ring->id != RCS);
  1098. ret = init_phys_status_page(ring);
  1099. if (ret)
  1100. return ret;
  1101. }
  1102. obj = NULL;
  1103. if (!HAS_LLC(dev))
  1104. obj = i915_gem_object_create_stolen(dev, ring->size);
  1105. if (obj == NULL)
  1106. obj = i915_gem_alloc_object(dev, ring->size);
  1107. if (obj == NULL) {
  1108. DRM_ERROR("Failed to allocate ringbuffer\n");
  1109. ret = -ENOMEM;
  1110. goto err_hws;
  1111. }
  1112. ring->obj = obj;
  1113. ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
  1114. if (ret)
  1115. goto err_unref;
  1116. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1117. if (ret)
  1118. goto err_unpin;
  1119. ring->virtual_start =
  1120. ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
  1121. ring->size);
  1122. if (ring->virtual_start == NULL) {
  1123. DRM_ERROR("Failed to map ringbuffer.\n");
  1124. ret = -EINVAL;
  1125. goto err_unpin;
  1126. }
  1127. ret = ring->init(ring);
  1128. if (ret)
  1129. goto err_unmap;
  1130. /* Workaround an erratum on the i830 which causes a hang if
  1131. * the TAIL pointer points to within the last 2 cachelines
  1132. * of the buffer.
  1133. */
  1134. ring->effective_size = ring->size;
  1135. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1136. ring->effective_size -= 128;
  1137. return 0;
  1138. err_unmap:
  1139. iounmap(ring->virtual_start);
  1140. err_unpin:
  1141. i915_gem_object_unpin(obj);
  1142. err_unref:
  1143. drm_gem_object_unreference(&obj->base);
  1144. ring->obj = NULL;
  1145. err_hws:
  1146. cleanup_status_page(ring);
  1147. return ret;
  1148. }
  1149. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1150. {
  1151. struct drm_i915_private *dev_priv;
  1152. int ret;
  1153. if (ring->obj == NULL)
  1154. return;
  1155. /* Disable the ring buffer. The ring must be idle at this point */
  1156. dev_priv = ring->dev->dev_private;
  1157. ret = intel_ring_idle(ring);
  1158. if (ret)
  1159. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1160. ring->name, ret);
  1161. I915_WRITE_CTL(ring, 0);
  1162. iounmap(ring->virtual_start);
  1163. i915_gem_object_unpin(ring->obj);
  1164. drm_gem_object_unreference(&ring->obj->base);
  1165. ring->obj = NULL;
  1166. if (ring->cleanup)
  1167. ring->cleanup(ring);
  1168. cleanup_status_page(ring);
  1169. }
  1170. static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1171. {
  1172. int ret;
  1173. ret = i915_wait_seqno(ring, seqno);
  1174. if (!ret)
  1175. i915_gem_retire_requests_ring(ring);
  1176. return ret;
  1177. }
  1178. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1179. {
  1180. struct drm_i915_gem_request *request;
  1181. u32 seqno = 0;
  1182. int ret;
  1183. i915_gem_retire_requests_ring(ring);
  1184. if (ring->last_retired_head != -1) {
  1185. ring->head = ring->last_retired_head;
  1186. ring->last_retired_head = -1;
  1187. ring->space = ring_space(ring);
  1188. if (ring->space >= n)
  1189. return 0;
  1190. }
  1191. list_for_each_entry(request, &ring->request_list, list) {
  1192. int space;
  1193. if (request->tail == -1)
  1194. continue;
  1195. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1196. if (space < 0)
  1197. space += ring->size;
  1198. if (space >= n) {
  1199. seqno = request->seqno;
  1200. break;
  1201. }
  1202. /* Consume this request in case we need more space than
  1203. * is available and so need to prevent a race between
  1204. * updating last_retired_head and direct reads of
  1205. * I915_RING_HEAD. It also provides a nice sanity check.
  1206. */
  1207. request->tail = -1;
  1208. }
  1209. if (seqno == 0)
  1210. return -ENOSPC;
  1211. ret = intel_ring_wait_seqno(ring, seqno);
  1212. if (ret)
  1213. return ret;
  1214. if (WARN_ON(ring->last_retired_head == -1))
  1215. return -ENOSPC;
  1216. ring->head = ring->last_retired_head;
  1217. ring->last_retired_head = -1;
  1218. ring->space = ring_space(ring);
  1219. if (WARN_ON(ring->space < n))
  1220. return -ENOSPC;
  1221. return 0;
  1222. }
  1223. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1224. {
  1225. struct drm_device *dev = ring->dev;
  1226. struct drm_i915_private *dev_priv = dev->dev_private;
  1227. unsigned long end;
  1228. int ret;
  1229. ret = intel_ring_wait_request(ring, n);
  1230. if (ret != -ENOSPC)
  1231. return ret;
  1232. trace_i915_ring_wait_begin(ring);
  1233. /* With GEM the hangcheck timer should kick us out of the loop,
  1234. * leaving it early runs the risk of corrupting GEM state (due
  1235. * to running on almost untested codepaths). But on resume
  1236. * timers don't work yet, so prevent a complete hang in that
  1237. * case by choosing an insanely large timeout. */
  1238. end = jiffies + 60 * HZ;
  1239. do {
  1240. ring->head = I915_READ_HEAD(ring);
  1241. ring->space = ring_space(ring);
  1242. if (ring->space >= n) {
  1243. trace_i915_ring_wait_end(ring);
  1244. return 0;
  1245. }
  1246. if (dev->primary->master) {
  1247. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1248. if (master_priv->sarea_priv)
  1249. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1250. }
  1251. msleep(1);
  1252. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1253. dev_priv->mm.interruptible);
  1254. if (ret)
  1255. return ret;
  1256. } while (!time_after(jiffies, end));
  1257. trace_i915_ring_wait_end(ring);
  1258. return -EBUSY;
  1259. }
  1260. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1261. {
  1262. uint32_t __iomem *virt;
  1263. int rem = ring->size - ring->tail;
  1264. if (ring->space < rem) {
  1265. int ret = ring_wait_for_space(ring, rem);
  1266. if (ret)
  1267. return ret;
  1268. }
  1269. virt = ring->virtual_start + ring->tail;
  1270. rem /= 4;
  1271. while (rem--)
  1272. iowrite32(MI_NOOP, virt++);
  1273. ring->tail = 0;
  1274. ring->space = ring_space(ring);
  1275. return 0;
  1276. }
  1277. int intel_ring_idle(struct intel_ring_buffer *ring)
  1278. {
  1279. u32 seqno;
  1280. int ret;
  1281. /* We need to add any requests required to flush the objects and ring */
  1282. if (ring->outstanding_lazy_request) {
  1283. ret = i915_add_request(ring, NULL);
  1284. if (ret)
  1285. return ret;
  1286. }
  1287. /* Wait upon the last request to be completed */
  1288. if (list_empty(&ring->request_list))
  1289. return 0;
  1290. seqno = list_entry(ring->request_list.prev,
  1291. struct drm_i915_gem_request,
  1292. list)->seqno;
  1293. return i915_wait_seqno(ring, seqno);
  1294. }
  1295. static int
  1296. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1297. {
  1298. if (ring->outstanding_lazy_request)
  1299. return 0;
  1300. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
  1301. }
  1302. static int __intel_ring_begin(struct intel_ring_buffer *ring,
  1303. int bytes)
  1304. {
  1305. int ret;
  1306. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1307. ret = intel_wrap_ring_buffer(ring);
  1308. if (unlikely(ret))
  1309. return ret;
  1310. }
  1311. if (unlikely(ring->space < bytes)) {
  1312. ret = ring_wait_for_space(ring, bytes);
  1313. if (unlikely(ret))
  1314. return ret;
  1315. }
  1316. ring->space -= bytes;
  1317. return 0;
  1318. }
  1319. int intel_ring_begin(struct intel_ring_buffer *ring,
  1320. int num_dwords)
  1321. {
  1322. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1323. int ret;
  1324. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1325. dev_priv->mm.interruptible);
  1326. if (ret)
  1327. return ret;
  1328. /* Preallocate the olr before touching the ring */
  1329. ret = intel_ring_alloc_seqno(ring);
  1330. if (ret)
  1331. return ret;
  1332. return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
  1333. }
  1334. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1335. {
  1336. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1337. BUG_ON(ring->outstanding_lazy_request);
  1338. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1339. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1340. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1341. }
  1342. ring->set_seqno(ring, seqno);
  1343. ring->hangcheck.seqno = seqno;
  1344. }
  1345. void intel_ring_advance(struct intel_ring_buffer *ring)
  1346. {
  1347. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1348. ring->tail &= ring->size - 1;
  1349. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  1350. return;
  1351. ring->write_tail(ring, ring->tail);
  1352. }
  1353. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1354. u32 value)
  1355. {
  1356. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1357. /* Every tail move must follow the sequence below */
  1358. /* Disable notification that the ring is IDLE. The GT
  1359. * will then assume that it is busy and bring it out of rc6.
  1360. */
  1361. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1362. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1363. /* Clear the context id. Here be magic! */
  1364. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1365. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1366. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1367. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1368. 50))
  1369. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1370. /* Now that the ring is fully powered up, update the tail */
  1371. I915_WRITE_TAIL(ring, value);
  1372. POSTING_READ(RING_TAIL(ring->mmio_base));
  1373. /* Let the ring send IDLE messages to the GT again,
  1374. * and so let it sleep to conserve power when idle.
  1375. */
  1376. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1377. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1378. }
  1379. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1380. u32 invalidate, u32 flush)
  1381. {
  1382. uint32_t cmd;
  1383. int ret;
  1384. ret = intel_ring_begin(ring, 4);
  1385. if (ret)
  1386. return ret;
  1387. cmd = MI_FLUSH_DW;
  1388. /*
  1389. * Bspec vol 1c.5 - video engine command streamer:
  1390. * "If ENABLED, all TLBs will be invalidated once the flush
  1391. * operation is complete. This bit is only valid when the
  1392. * Post-Sync Operation field is a value of 1h or 3h."
  1393. */
  1394. if (invalidate & I915_GEM_GPU_DOMAINS)
  1395. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1396. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1397. intel_ring_emit(ring, cmd);
  1398. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1399. intel_ring_emit(ring, 0);
  1400. intel_ring_emit(ring, MI_NOOP);
  1401. intel_ring_advance(ring);
  1402. return 0;
  1403. }
  1404. static int
  1405. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1406. u32 offset, u32 len,
  1407. unsigned flags)
  1408. {
  1409. int ret;
  1410. ret = intel_ring_begin(ring, 2);
  1411. if (ret)
  1412. return ret;
  1413. intel_ring_emit(ring,
  1414. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1415. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1416. /* bit0-7 is the length on GEN6+ */
  1417. intel_ring_emit(ring, offset);
  1418. intel_ring_advance(ring);
  1419. return 0;
  1420. }
  1421. static int
  1422. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1423. u32 offset, u32 len,
  1424. unsigned flags)
  1425. {
  1426. int ret;
  1427. ret = intel_ring_begin(ring, 2);
  1428. if (ret)
  1429. return ret;
  1430. intel_ring_emit(ring,
  1431. MI_BATCH_BUFFER_START |
  1432. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1433. /* bit0-7 is the length on GEN6+ */
  1434. intel_ring_emit(ring, offset);
  1435. intel_ring_advance(ring);
  1436. return 0;
  1437. }
  1438. /* Blitter support (SandyBridge+) */
  1439. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1440. u32 invalidate, u32 flush)
  1441. {
  1442. struct drm_device *dev = ring->dev;
  1443. uint32_t cmd;
  1444. int ret;
  1445. ret = intel_ring_begin(ring, 4);
  1446. if (ret)
  1447. return ret;
  1448. cmd = MI_FLUSH_DW;
  1449. /*
  1450. * Bspec vol 1c.3 - blitter engine command streamer:
  1451. * "If ENABLED, all TLBs will be invalidated once the flush
  1452. * operation is complete. This bit is only valid when the
  1453. * Post-Sync Operation field is a value of 1h or 3h."
  1454. */
  1455. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1456. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1457. MI_FLUSH_DW_OP_STOREDW;
  1458. intel_ring_emit(ring, cmd);
  1459. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1460. intel_ring_emit(ring, 0);
  1461. intel_ring_emit(ring, MI_NOOP);
  1462. intel_ring_advance(ring);
  1463. if (IS_GEN7(dev) && flush)
  1464. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1465. return 0;
  1466. }
  1467. int intel_init_render_ring_buffer(struct drm_device *dev)
  1468. {
  1469. drm_i915_private_t *dev_priv = dev->dev_private;
  1470. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1471. ring->name = "render ring";
  1472. ring->id = RCS;
  1473. ring->mmio_base = RENDER_RING_BASE;
  1474. if (INTEL_INFO(dev)->gen >= 6) {
  1475. ring->add_request = gen6_add_request;
  1476. ring->flush = gen7_render_ring_flush;
  1477. if (INTEL_INFO(dev)->gen == 6)
  1478. ring->flush = gen6_render_ring_flush;
  1479. ring->irq_get = gen6_ring_get_irq;
  1480. ring->irq_put = gen6_ring_put_irq;
  1481. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1482. ring->get_seqno = gen6_ring_get_seqno;
  1483. ring->set_seqno = ring_set_seqno;
  1484. ring->sync_to = gen6_ring_sync;
  1485. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1486. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1487. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1488. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1489. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1490. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1491. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1492. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1493. } else if (IS_GEN5(dev)) {
  1494. ring->add_request = pc_render_add_request;
  1495. ring->flush = gen4_render_ring_flush;
  1496. ring->get_seqno = pc_render_get_seqno;
  1497. ring->set_seqno = pc_render_set_seqno;
  1498. ring->irq_get = gen5_ring_get_irq;
  1499. ring->irq_put = gen5_ring_put_irq;
  1500. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1501. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1502. } else {
  1503. ring->add_request = i9xx_add_request;
  1504. if (INTEL_INFO(dev)->gen < 4)
  1505. ring->flush = gen2_render_ring_flush;
  1506. else
  1507. ring->flush = gen4_render_ring_flush;
  1508. ring->get_seqno = ring_get_seqno;
  1509. ring->set_seqno = ring_set_seqno;
  1510. if (IS_GEN2(dev)) {
  1511. ring->irq_get = i8xx_ring_get_irq;
  1512. ring->irq_put = i8xx_ring_put_irq;
  1513. } else {
  1514. ring->irq_get = i9xx_ring_get_irq;
  1515. ring->irq_put = i9xx_ring_put_irq;
  1516. }
  1517. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1518. }
  1519. ring->write_tail = ring_write_tail;
  1520. if (IS_HASWELL(dev))
  1521. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1522. else if (INTEL_INFO(dev)->gen >= 6)
  1523. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1524. else if (INTEL_INFO(dev)->gen >= 4)
  1525. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1526. else if (IS_I830(dev) || IS_845G(dev))
  1527. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1528. else
  1529. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1530. ring->init = init_render_ring;
  1531. ring->cleanup = render_ring_cleanup;
  1532. /* Workaround batchbuffer to combat CS tlb bug. */
  1533. if (HAS_BROKEN_CS_TLB(dev)) {
  1534. struct drm_i915_gem_object *obj;
  1535. int ret;
  1536. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1537. if (obj == NULL) {
  1538. DRM_ERROR("Failed to allocate batch bo\n");
  1539. return -ENOMEM;
  1540. }
  1541. ret = i915_gem_object_pin(obj, 0, true, false);
  1542. if (ret != 0) {
  1543. drm_gem_object_unreference(&obj->base);
  1544. DRM_ERROR("Failed to ping batch bo\n");
  1545. return ret;
  1546. }
  1547. ring->private = obj;
  1548. }
  1549. return intel_init_ring_buffer(dev, ring);
  1550. }
  1551. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1552. {
  1553. drm_i915_private_t *dev_priv = dev->dev_private;
  1554. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1555. int ret;
  1556. ring->name = "render ring";
  1557. ring->id = RCS;
  1558. ring->mmio_base = RENDER_RING_BASE;
  1559. if (INTEL_INFO(dev)->gen >= 6) {
  1560. /* non-kms not supported on gen6+ */
  1561. return -ENODEV;
  1562. }
  1563. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1564. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1565. * the special gen5 functions. */
  1566. ring->add_request = i9xx_add_request;
  1567. if (INTEL_INFO(dev)->gen < 4)
  1568. ring->flush = gen2_render_ring_flush;
  1569. else
  1570. ring->flush = gen4_render_ring_flush;
  1571. ring->get_seqno = ring_get_seqno;
  1572. ring->set_seqno = ring_set_seqno;
  1573. if (IS_GEN2(dev)) {
  1574. ring->irq_get = i8xx_ring_get_irq;
  1575. ring->irq_put = i8xx_ring_put_irq;
  1576. } else {
  1577. ring->irq_get = i9xx_ring_get_irq;
  1578. ring->irq_put = i9xx_ring_put_irq;
  1579. }
  1580. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1581. ring->write_tail = ring_write_tail;
  1582. if (INTEL_INFO(dev)->gen >= 4)
  1583. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1584. else if (IS_I830(dev) || IS_845G(dev))
  1585. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1586. else
  1587. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1588. ring->init = init_render_ring;
  1589. ring->cleanup = render_ring_cleanup;
  1590. ring->dev = dev;
  1591. INIT_LIST_HEAD(&ring->active_list);
  1592. INIT_LIST_HEAD(&ring->request_list);
  1593. ring->size = size;
  1594. ring->effective_size = ring->size;
  1595. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1596. ring->effective_size -= 128;
  1597. ring->virtual_start = ioremap_wc(start, size);
  1598. if (ring->virtual_start == NULL) {
  1599. DRM_ERROR("can not ioremap virtual address for"
  1600. " ring buffer\n");
  1601. return -ENOMEM;
  1602. }
  1603. if (!I915_NEED_GFX_HWS(dev)) {
  1604. ret = init_phys_status_page(ring);
  1605. if (ret)
  1606. return ret;
  1607. }
  1608. return 0;
  1609. }
  1610. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1611. {
  1612. drm_i915_private_t *dev_priv = dev->dev_private;
  1613. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1614. ring->name = "bsd ring";
  1615. ring->id = VCS;
  1616. ring->write_tail = ring_write_tail;
  1617. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1618. ring->mmio_base = GEN6_BSD_RING_BASE;
  1619. /* gen6 bsd needs a special wa for tail updates */
  1620. if (IS_GEN6(dev))
  1621. ring->write_tail = gen6_bsd_ring_write_tail;
  1622. ring->flush = gen6_bsd_ring_flush;
  1623. ring->add_request = gen6_add_request;
  1624. ring->get_seqno = gen6_ring_get_seqno;
  1625. ring->set_seqno = ring_set_seqno;
  1626. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1627. ring->irq_get = gen6_ring_get_irq;
  1628. ring->irq_put = gen6_ring_put_irq;
  1629. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1630. ring->sync_to = gen6_ring_sync;
  1631. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1632. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1633. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1634. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1635. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1636. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1637. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1638. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1639. } else {
  1640. ring->mmio_base = BSD_RING_BASE;
  1641. ring->flush = bsd_ring_flush;
  1642. ring->add_request = i9xx_add_request;
  1643. ring->get_seqno = ring_get_seqno;
  1644. ring->set_seqno = ring_set_seqno;
  1645. if (IS_GEN5(dev)) {
  1646. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1647. ring->irq_get = gen5_ring_get_irq;
  1648. ring->irq_put = gen5_ring_put_irq;
  1649. } else {
  1650. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1651. ring->irq_get = i9xx_ring_get_irq;
  1652. ring->irq_put = i9xx_ring_put_irq;
  1653. }
  1654. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1655. }
  1656. ring->init = init_ring_common;
  1657. return intel_init_ring_buffer(dev, ring);
  1658. }
  1659. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1660. {
  1661. drm_i915_private_t *dev_priv = dev->dev_private;
  1662. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1663. ring->name = "blitter ring";
  1664. ring->id = BCS;
  1665. ring->mmio_base = BLT_RING_BASE;
  1666. ring->write_tail = ring_write_tail;
  1667. ring->flush = gen6_ring_flush;
  1668. ring->add_request = gen6_add_request;
  1669. ring->get_seqno = gen6_ring_get_seqno;
  1670. ring->set_seqno = ring_set_seqno;
  1671. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1672. ring->irq_get = gen6_ring_get_irq;
  1673. ring->irq_put = gen6_ring_put_irq;
  1674. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1675. ring->sync_to = gen6_ring_sync;
  1676. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1677. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1678. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1679. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1680. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1681. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1682. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1683. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1684. ring->init = init_ring_common;
  1685. return intel_init_ring_buffer(dev, ring);
  1686. }
  1687. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1688. {
  1689. drm_i915_private_t *dev_priv = dev->dev_private;
  1690. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1691. ring->name = "video enhancement ring";
  1692. ring->id = VECS;
  1693. ring->mmio_base = VEBOX_RING_BASE;
  1694. ring->write_tail = ring_write_tail;
  1695. ring->flush = gen6_ring_flush;
  1696. ring->add_request = gen6_add_request;
  1697. ring->get_seqno = gen6_ring_get_seqno;
  1698. ring->set_seqno = ring_set_seqno;
  1699. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
  1700. PM_VEBOX_CS_ERROR_INTERRUPT;
  1701. ring->irq_get = hsw_vebox_get_irq;
  1702. ring->irq_put = hsw_vebox_put_irq;
  1703. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1704. ring->sync_to = gen6_ring_sync;
  1705. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1706. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1707. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1708. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1709. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1710. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1711. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1712. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1713. ring->init = init_ring_common;
  1714. return intel_init_ring_buffer(dev, ring);
  1715. }
  1716. int
  1717. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1718. {
  1719. int ret;
  1720. if (!ring->gpu_caches_dirty)
  1721. return 0;
  1722. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1723. if (ret)
  1724. return ret;
  1725. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1726. ring->gpu_caches_dirty = false;
  1727. return 0;
  1728. }
  1729. int
  1730. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1731. {
  1732. uint32_t flush_domains;
  1733. int ret;
  1734. flush_domains = 0;
  1735. if (ring->gpu_caches_dirty)
  1736. flush_domains = I915_GEM_GPU_DOMAINS;
  1737. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1738. if (ret)
  1739. return ret;
  1740. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1741. ring->gpu_caches_dirty = false;
  1742. return 0;
  1743. }