hfcmulti.c 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582
  1. /*
  2. * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
  3. *
  4. * Author Andreas Eversberg (jolly@eversberg.eu)
  5. * ported to mqueue mechanism:
  6. * Peter Sprenger (sprengermoving-bytes.de)
  7. *
  8. * inspired by existing hfc-pci driver:
  9. * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
  10. * Copyright 2008 by Karsten Keil (kkeil@suse.de)
  11. * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2, or (at your option)
  16. * any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26. *
  27. *
  28. * Thanks to Cologne Chip AG for this great controller!
  29. */
  30. /*
  31. * module parameters:
  32. * type:
  33. * By default (0), the card is automatically detected.
  34. * Or use the following combinations:
  35. * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
  36. * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
  37. * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
  38. * Bit 8 = 0x00100 = uLaw (instead of aLaw)
  39. * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
  40. * Bit 10 = spare
  41. * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
  42. * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
  43. * Bit 13 = spare
  44. * Bit 14 = 0x04000 = Use external ram (128K)
  45. * Bit 15 = 0x08000 = Use external ram (512K)
  46. * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
  47. * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
  48. * Bit 18 = spare
  49. * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
  50. * (all other bits are reserved and shall be 0)
  51. * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
  52. * bus (PCM master)
  53. *
  54. * port: (optional or required for all ports on all installed cards)
  55. * HFC-4S/HFC-8S only bits:
  56. * Bit 0 = 0x001 = Use master clock for this S/T interface
  57. * (ony once per chip).
  58. * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
  59. * Don't use this unless you know what you are doing!
  60. * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
  61. * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
  62. * received from port 1
  63. *
  64. * HFC-E1 only bits:
  65. * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
  66. * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
  67. * Bit 2 = 0x0004 = Report LOS
  68. * Bit 3 = 0x0008 = Report AIS
  69. * Bit 4 = 0x0010 = Report SLIP
  70. * Bit 5 = 0x0020 = Report RDI
  71. * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
  72. * mode instead.
  73. * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
  74. * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
  75. * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
  76. * (E1 only)
  77. * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
  78. * for default.
  79. * (all other bits are reserved and shall be 0)
  80. *
  81. * debug:
  82. * NOTE: only one debug value must be given for all cards
  83. * enable debugging (see hfc_multi.h for debug options)
  84. *
  85. * poll:
  86. * NOTE: only one poll value must be given for all cards
  87. * Give the number of samples for each fifo process.
  88. * By default 128 is used. Decrease to reduce delay, increase to
  89. * reduce cpu load. If unsure, don't mess with it!
  90. * Valid is 8, 16, 32, 64, 128, 256.
  91. *
  92. * pcm:
  93. * NOTE: only one pcm value must be given for every card.
  94. * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
  95. * By default (0), the PCM bus id is 100 for the card that is PCM master.
  96. * If multiple cards are PCM master (because they are not interconnected),
  97. * each card with PCM master will have increasing PCM id.
  98. * All PCM busses with the same ID are expected to be connected and have
  99. * common time slots slots.
  100. * Only one chip of the PCM bus must be master, the others slave.
  101. * -1 means no support of PCM bus not even.
  102. * Omit this value, if all cards are interconnected or none is connected.
  103. * If unsure, don't give this parameter.
  104. *
  105. * dmask and bmask:
  106. * NOTE: One dmask value must be given for every HFC-E1 card.
  107. * If omitted, the E1 card has D-channel on time slot 16, which is default.
  108. * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
  109. * If multiple bits are set, multiple virtual card fragments are created.
  110. * For each bit set, a bmask value must be given. Each bit on the bmask
  111. * value stands for a B-channel. The bmask may not overlap with dmask or
  112. * with other bmask values for that card.
  113. * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
  114. * This will create one fragment with D-channel on slot 1 with
  115. * B-channels on slots 2..15, and a second fragment with D-channel
  116. * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
  117. * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
  118. * not function.
  119. * Example: dmask=0x00000001 bmask=0xfffffffe
  120. * This will create a port with all 31 usable timeslots as
  121. * B-channels.
  122. * If no bits are set on bmask, no B-channel is created for that fragment.
  123. * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
  124. * This will create 31 ports with one D-channel only.
  125. * If you don't know how to use it, you don't need it!
  126. *
  127. * iomode:
  128. * NOTE: only one mode value must be given for every card.
  129. * -> See hfc_multi.h for HFC_IO_MODE_* values
  130. * By default, the IO mode is pci memory IO (MEMIO).
  131. * Some cards require specific IO mode, so it cannot be changed.
  132. * It may be useful to set IO mode to register io (REGIO) to solve
  133. * PCI bridge problems.
  134. * If unsure, don't give this parameter.
  135. *
  136. * clockdelay_nt:
  137. * NOTE: only one clockdelay_nt value must be given once for all cards.
  138. * Give the value of the clock control register (A_ST_CLK_DLY)
  139. * of the S/T interfaces in NT mode.
  140. * This register is needed for the TBR3 certification, so don't change it.
  141. *
  142. * clockdelay_te:
  143. * NOTE: only one clockdelay_te value must be given once
  144. * Give the value of the clock control register (A_ST_CLK_DLY)
  145. * of the S/T interfaces in TE mode.
  146. * This register is needed for the TBR3 certification, so don't change it.
  147. *
  148. * clock:
  149. * NOTE: only one clock value must be given once
  150. * Selects interface with clock source for mISDN and applications.
  151. * Set to card number starting with 1. Set to -1 to disable.
  152. * By default, the first card is used as clock source.
  153. *
  154. * hwid:
  155. * NOTE: only one hwid value must be given once
  156. * Enable special embedded devices with XHFC controllers.
  157. */
  158. /*
  159. * debug register access (never use this, it will flood your system log)
  160. * #define HFC_REGISTER_DEBUG
  161. */
  162. #define HFC_MULTI_VERSION "2.03"
  163. #include <linux/interrupt.h>
  164. #include <linux/module.h>
  165. #include <linux/slab.h>
  166. #include <linux/pci.h>
  167. #include <linux/delay.h>
  168. #include <linux/mISDNhw.h>
  169. #include <linux/mISDNdsp.h>
  170. /*
  171. #define IRQCOUNT_DEBUG
  172. #define IRQ_DEBUG
  173. */
  174. #include "hfc_multi.h"
  175. #ifdef ECHOPREP
  176. #include "gaintab.h"
  177. #endif
  178. #define MAX_CARDS 8
  179. #define MAX_PORTS (8 * MAX_CARDS)
  180. #define MAX_FRAGS (32 * MAX_CARDS)
  181. static LIST_HEAD(HFClist);
  182. static spinlock_t HFClock; /* global hfc list lock */
  183. static void ph_state_change(struct dchannel *);
  184. static struct hfc_multi *syncmaster;
  185. static int plxsd_master; /* if we have a master card (yet) */
  186. static spinlock_t plx_lock; /* may not acquire other lock inside */
  187. #define TYP_E1 1
  188. #define TYP_4S 4
  189. #define TYP_8S 8
  190. static int poll_timer = 6; /* default = 128 samples = 16ms */
  191. /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
  192. static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
  193. #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
  194. #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
  195. (0x60 MUST be included!) */
  196. #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
  197. #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
  198. #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
  199. /*
  200. * module stuff
  201. */
  202. static uint type[MAX_CARDS];
  203. static int pcm[MAX_CARDS];
  204. static uint dmask[MAX_CARDS];
  205. static uint bmask[MAX_FRAGS];
  206. static uint iomode[MAX_CARDS];
  207. static uint port[MAX_PORTS];
  208. static uint debug;
  209. static uint poll;
  210. static int clock;
  211. static uint timer;
  212. static uint clockdelay_te = CLKDEL_TE;
  213. static uint clockdelay_nt = CLKDEL_NT;
  214. #define HWID_NONE 0
  215. #define HWID_MINIP4 1
  216. #define HWID_MINIP8 2
  217. #define HWID_MINIP16 3
  218. static uint hwid = HWID_NONE;
  219. static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
  220. MODULE_AUTHOR("Andreas Eversberg");
  221. MODULE_LICENSE("GPL");
  222. MODULE_VERSION(HFC_MULTI_VERSION);
  223. module_param(debug, uint, S_IRUGO | S_IWUSR);
  224. module_param(poll, uint, S_IRUGO | S_IWUSR);
  225. module_param(clock, int, S_IRUGO | S_IWUSR);
  226. module_param(timer, uint, S_IRUGO | S_IWUSR);
  227. module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
  228. module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
  229. module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
  230. module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
  231. module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
  232. module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
  233. module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
  234. module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
  235. module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
  236. #ifdef HFC_REGISTER_DEBUG
  237. #define HFC_outb(hc, reg, val) \
  238. (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
  239. #define HFC_outb_nodebug(hc, reg, val) \
  240. (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
  241. #define HFC_inb(hc, reg) \
  242. (hc->HFC_inb(hc, reg, __func__, __LINE__))
  243. #define HFC_inb_nodebug(hc, reg) \
  244. (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
  245. #define HFC_inw(hc, reg) \
  246. (hc->HFC_inw(hc, reg, __func__, __LINE__))
  247. #define HFC_inw_nodebug(hc, reg) \
  248. (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
  249. #define HFC_wait(hc) \
  250. (hc->HFC_wait(hc, __func__, __LINE__))
  251. #define HFC_wait_nodebug(hc) \
  252. (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
  253. #else
  254. #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
  255. #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
  256. #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
  257. #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
  258. #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
  259. #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
  260. #define HFC_wait(hc) (hc->HFC_wait(hc))
  261. #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
  262. #endif
  263. #ifdef CONFIG_MISDN_HFCMULTI_8xx
  264. #include "hfc_multi_8xx.h"
  265. #endif
  266. /* HFC_IO_MODE_PCIMEM */
  267. static void
  268. #ifdef HFC_REGISTER_DEBUG
  269. HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
  270. const char *function, int line)
  271. #else
  272. HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
  273. #endif
  274. {
  275. writeb(val, hc->pci_membase + reg);
  276. }
  277. static u_char
  278. #ifdef HFC_REGISTER_DEBUG
  279. HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
  280. #else
  281. HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
  282. #endif
  283. {
  284. return readb(hc->pci_membase + reg);
  285. }
  286. static u_short
  287. #ifdef HFC_REGISTER_DEBUG
  288. HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
  289. #else
  290. HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
  291. #endif
  292. {
  293. return readw(hc->pci_membase + reg);
  294. }
  295. static void
  296. #ifdef HFC_REGISTER_DEBUG
  297. HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
  298. #else
  299. HFC_wait_pcimem(struct hfc_multi *hc)
  300. #endif
  301. {
  302. while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
  303. cpu_relax();
  304. }
  305. /* HFC_IO_MODE_REGIO */
  306. static void
  307. #ifdef HFC_REGISTER_DEBUG
  308. HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
  309. const char *function, int line)
  310. #else
  311. HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
  312. #endif
  313. {
  314. outb(reg, hc->pci_iobase + 4);
  315. outb(val, hc->pci_iobase);
  316. }
  317. static u_char
  318. #ifdef HFC_REGISTER_DEBUG
  319. HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
  320. #else
  321. HFC_inb_regio(struct hfc_multi *hc, u_char reg)
  322. #endif
  323. {
  324. outb(reg, hc->pci_iobase + 4);
  325. return inb(hc->pci_iobase);
  326. }
  327. static u_short
  328. #ifdef HFC_REGISTER_DEBUG
  329. HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
  330. #else
  331. HFC_inw_regio(struct hfc_multi *hc, u_char reg)
  332. #endif
  333. {
  334. outb(reg, hc->pci_iobase + 4);
  335. return inw(hc->pci_iobase);
  336. }
  337. static void
  338. #ifdef HFC_REGISTER_DEBUG
  339. HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
  340. #else
  341. HFC_wait_regio(struct hfc_multi *hc)
  342. #endif
  343. {
  344. outb(R_STATUS, hc->pci_iobase + 4);
  345. while (inb(hc->pci_iobase) & V_BUSY)
  346. cpu_relax();
  347. }
  348. #ifdef HFC_REGISTER_DEBUG
  349. static void
  350. HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
  351. const char *function, int line)
  352. {
  353. char regname[256] = "", bits[9] = "xxxxxxxx";
  354. int i;
  355. i = -1;
  356. while (hfc_register_names[++i].name) {
  357. if (hfc_register_names[i].reg == reg)
  358. strcat(regname, hfc_register_names[i].name);
  359. }
  360. if (regname[0] == '\0')
  361. strcpy(regname, "register");
  362. bits[7] = '0' + (!!(val & 1));
  363. bits[6] = '0' + (!!(val & 2));
  364. bits[5] = '0' + (!!(val & 4));
  365. bits[4] = '0' + (!!(val & 8));
  366. bits[3] = '0' + (!!(val & 16));
  367. bits[2] = '0' + (!!(val & 32));
  368. bits[1] = '0' + (!!(val & 64));
  369. bits[0] = '0' + (!!(val & 128));
  370. printk(KERN_DEBUG
  371. "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
  372. hc->id, reg, regname, val, bits, function, line);
  373. HFC_outb_nodebug(hc, reg, val);
  374. }
  375. static u_char
  376. HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
  377. {
  378. char regname[256] = "", bits[9] = "xxxxxxxx";
  379. u_char val = HFC_inb_nodebug(hc, reg);
  380. int i;
  381. i = 0;
  382. while (hfc_register_names[i++].name)
  383. ;
  384. while (hfc_register_names[++i].name) {
  385. if (hfc_register_names[i].reg == reg)
  386. strcat(regname, hfc_register_names[i].name);
  387. }
  388. if (regname[0] == '\0')
  389. strcpy(regname, "register");
  390. bits[7] = '0' + (!!(val & 1));
  391. bits[6] = '0' + (!!(val & 2));
  392. bits[5] = '0' + (!!(val & 4));
  393. bits[4] = '0' + (!!(val & 8));
  394. bits[3] = '0' + (!!(val & 16));
  395. bits[2] = '0' + (!!(val & 32));
  396. bits[1] = '0' + (!!(val & 64));
  397. bits[0] = '0' + (!!(val & 128));
  398. printk(KERN_DEBUG
  399. "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
  400. hc->id, reg, regname, val, bits, function, line);
  401. return val;
  402. }
  403. static u_short
  404. HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
  405. {
  406. char regname[256] = "";
  407. u_short val = HFC_inw_nodebug(hc, reg);
  408. int i;
  409. i = 0;
  410. while (hfc_register_names[i++].name)
  411. ;
  412. while (hfc_register_names[++i].name) {
  413. if (hfc_register_names[i].reg == reg)
  414. strcat(regname, hfc_register_names[i].name);
  415. }
  416. if (regname[0] == '\0')
  417. strcpy(regname, "register");
  418. printk(KERN_DEBUG
  419. "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
  420. hc->id, reg, regname, val, function, line);
  421. return val;
  422. }
  423. static void
  424. HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
  425. {
  426. printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
  427. hc->id, function, line);
  428. HFC_wait_nodebug(hc);
  429. }
  430. #endif
  431. /* write fifo data (REGIO) */
  432. static void
  433. write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
  434. {
  435. outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
  436. while (len >> 2) {
  437. outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
  438. data += 4;
  439. len -= 4;
  440. }
  441. while (len >> 1) {
  442. outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
  443. data += 2;
  444. len -= 2;
  445. }
  446. while (len) {
  447. outb(*data, hc->pci_iobase);
  448. data++;
  449. len--;
  450. }
  451. }
  452. /* write fifo data (PCIMEM) */
  453. static void
  454. write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
  455. {
  456. while (len >> 2) {
  457. writel(cpu_to_le32(*(u32 *)data),
  458. hc->pci_membase + A_FIFO_DATA0);
  459. data += 4;
  460. len -= 4;
  461. }
  462. while (len >> 1) {
  463. writew(cpu_to_le16(*(u16 *)data),
  464. hc->pci_membase + A_FIFO_DATA0);
  465. data += 2;
  466. len -= 2;
  467. }
  468. while (len) {
  469. writeb(*data, hc->pci_membase + A_FIFO_DATA0);
  470. data++;
  471. len--;
  472. }
  473. }
  474. /* read fifo data (REGIO) */
  475. static void
  476. read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
  477. {
  478. outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
  479. while (len >> 2) {
  480. *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
  481. data += 4;
  482. len -= 4;
  483. }
  484. while (len >> 1) {
  485. *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
  486. data += 2;
  487. len -= 2;
  488. }
  489. while (len) {
  490. *data = inb(hc->pci_iobase);
  491. data++;
  492. len--;
  493. }
  494. }
  495. /* read fifo data (PCIMEM) */
  496. static void
  497. read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
  498. {
  499. while (len >> 2) {
  500. *(u32 *)data =
  501. le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
  502. data += 4;
  503. len -= 4;
  504. }
  505. while (len >> 1) {
  506. *(u16 *)data =
  507. le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
  508. data += 2;
  509. len -= 2;
  510. }
  511. while (len) {
  512. *data = readb(hc->pci_membase + A_FIFO_DATA0);
  513. data++;
  514. len--;
  515. }
  516. }
  517. static void
  518. enable_hwirq(struct hfc_multi *hc)
  519. {
  520. hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
  521. HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
  522. }
  523. static void
  524. disable_hwirq(struct hfc_multi *hc)
  525. {
  526. hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
  527. HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
  528. }
  529. #define NUM_EC 2
  530. #define MAX_TDM_CHAN 32
  531. inline void
  532. enablepcibridge(struct hfc_multi *c)
  533. {
  534. HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
  535. }
  536. inline void
  537. disablepcibridge(struct hfc_multi *c)
  538. {
  539. HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
  540. }
  541. inline unsigned char
  542. readpcibridge(struct hfc_multi *hc, unsigned char address)
  543. {
  544. unsigned short cipv;
  545. unsigned char data;
  546. if (!hc->pci_iobase)
  547. return 0;
  548. /* slow down a PCI read access by 1 PCI clock cycle */
  549. HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
  550. if (address == 0)
  551. cipv = 0x4000;
  552. else
  553. cipv = 0x5800;
  554. /* select local bridge port address by writing to CIP port */
  555. /* data = HFC_inb(c, cipv); * was _io before */
  556. outw(cipv, hc->pci_iobase + 4);
  557. data = inb(hc->pci_iobase);
  558. /* restore R_CTRL for normal PCI read cycle speed */
  559. HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
  560. return data;
  561. }
  562. inline void
  563. writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
  564. {
  565. unsigned short cipv;
  566. unsigned int datav;
  567. if (!hc->pci_iobase)
  568. return;
  569. if (address == 0)
  570. cipv = 0x4000;
  571. else
  572. cipv = 0x5800;
  573. /* select local bridge port address by writing to CIP port */
  574. outw(cipv, hc->pci_iobase + 4);
  575. /* define a 32 bit dword with 4 identical bytes for write sequence */
  576. datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
  577. ((__u32) data << 24);
  578. /*
  579. * write this 32 bit dword to the bridge data port
  580. * this will initiate a write sequence of up to 4 writes to the same
  581. * address on the local bus interface the number of write accesses
  582. * is undefined but >=1 and depends on the next PCI transaction
  583. * during write sequence on the local bus
  584. */
  585. outl(datav, hc->pci_iobase);
  586. }
  587. inline void
  588. cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
  589. {
  590. /* Do data pin read low byte */
  591. HFC_outb(hc, R_GPIO_OUT1, reg);
  592. }
  593. inline void
  594. cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
  595. {
  596. cpld_set_reg(hc, reg);
  597. enablepcibridge(hc);
  598. writepcibridge(hc, 1, val);
  599. disablepcibridge(hc);
  600. return;
  601. }
  602. inline unsigned char
  603. cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
  604. {
  605. unsigned char bytein;
  606. cpld_set_reg(hc, reg);
  607. /* Do data pin read low byte */
  608. HFC_outb(hc, R_GPIO_OUT1, reg);
  609. enablepcibridge(hc);
  610. bytein = readpcibridge(hc, 1);
  611. disablepcibridge(hc);
  612. return bytein;
  613. }
  614. inline void
  615. vpm_write_address(struct hfc_multi *hc, unsigned short addr)
  616. {
  617. cpld_write_reg(hc, 0, 0xff & addr);
  618. cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
  619. }
  620. inline unsigned short
  621. vpm_read_address(struct hfc_multi *c)
  622. {
  623. unsigned short addr;
  624. unsigned short highbit;
  625. addr = cpld_read_reg(c, 0);
  626. highbit = cpld_read_reg(c, 1);
  627. addr = addr | (highbit << 8);
  628. return addr & 0x1ff;
  629. }
  630. inline unsigned char
  631. vpm_in(struct hfc_multi *c, int which, unsigned short addr)
  632. {
  633. unsigned char res;
  634. vpm_write_address(c, addr);
  635. if (!which)
  636. cpld_set_reg(c, 2);
  637. else
  638. cpld_set_reg(c, 3);
  639. enablepcibridge(c);
  640. res = readpcibridge(c, 1);
  641. disablepcibridge(c);
  642. cpld_set_reg(c, 0);
  643. return res;
  644. }
  645. inline void
  646. vpm_out(struct hfc_multi *c, int which, unsigned short addr,
  647. unsigned char data)
  648. {
  649. vpm_write_address(c, addr);
  650. enablepcibridge(c);
  651. if (!which)
  652. cpld_set_reg(c, 2);
  653. else
  654. cpld_set_reg(c, 3);
  655. writepcibridge(c, 1, data);
  656. cpld_set_reg(c, 0);
  657. disablepcibridge(c);
  658. {
  659. unsigned char regin;
  660. regin = vpm_in(c, which, addr);
  661. if (regin != data)
  662. printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
  663. "0x%x\n", data, addr, regin);
  664. }
  665. }
  666. static void
  667. vpm_init(struct hfc_multi *wc)
  668. {
  669. unsigned char reg;
  670. unsigned int mask;
  671. unsigned int i, x, y;
  672. unsigned int ver;
  673. for (x = 0; x < NUM_EC; x++) {
  674. /* Setup GPIO's */
  675. if (!x) {
  676. ver = vpm_in(wc, x, 0x1a0);
  677. printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
  678. }
  679. for (y = 0; y < 4; y++) {
  680. vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
  681. vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
  682. vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
  683. }
  684. /* Setup TDM path - sets fsync and tdm_clk as inputs */
  685. reg = vpm_in(wc, x, 0x1a3); /* misc_con */
  686. vpm_out(wc, x, 0x1a3, reg & ~2);
  687. /* Setup Echo length (256 taps) */
  688. vpm_out(wc, x, 0x022, 1);
  689. vpm_out(wc, x, 0x023, 0xff);
  690. /* Setup timeslots */
  691. vpm_out(wc, x, 0x02f, 0x00);
  692. mask = 0x02020202 << (x * 4);
  693. /* Setup the tdm channel masks for all chips */
  694. for (i = 0; i < 4; i++)
  695. vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
  696. /* Setup convergence rate */
  697. printk(KERN_DEBUG "VPM: A-law mode\n");
  698. reg = 0x00 | 0x10 | 0x01;
  699. vpm_out(wc, x, 0x20, reg);
  700. printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
  701. /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
  702. vpm_out(wc, x, 0x24, 0x02);
  703. reg = vpm_in(wc, x, 0x24);
  704. printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
  705. /* Initialize echo cans */
  706. for (i = 0; i < MAX_TDM_CHAN; i++) {
  707. if (mask & (0x00000001 << i))
  708. vpm_out(wc, x, i, 0x00);
  709. }
  710. /*
  711. * ARM arch at least disallows a udelay of
  712. * more than 2ms... it gives a fake "__bad_udelay"
  713. * reference at link-time.
  714. * long delays in kernel code are pretty sucky anyway
  715. * for now work around it using 5 x 2ms instead of 1 x 10ms
  716. */
  717. udelay(2000);
  718. udelay(2000);
  719. udelay(2000);
  720. udelay(2000);
  721. udelay(2000);
  722. /* Put in bypass mode */
  723. for (i = 0; i < MAX_TDM_CHAN; i++) {
  724. if (mask & (0x00000001 << i))
  725. vpm_out(wc, x, i, 0x01);
  726. }
  727. /* Enable bypass */
  728. for (i = 0; i < MAX_TDM_CHAN; i++) {
  729. if (mask & (0x00000001 << i))
  730. vpm_out(wc, x, 0x78 + i, 0x01);
  731. }
  732. }
  733. }
  734. #ifdef UNUSED
  735. static void
  736. vpm_check(struct hfc_multi *hctmp)
  737. {
  738. unsigned char gpi2;
  739. gpi2 = HFC_inb(hctmp, R_GPI_IN2);
  740. if ((gpi2 & 0x3) != 0x3)
  741. printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
  742. }
  743. #endif /* UNUSED */
  744. /*
  745. * Interface to enable/disable the HW Echocan
  746. *
  747. * these functions are called within a spin_lock_irqsave on
  748. * the channel instance lock, so we are not disturbed by irqs
  749. *
  750. * we can later easily change the interface to make other
  751. * things configurable, for now we configure the taps
  752. *
  753. */
  754. static void
  755. vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
  756. {
  757. unsigned int timeslot;
  758. unsigned int unit;
  759. struct bchannel *bch = hc->chan[ch].bch;
  760. #ifdef TXADJ
  761. int txadj = -4;
  762. struct sk_buff *skb;
  763. #endif
  764. if (hc->chan[ch].protocol != ISDN_P_B_RAW)
  765. return;
  766. if (!bch)
  767. return;
  768. #ifdef TXADJ
  769. skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
  770. sizeof(int), &txadj, GFP_ATOMIC);
  771. if (skb)
  772. recv_Bchannel_skb(bch, skb);
  773. #endif
  774. timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
  775. unit = ch % 4;
  776. printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
  777. taps, timeslot);
  778. vpm_out(hc, unit, timeslot, 0x7e);
  779. }
  780. static void
  781. vpm_echocan_off(struct hfc_multi *hc, int ch)
  782. {
  783. unsigned int timeslot;
  784. unsigned int unit;
  785. struct bchannel *bch = hc->chan[ch].bch;
  786. #ifdef TXADJ
  787. int txadj = 0;
  788. struct sk_buff *skb;
  789. #endif
  790. if (hc->chan[ch].protocol != ISDN_P_B_RAW)
  791. return;
  792. if (!bch)
  793. return;
  794. #ifdef TXADJ
  795. skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
  796. sizeof(int), &txadj, GFP_ATOMIC);
  797. if (skb)
  798. recv_Bchannel_skb(bch, skb);
  799. #endif
  800. timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
  801. unit = ch % 4;
  802. printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
  803. timeslot);
  804. /* FILLME */
  805. vpm_out(hc, unit, timeslot, 0x01);
  806. }
  807. /*
  808. * Speech Design resync feature
  809. * NOTE: This is called sometimes outside interrupt handler.
  810. * We must lock irqsave, so no other interrupt (other card) will occur!
  811. * Also multiple interrupts may nest, so must lock each access (lists, card)!
  812. */
  813. static inline void
  814. hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
  815. {
  816. struct hfc_multi *hc, *next, *pcmmaster = NULL;
  817. void __iomem *plx_acc_32;
  818. u_int pv;
  819. u_long flags;
  820. spin_lock_irqsave(&HFClock, flags);
  821. spin_lock(&plx_lock); /* must be locked inside other locks */
  822. if (debug & DEBUG_HFCMULTI_PLXSD)
  823. printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
  824. __func__, syncmaster);
  825. /* select new master */
  826. if (newmaster) {
  827. if (debug & DEBUG_HFCMULTI_PLXSD)
  828. printk(KERN_DEBUG "using provided controller\n");
  829. } else {
  830. list_for_each_entry_safe(hc, next, &HFClist, list) {
  831. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  832. if (hc->syncronized) {
  833. newmaster = hc;
  834. break;
  835. }
  836. }
  837. }
  838. }
  839. /* Disable sync of all cards */
  840. list_for_each_entry_safe(hc, next, &HFClist, list) {
  841. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  842. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  843. pv = readl(plx_acc_32);
  844. pv &= ~PLX_SYNC_O_EN;
  845. writel(pv, plx_acc_32);
  846. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
  847. pcmmaster = hc;
  848. if (hc->ctype == HFC_TYPE_E1) {
  849. if (debug & DEBUG_HFCMULTI_PLXSD)
  850. printk(KERN_DEBUG
  851. "Schedule SYNC_I\n");
  852. hc->e1_resync |= 1; /* get SYNC_I */
  853. }
  854. }
  855. }
  856. }
  857. if (newmaster) {
  858. hc = newmaster;
  859. if (debug & DEBUG_HFCMULTI_PLXSD)
  860. printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
  861. "interface.\n", hc->id, hc);
  862. /* Enable new sync master */
  863. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  864. pv = readl(plx_acc_32);
  865. pv |= PLX_SYNC_O_EN;
  866. writel(pv, plx_acc_32);
  867. /* switch to jatt PLL, if not disabled by RX_SYNC */
  868. if (hc->ctype == HFC_TYPE_E1
  869. && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
  870. if (debug & DEBUG_HFCMULTI_PLXSD)
  871. printk(KERN_DEBUG "Schedule jatt PLL\n");
  872. hc->e1_resync |= 2; /* switch to jatt */
  873. }
  874. } else {
  875. if (pcmmaster) {
  876. hc = pcmmaster;
  877. if (debug & DEBUG_HFCMULTI_PLXSD)
  878. printk(KERN_DEBUG
  879. "id=%d (0x%p) = PCM master syncronized "
  880. "with QUARTZ\n", hc->id, hc);
  881. if (hc->ctype == HFC_TYPE_E1) {
  882. /* Use the crystal clock for the PCM
  883. master card */
  884. if (debug & DEBUG_HFCMULTI_PLXSD)
  885. printk(KERN_DEBUG
  886. "Schedule QUARTZ for HFC-E1\n");
  887. hc->e1_resync |= 4; /* switch quartz */
  888. } else {
  889. if (debug & DEBUG_HFCMULTI_PLXSD)
  890. printk(KERN_DEBUG
  891. "QUARTZ is automatically "
  892. "enabled by HFC-%dS\n", hc->ctype);
  893. }
  894. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  895. pv = readl(plx_acc_32);
  896. pv |= PLX_SYNC_O_EN;
  897. writel(pv, plx_acc_32);
  898. } else
  899. if (!rm)
  900. printk(KERN_ERR "%s no pcm master, this MUST "
  901. "not happen!\n", __func__);
  902. }
  903. syncmaster = newmaster;
  904. spin_unlock(&plx_lock);
  905. spin_unlock_irqrestore(&HFClock, flags);
  906. }
  907. /* This must be called AND hc must be locked irqsave!!! */
  908. inline void
  909. plxsd_checksync(struct hfc_multi *hc, int rm)
  910. {
  911. if (hc->syncronized) {
  912. if (syncmaster == NULL) {
  913. if (debug & DEBUG_HFCMULTI_PLXSD)
  914. printk(KERN_DEBUG "%s: GOT sync on card %d"
  915. " (id=%d)\n", __func__, hc->id + 1,
  916. hc->id);
  917. hfcmulti_resync(hc, hc, rm);
  918. }
  919. } else {
  920. if (syncmaster == hc) {
  921. if (debug & DEBUG_HFCMULTI_PLXSD)
  922. printk(KERN_DEBUG "%s: LOST sync on card %d"
  923. " (id=%d)\n", __func__, hc->id + 1,
  924. hc->id);
  925. hfcmulti_resync(hc, NULL, rm);
  926. }
  927. }
  928. }
  929. /*
  930. * free hardware resources used by driver
  931. */
  932. static void
  933. release_io_hfcmulti(struct hfc_multi *hc)
  934. {
  935. void __iomem *plx_acc_32;
  936. u_int pv;
  937. u_long plx_flags;
  938. if (debug & DEBUG_HFCMULTI_INIT)
  939. printk(KERN_DEBUG "%s: entered\n", __func__);
  940. /* soft reset also masks all interrupts */
  941. hc->hw.r_cirm |= V_SRES;
  942. HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
  943. udelay(1000);
  944. hc->hw.r_cirm &= ~V_SRES;
  945. HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
  946. udelay(1000); /* instead of 'wait' that may cause locking */
  947. /* release Speech Design card, if PLX was initialized */
  948. if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
  949. if (debug & DEBUG_HFCMULTI_PLXSD)
  950. printk(KERN_DEBUG "%s: release PLXSD card %d\n",
  951. __func__, hc->id + 1);
  952. spin_lock_irqsave(&plx_lock, plx_flags);
  953. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  954. writel(PLX_GPIOC_INIT, plx_acc_32);
  955. pv = readl(plx_acc_32);
  956. /* Termination off */
  957. pv &= ~PLX_TERM_ON;
  958. /* Disconnect the PCM */
  959. pv |= PLX_SLAVE_EN_N;
  960. pv &= ~PLX_MASTER_EN;
  961. pv &= ~PLX_SYNC_O_EN;
  962. /* Put the DSP in Reset */
  963. pv &= ~PLX_DSP_RES_N;
  964. writel(pv, plx_acc_32);
  965. if (debug & DEBUG_HFCMULTI_INIT)
  966. printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
  967. __func__, pv);
  968. spin_unlock_irqrestore(&plx_lock, plx_flags);
  969. }
  970. /* disable memory mapped ports / io ports */
  971. test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
  972. if (hc->pci_dev)
  973. pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
  974. if (hc->pci_membase)
  975. iounmap(hc->pci_membase);
  976. if (hc->plx_membase)
  977. iounmap(hc->plx_membase);
  978. if (hc->pci_iobase)
  979. release_region(hc->pci_iobase, 8);
  980. if (hc->xhfc_membase)
  981. iounmap((void *)hc->xhfc_membase);
  982. if (hc->pci_dev) {
  983. pci_disable_device(hc->pci_dev);
  984. pci_set_drvdata(hc->pci_dev, NULL);
  985. }
  986. if (debug & DEBUG_HFCMULTI_INIT)
  987. printk(KERN_DEBUG "%s: done\n", __func__);
  988. }
  989. /*
  990. * function called to reset the HFC chip. A complete software reset of chip
  991. * and fifos is done. All configuration of the chip is done.
  992. */
  993. static int
  994. init_chip(struct hfc_multi *hc)
  995. {
  996. u_long flags, val, val2 = 0, rev;
  997. int i, err = 0;
  998. u_char r_conf_en, rval;
  999. void __iomem *plx_acc_32;
  1000. u_int pv;
  1001. u_long plx_flags, hfc_flags;
  1002. int plx_count;
  1003. struct hfc_multi *pos, *next, *plx_last_hc;
  1004. spin_lock_irqsave(&hc->lock, flags);
  1005. /* reset all registers */
  1006. memset(&hc->hw, 0, sizeof(struct hfcm_hw));
  1007. /* revision check */
  1008. if (debug & DEBUG_HFCMULTI_INIT)
  1009. printk(KERN_DEBUG "%s: entered\n", __func__);
  1010. val = HFC_inb(hc, R_CHIP_ID);
  1011. if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
  1012. (val >> 1) != 0x31) {
  1013. printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
  1014. err = -EIO;
  1015. goto out;
  1016. }
  1017. rev = HFC_inb(hc, R_CHIP_RV);
  1018. printk(KERN_INFO
  1019. "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
  1020. val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
  1021. " (old FIFO handling)" : "");
  1022. if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
  1023. test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
  1024. printk(KERN_WARNING
  1025. "HFC_multi: NOTE: Your chip is revision 0, "
  1026. "ask Cologne Chip for update. Newer chips "
  1027. "have a better FIFO handling. Old chips "
  1028. "still work but may have slightly lower "
  1029. "HDLC transmit performance.\n");
  1030. }
  1031. if (rev > 1) {
  1032. printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
  1033. "consider chip revision = %ld. The chip / "
  1034. "bridge may not work.\n", rev);
  1035. }
  1036. /* set s-ram size */
  1037. hc->Flen = 0x10;
  1038. hc->Zmin = 0x80;
  1039. hc->Zlen = 384;
  1040. hc->DTMFbase = 0x1000;
  1041. if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
  1042. if (debug & DEBUG_HFCMULTI_INIT)
  1043. printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
  1044. __func__);
  1045. hc->hw.r_ctrl |= V_EXT_RAM;
  1046. hc->hw.r_ram_sz = 1;
  1047. hc->Flen = 0x20;
  1048. hc->Zmin = 0xc0;
  1049. hc->Zlen = 1856;
  1050. hc->DTMFbase = 0x2000;
  1051. }
  1052. if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
  1053. if (debug & DEBUG_HFCMULTI_INIT)
  1054. printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
  1055. __func__);
  1056. hc->hw.r_ctrl |= V_EXT_RAM;
  1057. hc->hw.r_ram_sz = 2;
  1058. hc->Flen = 0x20;
  1059. hc->Zmin = 0xc0;
  1060. hc->Zlen = 8000;
  1061. hc->DTMFbase = 0x2000;
  1062. }
  1063. if (hc->ctype == HFC_TYPE_XHFC) {
  1064. hc->Flen = 0x8;
  1065. hc->Zmin = 0x0;
  1066. hc->Zlen = 64;
  1067. hc->DTMFbase = 0x0;
  1068. }
  1069. hc->max_trans = poll << 1;
  1070. if (hc->max_trans > hc->Zlen)
  1071. hc->max_trans = hc->Zlen;
  1072. /* Speech Design PLX bridge */
  1073. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  1074. if (debug & DEBUG_HFCMULTI_PLXSD)
  1075. printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
  1076. __func__, hc->id + 1);
  1077. spin_lock_irqsave(&plx_lock, plx_flags);
  1078. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  1079. writel(PLX_GPIOC_INIT, plx_acc_32);
  1080. pv = readl(plx_acc_32);
  1081. /* The first and the last cards are terminating the PCM bus */
  1082. pv |= PLX_TERM_ON; /* hc is currently the last */
  1083. /* Disconnect the PCM */
  1084. pv |= PLX_SLAVE_EN_N;
  1085. pv &= ~PLX_MASTER_EN;
  1086. pv &= ~PLX_SYNC_O_EN;
  1087. /* Put the DSP in Reset */
  1088. pv &= ~PLX_DSP_RES_N;
  1089. writel(pv, plx_acc_32);
  1090. spin_unlock_irqrestore(&plx_lock, plx_flags);
  1091. if (debug & DEBUG_HFCMULTI_INIT)
  1092. printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
  1093. __func__, pv);
  1094. /*
  1095. * If we are the 3rd PLXSD card or higher, we must turn
  1096. * termination of last PLXSD card off.
  1097. */
  1098. spin_lock_irqsave(&HFClock, hfc_flags);
  1099. plx_count = 0;
  1100. plx_last_hc = NULL;
  1101. list_for_each_entry_safe(pos, next, &HFClist, list) {
  1102. if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
  1103. plx_count++;
  1104. if (pos != hc)
  1105. plx_last_hc = pos;
  1106. }
  1107. }
  1108. if (plx_count >= 3) {
  1109. if (debug & DEBUG_HFCMULTI_PLXSD)
  1110. printk(KERN_DEBUG "%s: card %d is between, so "
  1111. "we disable termination\n",
  1112. __func__, plx_last_hc->id + 1);
  1113. spin_lock_irqsave(&plx_lock, plx_flags);
  1114. plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
  1115. pv = readl(plx_acc_32);
  1116. pv &= ~PLX_TERM_ON;
  1117. writel(pv, plx_acc_32);
  1118. spin_unlock_irqrestore(&plx_lock, plx_flags);
  1119. if (debug & DEBUG_HFCMULTI_INIT)
  1120. printk(KERN_DEBUG
  1121. "%s: term off: PLX_GPIO=%x\n",
  1122. __func__, pv);
  1123. }
  1124. spin_unlock_irqrestore(&HFClock, hfc_flags);
  1125. hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
  1126. }
  1127. if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
  1128. hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
  1129. /* we only want the real Z2 read-pointer for revision > 0 */
  1130. if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
  1131. hc->hw.r_ram_sz |= V_FZ_MD;
  1132. /* select pcm mode */
  1133. if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
  1134. if (debug & DEBUG_HFCMULTI_INIT)
  1135. printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
  1136. __func__);
  1137. } else
  1138. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
  1139. if (debug & DEBUG_HFCMULTI_INIT)
  1140. printk(KERN_DEBUG "%s: setting PCM into master mode\n",
  1141. __func__);
  1142. hc->hw.r_pcm_md0 |= V_PCM_MD;
  1143. } else {
  1144. if (debug & DEBUG_HFCMULTI_INIT)
  1145. printk(KERN_DEBUG "%s: performing PCM auto detect\n",
  1146. __func__);
  1147. }
  1148. /* soft reset */
  1149. HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
  1150. if (hc->ctype == HFC_TYPE_XHFC)
  1151. HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
  1152. 0x11 /* 16 Bytes TX/RX */);
  1153. else
  1154. HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
  1155. HFC_outb(hc, R_FIFO_MD, 0);
  1156. if (hc->ctype == HFC_TYPE_XHFC)
  1157. hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
  1158. else
  1159. hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
  1160. | V_RLD_EPR;
  1161. HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
  1162. udelay(100);
  1163. hc->hw.r_cirm = 0;
  1164. HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
  1165. udelay(100);
  1166. if (hc->ctype != HFC_TYPE_XHFC)
  1167. HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
  1168. /* Speech Design PLX bridge pcm and sync mode */
  1169. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  1170. spin_lock_irqsave(&plx_lock, plx_flags);
  1171. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  1172. pv = readl(plx_acc_32);
  1173. /* Connect PCM */
  1174. if (hc->hw.r_pcm_md0 & V_PCM_MD) {
  1175. pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
  1176. pv |= PLX_SYNC_O_EN;
  1177. if (debug & DEBUG_HFCMULTI_INIT)
  1178. printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
  1179. __func__, pv);
  1180. } else {
  1181. pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
  1182. pv &= ~PLX_SYNC_O_EN;
  1183. if (debug & DEBUG_HFCMULTI_INIT)
  1184. printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
  1185. __func__, pv);
  1186. }
  1187. writel(pv, plx_acc_32);
  1188. spin_unlock_irqrestore(&plx_lock, plx_flags);
  1189. }
  1190. /* PCM setup */
  1191. HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
  1192. if (hc->slots == 32)
  1193. HFC_outb(hc, R_PCM_MD1, 0x00);
  1194. if (hc->slots == 64)
  1195. HFC_outb(hc, R_PCM_MD1, 0x10);
  1196. if (hc->slots == 128)
  1197. HFC_outb(hc, R_PCM_MD1, 0x20);
  1198. HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
  1199. if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
  1200. HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
  1201. else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
  1202. HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
  1203. else
  1204. HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
  1205. HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
  1206. for (i = 0; i < 256; i++) {
  1207. HFC_outb_nodebug(hc, R_SLOT, i);
  1208. HFC_outb_nodebug(hc, A_SL_CFG, 0);
  1209. if (hc->ctype != HFC_TYPE_XHFC)
  1210. HFC_outb_nodebug(hc, A_CONF, 0);
  1211. hc->slot_owner[i] = -1;
  1212. }
  1213. /* set clock speed */
  1214. if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
  1215. if (debug & DEBUG_HFCMULTI_INIT)
  1216. printk(KERN_DEBUG
  1217. "%s: setting double clock\n", __func__);
  1218. HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
  1219. }
  1220. if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
  1221. HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
  1222. /* B410P GPIO */
  1223. if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
  1224. printk(KERN_NOTICE "Setting GPIOs\n");
  1225. HFC_outb(hc, R_GPIO_SEL, 0x30);
  1226. HFC_outb(hc, R_GPIO_EN1, 0x3);
  1227. udelay(1000);
  1228. printk(KERN_NOTICE "calling vpm_init\n");
  1229. vpm_init(hc);
  1230. }
  1231. /* check if R_F0_CNT counts (8 kHz frame count) */
  1232. val = HFC_inb(hc, R_F0_CNTL);
  1233. val += HFC_inb(hc, R_F0_CNTH) << 8;
  1234. if (debug & DEBUG_HFCMULTI_INIT)
  1235. printk(KERN_DEBUG
  1236. "HFC_multi F0_CNT %ld after reset\n", val);
  1237. spin_unlock_irqrestore(&hc->lock, flags);
  1238. set_current_state(TASK_UNINTERRUPTIBLE);
  1239. schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
  1240. spin_lock_irqsave(&hc->lock, flags);
  1241. val2 = HFC_inb(hc, R_F0_CNTL);
  1242. val2 += HFC_inb(hc, R_F0_CNTH) << 8;
  1243. if (debug & DEBUG_HFCMULTI_INIT)
  1244. printk(KERN_DEBUG
  1245. "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
  1246. val2);
  1247. if (val2 >= val + 8) { /* 1 ms */
  1248. /* it counts, so we keep the pcm mode */
  1249. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
  1250. printk(KERN_INFO "controller is PCM bus MASTER\n");
  1251. else
  1252. if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
  1253. printk(KERN_INFO "controller is PCM bus SLAVE\n");
  1254. else {
  1255. test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
  1256. printk(KERN_INFO "controller is PCM bus SLAVE "
  1257. "(auto detected)\n");
  1258. }
  1259. } else {
  1260. /* does not count */
  1261. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
  1262. controller_fail:
  1263. printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
  1264. "pulse. Seems that controller fails.\n");
  1265. err = -EIO;
  1266. goto out;
  1267. }
  1268. if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
  1269. printk(KERN_INFO "controller is PCM bus SLAVE "
  1270. "(ignoring missing PCM clock)\n");
  1271. } else {
  1272. /* only one pcm master */
  1273. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
  1274. && plxsd_master) {
  1275. printk(KERN_ERR "HFC_multi ERROR, no clock "
  1276. "on another Speech Design card found. "
  1277. "Please be sure to connect PCM cable.\n");
  1278. err = -EIO;
  1279. goto out;
  1280. }
  1281. /* retry with master clock */
  1282. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  1283. spin_lock_irqsave(&plx_lock, plx_flags);
  1284. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  1285. pv = readl(plx_acc_32);
  1286. pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
  1287. pv |= PLX_SYNC_O_EN;
  1288. writel(pv, plx_acc_32);
  1289. spin_unlock_irqrestore(&plx_lock, plx_flags);
  1290. if (debug & DEBUG_HFCMULTI_INIT)
  1291. printk(KERN_DEBUG "%s: master: "
  1292. "PLX_GPIO=%x\n", __func__, pv);
  1293. }
  1294. hc->hw.r_pcm_md0 |= V_PCM_MD;
  1295. HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
  1296. spin_unlock_irqrestore(&hc->lock, flags);
  1297. set_current_state(TASK_UNINTERRUPTIBLE);
  1298. schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
  1299. spin_lock_irqsave(&hc->lock, flags);
  1300. val2 = HFC_inb(hc, R_F0_CNTL);
  1301. val2 += HFC_inb(hc, R_F0_CNTH) << 8;
  1302. if (debug & DEBUG_HFCMULTI_INIT)
  1303. printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
  1304. "10 ms (2nd try)\n", val2);
  1305. if (val2 >= val + 8) { /* 1 ms */
  1306. test_and_set_bit(HFC_CHIP_PCM_MASTER,
  1307. &hc->chip);
  1308. printk(KERN_INFO "controller is PCM bus MASTER "
  1309. "(auto detected)\n");
  1310. } else
  1311. goto controller_fail;
  1312. }
  1313. }
  1314. /* Release the DSP Reset */
  1315. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  1316. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
  1317. plxsd_master = 1;
  1318. spin_lock_irqsave(&plx_lock, plx_flags);
  1319. plx_acc_32 = hc->plx_membase + PLX_GPIOC;
  1320. pv = readl(plx_acc_32);
  1321. pv |= PLX_DSP_RES_N;
  1322. writel(pv, plx_acc_32);
  1323. spin_unlock_irqrestore(&plx_lock, plx_flags);
  1324. if (debug & DEBUG_HFCMULTI_INIT)
  1325. printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
  1326. __func__, pv);
  1327. }
  1328. /* pcm id */
  1329. if (hc->pcm)
  1330. printk(KERN_INFO "controller has given PCM BUS ID %d\n",
  1331. hc->pcm);
  1332. else {
  1333. if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
  1334. || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  1335. PCM_cnt++; /* SD has proprietary bridging */
  1336. }
  1337. hc->pcm = PCM_cnt;
  1338. printk(KERN_INFO "controller has PCM BUS ID %d "
  1339. "(auto selected)\n", hc->pcm);
  1340. }
  1341. /* set up timer */
  1342. HFC_outb(hc, R_TI_WD, poll_timer);
  1343. hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
  1344. /* set E1 state machine IRQ */
  1345. if (hc->ctype == HFC_TYPE_E1)
  1346. hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
  1347. /* set DTMF detection */
  1348. if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
  1349. if (debug & DEBUG_HFCMULTI_INIT)
  1350. printk(KERN_DEBUG "%s: enabling DTMF detection "
  1351. "for all B-channel\n", __func__);
  1352. hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
  1353. if (test_bit(HFC_CHIP_ULAW, &hc->chip))
  1354. hc->hw.r_dtmf |= V_ULAW_SEL;
  1355. HFC_outb(hc, R_DTMF_N, 102 - 1);
  1356. hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
  1357. }
  1358. /* conference engine */
  1359. if (test_bit(HFC_CHIP_ULAW, &hc->chip))
  1360. r_conf_en = V_CONF_EN | V_ULAW;
  1361. else
  1362. r_conf_en = V_CONF_EN;
  1363. if (hc->ctype != HFC_TYPE_XHFC)
  1364. HFC_outb(hc, R_CONF_EN, r_conf_en);
  1365. /* setting leds */
  1366. switch (hc->leds) {
  1367. case 1: /* HFC-E1 OEM */
  1368. if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
  1369. HFC_outb(hc, R_GPIO_SEL, 0x32);
  1370. else
  1371. HFC_outb(hc, R_GPIO_SEL, 0x30);
  1372. HFC_outb(hc, R_GPIO_EN1, 0x0f);
  1373. HFC_outb(hc, R_GPIO_OUT1, 0x00);
  1374. HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
  1375. break;
  1376. case 2: /* HFC-4S OEM */
  1377. case 3:
  1378. HFC_outb(hc, R_GPIO_SEL, 0xf0);
  1379. HFC_outb(hc, R_GPIO_EN1, 0xff);
  1380. HFC_outb(hc, R_GPIO_OUT1, 0x00);
  1381. break;
  1382. }
  1383. if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
  1384. hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
  1385. HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
  1386. }
  1387. /* set master clock */
  1388. if (hc->masterclk >= 0) {
  1389. if (debug & DEBUG_HFCMULTI_INIT)
  1390. printk(KERN_DEBUG "%s: setting ST master clock "
  1391. "to port %d (0..%d)\n",
  1392. __func__, hc->masterclk, hc->ports - 1);
  1393. hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
  1394. HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
  1395. }
  1396. /* setting misc irq */
  1397. HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
  1398. if (debug & DEBUG_HFCMULTI_INIT)
  1399. printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
  1400. hc->hw.r_irqmsk_misc);
  1401. /* RAM access test */
  1402. HFC_outb(hc, R_RAM_ADDR0, 0);
  1403. HFC_outb(hc, R_RAM_ADDR1, 0);
  1404. HFC_outb(hc, R_RAM_ADDR2, 0);
  1405. for (i = 0; i < 256; i++) {
  1406. HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
  1407. HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
  1408. }
  1409. for (i = 0; i < 256; i++) {
  1410. HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
  1411. HFC_inb_nodebug(hc, R_RAM_DATA);
  1412. rval = HFC_inb_nodebug(hc, R_INT_DATA);
  1413. if (rval != ((i * 3) & 0xff)) {
  1414. printk(KERN_DEBUG
  1415. "addr:%x val:%x should:%x\n", i, rval,
  1416. (i * 3) & 0xff);
  1417. err++;
  1418. }
  1419. }
  1420. if (err) {
  1421. printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
  1422. err = -EIO;
  1423. goto out;
  1424. }
  1425. if (debug & DEBUG_HFCMULTI_INIT)
  1426. printk(KERN_DEBUG "%s: done\n", __func__);
  1427. out:
  1428. spin_unlock_irqrestore(&hc->lock, flags);
  1429. return err;
  1430. }
  1431. /*
  1432. * control the watchdog
  1433. */
  1434. static void
  1435. hfcmulti_watchdog(struct hfc_multi *hc)
  1436. {
  1437. hc->wdcount++;
  1438. if (hc->wdcount > 10) {
  1439. hc->wdcount = 0;
  1440. hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
  1441. V_GPIO_OUT3 : V_GPIO_OUT2;
  1442. /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
  1443. HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
  1444. HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
  1445. }
  1446. }
  1447. /*
  1448. * output leds
  1449. */
  1450. static void
  1451. hfcmulti_leds(struct hfc_multi *hc)
  1452. {
  1453. unsigned long lled;
  1454. unsigned long leddw;
  1455. int i, state, active, leds;
  1456. struct dchannel *dch;
  1457. int led[4];
  1458. switch (hc->leds) {
  1459. case 1: /* HFC-E1 OEM */
  1460. /* 2 red steady: LOS
  1461. * 1 red steady: L1 not active
  1462. * 2 green steady: L1 active
  1463. * 1st green flashing: activity on TX
  1464. * 2nd green flashing: activity on RX
  1465. */
  1466. led[0] = 0;
  1467. led[1] = 0;
  1468. led[2] = 0;
  1469. led[3] = 0;
  1470. dch = hc->chan[hc->dnum[0]].dch;
  1471. if (dch) {
  1472. if (hc->chan[hc->dnum[0]].los)
  1473. led[1] = 1;
  1474. if (hc->e1_state != 1) {
  1475. led[0] = 1;
  1476. hc->flash[2] = 0;
  1477. hc->flash[3] = 0;
  1478. } else {
  1479. led[2] = 1;
  1480. led[3] = 1;
  1481. if (!hc->flash[2] && hc->activity_tx)
  1482. hc->flash[2] = poll;
  1483. if (!hc->flash[3] && hc->activity_rx)
  1484. hc->flash[3] = poll;
  1485. if (hc->flash[2] && hc->flash[2] < 1024)
  1486. led[2] = 0;
  1487. if (hc->flash[3] && hc->flash[3] < 1024)
  1488. led[3] = 0;
  1489. if (hc->flash[2] >= 2048)
  1490. hc->flash[2] = 0;
  1491. if (hc->flash[3] >= 2048)
  1492. hc->flash[3] = 0;
  1493. if (hc->flash[2])
  1494. hc->flash[2] += poll;
  1495. if (hc->flash[3])
  1496. hc->flash[3] += poll;
  1497. }
  1498. }
  1499. leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
  1500. /* leds are inverted */
  1501. if (leds != (int)hc->ledstate) {
  1502. HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
  1503. hc->ledstate = leds;
  1504. }
  1505. break;
  1506. case 2: /* HFC-4S OEM */
  1507. /* red steady: PH_DEACTIVATE
  1508. * green steady: PH_ACTIVATE
  1509. * green flashing: activity on TX
  1510. */
  1511. for (i = 0; i < 4; i++) {
  1512. state = 0;
  1513. active = -1;
  1514. dch = hc->chan[(i << 2) | 2].dch;
  1515. if (dch) {
  1516. state = dch->state;
  1517. if (dch->dev.D.protocol == ISDN_P_NT_S0)
  1518. active = 3;
  1519. else
  1520. active = 7;
  1521. }
  1522. if (state) {
  1523. if (state == active) {
  1524. led[i] = 1; /* led green */
  1525. hc->activity_tx |= hc->activity_rx;
  1526. if (!hc->flash[i] &&
  1527. (hc->activity_tx & (1 << i)))
  1528. hc->flash[i] = poll;
  1529. if (hc->flash[i] && hc->flash[i] < 1024)
  1530. led[i] = 0; /* led off */
  1531. if (hc->flash[i] >= 2048)
  1532. hc->flash[i] = 0;
  1533. if (hc->flash[i])
  1534. hc->flash[i] += poll;
  1535. } else {
  1536. led[i] = 2; /* led red */
  1537. hc->flash[i] = 0;
  1538. }
  1539. } else
  1540. led[i] = 0; /* led off */
  1541. }
  1542. if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
  1543. leds = 0;
  1544. for (i = 0; i < 4; i++) {
  1545. if (led[i] == 1) {
  1546. /*green*/
  1547. leds |= (0x2 << (i * 2));
  1548. } else if (led[i] == 2) {
  1549. /*red*/
  1550. leds |= (0x1 << (i * 2));
  1551. }
  1552. }
  1553. if (leds != (int)hc->ledstate) {
  1554. vpm_out(hc, 0, 0x1a8 + 3, leds);
  1555. hc->ledstate = leds;
  1556. }
  1557. } else {
  1558. leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
  1559. ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
  1560. ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
  1561. ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
  1562. if (leds != (int)hc->ledstate) {
  1563. HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
  1564. HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
  1565. hc->ledstate = leds;
  1566. }
  1567. }
  1568. break;
  1569. case 3: /* HFC 1S/2S Beronet */
  1570. /* red steady: PH_DEACTIVATE
  1571. * green steady: PH_ACTIVATE
  1572. * green flashing: activity on TX
  1573. */
  1574. for (i = 0; i < 2; i++) {
  1575. state = 0;
  1576. active = -1;
  1577. dch = hc->chan[(i << 2) | 2].dch;
  1578. if (dch) {
  1579. state = dch->state;
  1580. if (dch->dev.D.protocol == ISDN_P_NT_S0)
  1581. active = 3;
  1582. else
  1583. active = 7;
  1584. }
  1585. if (state) {
  1586. if (state == active) {
  1587. led[i] = 1; /* led green */
  1588. hc->activity_tx |= hc->activity_rx;
  1589. if (!hc->flash[i] &&
  1590. (hc->activity_tx & (1 << i)))
  1591. hc->flash[i] = poll;
  1592. if (hc->flash[i] < 1024)
  1593. led[i] = 0; /* led off */
  1594. if (hc->flash[i] >= 2048)
  1595. hc->flash[i] = 0;
  1596. if (hc->flash[i])
  1597. hc->flash[i] += poll;
  1598. } else {
  1599. led[i] = 2; /* led red */
  1600. hc->flash[i] = 0;
  1601. }
  1602. } else
  1603. led[i] = 0; /* led off */
  1604. }
  1605. leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
  1606. | ((led[1]&1) << 3);
  1607. if (leds != (int)hc->ledstate) {
  1608. HFC_outb_nodebug(hc, R_GPIO_EN1,
  1609. ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
  1610. HFC_outb_nodebug(hc, R_GPIO_OUT1,
  1611. ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
  1612. hc->ledstate = leds;
  1613. }
  1614. break;
  1615. case 8: /* HFC 8S+ Beronet */
  1616. /* off: PH_DEACTIVATE
  1617. * steady: PH_ACTIVATE
  1618. * flashing: activity on TX
  1619. */
  1620. lled = 0xff; /* leds off */
  1621. for (i = 0; i < 8; i++) {
  1622. state = 0;
  1623. active = -1;
  1624. dch = hc->chan[(i << 2) | 2].dch;
  1625. if (dch) {
  1626. state = dch->state;
  1627. if (dch->dev.D.protocol == ISDN_P_NT_S0)
  1628. active = 3;
  1629. else
  1630. active = 7;
  1631. }
  1632. if (state) {
  1633. if (state == active) {
  1634. lled &= ~(1 << i); /* led on */
  1635. hc->activity_tx |= hc->activity_rx;
  1636. if (!hc->flash[i] &&
  1637. (hc->activity_tx & (1 << i)))
  1638. hc->flash[i] = poll;
  1639. if (hc->flash[i] < 1024)
  1640. lled |= 1 << i; /* led off */
  1641. if (hc->flash[i] >= 2048)
  1642. hc->flash[i] = 0;
  1643. if (hc->flash[i])
  1644. hc->flash[i] += poll;
  1645. } else
  1646. hc->flash[i] = 0;
  1647. }
  1648. }
  1649. leddw = lled << 24 | lled << 16 | lled << 8 | lled;
  1650. if (leddw != hc->ledstate) {
  1651. /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
  1652. HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
  1653. /* was _io before */
  1654. HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
  1655. outw(0x4000, hc->pci_iobase + 4);
  1656. outl(leddw, hc->pci_iobase);
  1657. HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
  1658. hc->ledstate = leddw;
  1659. }
  1660. break;
  1661. }
  1662. hc->activity_tx = 0;
  1663. hc->activity_rx = 0;
  1664. }
  1665. /*
  1666. * read dtmf coefficients
  1667. */
  1668. static void
  1669. hfcmulti_dtmf(struct hfc_multi *hc)
  1670. {
  1671. s32 *coeff;
  1672. u_int mantissa;
  1673. int co, ch;
  1674. struct bchannel *bch = NULL;
  1675. u8 exponent;
  1676. int dtmf = 0;
  1677. int addr;
  1678. u16 w_float;
  1679. struct sk_buff *skb;
  1680. struct mISDNhead *hh;
  1681. if (debug & DEBUG_HFCMULTI_DTMF)
  1682. printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
  1683. for (ch = 0; ch <= 31; ch++) {
  1684. /* only process enabled B-channels */
  1685. bch = hc->chan[ch].bch;
  1686. if (!bch)
  1687. continue;
  1688. if (!hc->created[hc->chan[ch].port])
  1689. continue;
  1690. if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
  1691. continue;
  1692. if (debug & DEBUG_HFCMULTI_DTMF)
  1693. printk(KERN_DEBUG "%s: dtmf channel %d:",
  1694. __func__, ch);
  1695. coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
  1696. dtmf = 1;
  1697. for (co = 0; co < 8; co++) {
  1698. /* read W(n-1) coefficient */
  1699. addr = hc->DTMFbase + ((co << 7) | (ch << 2));
  1700. HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
  1701. HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
  1702. HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
  1703. | V_ADDR_INC);
  1704. w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
  1705. w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
  1706. if (debug & DEBUG_HFCMULTI_DTMF)
  1707. printk(" %04x", w_float);
  1708. /* decode float (see chip doc) */
  1709. mantissa = w_float & 0x0fff;
  1710. if (w_float & 0x8000)
  1711. mantissa |= 0xfffff000;
  1712. exponent = (w_float >> 12) & 0x7;
  1713. if (exponent) {
  1714. mantissa ^= 0x1000;
  1715. mantissa <<= (exponent - 1);
  1716. }
  1717. /* store coefficient */
  1718. coeff[co << 1] = mantissa;
  1719. /* read W(n) coefficient */
  1720. w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
  1721. w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
  1722. if (debug & DEBUG_HFCMULTI_DTMF)
  1723. printk(" %04x", w_float);
  1724. /* decode float (see chip doc) */
  1725. mantissa = w_float & 0x0fff;
  1726. if (w_float & 0x8000)
  1727. mantissa |= 0xfffff000;
  1728. exponent = (w_float >> 12) & 0x7;
  1729. if (exponent) {
  1730. mantissa ^= 0x1000;
  1731. mantissa <<= (exponent - 1);
  1732. }
  1733. /* store coefficient */
  1734. coeff[(co << 1) | 1] = mantissa;
  1735. }
  1736. if (debug & DEBUG_HFCMULTI_DTMF)
  1737. printk(" DTMF ready %08x %08x %08x %08x "
  1738. "%08x %08x %08x %08x\n",
  1739. coeff[0], coeff[1], coeff[2], coeff[3],
  1740. coeff[4], coeff[5], coeff[6], coeff[7]);
  1741. hc->chan[ch].coeff_count++;
  1742. if (hc->chan[ch].coeff_count == 8) {
  1743. hc->chan[ch].coeff_count = 0;
  1744. skb = mI_alloc_skb(512, GFP_ATOMIC);
  1745. if (!skb) {
  1746. printk(KERN_DEBUG "%s: No memory for skb\n",
  1747. __func__);
  1748. continue;
  1749. }
  1750. hh = mISDN_HEAD_P(skb);
  1751. hh->prim = PH_CONTROL_IND;
  1752. hh->id = DTMF_HFC_COEF;
  1753. memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
  1754. recv_Bchannel_skb(bch, skb);
  1755. }
  1756. }
  1757. /* restart DTMF processing */
  1758. hc->dtmf = dtmf;
  1759. if (dtmf)
  1760. HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
  1761. }
  1762. /*
  1763. * fill fifo as much as possible
  1764. */
  1765. static void
  1766. hfcmulti_tx(struct hfc_multi *hc, int ch)
  1767. {
  1768. int i, ii, temp, len = 0;
  1769. int Zspace, z1, z2; /* must be int for calculation */
  1770. int Fspace, f1, f2;
  1771. u_char *d;
  1772. int *txpending, slot_tx;
  1773. struct bchannel *bch;
  1774. struct dchannel *dch;
  1775. struct sk_buff **sp = NULL;
  1776. int *idxp;
  1777. bch = hc->chan[ch].bch;
  1778. dch = hc->chan[ch].dch;
  1779. if ((!dch) && (!bch))
  1780. return;
  1781. txpending = &hc->chan[ch].txpending;
  1782. slot_tx = hc->chan[ch].slot_tx;
  1783. if (dch) {
  1784. if (!test_bit(FLG_ACTIVE, &dch->Flags))
  1785. return;
  1786. sp = &dch->tx_skb;
  1787. idxp = &dch->tx_idx;
  1788. } else {
  1789. if (!test_bit(FLG_ACTIVE, &bch->Flags))
  1790. return;
  1791. sp = &bch->tx_skb;
  1792. idxp = &bch->tx_idx;
  1793. }
  1794. if (*sp)
  1795. len = (*sp)->len;
  1796. if ((!len) && *txpending != 1)
  1797. return; /* no data */
  1798. if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
  1799. (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
  1800. (hc->chan[ch].slot_rx < 0) &&
  1801. (hc->chan[ch].slot_tx < 0))
  1802. HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
  1803. else
  1804. HFC_outb_nodebug(hc, R_FIFO, ch << 1);
  1805. HFC_wait_nodebug(hc);
  1806. if (*txpending == 2) {
  1807. /* reset fifo */
  1808. HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
  1809. HFC_wait_nodebug(hc);
  1810. HFC_outb(hc, A_SUBCH_CFG, 0);
  1811. *txpending = 1;
  1812. }
  1813. next_frame:
  1814. if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
  1815. f1 = HFC_inb_nodebug(hc, A_F1);
  1816. f2 = HFC_inb_nodebug(hc, A_F2);
  1817. while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
  1818. if (debug & DEBUG_HFCMULTI_FIFO)
  1819. printk(KERN_DEBUG
  1820. "%s(card %d): reread f2 because %d!=%d\n",
  1821. __func__, hc->id + 1, temp, f2);
  1822. f2 = temp; /* repeat until F2 is equal */
  1823. }
  1824. Fspace = f2 - f1 - 1;
  1825. if (Fspace < 0)
  1826. Fspace += hc->Flen;
  1827. /*
  1828. * Old FIFO handling doesn't give us the current Z2 read
  1829. * pointer, so we cannot send the next frame before the fifo
  1830. * is empty. It makes no difference except for a slightly
  1831. * lower performance.
  1832. */
  1833. if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
  1834. if (f1 != f2)
  1835. Fspace = 0;
  1836. else
  1837. Fspace = 1;
  1838. }
  1839. /* one frame only for ST D-channels, to allow resending */
  1840. if (hc->ctype != HFC_TYPE_E1 && dch) {
  1841. if (f1 != f2)
  1842. Fspace = 0;
  1843. }
  1844. /* F-counter full condition */
  1845. if (Fspace == 0)
  1846. return;
  1847. }
  1848. z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
  1849. z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
  1850. while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
  1851. if (debug & DEBUG_HFCMULTI_FIFO)
  1852. printk(KERN_DEBUG "%s(card %d): reread z2 because "
  1853. "%d!=%d\n", __func__, hc->id + 1, temp, z2);
  1854. z2 = temp; /* repeat unti Z2 is equal */
  1855. }
  1856. hc->chan[ch].Zfill = z1 - z2;
  1857. if (hc->chan[ch].Zfill < 0)
  1858. hc->chan[ch].Zfill += hc->Zlen;
  1859. Zspace = z2 - z1;
  1860. if (Zspace <= 0)
  1861. Zspace += hc->Zlen;
  1862. Zspace -= 4; /* keep not too full, so pointers will not overrun */
  1863. /* fill transparent data only to maxinum transparent load (minus 4) */
  1864. if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
  1865. Zspace = Zspace - hc->Zlen + hc->max_trans;
  1866. if (Zspace <= 0) /* no space of 4 bytes */
  1867. return;
  1868. /* if no data */
  1869. if (!len) {
  1870. if (z1 == z2) { /* empty */
  1871. /* if done with FIFO audio data during PCM connection */
  1872. if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
  1873. *txpending && slot_tx >= 0) {
  1874. if (debug & DEBUG_HFCMULTI_MODE)
  1875. printk(KERN_DEBUG
  1876. "%s: reconnecting PCM due to no "
  1877. "more FIFO data: channel %d "
  1878. "slot_tx %d\n",
  1879. __func__, ch, slot_tx);
  1880. /* connect slot */
  1881. if (hc->ctype == HFC_TYPE_XHFC)
  1882. HFC_outb(hc, A_CON_HDLC, 0xc0
  1883. | 0x07 << 2 | V_HDLC_TRP | V_IFF);
  1884. /* Enable FIFO, no interrupt */
  1885. else
  1886. HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
  1887. V_HDLC_TRP | V_IFF);
  1888. HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
  1889. HFC_wait_nodebug(hc);
  1890. if (hc->ctype == HFC_TYPE_XHFC)
  1891. HFC_outb(hc, A_CON_HDLC, 0xc0
  1892. | 0x07 << 2 | V_HDLC_TRP | V_IFF);
  1893. /* Enable FIFO, no interrupt */
  1894. else
  1895. HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
  1896. V_HDLC_TRP | V_IFF);
  1897. HFC_outb_nodebug(hc, R_FIFO, ch << 1);
  1898. HFC_wait_nodebug(hc);
  1899. }
  1900. *txpending = 0;
  1901. }
  1902. return; /* no data */
  1903. }
  1904. /* "fill fifo if empty" feature */
  1905. if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
  1906. && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
  1907. if (debug & DEBUG_HFCMULTI_FILL)
  1908. printk(KERN_DEBUG "%s: buffer empty, so we have "
  1909. "underrun\n", __func__);
  1910. /* fill buffer, to prevent future underrun */
  1911. hc->write_fifo(hc, hc->silence_data, poll >> 1);
  1912. Zspace -= (poll >> 1);
  1913. }
  1914. /* if audio data and connected slot */
  1915. if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
  1916. && slot_tx >= 0) {
  1917. if (debug & DEBUG_HFCMULTI_MODE)
  1918. printk(KERN_DEBUG "%s: disconnecting PCM due to "
  1919. "FIFO data: channel %d slot_tx %d\n",
  1920. __func__, ch, slot_tx);
  1921. /* disconnect slot */
  1922. if (hc->ctype == HFC_TYPE_XHFC)
  1923. HFC_outb(hc, A_CON_HDLC, 0x80
  1924. | 0x07 << 2 | V_HDLC_TRP | V_IFF);
  1925. /* Enable FIFO, no interrupt */
  1926. else
  1927. HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
  1928. V_HDLC_TRP | V_IFF);
  1929. HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
  1930. HFC_wait_nodebug(hc);
  1931. if (hc->ctype == HFC_TYPE_XHFC)
  1932. HFC_outb(hc, A_CON_HDLC, 0x80
  1933. | 0x07 << 2 | V_HDLC_TRP | V_IFF);
  1934. /* Enable FIFO, no interrupt */
  1935. else
  1936. HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
  1937. V_HDLC_TRP | V_IFF);
  1938. HFC_outb_nodebug(hc, R_FIFO, ch << 1);
  1939. HFC_wait_nodebug(hc);
  1940. }
  1941. *txpending = 1;
  1942. /* show activity */
  1943. if (dch)
  1944. hc->activity_tx |= 1 << hc->chan[ch].port;
  1945. /* fill fifo to what we have left */
  1946. ii = len;
  1947. if (dch || test_bit(FLG_HDLC, &bch->Flags))
  1948. temp = 1;
  1949. else
  1950. temp = 0;
  1951. i = *idxp;
  1952. d = (*sp)->data + i;
  1953. if (ii - i > Zspace)
  1954. ii = Zspace + i;
  1955. if (debug & DEBUG_HFCMULTI_FIFO)
  1956. printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
  1957. "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
  1958. __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
  1959. temp ? "HDLC" : "TRANS");
  1960. /* Have to prep the audio data */
  1961. hc->write_fifo(hc, d, ii - i);
  1962. hc->chan[ch].Zfill += ii - i;
  1963. *idxp = ii;
  1964. /* if not all data has been written */
  1965. if (ii != len) {
  1966. /* NOTE: fifo is started by the calling function */
  1967. return;
  1968. }
  1969. /* if all data has been written, terminate frame */
  1970. if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
  1971. /* increment f-counter */
  1972. HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
  1973. HFC_wait_nodebug(hc);
  1974. }
  1975. dev_kfree_skb(*sp);
  1976. /* check for next frame */
  1977. if (bch && get_next_bframe(bch)) {
  1978. len = (*sp)->len;
  1979. goto next_frame;
  1980. }
  1981. if (dch && get_next_dframe(dch)) {
  1982. len = (*sp)->len;
  1983. goto next_frame;
  1984. }
  1985. /*
  1986. * now we have no more data, so in case of transparent,
  1987. * we set the last byte in fifo to 'silence' in case we will get
  1988. * no more data at all. this prevents sending an undefined value.
  1989. */
  1990. if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
  1991. HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
  1992. }
  1993. /* NOTE: only called if E1 card is in active state */
  1994. static void
  1995. hfcmulti_rx(struct hfc_multi *hc, int ch)
  1996. {
  1997. int temp;
  1998. int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
  1999. int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
  2000. int again = 0;
  2001. struct bchannel *bch;
  2002. struct dchannel *dch = NULL;
  2003. struct sk_buff *skb, **sp = NULL;
  2004. int maxlen;
  2005. bch = hc->chan[ch].bch;
  2006. if (bch) {
  2007. if (!test_bit(FLG_ACTIVE, &bch->Flags))
  2008. return;
  2009. } else if (hc->chan[ch].dch) {
  2010. dch = hc->chan[ch].dch;
  2011. if (!test_bit(FLG_ACTIVE, &dch->Flags))
  2012. return;
  2013. } else {
  2014. return;
  2015. }
  2016. next_frame:
  2017. /* on first AND before getting next valid frame, R_FIFO must be written
  2018. to. */
  2019. if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
  2020. (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
  2021. (hc->chan[ch].slot_rx < 0) &&
  2022. (hc->chan[ch].slot_tx < 0))
  2023. HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
  2024. else
  2025. HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
  2026. HFC_wait_nodebug(hc);
  2027. /* ignore if rx is off BUT change fifo (above) to start pending TX */
  2028. if (hc->chan[ch].rx_off)
  2029. return;
  2030. if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
  2031. f1 = HFC_inb_nodebug(hc, A_F1);
  2032. while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
  2033. if (debug & DEBUG_HFCMULTI_FIFO)
  2034. printk(KERN_DEBUG
  2035. "%s(card %d): reread f1 because %d!=%d\n",
  2036. __func__, hc->id + 1, temp, f1);
  2037. f1 = temp; /* repeat until F1 is equal */
  2038. }
  2039. f2 = HFC_inb_nodebug(hc, A_F2);
  2040. }
  2041. z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
  2042. while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
  2043. if (debug & DEBUG_HFCMULTI_FIFO)
  2044. printk(KERN_DEBUG "%s(card %d): reread z2 because "
  2045. "%d!=%d\n", __func__, hc->id + 1, temp, z2);
  2046. z1 = temp; /* repeat until Z1 is equal */
  2047. }
  2048. z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
  2049. Zsize = z1 - z2;
  2050. if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
  2051. /* complete hdlc frame */
  2052. Zsize++;
  2053. if (Zsize < 0)
  2054. Zsize += hc->Zlen;
  2055. /* if buffer is empty */
  2056. if (Zsize <= 0)
  2057. return;
  2058. if (bch) {
  2059. maxlen = bchannel_get_rxbuf(bch, Zsize);
  2060. if (maxlen < 0) {
  2061. pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
  2062. hc->id + 1, bch->nr, Zsize);
  2063. return;
  2064. }
  2065. sp = &bch->rx_skb;
  2066. maxlen = bch->maxlen;
  2067. } else { /* Dchannel */
  2068. sp = &dch->rx_skb;
  2069. maxlen = dch->maxlen + 3;
  2070. if (*sp == NULL) {
  2071. *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
  2072. if (*sp == NULL) {
  2073. pr_warning("card%d: No mem for dch rx_skb\n",
  2074. hc->id + 1);
  2075. return;
  2076. }
  2077. }
  2078. }
  2079. /* show activity */
  2080. if (dch)
  2081. hc->activity_rx |= 1 << hc->chan[ch].port;
  2082. /* empty fifo with what we have */
  2083. if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
  2084. if (debug & DEBUG_HFCMULTI_FIFO)
  2085. printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
  2086. "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
  2087. "got=%d (again %d)\n", __func__, hc->id + 1, ch,
  2088. Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
  2089. f1, f2, Zsize + (*sp)->len, again);
  2090. /* HDLC */
  2091. if ((Zsize + (*sp)->len) > maxlen) {
  2092. if (debug & DEBUG_HFCMULTI_FIFO)
  2093. printk(KERN_DEBUG
  2094. "%s(card %d): hdlc-frame too large.\n",
  2095. __func__, hc->id + 1);
  2096. skb_trim(*sp, 0);
  2097. HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
  2098. HFC_wait_nodebug(hc);
  2099. return;
  2100. }
  2101. hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
  2102. if (f1 != f2) {
  2103. /* increment Z2,F2-counter */
  2104. HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
  2105. HFC_wait_nodebug(hc);
  2106. /* check size */
  2107. if ((*sp)->len < 4) {
  2108. if (debug & DEBUG_HFCMULTI_FIFO)
  2109. printk(KERN_DEBUG
  2110. "%s(card %d): Frame below minimum "
  2111. "size\n", __func__, hc->id + 1);
  2112. skb_trim(*sp, 0);
  2113. goto next_frame;
  2114. }
  2115. /* there is at least one complete frame, check crc */
  2116. if ((*sp)->data[(*sp)->len - 1]) {
  2117. if (debug & DEBUG_HFCMULTI_CRC)
  2118. printk(KERN_DEBUG
  2119. "%s: CRC-error\n", __func__);
  2120. skb_trim(*sp, 0);
  2121. goto next_frame;
  2122. }
  2123. skb_trim(*sp, (*sp)->len - 3);
  2124. if ((*sp)->len < MISDN_COPY_SIZE) {
  2125. skb = *sp;
  2126. *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
  2127. if (*sp) {
  2128. memcpy(skb_put(*sp, skb->len),
  2129. skb->data, skb->len);
  2130. skb_trim(skb, 0);
  2131. } else {
  2132. printk(KERN_DEBUG "%s: No mem\n",
  2133. __func__);
  2134. *sp = skb;
  2135. skb = NULL;
  2136. }
  2137. } else {
  2138. skb = NULL;
  2139. }
  2140. if (debug & DEBUG_HFCMULTI_FIFO) {
  2141. printk(KERN_DEBUG "%s(card %d):",
  2142. __func__, hc->id + 1);
  2143. temp = 0;
  2144. while (temp < (*sp)->len)
  2145. printk(" %02x", (*sp)->data[temp++]);
  2146. printk("\n");
  2147. }
  2148. if (dch)
  2149. recv_Dchannel(dch);
  2150. else
  2151. recv_Bchannel(bch, MISDN_ID_ANY, false);
  2152. *sp = skb;
  2153. again++;
  2154. goto next_frame;
  2155. }
  2156. /* there is an incomplete frame */
  2157. } else {
  2158. /* transparent */
  2159. hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
  2160. if (debug & DEBUG_HFCMULTI_FIFO)
  2161. printk(KERN_DEBUG
  2162. "%s(card %d): fifo(%d) reading %d bytes "
  2163. "(z1=%04x, z2=%04x) TRANS\n",
  2164. __func__, hc->id + 1, ch, Zsize, z1, z2);
  2165. /* only bch is transparent */
  2166. recv_Bchannel(bch, hc->chan[ch].Zfill, false);
  2167. }
  2168. }
  2169. /*
  2170. * Interrupt handler
  2171. */
  2172. static void
  2173. signal_state_up(struct dchannel *dch, int info, char *msg)
  2174. {
  2175. struct sk_buff *skb;
  2176. int id, data = info;
  2177. if (debug & DEBUG_HFCMULTI_STATE)
  2178. printk(KERN_DEBUG "%s: %s\n", __func__, msg);
  2179. id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
  2180. skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
  2181. GFP_ATOMIC);
  2182. if (!skb)
  2183. return;
  2184. recv_Dchannel_skb(dch, skb);
  2185. }
  2186. static inline void
  2187. handle_timer_irq(struct hfc_multi *hc)
  2188. {
  2189. int ch, temp;
  2190. struct dchannel *dch;
  2191. u_long flags;
  2192. /* process queued resync jobs */
  2193. if (hc->e1_resync) {
  2194. /* lock, so e1_resync gets not changed */
  2195. spin_lock_irqsave(&HFClock, flags);
  2196. if (hc->e1_resync & 1) {
  2197. if (debug & DEBUG_HFCMULTI_PLXSD)
  2198. printk(KERN_DEBUG "Enable SYNC_I\n");
  2199. HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
  2200. /* disable JATT, if RX_SYNC is set */
  2201. if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
  2202. HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
  2203. }
  2204. if (hc->e1_resync & 2) {
  2205. if (debug & DEBUG_HFCMULTI_PLXSD)
  2206. printk(KERN_DEBUG "Enable jatt PLL\n");
  2207. HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
  2208. }
  2209. if (hc->e1_resync & 4) {
  2210. if (debug & DEBUG_HFCMULTI_PLXSD)
  2211. printk(KERN_DEBUG
  2212. "Enable QUARTZ for HFC-E1\n");
  2213. /* set jatt to quartz */
  2214. HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
  2215. | V_JATT_OFF);
  2216. /* switch to JATT, in case it is not already */
  2217. HFC_outb(hc, R_SYNC_OUT, 0);
  2218. }
  2219. hc->e1_resync = 0;
  2220. spin_unlock_irqrestore(&HFClock, flags);
  2221. }
  2222. if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
  2223. for (ch = 0; ch <= 31; ch++) {
  2224. if (hc->created[hc->chan[ch].port]) {
  2225. hfcmulti_tx(hc, ch);
  2226. /* fifo is started when switching to rx-fifo */
  2227. hfcmulti_rx(hc, ch);
  2228. if (hc->chan[ch].dch &&
  2229. hc->chan[ch].nt_timer > -1) {
  2230. dch = hc->chan[ch].dch;
  2231. if (!(--hc->chan[ch].nt_timer)) {
  2232. schedule_event(dch,
  2233. FLG_PHCHANGE);
  2234. if (debug &
  2235. DEBUG_HFCMULTI_STATE)
  2236. printk(KERN_DEBUG
  2237. "%s: nt_timer at "
  2238. "state %x\n",
  2239. __func__,
  2240. dch->state);
  2241. }
  2242. }
  2243. }
  2244. }
  2245. if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
  2246. dch = hc->chan[hc->dnum[0]].dch;
  2247. /* LOS */
  2248. temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
  2249. hc->chan[hc->dnum[0]].los = temp;
  2250. if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
  2251. if (!temp && hc->chan[hc->dnum[0]].los)
  2252. signal_state_up(dch, L1_SIGNAL_LOS_ON,
  2253. "LOS detected");
  2254. if (temp && !hc->chan[hc->dnum[0]].los)
  2255. signal_state_up(dch, L1_SIGNAL_LOS_OFF,
  2256. "LOS gone");
  2257. }
  2258. if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
  2259. /* AIS */
  2260. temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
  2261. if (!temp && hc->chan[hc->dnum[0]].ais)
  2262. signal_state_up(dch, L1_SIGNAL_AIS_ON,
  2263. "AIS detected");
  2264. if (temp && !hc->chan[hc->dnum[0]].ais)
  2265. signal_state_up(dch, L1_SIGNAL_AIS_OFF,
  2266. "AIS gone");
  2267. hc->chan[hc->dnum[0]].ais = temp;
  2268. }
  2269. if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
  2270. /* SLIP */
  2271. temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
  2272. if (!temp && hc->chan[hc->dnum[0]].slip_rx)
  2273. signal_state_up(dch, L1_SIGNAL_SLIP_RX,
  2274. " bit SLIP detected RX");
  2275. hc->chan[hc->dnum[0]].slip_rx = temp;
  2276. temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
  2277. if (!temp && hc->chan[hc->dnum[0]].slip_tx)
  2278. signal_state_up(dch, L1_SIGNAL_SLIP_TX,
  2279. " bit SLIP detected TX");
  2280. hc->chan[hc->dnum[0]].slip_tx = temp;
  2281. }
  2282. if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
  2283. /* RDI */
  2284. temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
  2285. if (!temp && hc->chan[hc->dnum[0]].rdi)
  2286. signal_state_up(dch, L1_SIGNAL_RDI_ON,
  2287. "RDI detected");
  2288. if (temp && !hc->chan[hc->dnum[0]].rdi)
  2289. signal_state_up(dch, L1_SIGNAL_RDI_OFF,
  2290. "RDI gone");
  2291. hc->chan[hc->dnum[0]].rdi = temp;
  2292. }
  2293. temp = HFC_inb_nodebug(hc, R_JATT_DIR);
  2294. switch (hc->chan[hc->dnum[0]].sync) {
  2295. case 0:
  2296. if ((temp & 0x60) == 0x60) {
  2297. if (debug & DEBUG_HFCMULTI_SYNC)
  2298. printk(KERN_DEBUG
  2299. "%s: (id=%d) E1 now "
  2300. "in clock sync\n",
  2301. __func__, hc->id);
  2302. HFC_outb(hc, R_RX_OFF,
  2303. hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
  2304. HFC_outb(hc, R_TX_OFF,
  2305. hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
  2306. hc->chan[hc->dnum[0]].sync = 1;
  2307. goto check_framesync;
  2308. }
  2309. break;
  2310. case 1:
  2311. if ((temp & 0x60) != 0x60) {
  2312. if (debug & DEBUG_HFCMULTI_SYNC)
  2313. printk(KERN_DEBUG
  2314. "%s: (id=%d) E1 "
  2315. "lost clock sync\n",
  2316. __func__, hc->id);
  2317. hc->chan[hc->dnum[0]].sync = 0;
  2318. break;
  2319. }
  2320. check_framesync:
  2321. temp = HFC_inb_nodebug(hc, R_SYNC_STA);
  2322. if (temp == 0x27) {
  2323. if (debug & DEBUG_HFCMULTI_SYNC)
  2324. printk(KERN_DEBUG
  2325. "%s: (id=%d) E1 "
  2326. "now in frame sync\n",
  2327. __func__, hc->id);
  2328. hc->chan[hc->dnum[0]].sync = 2;
  2329. }
  2330. break;
  2331. case 2:
  2332. if ((temp & 0x60) != 0x60) {
  2333. if (debug & DEBUG_HFCMULTI_SYNC)
  2334. printk(KERN_DEBUG
  2335. "%s: (id=%d) E1 lost "
  2336. "clock & frame sync\n",
  2337. __func__, hc->id);
  2338. hc->chan[hc->dnum[0]].sync = 0;
  2339. break;
  2340. }
  2341. temp = HFC_inb_nodebug(hc, R_SYNC_STA);
  2342. if (temp != 0x27) {
  2343. if (debug & DEBUG_HFCMULTI_SYNC)
  2344. printk(KERN_DEBUG
  2345. "%s: (id=%d) E1 "
  2346. "lost frame sync\n",
  2347. __func__, hc->id);
  2348. hc->chan[hc->dnum[0]].sync = 1;
  2349. }
  2350. break;
  2351. }
  2352. }
  2353. if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
  2354. hfcmulti_watchdog(hc);
  2355. if (hc->leds)
  2356. hfcmulti_leds(hc);
  2357. }
  2358. static void
  2359. ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
  2360. {
  2361. struct dchannel *dch;
  2362. int ch;
  2363. int active;
  2364. u_char st_status, temp;
  2365. /* state machine */
  2366. for (ch = 0; ch <= 31; ch++) {
  2367. if (hc->chan[ch].dch) {
  2368. dch = hc->chan[ch].dch;
  2369. if (r_irq_statech & 1) {
  2370. HFC_outb_nodebug(hc, R_ST_SEL,
  2371. hc->chan[ch].port);
  2372. /* undocumented: delay after R_ST_SEL */
  2373. udelay(1);
  2374. /* undocumented: status changes during read */
  2375. st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
  2376. while (st_status != (temp =
  2377. HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
  2378. if (debug & DEBUG_HFCMULTI_STATE)
  2379. printk(KERN_DEBUG "%s: reread "
  2380. "STATE because %d!=%d\n",
  2381. __func__, temp,
  2382. st_status);
  2383. st_status = temp; /* repeat */
  2384. }
  2385. /* Speech Design TE-sync indication */
  2386. if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
  2387. dch->dev.D.protocol == ISDN_P_TE_S0) {
  2388. if (st_status & V_FR_SYNC_ST)
  2389. hc->syncronized |=
  2390. (1 << hc->chan[ch].port);
  2391. else
  2392. hc->syncronized &=
  2393. ~(1 << hc->chan[ch].port);
  2394. }
  2395. dch->state = st_status & 0x0f;
  2396. if (dch->dev.D.protocol == ISDN_P_NT_S0)
  2397. active = 3;
  2398. else
  2399. active = 7;
  2400. if (dch->state == active) {
  2401. HFC_outb_nodebug(hc, R_FIFO,
  2402. (ch << 1) | 1);
  2403. HFC_wait_nodebug(hc);
  2404. HFC_outb_nodebug(hc,
  2405. R_INC_RES_FIFO, V_RES_F);
  2406. HFC_wait_nodebug(hc);
  2407. dch->tx_idx = 0;
  2408. }
  2409. schedule_event(dch, FLG_PHCHANGE);
  2410. if (debug & DEBUG_HFCMULTI_STATE)
  2411. printk(KERN_DEBUG
  2412. "%s: S/T newstate %x port %d\n",
  2413. __func__, dch->state,
  2414. hc->chan[ch].port);
  2415. }
  2416. r_irq_statech >>= 1;
  2417. }
  2418. }
  2419. if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
  2420. plxsd_checksync(hc, 0);
  2421. }
  2422. static void
  2423. fifo_irq(struct hfc_multi *hc, int block)
  2424. {
  2425. int ch, j;
  2426. struct dchannel *dch;
  2427. struct bchannel *bch;
  2428. u_char r_irq_fifo_bl;
  2429. r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
  2430. j = 0;
  2431. while (j < 8) {
  2432. ch = (block << 2) + (j >> 1);
  2433. dch = hc->chan[ch].dch;
  2434. bch = hc->chan[ch].bch;
  2435. if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
  2436. j += 2;
  2437. continue;
  2438. }
  2439. if (dch && (r_irq_fifo_bl & (1 << j)) &&
  2440. test_bit(FLG_ACTIVE, &dch->Flags)) {
  2441. hfcmulti_tx(hc, ch);
  2442. /* start fifo */
  2443. HFC_outb_nodebug(hc, R_FIFO, 0);
  2444. HFC_wait_nodebug(hc);
  2445. }
  2446. if (bch && (r_irq_fifo_bl & (1 << j)) &&
  2447. test_bit(FLG_ACTIVE, &bch->Flags)) {
  2448. hfcmulti_tx(hc, ch);
  2449. /* start fifo */
  2450. HFC_outb_nodebug(hc, R_FIFO, 0);
  2451. HFC_wait_nodebug(hc);
  2452. }
  2453. j++;
  2454. if (dch && (r_irq_fifo_bl & (1 << j)) &&
  2455. test_bit(FLG_ACTIVE, &dch->Flags)) {
  2456. hfcmulti_rx(hc, ch);
  2457. }
  2458. if (bch && (r_irq_fifo_bl & (1 << j)) &&
  2459. test_bit(FLG_ACTIVE, &bch->Flags)) {
  2460. hfcmulti_rx(hc, ch);
  2461. }
  2462. j++;
  2463. }
  2464. }
  2465. #ifdef IRQ_DEBUG
  2466. int irqsem;
  2467. #endif
  2468. static irqreturn_t
  2469. hfcmulti_interrupt(int intno, void *dev_id)
  2470. {
  2471. #ifdef IRQCOUNT_DEBUG
  2472. static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
  2473. iq5 = 0, iq6 = 0, iqcnt = 0;
  2474. #endif
  2475. struct hfc_multi *hc = dev_id;
  2476. struct dchannel *dch;
  2477. u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
  2478. int i;
  2479. void __iomem *plx_acc;
  2480. u_short wval;
  2481. u_char e1_syncsta, temp, temp2;
  2482. u_long flags;
  2483. if (!hc) {
  2484. printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
  2485. return IRQ_NONE;
  2486. }
  2487. spin_lock(&hc->lock);
  2488. #ifdef IRQ_DEBUG
  2489. if (irqsem)
  2490. printk(KERN_ERR "irq for card %d during irq from "
  2491. "card %d, this is no bug.\n", hc->id + 1, irqsem);
  2492. irqsem = hc->id + 1;
  2493. #endif
  2494. #ifdef CONFIG_MISDN_HFCMULTI_8xx
  2495. if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
  2496. goto irq_notforus;
  2497. #endif
  2498. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  2499. spin_lock_irqsave(&plx_lock, flags);
  2500. plx_acc = hc->plx_membase + PLX_INTCSR;
  2501. wval = readw(plx_acc);
  2502. spin_unlock_irqrestore(&plx_lock, flags);
  2503. if (!(wval & PLX_INTCSR_LINTI1_STATUS))
  2504. goto irq_notforus;
  2505. }
  2506. status = HFC_inb_nodebug(hc, R_STATUS);
  2507. r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
  2508. #ifdef IRQCOUNT_DEBUG
  2509. if (r_irq_statech)
  2510. iq1++;
  2511. if (status & V_DTMF_STA)
  2512. iq2++;
  2513. if (status & V_LOST_STA)
  2514. iq3++;
  2515. if (status & V_EXT_IRQSTA)
  2516. iq4++;
  2517. if (status & V_MISC_IRQSTA)
  2518. iq5++;
  2519. if (status & V_FR_IRQSTA)
  2520. iq6++;
  2521. if (iqcnt++ > 5000) {
  2522. printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
  2523. iq1, iq2, iq3, iq4, iq5, iq6);
  2524. iqcnt = 0;
  2525. }
  2526. #endif
  2527. if (!r_irq_statech &&
  2528. !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
  2529. V_MISC_IRQSTA | V_FR_IRQSTA))) {
  2530. /* irq is not for us */
  2531. goto irq_notforus;
  2532. }
  2533. hc->irqcnt++;
  2534. if (r_irq_statech) {
  2535. if (hc->ctype != HFC_TYPE_E1)
  2536. ph_state_irq(hc, r_irq_statech);
  2537. }
  2538. if (status & V_EXT_IRQSTA)
  2539. ; /* external IRQ */
  2540. if (status & V_LOST_STA) {
  2541. /* LOST IRQ */
  2542. HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
  2543. }
  2544. if (status & V_MISC_IRQSTA) {
  2545. /* misc IRQ */
  2546. r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
  2547. r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
  2548. if (r_irq_misc & V_STA_IRQ) {
  2549. if (hc->ctype == HFC_TYPE_E1) {
  2550. /* state machine */
  2551. dch = hc->chan[hc->dnum[0]].dch;
  2552. e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
  2553. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
  2554. && hc->e1_getclock) {
  2555. if (e1_syncsta & V_FR_SYNC_E1)
  2556. hc->syncronized = 1;
  2557. else
  2558. hc->syncronized = 0;
  2559. }
  2560. /* undocumented: status changes during read */
  2561. temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
  2562. while (temp != (temp2 =
  2563. HFC_inb_nodebug(hc, R_E1_RD_STA))) {
  2564. if (debug & DEBUG_HFCMULTI_STATE)
  2565. printk(KERN_DEBUG "%s: reread "
  2566. "STATE because %d!=%d\n",
  2567. __func__, temp, temp2);
  2568. temp = temp2; /* repeat */
  2569. }
  2570. /* broadcast state change to all fragments */
  2571. if (debug & DEBUG_HFCMULTI_STATE)
  2572. printk(KERN_DEBUG
  2573. "%s: E1 (id=%d) newstate %x\n",
  2574. __func__, hc->id, temp & 0x7);
  2575. for (i = 0; i < hc->ports; i++) {
  2576. dch = hc->chan[hc->dnum[i]].dch;
  2577. dch->state = temp & 0x7;
  2578. schedule_event(dch, FLG_PHCHANGE);
  2579. }
  2580. if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
  2581. plxsd_checksync(hc, 0);
  2582. }
  2583. }
  2584. if (r_irq_misc & V_TI_IRQ) {
  2585. if (hc->iclock_on)
  2586. mISDN_clock_update(hc->iclock, poll, NULL);
  2587. handle_timer_irq(hc);
  2588. }
  2589. if (r_irq_misc & V_DTMF_IRQ)
  2590. hfcmulti_dtmf(hc);
  2591. if (r_irq_misc & V_IRQ_PROC) {
  2592. static int irq_proc_cnt;
  2593. if (!irq_proc_cnt++)
  2594. printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
  2595. " this should not happen\n", __func__);
  2596. }
  2597. }
  2598. if (status & V_FR_IRQSTA) {
  2599. /* FIFO IRQ */
  2600. r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
  2601. for (i = 0; i < 8; i++) {
  2602. if (r_irq_oview & (1 << i))
  2603. fifo_irq(hc, i);
  2604. }
  2605. }
  2606. #ifdef IRQ_DEBUG
  2607. irqsem = 0;
  2608. #endif
  2609. spin_unlock(&hc->lock);
  2610. return IRQ_HANDLED;
  2611. irq_notforus:
  2612. #ifdef IRQ_DEBUG
  2613. irqsem = 0;
  2614. #endif
  2615. spin_unlock(&hc->lock);
  2616. return IRQ_NONE;
  2617. }
  2618. /*
  2619. * timer callback for D-chan busy resolution. Currently no function
  2620. */
  2621. static void
  2622. hfcmulti_dbusy_timer(struct hfc_multi *hc)
  2623. {
  2624. }
  2625. /*
  2626. * activate/deactivate hardware for selected channels and mode
  2627. *
  2628. * configure B-channel with the given protocol
  2629. * ch eqals to the HFC-channel (0-31)
  2630. * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
  2631. * for S/T, 1-31 for E1)
  2632. * the hdlc interrupts will be set/unset
  2633. */
  2634. static int
  2635. mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
  2636. int bank_tx, int slot_rx, int bank_rx)
  2637. {
  2638. int flow_tx = 0, flow_rx = 0, routing = 0;
  2639. int oslot_tx, oslot_rx;
  2640. int conf;
  2641. if (ch < 0 || ch > 31)
  2642. return -EINVAL;
  2643. oslot_tx = hc->chan[ch].slot_tx;
  2644. oslot_rx = hc->chan[ch].slot_rx;
  2645. conf = hc->chan[ch].conf;
  2646. if (debug & DEBUG_HFCMULTI_MODE)
  2647. printk(KERN_DEBUG
  2648. "%s: card %d channel %d protocol %x slot old=%d new=%d "
  2649. "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
  2650. __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
  2651. bank_tx, oslot_rx, slot_rx, bank_rx);
  2652. if (oslot_tx >= 0 && slot_tx != oslot_tx) {
  2653. /* remove from slot */
  2654. if (debug & DEBUG_HFCMULTI_MODE)
  2655. printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
  2656. __func__, oslot_tx);
  2657. if (hc->slot_owner[oslot_tx << 1] == ch) {
  2658. HFC_outb(hc, R_SLOT, oslot_tx << 1);
  2659. HFC_outb(hc, A_SL_CFG, 0);
  2660. if (hc->ctype != HFC_TYPE_XHFC)
  2661. HFC_outb(hc, A_CONF, 0);
  2662. hc->slot_owner[oslot_tx << 1] = -1;
  2663. } else {
  2664. if (debug & DEBUG_HFCMULTI_MODE)
  2665. printk(KERN_DEBUG
  2666. "%s: we are not owner of this tx slot "
  2667. "anymore, channel %d is.\n",
  2668. __func__, hc->slot_owner[oslot_tx << 1]);
  2669. }
  2670. }
  2671. if (oslot_rx >= 0 && slot_rx != oslot_rx) {
  2672. /* remove from slot */
  2673. if (debug & DEBUG_HFCMULTI_MODE)
  2674. printk(KERN_DEBUG
  2675. "%s: remove from slot %d (RX)\n",
  2676. __func__, oslot_rx);
  2677. if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
  2678. HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
  2679. HFC_outb(hc, A_SL_CFG, 0);
  2680. hc->slot_owner[(oslot_rx << 1) | 1] = -1;
  2681. } else {
  2682. if (debug & DEBUG_HFCMULTI_MODE)
  2683. printk(KERN_DEBUG
  2684. "%s: we are not owner of this rx slot "
  2685. "anymore, channel %d is.\n",
  2686. __func__,
  2687. hc->slot_owner[(oslot_rx << 1) | 1]);
  2688. }
  2689. }
  2690. if (slot_tx < 0) {
  2691. flow_tx = 0x80; /* FIFO->ST */
  2692. /* disable pcm slot */
  2693. hc->chan[ch].slot_tx = -1;
  2694. hc->chan[ch].bank_tx = 0;
  2695. } else {
  2696. /* set pcm slot */
  2697. if (hc->chan[ch].txpending)
  2698. flow_tx = 0x80; /* FIFO->ST */
  2699. else
  2700. flow_tx = 0xc0; /* PCM->ST */
  2701. /* put on slot */
  2702. routing = bank_tx ? 0xc0 : 0x80;
  2703. if (conf >= 0 || bank_tx > 1)
  2704. routing = 0x40; /* loop */
  2705. if (debug & DEBUG_HFCMULTI_MODE)
  2706. printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
  2707. " %d flow %02x routing %02x conf %d (TX)\n",
  2708. __func__, ch, slot_tx, bank_tx,
  2709. flow_tx, routing, conf);
  2710. HFC_outb(hc, R_SLOT, slot_tx << 1);
  2711. HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
  2712. if (hc->ctype != HFC_TYPE_XHFC)
  2713. HFC_outb(hc, A_CONF,
  2714. (conf < 0) ? 0 : (conf | V_CONF_SL));
  2715. hc->slot_owner[slot_tx << 1] = ch;
  2716. hc->chan[ch].slot_tx = slot_tx;
  2717. hc->chan[ch].bank_tx = bank_tx;
  2718. }
  2719. if (slot_rx < 0) {
  2720. /* disable pcm slot */
  2721. flow_rx = 0x80; /* ST->FIFO */
  2722. hc->chan[ch].slot_rx = -1;
  2723. hc->chan[ch].bank_rx = 0;
  2724. } else {
  2725. /* set pcm slot */
  2726. if (hc->chan[ch].txpending)
  2727. flow_rx = 0x80; /* ST->FIFO */
  2728. else
  2729. flow_rx = 0xc0; /* ST->(FIFO,PCM) */
  2730. /* put on slot */
  2731. routing = bank_rx ? 0x80 : 0xc0; /* reversed */
  2732. if (conf >= 0 || bank_rx > 1)
  2733. routing = 0x40; /* loop */
  2734. if (debug & DEBUG_HFCMULTI_MODE)
  2735. printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
  2736. " %d flow %02x routing %02x conf %d (RX)\n",
  2737. __func__, ch, slot_rx, bank_rx,
  2738. flow_rx, routing, conf);
  2739. HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
  2740. HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
  2741. hc->slot_owner[(slot_rx << 1) | 1] = ch;
  2742. hc->chan[ch].slot_rx = slot_rx;
  2743. hc->chan[ch].bank_rx = bank_rx;
  2744. }
  2745. switch (protocol) {
  2746. case (ISDN_P_NONE):
  2747. /* disable TX fifo */
  2748. HFC_outb(hc, R_FIFO, ch << 1);
  2749. HFC_wait(hc);
  2750. HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
  2751. HFC_outb(hc, A_SUBCH_CFG, 0);
  2752. HFC_outb(hc, A_IRQ_MSK, 0);
  2753. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2754. HFC_wait(hc);
  2755. /* disable RX fifo */
  2756. HFC_outb(hc, R_FIFO, (ch << 1) | 1);
  2757. HFC_wait(hc);
  2758. HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
  2759. HFC_outb(hc, A_SUBCH_CFG, 0);
  2760. HFC_outb(hc, A_IRQ_MSK, 0);
  2761. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2762. HFC_wait(hc);
  2763. if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
  2764. hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
  2765. ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
  2766. HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
  2767. /* undocumented: delay after R_ST_SEL */
  2768. udelay(1);
  2769. HFC_outb(hc, A_ST_CTRL0,
  2770. hc->hw.a_st_ctrl0[hc->chan[ch].port]);
  2771. }
  2772. if (hc->chan[ch].bch) {
  2773. test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
  2774. test_and_clear_bit(FLG_TRANSPARENT,
  2775. &hc->chan[ch].bch->Flags);
  2776. }
  2777. break;
  2778. case (ISDN_P_B_RAW): /* B-channel */
  2779. if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
  2780. (hc->chan[ch].slot_rx < 0) &&
  2781. (hc->chan[ch].slot_tx < 0)) {
  2782. printk(KERN_DEBUG
  2783. "Setting B-channel %d to echo cancelable "
  2784. "state on PCM slot %d\n", ch,
  2785. ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
  2786. printk(KERN_DEBUG
  2787. "Enabling pass through for channel\n");
  2788. vpm_out(hc, ch, ((ch / 4) * 8) +
  2789. ((ch % 4) * 4) + 1, 0x01);
  2790. /* rx path */
  2791. /* S/T -> PCM */
  2792. HFC_outb(hc, R_FIFO, (ch << 1));
  2793. HFC_wait(hc);
  2794. HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
  2795. HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
  2796. ((ch % 4) * 4) + 1) << 1);
  2797. HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
  2798. /* PCM -> FIFO */
  2799. HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
  2800. HFC_wait(hc);
  2801. HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
  2802. HFC_outb(hc, A_SUBCH_CFG, 0);
  2803. HFC_outb(hc, A_IRQ_MSK, 0);
  2804. if (hc->chan[ch].protocol != protocol) {
  2805. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2806. HFC_wait(hc);
  2807. }
  2808. HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
  2809. ((ch % 4) * 4) + 1) << 1) | 1);
  2810. HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
  2811. /* tx path */
  2812. /* PCM -> S/T */
  2813. HFC_outb(hc, R_FIFO, (ch << 1) | 1);
  2814. HFC_wait(hc);
  2815. HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
  2816. HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
  2817. ((ch % 4) * 4)) << 1) | 1);
  2818. HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
  2819. /* FIFO -> PCM */
  2820. HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
  2821. HFC_wait(hc);
  2822. HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
  2823. HFC_outb(hc, A_SUBCH_CFG, 0);
  2824. HFC_outb(hc, A_IRQ_MSK, 0);
  2825. if (hc->chan[ch].protocol != protocol) {
  2826. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2827. HFC_wait(hc);
  2828. }
  2829. /* tx silence */
  2830. HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
  2831. HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
  2832. ((ch % 4) * 4)) << 1);
  2833. HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
  2834. } else {
  2835. /* enable TX fifo */
  2836. HFC_outb(hc, R_FIFO, ch << 1);
  2837. HFC_wait(hc);
  2838. if (hc->ctype == HFC_TYPE_XHFC)
  2839. HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
  2840. V_HDLC_TRP | V_IFF);
  2841. /* Enable FIFO, no interrupt */
  2842. else
  2843. HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
  2844. V_HDLC_TRP | V_IFF);
  2845. HFC_outb(hc, A_SUBCH_CFG, 0);
  2846. HFC_outb(hc, A_IRQ_MSK, 0);
  2847. if (hc->chan[ch].protocol != protocol) {
  2848. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2849. HFC_wait(hc);
  2850. }
  2851. /* tx silence */
  2852. HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
  2853. /* enable RX fifo */
  2854. HFC_outb(hc, R_FIFO, (ch << 1) | 1);
  2855. HFC_wait(hc);
  2856. if (hc->ctype == HFC_TYPE_XHFC)
  2857. HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
  2858. V_HDLC_TRP);
  2859. /* Enable FIFO, no interrupt*/
  2860. else
  2861. HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
  2862. V_HDLC_TRP);
  2863. HFC_outb(hc, A_SUBCH_CFG, 0);
  2864. HFC_outb(hc, A_IRQ_MSK, 0);
  2865. if (hc->chan[ch].protocol != protocol) {
  2866. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2867. HFC_wait(hc);
  2868. }
  2869. }
  2870. if (hc->ctype != HFC_TYPE_E1) {
  2871. hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
  2872. ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
  2873. HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
  2874. /* undocumented: delay after R_ST_SEL */
  2875. udelay(1);
  2876. HFC_outb(hc, A_ST_CTRL0,
  2877. hc->hw.a_st_ctrl0[hc->chan[ch].port]);
  2878. }
  2879. if (hc->chan[ch].bch)
  2880. test_and_set_bit(FLG_TRANSPARENT,
  2881. &hc->chan[ch].bch->Flags);
  2882. break;
  2883. case (ISDN_P_B_HDLC): /* B-channel */
  2884. case (ISDN_P_TE_S0): /* D-channel */
  2885. case (ISDN_P_NT_S0):
  2886. case (ISDN_P_TE_E1):
  2887. case (ISDN_P_NT_E1):
  2888. /* enable TX fifo */
  2889. HFC_outb(hc, R_FIFO, ch << 1);
  2890. HFC_wait(hc);
  2891. if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
  2892. /* E1 or B-channel */
  2893. HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
  2894. HFC_outb(hc, A_SUBCH_CFG, 0);
  2895. } else {
  2896. /* D-Channel without HDLC fill flags */
  2897. HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
  2898. HFC_outb(hc, A_SUBCH_CFG, 2);
  2899. }
  2900. HFC_outb(hc, A_IRQ_MSK, V_IRQ);
  2901. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2902. HFC_wait(hc);
  2903. /* enable RX fifo */
  2904. HFC_outb(hc, R_FIFO, (ch << 1) | 1);
  2905. HFC_wait(hc);
  2906. HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
  2907. if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
  2908. HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
  2909. else
  2910. HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
  2911. HFC_outb(hc, A_IRQ_MSK, V_IRQ);
  2912. HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
  2913. HFC_wait(hc);
  2914. if (hc->chan[ch].bch) {
  2915. test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
  2916. if (hc->ctype != HFC_TYPE_E1) {
  2917. hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
  2918. ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
  2919. HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
  2920. /* undocumented: delay after R_ST_SEL */
  2921. udelay(1);
  2922. HFC_outb(hc, A_ST_CTRL0,
  2923. hc->hw.a_st_ctrl0[hc->chan[ch].port]);
  2924. }
  2925. }
  2926. break;
  2927. default:
  2928. printk(KERN_DEBUG "%s: protocol not known %x\n",
  2929. __func__, protocol);
  2930. hc->chan[ch].protocol = ISDN_P_NONE;
  2931. return -ENOPROTOOPT;
  2932. }
  2933. hc->chan[ch].protocol = protocol;
  2934. return 0;
  2935. }
  2936. /*
  2937. * connect/disconnect PCM
  2938. */
  2939. static void
  2940. hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
  2941. int slot_rx, int bank_rx)
  2942. {
  2943. if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
  2944. /* disable PCM */
  2945. mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
  2946. return;
  2947. }
  2948. /* enable pcm */
  2949. mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
  2950. slot_rx, bank_rx);
  2951. }
  2952. /*
  2953. * set/disable conference
  2954. */
  2955. static void
  2956. hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
  2957. {
  2958. if (num >= 0 && num <= 7)
  2959. hc->chan[ch].conf = num;
  2960. else
  2961. hc->chan[ch].conf = -1;
  2962. mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
  2963. hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
  2964. hc->chan[ch].bank_rx);
  2965. }
  2966. /*
  2967. * set/disable sample loop
  2968. */
  2969. /* NOTE: this function is experimental and therefore disabled */
  2970. /*
  2971. * Layer 1 callback function
  2972. */
  2973. static int
  2974. hfcm_l1callback(struct dchannel *dch, u_int cmd)
  2975. {
  2976. struct hfc_multi *hc = dch->hw;
  2977. u_long flags;
  2978. switch (cmd) {
  2979. case INFO3_P8:
  2980. case INFO3_P10:
  2981. break;
  2982. case HW_RESET_REQ:
  2983. /* start activation */
  2984. spin_lock_irqsave(&hc->lock, flags);
  2985. if (hc->ctype == HFC_TYPE_E1) {
  2986. if (debug & DEBUG_HFCMULTI_MSG)
  2987. printk(KERN_DEBUG
  2988. "%s: HW_RESET_REQ no BRI\n",
  2989. __func__);
  2990. } else {
  2991. HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
  2992. /* undocumented: delay after R_ST_SEL */
  2993. udelay(1);
  2994. HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
  2995. udelay(6); /* wait at least 5,21us */
  2996. HFC_outb(hc, A_ST_WR_STATE, 3);
  2997. HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
  2998. /* activate */
  2999. }
  3000. spin_unlock_irqrestore(&hc->lock, flags);
  3001. l1_event(dch->l1, HW_POWERUP_IND);
  3002. break;
  3003. case HW_DEACT_REQ:
  3004. /* start deactivation */
  3005. spin_lock_irqsave(&hc->lock, flags);
  3006. if (hc->ctype == HFC_TYPE_E1) {
  3007. if (debug & DEBUG_HFCMULTI_MSG)
  3008. printk(KERN_DEBUG
  3009. "%s: HW_DEACT_REQ no BRI\n",
  3010. __func__);
  3011. } else {
  3012. HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
  3013. /* undocumented: delay after R_ST_SEL */
  3014. udelay(1);
  3015. HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
  3016. /* deactivate */
  3017. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  3018. hc->syncronized &=
  3019. ~(1 << hc->chan[dch->slot].port);
  3020. plxsd_checksync(hc, 0);
  3021. }
  3022. }
  3023. skb_queue_purge(&dch->squeue);
  3024. if (dch->tx_skb) {
  3025. dev_kfree_skb(dch->tx_skb);
  3026. dch->tx_skb = NULL;
  3027. }
  3028. dch->tx_idx = 0;
  3029. if (dch->rx_skb) {
  3030. dev_kfree_skb(dch->rx_skb);
  3031. dch->rx_skb = NULL;
  3032. }
  3033. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  3034. if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
  3035. del_timer(&dch->timer);
  3036. spin_unlock_irqrestore(&hc->lock, flags);
  3037. break;
  3038. case HW_POWERUP_REQ:
  3039. spin_lock_irqsave(&hc->lock, flags);
  3040. if (hc->ctype == HFC_TYPE_E1) {
  3041. if (debug & DEBUG_HFCMULTI_MSG)
  3042. printk(KERN_DEBUG
  3043. "%s: HW_POWERUP_REQ no BRI\n",
  3044. __func__);
  3045. } else {
  3046. HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
  3047. /* undocumented: delay after R_ST_SEL */
  3048. udelay(1);
  3049. HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
  3050. udelay(6); /* wait at least 5,21us */
  3051. HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
  3052. }
  3053. spin_unlock_irqrestore(&hc->lock, flags);
  3054. break;
  3055. case PH_ACTIVATE_IND:
  3056. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  3057. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  3058. GFP_ATOMIC);
  3059. break;
  3060. case PH_DEACTIVATE_IND:
  3061. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  3062. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  3063. GFP_ATOMIC);
  3064. break;
  3065. default:
  3066. if (dch->debug & DEBUG_HW)
  3067. printk(KERN_DEBUG "%s: unknown command %x\n",
  3068. __func__, cmd);
  3069. return -1;
  3070. }
  3071. return 0;
  3072. }
  3073. /*
  3074. * Layer2 -> Layer 1 Transfer
  3075. */
  3076. static int
  3077. handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
  3078. {
  3079. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  3080. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  3081. struct hfc_multi *hc = dch->hw;
  3082. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  3083. int ret = -EINVAL;
  3084. unsigned int id;
  3085. u_long flags;
  3086. switch (hh->prim) {
  3087. case PH_DATA_REQ:
  3088. if (skb->len < 1)
  3089. break;
  3090. spin_lock_irqsave(&hc->lock, flags);
  3091. ret = dchannel_senddata(dch, skb);
  3092. if (ret > 0) { /* direct TX */
  3093. id = hh->id; /* skb can be freed */
  3094. hfcmulti_tx(hc, dch->slot);
  3095. ret = 0;
  3096. /* start fifo */
  3097. HFC_outb(hc, R_FIFO, 0);
  3098. HFC_wait(hc);
  3099. spin_unlock_irqrestore(&hc->lock, flags);
  3100. queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
  3101. } else
  3102. spin_unlock_irqrestore(&hc->lock, flags);
  3103. return ret;
  3104. case PH_ACTIVATE_REQ:
  3105. if (dch->dev.D.protocol != ISDN_P_TE_S0) {
  3106. spin_lock_irqsave(&hc->lock, flags);
  3107. ret = 0;
  3108. if (debug & DEBUG_HFCMULTI_MSG)
  3109. printk(KERN_DEBUG
  3110. "%s: PH_ACTIVATE port %d (0..%d)\n",
  3111. __func__, hc->chan[dch->slot].port,
  3112. hc->ports - 1);
  3113. /* start activation */
  3114. if (hc->ctype == HFC_TYPE_E1) {
  3115. ph_state_change(dch);
  3116. if (debug & DEBUG_HFCMULTI_STATE)
  3117. printk(KERN_DEBUG
  3118. "%s: E1 report state %x \n",
  3119. __func__, dch->state);
  3120. } else {
  3121. HFC_outb(hc, R_ST_SEL,
  3122. hc->chan[dch->slot].port);
  3123. /* undocumented: delay after R_ST_SEL */
  3124. udelay(1);
  3125. HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
  3126. /* G1 */
  3127. udelay(6); /* wait at least 5,21us */
  3128. HFC_outb(hc, A_ST_WR_STATE, 1);
  3129. HFC_outb(hc, A_ST_WR_STATE, 1 |
  3130. (V_ST_ACT * 3)); /* activate */
  3131. dch->state = 1;
  3132. }
  3133. spin_unlock_irqrestore(&hc->lock, flags);
  3134. } else
  3135. ret = l1_event(dch->l1, hh->prim);
  3136. break;
  3137. case PH_DEACTIVATE_REQ:
  3138. test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
  3139. if (dch->dev.D.protocol != ISDN_P_TE_S0) {
  3140. spin_lock_irqsave(&hc->lock, flags);
  3141. if (debug & DEBUG_HFCMULTI_MSG)
  3142. printk(KERN_DEBUG
  3143. "%s: PH_DEACTIVATE port %d (0..%d)\n",
  3144. __func__, hc->chan[dch->slot].port,
  3145. hc->ports - 1);
  3146. /* start deactivation */
  3147. if (hc->ctype == HFC_TYPE_E1) {
  3148. if (debug & DEBUG_HFCMULTI_MSG)
  3149. printk(KERN_DEBUG
  3150. "%s: PH_DEACTIVATE no BRI\n",
  3151. __func__);
  3152. } else {
  3153. HFC_outb(hc, R_ST_SEL,
  3154. hc->chan[dch->slot].port);
  3155. /* undocumented: delay after R_ST_SEL */
  3156. udelay(1);
  3157. HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
  3158. /* deactivate */
  3159. dch->state = 1;
  3160. }
  3161. skb_queue_purge(&dch->squeue);
  3162. if (dch->tx_skb) {
  3163. dev_kfree_skb(dch->tx_skb);
  3164. dch->tx_skb = NULL;
  3165. }
  3166. dch->tx_idx = 0;
  3167. if (dch->rx_skb) {
  3168. dev_kfree_skb(dch->rx_skb);
  3169. dch->rx_skb = NULL;
  3170. }
  3171. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  3172. if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
  3173. del_timer(&dch->timer);
  3174. #ifdef FIXME
  3175. if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
  3176. dchannel_sched_event(&hc->dch, D_CLEARBUSY);
  3177. #endif
  3178. ret = 0;
  3179. spin_unlock_irqrestore(&hc->lock, flags);
  3180. } else
  3181. ret = l1_event(dch->l1, hh->prim);
  3182. break;
  3183. }
  3184. if (!ret)
  3185. dev_kfree_skb(skb);
  3186. return ret;
  3187. }
  3188. static void
  3189. deactivate_bchannel(struct bchannel *bch)
  3190. {
  3191. struct hfc_multi *hc = bch->hw;
  3192. u_long flags;
  3193. spin_lock_irqsave(&hc->lock, flags);
  3194. mISDN_clear_bchannel(bch);
  3195. hc->chan[bch->slot].coeff_count = 0;
  3196. hc->chan[bch->slot].rx_off = 0;
  3197. hc->chan[bch->slot].conf = -1;
  3198. mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
  3199. spin_unlock_irqrestore(&hc->lock, flags);
  3200. }
  3201. static int
  3202. handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
  3203. {
  3204. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  3205. struct hfc_multi *hc = bch->hw;
  3206. int ret = -EINVAL;
  3207. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  3208. unsigned long flags;
  3209. switch (hh->prim) {
  3210. case PH_DATA_REQ:
  3211. if (!skb->len)
  3212. break;
  3213. spin_lock_irqsave(&hc->lock, flags);
  3214. ret = bchannel_senddata(bch, skb);
  3215. if (ret > 0) { /* direct TX */
  3216. hfcmulti_tx(hc, bch->slot);
  3217. ret = 0;
  3218. /* start fifo */
  3219. HFC_outb_nodebug(hc, R_FIFO, 0);
  3220. HFC_wait_nodebug(hc);
  3221. }
  3222. spin_unlock_irqrestore(&hc->lock, flags);
  3223. return ret;
  3224. case PH_ACTIVATE_REQ:
  3225. if (debug & DEBUG_HFCMULTI_MSG)
  3226. printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
  3227. __func__, bch->slot);
  3228. spin_lock_irqsave(&hc->lock, flags);
  3229. /* activate B-channel if not already activated */
  3230. if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
  3231. hc->chan[bch->slot].txpending = 0;
  3232. ret = mode_hfcmulti(hc, bch->slot,
  3233. ch->protocol,
  3234. hc->chan[bch->slot].slot_tx,
  3235. hc->chan[bch->slot].bank_tx,
  3236. hc->chan[bch->slot].slot_rx,
  3237. hc->chan[bch->slot].bank_rx);
  3238. if (!ret) {
  3239. if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
  3240. && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
  3241. /* start decoder */
  3242. hc->dtmf = 1;
  3243. if (debug & DEBUG_HFCMULTI_DTMF)
  3244. printk(KERN_DEBUG
  3245. "%s: start dtmf decoder\n",
  3246. __func__);
  3247. HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
  3248. V_RST_DTMF);
  3249. }
  3250. }
  3251. } else
  3252. ret = 0;
  3253. spin_unlock_irqrestore(&hc->lock, flags);
  3254. if (!ret)
  3255. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
  3256. GFP_KERNEL);
  3257. break;
  3258. case PH_CONTROL_REQ:
  3259. spin_lock_irqsave(&hc->lock, flags);
  3260. switch (hh->id) {
  3261. case HFC_SPL_LOOP_ON: /* set sample loop */
  3262. if (debug & DEBUG_HFCMULTI_MSG)
  3263. printk(KERN_DEBUG
  3264. "%s: HFC_SPL_LOOP_ON (len = %d)\n",
  3265. __func__, skb->len);
  3266. ret = 0;
  3267. break;
  3268. case HFC_SPL_LOOP_OFF: /* set silence */
  3269. if (debug & DEBUG_HFCMULTI_MSG)
  3270. printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
  3271. __func__);
  3272. ret = 0;
  3273. break;
  3274. default:
  3275. printk(KERN_ERR
  3276. "%s: unknown PH_CONTROL_REQ info %x\n",
  3277. __func__, hh->id);
  3278. ret = -EINVAL;
  3279. }
  3280. spin_unlock_irqrestore(&hc->lock, flags);
  3281. break;
  3282. case PH_DEACTIVATE_REQ:
  3283. deactivate_bchannel(bch); /* locked there */
  3284. _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
  3285. GFP_KERNEL);
  3286. ret = 0;
  3287. break;
  3288. }
  3289. if (!ret)
  3290. dev_kfree_skb(skb);
  3291. return ret;
  3292. }
  3293. /*
  3294. * bchannel control function
  3295. */
  3296. static int
  3297. channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
  3298. {
  3299. int ret = 0;
  3300. struct dsp_features *features =
  3301. (struct dsp_features *)(*((u_long *)&cq->p1));
  3302. struct hfc_multi *hc = bch->hw;
  3303. int slot_tx;
  3304. int bank_tx;
  3305. int slot_rx;
  3306. int bank_rx;
  3307. int num;
  3308. switch (cq->op) {
  3309. case MISDN_CTRL_GETOP:
  3310. ret = mISDN_ctrl_bchannel(bch, cq);
  3311. cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP |
  3312. MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
  3313. break;
  3314. case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
  3315. hc->chan[bch->slot].rx_off = !!cq->p1;
  3316. if (!hc->chan[bch->slot].rx_off) {
  3317. /* reset fifo on rx on */
  3318. HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
  3319. HFC_wait_nodebug(hc);
  3320. HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
  3321. HFC_wait_nodebug(hc);
  3322. }
  3323. if (debug & DEBUG_HFCMULTI_MSG)
  3324. printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
  3325. __func__, bch->nr, hc->chan[bch->slot].rx_off);
  3326. break;
  3327. case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
  3328. test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
  3329. if (debug & DEBUG_HFCMULTI_MSG)
  3330. printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
  3331. "off=%d)\n", __func__, bch->nr, !!cq->p1);
  3332. break;
  3333. case MISDN_CTRL_HW_FEATURES: /* fill features structure */
  3334. if (debug & DEBUG_HFCMULTI_MSG)
  3335. printk(KERN_DEBUG "%s: HW_FEATURE request\n",
  3336. __func__);
  3337. /* create confirm */
  3338. features->hfc_id = hc->id;
  3339. if (test_bit(HFC_CHIP_DTMF, &hc->chip))
  3340. features->hfc_dtmf = 1;
  3341. if (test_bit(HFC_CHIP_CONF, &hc->chip))
  3342. features->hfc_conf = 1;
  3343. features->hfc_loops = 0;
  3344. if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
  3345. features->hfc_echocanhw = 1;
  3346. } else {
  3347. features->pcm_id = hc->pcm;
  3348. features->pcm_slots = hc->slots;
  3349. features->pcm_banks = 2;
  3350. }
  3351. break;
  3352. case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
  3353. slot_tx = cq->p1 & 0xff;
  3354. bank_tx = cq->p1 >> 8;
  3355. slot_rx = cq->p2 & 0xff;
  3356. bank_rx = cq->p2 >> 8;
  3357. if (debug & DEBUG_HFCMULTI_MSG)
  3358. printk(KERN_DEBUG
  3359. "%s: HFC_PCM_CONN slot %d bank %d (TX) "
  3360. "slot %d bank %d (RX)\n",
  3361. __func__, slot_tx, bank_tx,
  3362. slot_rx, bank_rx);
  3363. if (slot_tx < hc->slots && bank_tx <= 2 &&
  3364. slot_rx < hc->slots && bank_rx <= 2)
  3365. hfcmulti_pcm(hc, bch->slot,
  3366. slot_tx, bank_tx, slot_rx, bank_rx);
  3367. else {
  3368. printk(KERN_WARNING
  3369. "%s: HFC_PCM_CONN slot %d bank %d (TX) "
  3370. "slot %d bank %d (RX) out of range\n",
  3371. __func__, slot_tx, bank_tx,
  3372. slot_rx, bank_rx);
  3373. ret = -EINVAL;
  3374. }
  3375. break;
  3376. case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
  3377. if (debug & DEBUG_HFCMULTI_MSG)
  3378. printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
  3379. __func__);
  3380. hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
  3381. break;
  3382. case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
  3383. num = cq->p1 & 0xff;
  3384. if (debug & DEBUG_HFCMULTI_MSG)
  3385. printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
  3386. __func__, num);
  3387. if (num <= 7)
  3388. hfcmulti_conf(hc, bch->slot, num);
  3389. else {
  3390. printk(KERN_WARNING
  3391. "%s: HW_CONF_JOIN conf %d out of range\n",
  3392. __func__, num);
  3393. ret = -EINVAL;
  3394. }
  3395. break;
  3396. case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
  3397. if (debug & DEBUG_HFCMULTI_MSG)
  3398. printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
  3399. hfcmulti_conf(hc, bch->slot, -1);
  3400. break;
  3401. case MISDN_CTRL_HFC_ECHOCAN_ON:
  3402. if (debug & DEBUG_HFCMULTI_MSG)
  3403. printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
  3404. if (test_bit(HFC_CHIP_B410P, &hc->chip))
  3405. vpm_echocan_on(hc, bch->slot, cq->p1);
  3406. else
  3407. ret = -EINVAL;
  3408. break;
  3409. case MISDN_CTRL_HFC_ECHOCAN_OFF:
  3410. if (debug & DEBUG_HFCMULTI_MSG)
  3411. printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
  3412. __func__);
  3413. if (test_bit(HFC_CHIP_B410P, &hc->chip))
  3414. vpm_echocan_off(hc, bch->slot);
  3415. else
  3416. ret = -EINVAL;
  3417. break;
  3418. default:
  3419. ret = mISDN_ctrl_bchannel(bch, cq);
  3420. break;
  3421. }
  3422. return ret;
  3423. }
  3424. static int
  3425. hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  3426. {
  3427. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  3428. struct hfc_multi *hc = bch->hw;
  3429. int err = -EINVAL;
  3430. u_long flags;
  3431. if (bch->debug & DEBUG_HW)
  3432. printk(KERN_DEBUG "%s: cmd:%x %p\n",
  3433. __func__, cmd, arg);
  3434. switch (cmd) {
  3435. case CLOSE_CHANNEL:
  3436. test_and_clear_bit(FLG_OPEN, &bch->Flags);
  3437. deactivate_bchannel(bch); /* locked there */
  3438. ch->protocol = ISDN_P_NONE;
  3439. ch->peer = NULL;
  3440. module_put(THIS_MODULE);
  3441. err = 0;
  3442. break;
  3443. case CONTROL_CHANNEL:
  3444. spin_lock_irqsave(&hc->lock, flags);
  3445. err = channel_bctrl(bch, arg);
  3446. spin_unlock_irqrestore(&hc->lock, flags);
  3447. break;
  3448. default:
  3449. printk(KERN_WARNING "%s: unknown prim(%x)\n",
  3450. __func__, cmd);
  3451. }
  3452. return err;
  3453. }
  3454. /*
  3455. * handle D-channel events
  3456. *
  3457. * handle state change event
  3458. */
  3459. static void
  3460. ph_state_change(struct dchannel *dch)
  3461. {
  3462. struct hfc_multi *hc;
  3463. int ch, i;
  3464. if (!dch) {
  3465. printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
  3466. return;
  3467. }
  3468. hc = dch->hw;
  3469. ch = dch->slot;
  3470. if (hc->ctype == HFC_TYPE_E1) {
  3471. if (dch->dev.D.protocol == ISDN_P_TE_E1) {
  3472. if (debug & DEBUG_HFCMULTI_STATE)
  3473. printk(KERN_DEBUG
  3474. "%s: E1 TE (id=%d) newstate %x\n",
  3475. __func__, hc->id, dch->state);
  3476. } else {
  3477. if (debug & DEBUG_HFCMULTI_STATE)
  3478. printk(KERN_DEBUG
  3479. "%s: E1 NT (id=%d) newstate %x\n",
  3480. __func__, hc->id, dch->state);
  3481. }
  3482. switch (dch->state) {
  3483. case (1):
  3484. if (hc->e1_state != 1) {
  3485. for (i = 1; i <= 31; i++) {
  3486. /* reset fifos on e1 activation */
  3487. HFC_outb_nodebug(hc, R_FIFO,
  3488. (i << 1) | 1);
  3489. HFC_wait_nodebug(hc);
  3490. HFC_outb_nodebug(hc, R_INC_RES_FIFO,
  3491. V_RES_F);
  3492. HFC_wait_nodebug(hc);
  3493. }
  3494. }
  3495. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  3496. _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
  3497. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  3498. break;
  3499. default:
  3500. if (hc->e1_state != 1)
  3501. return;
  3502. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  3503. _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
  3504. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  3505. }
  3506. hc->e1_state = dch->state;
  3507. } else {
  3508. if (dch->dev.D.protocol == ISDN_P_TE_S0) {
  3509. if (debug & DEBUG_HFCMULTI_STATE)
  3510. printk(KERN_DEBUG
  3511. "%s: S/T TE newstate %x\n",
  3512. __func__, dch->state);
  3513. switch (dch->state) {
  3514. case (0):
  3515. l1_event(dch->l1, HW_RESET_IND);
  3516. break;
  3517. case (3):
  3518. l1_event(dch->l1, HW_DEACT_IND);
  3519. break;
  3520. case (5):
  3521. case (8):
  3522. l1_event(dch->l1, ANYSIGNAL);
  3523. break;
  3524. case (6):
  3525. l1_event(dch->l1, INFO2);
  3526. break;
  3527. case (7):
  3528. l1_event(dch->l1, INFO4_P8);
  3529. break;
  3530. }
  3531. } else {
  3532. if (debug & DEBUG_HFCMULTI_STATE)
  3533. printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
  3534. __func__, dch->state);
  3535. switch (dch->state) {
  3536. case (2):
  3537. if (hc->chan[ch].nt_timer == 0) {
  3538. hc->chan[ch].nt_timer = -1;
  3539. HFC_outb(hc, R_ST_SEL,
  3540. hc->chan[ch].port);
  3541. /* undocumented: delay after R_ST_SEL */
  3542. udelay(1);
  3543. HFC_outb(hc, A_ST_WR_STATE, 4 |
  3544. V_ST_LD_STA); /* G4 */
  3545. udelay(6); /* wait at least 5,21us */
  3546. HFC_outb(hc, A_ST_WR_STATE, 4);
  3547. dch->state = 4;
  3548. } else {
  3549. /* one extra count for the next event */
  3550. hc->chan[ch].nt_timer =
  3551. nt_t1_count[poll_timer] + 1;
  3552. HFC_outb(hc, R_ST_SEL,
  3553. hc->chan[ch].port);
  3554. /* undocumented: delay after R_ST_SEL */
  3555. udelay(1);
  3556. /* allow G2 -> G3 transition */
  3557. HFC_outb(hc, A_ST_WR_STATE, 2 |
  3558. V_SET_G2_G3);
  3559. }
  3560. break;
  3561. case (1):
  3562. hc->chan[ch].nt_timer = -1;
  3563. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  3564. _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
  3565. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  3566. break;
  3567. case (4):
  3568. hc->chan[ch].nt_timer = -1;
  3569. break;
  3570. case (3):
  3571. hc->chan[ch].nt_timer = -1;
  3572. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  3573. _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
  3574. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  3575. break;
  3576. }
  3577. }
  3578. }
  3579. }
  3580. /*
  3581. * called for card mode init message
  3582. */
  3583. static void
  3584. hfcmulti_initmode(struct dchannel *dch)
  3585. {
  3586. struct hfc_multi *hc = dch->hw;
  3587. u_char a_st_wr_state, r_e1_wr_sta;
  3588. int i, pt;
  3589. if (debug & DEBUG_HFCMULTI_INIT)
  3590. printk(KERN_DEBUG "%s: entered\n", __func__);
  3591. i = dch->slot;
  3592. pt = hc->chan[i].port;
  3593. if (hc->ctype == HFC_TYPE_E1) {
  3594. /* E1 */
  3595. hc->chan[hc->dnum[pt]].slot_tx = -1;
  3596. hc->chan[hc->dnum[pt]].slot_rx = -1;
  3597. hc->chan[hc->dnum[pt]].conf = -1;
  3598. if (hc->dnum[pt]) {
  3599. mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
  3600. -1, 0, -1, 0);
  3601. dch->timer.function = (void *) hfcmulti_dbusy_timer;
  3602. dch->timer.data = (long) dch;
  3603. init_timer(&dch->timer);
  3604. }
  3605. for (i = 1; i <= 31; i++) {
  3606. if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
  3607. continue;
  3608. hc->chan[i].slot_tx = -1;
  3609. hc->chan[i].slot_rx = -1;
  3610. hc->chan[i].conf = -1;
  3611. mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
  3612. }
  3613. }
  3614. if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
  3615. /* E1, port 0 */
  3616. dch = hc->chan[hc->dnum[0]].dch;
  3617. if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
  3618. HFC_outb(hc, R_LOS0, 255); /* 2 ms */
  3619. HFC_outb(hc, R_LOS1, 255); /* 512 ms */
  3620. }
  3621. if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
  3622. HFC_outb(hc, R_RX0, 0);
  3623. hc->hw.r_tx0 = 0 | V_OUT_EN;
  3624. } else {
  3625. HFC_outb(hc, R_RX0, 1);
  3626. hc->hw.r_tx0 = 1 | V_OUT_EN;
  3627. }
  3628. hc->hw.r_tx1 = V_ATX | V_NTRI;
  3629. HFC_outb(hc, R_TX0, hc->hw.r_tx0);
  3630. HFC_outb(hc, R_TX1, hc->hw.r_tx1);
  3631. HFC_outb(hc, R_TX_FR0, 0x00);
  3632. HFC_outb(hc, R_TX_FR1, 0xf8);
  3633. if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
  3634. HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
  3635. HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
  3636. if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
  3637. HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
  3638. if (dch->dev.D.protocol == ISDN_P_NT_E1) {
  3639. if (debug & DEBUG_HFCMULTI_INIT)
  3640. printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
  3641. __func__);
  3642. r_e1_wr_sta = 0; /* G0 */
  3643. hc->e1_getclock = 0;
  3644. } else {
  3645. if (debug & DEBUG_HFCMULTI_INIT)
  3646. printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
  3647. __func__);
  3648. r_e1_wr_sta = 0; /* F0 */
  3649. hc->e1_getclock = 1;
  3650. }
  3651. if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
  3652. HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
  3653. else
  3654. HFC_outb(hc, R_SYNC_OUT, 0);
  3655. if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
  3656. hc->e1_getclock = 1;
  3657. if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
  3658. hc->e1_getclock = 0;
  3659. if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
  3660. /* SLAVE (clock master) */
  3661. if (debug & DEBUG_HFCMULTI_INIT)
  3662. printk(KERN_DEBUG
  3663. "%s: E1 port is clock master "
  3664. "(clock from PCM)\n", __func__);
  3665. HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
  3666. } else {
  3667. if (hc->e1_getclock) {
  3668. /* MASTER (clock slave) */
  3669. if (debug & DEBUG_HFCMULTI_INIT)
  3670. printk(KERN_DEBUG
  3671. "%s: E1 port is clock slave "
  3672. "(clock to PCM)\n", __func__);
  3673. HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
  3674. } else {
  3675. /* MASTER (clock master) */
  3676. if (debug & DEBUG_HFCMULTI_INIT)
  3677. printk(KERN_DEBUG "%s: E1 port is "
  3678. "clock master "
  3679. "(clock from QUARTZ)\n",
  3680. __func__);
  3681. HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
  3682. V_PCM_SYNC | V_JATT_OFF);
  3683. HFC_outb(hc, R_SYNC_OUT, 0);
  3684. }
  3685. }
  3686. HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
  3687. HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
  3688. HFC_outb(hc, R_PWM0, 0x50);
  3689. HFC_outb(hc, R_PWM1, 0xff);
  3690. /* state machine setup */
  3691. HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
  3692. udelay(6); /* wait at least 5,21us */
  3693. HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
  3694. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  3695. hc->syncronized = 0;
  3696. plxsd_checksync(hc, 0);
  3697. }
  3698. }
  3699. if (hc->ctype != HFC_TYPE_E1) {
  3700. /* ST */
  3701. hc->chan[i].slot_tx = -1;
  3702. hc->chan[i].slot_rx = -1;
  3703. hc->chan[i].conf = -1;
  3704. mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
  3705. dch->timer.function = (void *) hfcmulti_dbusy_timer;
  3706. dch->timer.data = (long) dch;
  3707. init_timer(&dch->timer);
  3708. hc->chan[i - 2].slot_tx = -1;
  3709. hc->chan[i - 2].slot_rx = -1;
  3710. hc->chan[i - 2].conf = -1;
  3711. mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
  3712. hc->chan[i - 1].slot_tx = -1;
  3713. hc->chan[i - 1].slot_rx = -1;
  3714. hc->chan[i - 1].conf = -1;
  3715. mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
  3716. /* select interface */
  3717. HFC_outb(hc, R_ST_SEL, pt);
  3718. /* undocumented: delay after R_ST_SEL */
  3719. udelay(1);
  3720. if (dch->dev.D.protocol == ISDN_P_NT_S0) {
  3721. if (debug & DEBUG_HFCMULTI_INIT)
  3722. printk(KERN_DEBUG
  3723. "%s: ST port %d is NT-mode\n",
  3724. __func__, pt);
  3725. /* clock delay */
  3726. HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
  3727. a_st_wr_state = 1; /* G1 */
  3728. hc->hw.a_st_ctrl0[pt] = V_ST_MD;
  3729. } else {
  3730. if (debug & DEBUG_HFCMULTI_INIT)
  3731. printk(KERN_DEBUG
  3732. "%s: ST port %d is TE-mode\n",
  3733. __func__, pt);
  3734. /* clock delay */
  3735. HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
  3736. a_st_wr_state = 2; /* F2 */
  3737. hc->hw.a_st_ctrl0[pt] = 0;
  3738. }
  3739. if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
  3740. hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
  3741. if (hc->ctype == HFC_TYPE_XHFC) {
  3742. hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
  3743. HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
  3744. 0x7c << 1 /* V_ST_PULSE */);
  3745. }
  3746. /* line setup */
  3747. HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
  3748. /* disable E-channel */
  3749. if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
  3750. test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
  3751. HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
  3752. else
  3753. HFC_outb(hc, A_ST_CTRL1, 0);
  3754. /* enable B-channel receive */
  3755. HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
  3756. /* state machine setup */
  3757. HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
  3758. udelay(6); /* wait at least 5,21us */
  3759. HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
  3760. hc->hw.r_sci_msk |= 1 << pt;
  3761. /* state machine interrupts */
  3762. HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
  3763. /* unset sync on port */
  3764. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  3765. hc->syncronized &=
  3766. ~(1 << hc->chan[dch->slot].port);
  3767. plxsd_checksync(hc, 0);
  3768. }
  3769. }
  3770. if (debug & DEBUG_HFCMULTI_INIT)
  3771. printk("%s: done\n", __func__);
  3772. }
  3773. static int
  3774. open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
  3775. struct channel_req *rq)
  3776. {
  3777. int err = 0;
  3778. u_long flags;
  3779. if (debug & DEBUG_HW_OPEN)
  3780. printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
  3781. dch->dev.id, __builtin_return_address(0));
  3782. if (rq->protocol == ISDN_P_NONE)
  3783. return -EINVAL;
  3784. if ((dch->dev.D.protocol != ISDN_P_NONE) &&
  3785. (dch->dev.D.protocol != rq->protocol)) {
  3786. if (debug & DEBUG_HFCMULTI_MODE)
  3787. printk(KERN_DEBUG "%s: change protocol %x to %x\n",
  3788. __func__, dch->dev.D.protocol, rq->protocol);
  3789. }
  3790. if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
  3791. (rq->protocol != ISDN_P_TE_S0))
  3792. l1_event(dch->l1, CLOSE_CHANNEL);
  3793. if (dch->dev.D.protocol != rq->protocol) {
  3794. if (rq->protocol == ISDN_P_TE_S0) {
  3795. err = create_l1(dch, hfcm_l1callback);
  3796. if (err)
  3797. return err;
  3798. }
  3799. dch->dev.D.protocol = rq->protocol;
  3800. spin_lock_irqsave(&hc->lock, flags);
  3801. hfcmulti_initmode(dch);
  3802. spin_unlock_irqrestore(&hc->lock, flags);
  3803. }
  3804. if (test_bit(FLG_ACTIVE, &dch->Flags))
  3805. _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
  3806. 0, NULL, GFP_KERNEL);
  3807. rq->ch = &dch->dev.D;
  3808. if (!try_module_get(THIS_MODULE))
  3809. printk(KERN_WARNING "%s:cannot get module\n", __func__);
  3810. return 0;
  3811. }
  3812. static int
  3813. open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
  3814. struct channel_req *rq)
  3815. {
  3816. struct bchannel *bch;
  3817. int ch;
  3818. if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
  3819. return -EINVAL;
  3820. if (rq->protocol == ISDN_P_NONE)
  3821. return -EINVAL;
  3822. if (hc->ctype == HFC_TYPE_E1)
  3823. ch = rq->adr.channel;
  3824. else
  3825. ch = (rq->adr.channel - 1) + (dch->slot - 2);
  3826. bch = hc->chan[ch].bch;
  3827. if (!bch) {
  3828. printk(KERN_ERR "%s:internal error ch %d has no bch\n",
  3829. __func__, ch);
  3830. return -EINVAL;
  3831. }
  3832. if (test_and_set_bit(FLG_OPEN, &bch->Flags))
  3833. return -EBUSY; /* b-channel can be only open once */
  3834. test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
  3835. bch->ch.protocol = rq->protocol;
  3836. hc->chan[ch].rx_off = 0;
  3837. rq->ch = &bch->ch;
  3838. if (!try_module_get(THIS_MODULE))
  3839. printk(KERN_WARNING "%s:cannot get module\n", __func__);
  3840. return 0;
  3841. }
  3842. /*
  3843. * device control function
  3844. */
  3845. static int
  3846. channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
  3847. {
  3848. struct hfc_multi *hc = dch->hw;
  3849. int ret = 0;
  3850. int wd_mode, wd_cnt;
  3851. switch (cq->op) {
  3852. case MISDN_CTRL_GETOP:
  3853. cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
  3854. break;
  3855. case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
  3856. wd_cnt = cq->p1 & 0xf;
  3857. wd_mode = !!(cq->p1 >> 4);
  3858. if (debug & DEBUG_HFCMULTI_MSG)
  3859. printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
  3860. ", counter 0x%x\n", __func__,
  3861. wd_mode ? "AUTO" : "MANUAL", wd_cnt);
  3862. /* set the watchdog timer */
  3863. HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
  3864. hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
  3865. if (hc->ctype == HFC_TYPE_XHFC)
  3866. hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
  3867. /* init the watchdog register and reset the counter */
  3868. HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
  3869. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  3870. /* enable the watchdog output for Speech-Design */
  3871. HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
  3872. HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
  3873. HFC_outb(hc, R_GPIO_OUT1, 0);
  3874. HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
  3875. }
  3876. break;
  3877. case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
  3878. if (debug & DEBUG_HFCMULTI_MSG)
  3879. printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
  3880. __func__);
  3881. HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
  3882. break;
  3883. case MISDN_CTRL_L1_TIMER3:
  3884. ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
  3885. break;
  3886. default:
  3887. printk(KERN_WARNING "%s: unknown Op %x\n",
  3888. __func__, cq->op);
  3889. ret = -EINVAL;
  3890. break;
  3891. }
  3892. return ret;
  3893. }
  3894. static int
  3895. hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  3896. {
  3897. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  3898. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  3899. struct hfc_multi *hc = dch->hw;
  3900. struct channel_req *rq;
  3901. int err = 0;
  3902. u_long flags;
  3903. if (dch->debug & DEBUG_HW)
  3904. printk(KERN_DEBUG "%s: cmd:%x %p\n",
  3905. __func__, cmd, arg);
  3906. switch (cmd) {
  3907. case OPEN_CHANNEL:
  3908. rq = arg;
  3909. switch (rq->protocol) {
  3910. case ISDN_P_TE_S0:
  3911. case ISDN_P_NT_S0:
  3912. if (hc->ctype == HFC_TYPE_E1) {
  3913. err = -EINVAL;
  3914. break;
  3915. }
  3916. err = open_dchannel(hc, dch, rq); /* locked there */
  3917. break;
  3918. case ISDN_P_TE_E1:
  3919. case ISDN_P_NT_E1:
  3920. if (hc->ctype != HFC_TYPE_E1) {
  3921. err = -EINVAL;
  3922. break;
  3923. }
  3924. err = open_dchannel(hc, dch, rq); /* locked there */
  3925. break;
  3926. default:
  3927. spin_lock_irqsave(&hc->lock, flags);
  3928. err = open_bchannel(hc, dch, rq);
  3929. spin_unlock_irqrestore(&hc->lock, flags);
  3930. }
  3931. break;
  3932. case CLOSE_CHANNEL:
  3933. if (debug & DEBUG_HW_OPEN)
  3934. printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
  3935. __func__, dch->dev.id,
  3936. __builtin_return_address(0));
  3937. module_put(THIS_MODULE);
  3938. break;
  3939. case CONTROL_CHANNEL:
  3940. spin_lock_irqsave(&hc->lock, flags);
  3941. err = channel_dctrl(dch, arg);
  3942. spin_unlock_irqrestore(&hc->lock, flags);
  3943. break;
  3944. default:
  3945. if (dch->debug & DEBUG_HW)
  3946. printk(KERN_DEBUG "%s: unknown command %x\n",
  3947. __func__, cmd);
  3948. err = -EINVAL;
  3949. }
  3950. return err;
  3951. }
  3952. static int
  3953. clockctl(void *priv, int enable)
  3954. {
  3955. struct hfc_multi *hc = priv;
  3956. hc->iclock_on = enable;
  3957. return 0;
  3958. }
  3959. /*
  3960. * initialize the card
  3961. */
  3962. /*
  3963. * start timer irq, wait some time and check if we have interrupts.
  3964. * if not, reset chip and try again.
  3965. */
  3966. static int
  3967. init_card(struct hfc_multi *hc)
  3968. {
  3969. int err = -EIO;
  3970. u_long flags;
  3971. void __iomem *plx_acc;
  3972. u_long plx_flags;
  3973. if (debug & DEBUG_HFCMULTI_INIT)
  3974. printk(KERN_DEBUG "%s: entered\n", __func__);
  3975. spin_lock_irqsave(&hc->lock, flags);
  3976. /* set interrupts but leave global interrupt disabled */
  3977. hc->hw.r_irq_ctrl = V_FIFO_IRQ;
  3978. disable_hwirq(hc);
  3979. spin_unlock_irqrestore(&hc->lock, flags);
  3980. if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
  3981. "HFC-multi", hc)) {
  3982. printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
  3983. hc->irq);
  3984. hc->irq = 0;
  3985. return -EIO;
  3986. }
  3987. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  3988. spin_lock_irqsave(&plx_lock, plx_flags);
  3989. plx_acc = hc->plx_membase + PLX_INTCSR;
  3990. writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
  3991. plx_acc); /* enable PCI & LINT1 irq */
  3992. spin_unlock_irqrestore(&plx_lock, plx_flags);
  3993. }
  3994. if (debug & DEBUG_HFCMULTI_INIT)
  3995. printk(KERN_DEBUG "%s: IRQ %d count %d\n",
  3996. __func__, hc->irq, hc->irqcnt);
  3997. err = init_chip(hc);
  3998. if (err)
  3999. goto error;
  4000. /*
  4001. * Finally enable IRQ output
  4002. * this is only allowed, if an IRQ routine is already
  4003. * established for this HFC, so don't do that earlier
  4004. */
  4005. spin_lock_irqsave(&hc->lock, flags);
  4006. enable_hwirq(hc);
  4007. spin_unlock_irqrestore(&hc->lock, flags);
  4008. /* printk(KERN_DEBUG "no master irq set!!!\n"); */
  4009. set_current_state(TASK_UNINTERRUPTIBLE);
  4010. schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
  4011. /* turn IRQ off until chip is completely initialized */
  4012. spin_lock_irqsave(&hc->lock, flags);
  4013. disable_hwirq(hc);
  4014. spin_unlock_irqrestore(&hc->lock, flags);
  4015. if (debug & DEBUG_HFCMULTI_INIT)
  4016. printk(KERN_DEBUG "%s: IRQ %d count %d\n",
  4017. __func__, hc->irq, hc->irqcnt);
  4018. if (hc->irqcnt) {
  4019. if (debug & DEBUG_HFCMULTI_INIT)
  4020. printk(KERN_DEBUG "%s: done\n", __func__);
  4021. return 0;
  4022. }
  4023. if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
  4024. printk(KERN_INFO "ignoring missing interrupts\n");
  4025. return 0;
  4026. }
  4027. printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
  4028. hc->irq);
  4029. err = -EIO;
  4030. error:
  4031. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  4032. spin_lock_irqsave(&plx_lock, plx_flags);
  4033. plx_acc = hc->plx_membase + PLX_INTCSR;
  4034. writew(0x00, plx_acc); /*disable IRQs*/
  4035. spin_unlock_irqrestore(&plx_lock, plx_flags);
  4036. }
  4037. if (debug & DEBUG_HFCMULTI_INIT)
  4038. printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
  4039. if (hc->irq) {
  4040. free_irq(hc->irq, hc);
  4041. hc->irq = 0;
  4042. }
  4043. if (debug & DEBUG_HFCMULTI_INIT)
  4044. printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
  4045. return err;
  4046. }
  4047. /*
  4048. * find pci device and set it up
  4049. */
  4050. static int
  4051. setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
  4052. const struct pci_device_id *ent)
  4053. {
  4054. struct hm_map *m = (struct hm_map *)ent->driver_data;
  4055. printk(KERN_INFO
  4056. "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
  4057. m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
  4058. hc->pci_dev = pdev;
  4059. if (m->clock2)
  4060. test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
  4061. if (ent->device == 0xB410) {
  4062. test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
  4063. test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
  4064. test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
  4065. hc->slots = 32;
  4066. }
  4067. if (hc->pci_dev->irq <= 0) {
  4068. printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
  4069. return -EIO;
  4070. }
  4071. if (pci_enable_device(hc->pci_dev)) {
  4072. printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
  4073. return -EIO;
  4074. }
  4075. hc->leds = m->leds;
  4076. hc->ledstate = 0xAFFEAFFE;
  4077. hc->opticalsupport = m->opticalsupport;
  4078. hc->pci_iobase = 0;
  4079. hc->pci_membase = NULL;
  4080. hc->plx_membase = NULL;
  4081. /* set memory access methods */
  4082. if (m->io_mode) /* use mode from card config */
  4083. hc->io_mode = m->io_mode;
  4084. switch (hc->io_mode) {
  4085. case HFC_IO_MODE_PLXSD:
  4086. test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
  4087. hc->slots = 128; /* required */
  4088. hc->HFC_outb = HFC_outb_pcimem;
  4089. hc->HFC_inb = HFC_inb_pcimem;
  4090. hc->HFC_inw = HFC_inw_pcimem;
  4091. hc->HFC_wait = HFC_wait_pcimem;
  4092. hc->read_fifo = read_fifo_pcimem;
  4093. hc->write_fifo = write_fifo_pcimem;
  4094. hc->plx_origmembase = hc->pci_dev->resource[0].start;
  4095. /* MEMBASE 1 is PLX PCI Bridge */
  4096. if (!hc->plx_origmembase) {
  4097. printk(KERN_WARNING
  4098. "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
  4099. pci_disable_device(hc->pci_dev);
  4100. return -EIO;
  4101. }
  4102. hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
  4103. if (!hc->plx_membase) {
  4104. printk(KERN_WARNING
  4105. "HFC-multi: failed to remap plx address space. "
  4106. "(internal error)\n");
  4107. pci_disable_device(hc->pci_dev);
  4108. return -EIO;
  4109. }
  4110. printk(KERN_INFO
  4111. "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
  4112. (u_long)hc->plx_membase, hc->plx_origmembase);
  4113. hc->pci_origmembase = hc->pci_dev->resource[2].start;
  4114. /* MEMBASE 1 is PLX PCI Bridge */
  4115. if (!hc->pci_origmembase) {
  4116. printk(KERN_WARNING
  4117. "HFC-multi: No IO-Memory for PCI card found\n");
  4118. pci_disable_device(hc->pci_dev);
  4119. return -EIO;
  4120. }
  4121. hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
  4122. if (!hc->pci_membase) {
  4123. printk(KERN_WARNING "HFC-multi: failed to remap io "
  4124. "address space. (internal error)\n");
  4125. pci_disable_device(hc->pci_dev);
  4126. return -EIO;
  4127. }
  4128. printk(KERN_INFO
  4129. "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
  4130. "leds-type %d\n",
  4131. hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
  4132. hc->pci_dev->irq, HZ, hc->leds);
  4133. pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
  4134. break;
  4135. case HFC_IO_MODE_PCIMEM:
  4136. hc->HFC_outb = HFC_outb_pcimem;
  4137. hc->HFC_inb = HFC_inb_pcimem;
  4138. hc->HFC_inw = HFC_inw_pcimem;
  4139. hc->HFC_wait = HFC_wait_pcimem;
  4140. hc->read_fifo = read_fifo_pcimem;
  4141. hc->write_fifo = write_fifo_pcimem;
  4142. hc->pci_origmembase = hc->pci_dev->resource[1].start;
  4143. if (!hc->pci_origmembase) {
  4144. printk(KERN_WARNING
  4145. "HFC-multi: No IO-Memory for PCI card found\n");
  4146. pci_disable_device(hc->pci_dev);
  4147. return -EIO;
  4148. }
  4149. hc->pci_membase = ioremap(hc->pci_origmembase, 256);
  4150. if (!hc->pci_membase) {
  4151. printk(KERN_WARNING
  4152. "HFC-multi: failed to remap io address space. "
  4153. "(internal error)\n");
  4154. pci_disable_device(hc->pci_dev);
  4155. return -EIO;
  4156. }
  4157. printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
  4158. "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
  4159. hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
  4160. pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
  4161. break;
  4162. case HFC_IO_MODE_REGIO:
  4163. hc->HFC_outb = HFC_outb_regio;
  4164. hc->HFC_inb = HFC_inb_regio;
  4165. hc->HFC_inw = HFC_inw_regio;
  4166. hc->HFC_wait = HFC_wait_regio;
  4167. hc->read_fifo = read_fifo_regio;
  4168. hc->write_fifo = write_fifo_regio;
  4169. hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
  4170. if (!hc->pci_iobase) {
  4171. printk(KERN_WARNING
  4172. "HFC-multi: No IO for PCI card found\n");
  4173. pci_disable_device(hc->pci_dev);
  4174. return -EIO;
  4175. }
  4176. if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
  4177. printk(KERN_WARNING "HFC-multi: failed to request "
  4178. "address space at 0x%08lx (internal error)\n",
  4179. hc->pci_iobase);
  4180. pci_disable_device(hc->pci_dev);
  4181. return -EIO;
  4182. }
  4183. printk(KERN_INFO
  4184. "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
  4185. m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
  4186. hc->pci_dev->irq, HZ, hc->leds);
  4187. pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
  4188. break;
  4189. default:
  4190. printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
  4191. pci_disable_device(hc->pci_dev);
  4192. return -EIO;
  4193. }
  4194. pci_set_drvdata(hc->pci_dev, hc);
  4195. /* At this point the needed PCI config is done */
  4196. /* fifos are still not enabled */
  4197. return 0;
  4198. }
  4199. /*
  4200. * remove port
  4201. */
  4202. static void
  4203. release_port(struct hfc_multi *hc, struct dchannel *dch)
  4204. {
  4205. int pt, ci, i = 0;
  4206. u_long flags;
  4207. struct bchannel *pb;
  4208. ci = dch->slot;
  4209. pt = hc->chan[ci].port;
  4210. if (debug & DEBUG_HFCMULTI_INIT)
  4211. printk(KERN_DEBUG "%s: entered for port %d\n",
  4212. __func__, pt + 1);
  4213. if (pt >= hc->ports) {
  4214. printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
  4215. __func__, pt + 1);
  4216. return;
  4217. }
  4218. if (debug & DEBUG_HFCMULTI_INIT)
  4219. printk(KERN_DEBUG "%s: releasing port=%d\n",
  4220. __func__, pt + 1);
  4221. if (dch->dev.D.protocol == ISDN_P_TE_S0)
  4222. l1_event(dch->l1, CLOSE_CHANNEL);
  4223. hc->chan[ci].dch = NULL;
  4224. if (hc->created[pt]) {
  4225. hc->created[pt] = 0;
  4226. mISDN_unregister_device(&dch->dev);
  4227. }
  4228. spin_lock_irqsave(&hc->lock, flags);
  4229. if (dch->timer.function) {
  4230. del_timer(&dch->timer);
  4231. dch->timer.function = NULL;
  4232. }
  4233. if (hc->ctype == HFC_TYPE_E1) { /* E1 */
  4234. /* remove sync */
  4235. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  4236. hc->syncronized = 0;
  4237. plxsd_checksync(hc, 1);
  4238. }
  4239. /* free channels */
  4240. for (i = 0; i <= 31; i++) {
  4241. if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
  4242. continue;
  4243. if (hc->chan[i].bch) {
  4244. if (debug & DEBUG_HFCMULTI_INIT)
  4245. printk(KERN_DEBUG
  4246. "%s: free port %d channel %d\n",
  4247. __func__, hc->chan[i].port + 1, i);
  4248. pb = hc->chan[i].bch;
  4249. hc->chan[i].bch = NULL;
  4250. spin_unlock_irqrestore(&hc->lock, flags);
  4251. mISDN_freebchannel(pb);
  4252. kfree(pb);
  4253. kfree(hc->chan[i].coeff);
  4254. spin_lock_irqsave(&hc->lock, flags);
  4255. }
  4256. }
  4257. } else {
  4258. /* remove sync */
  4259. if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
  4260. hc->syncronized &=
  4261. ~(1 << hc->chan[ci].port);
  4262. plxsd_checksync(hc, 1);
  4263. }
  4264. /* free channels */
  4265. if (hc->chan[ci - 2].bch) {
  4266. if (debug & DEBUG_HFCMULTI_INIT)
  4267. printk(KERN_DEBUG
  4268. "%s: free port %d channel %d\n",
  4269. __func__, hc->chan[ci - 2].port + 1,
  4270. ci - 2);
  4271. pb = hc->chan[ci - 2].bch;
  4272. hc->chan[ci - 2].bch = NULL;
  4273. spin_unlock_irqrestore(&hc->lock, flags);
  4274. mISDN_freebchannel(pb);
  4275. kfree(pb);
  4276. kfree(hc->chan[ci - 2].coeff);
  4277. spin_lock_irqsave(&hc->lock, flags);
  4278. }
  4279. if (hc->chan[ci - 1].bch) {
  4280. if (debug & DEBUG_HFCMULTI_INIT)
  4281. printk(KERN_DEBUG
  4282. "%s: free port %d channel %d\n",
  4283. __func__, hc->chan[ci - 1].port + 1,
  4284. ci - 1);
  4285. pb = hc->chan[ci - 1].bch;
  4286. hc->chan[ci - 1].bch = NULL;
  4287. spin_unlock_irqrestore(&hc->lock, flags);
  4288. mISDN_freebchannel(pb);
  4289. kfree(pb);
  4290. kfree(hc->chan[ci - 1].coeff);
  4291. spin_lock_irqsave(&hc->lock, flags);
  4292. }
  4293. }
  4294. spin_unlock_irqrestore(&hc->lock, flags);
  4295. if (debug & DEBUG_HFCMULTI_INIT)
  4296. printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
  4297. pt+1, ci);
  4298. mISDN_freedchannel(dch);
  4299. kfree(dch);
  4300. if (debug & DEBUG_HFCMULTI_INIT)
  4301. printk(KERN_DEBUG "%s: done!\n", __func__);
  4302. }
  4303. static void
  4304. release_card(struct hfc_multi *hc)
  4305. {
  4306. u_long flags;
  4307. int ch;
  4308. if (debug & DEBUG_HFCMULTI_INIT)
  4309. printk(KERN_DEBUG "%s: release card (%d) entered\n",
  4310. __func__, hc->id);
  4311. /* unregister clock source */
  4312. if (hc->iclock)
  4313. mISDN_unregister_clock(hc->iclock);
  4314. /* disable and free irq */
  4315. spin_lock_irqsave(&hc->lock, flags);
  4316. disable_hwirq(hc);
  4317. spin_unlock_irqrestore(&hc->lock, flags);
  4318. udelay(1000);
  4319. if (hc->irq) {
  4320. if (debug & DEBUG_HFCMULTI_INIT)
  4321. printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
  4322. __func__, hc->irq, hc);
  4323. free_irq(hc->irq, hc);
  4324. hc->irq = 0;
  4325. }
  4326. /* disable D-channels & B-channels */
  4327. if (debug & DEBUG_HFCMULTI_INIT)
  4328. printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
  4329. __func__);
  4330. for (ch = 0; ch <= 31; ch++) {
  4331. if (hc->chan[ch].dch)
  4332. release_port(hc, hc->chan[ch].dch);
  4333. }
  4334. /* dimm leds */
  4335. if (hc->leds)
  4336. hfcmulti_leds(hc);
  4337. /* release hardware */
  4338. release_io_hfcmulti(hc);
  4339. if (debug & DEBUG_HFCMULTI_INIT)
  4340. printk(KERN_DEBUG "%s: remove instance from list\n",
  4341. __func__);
  4342. list_del(&hc->list);
  4343. if (debug & DEBUG_HFCMULTI_INIT)
  4344. printk(KERN_DEBUG "%s: delete instance\n", __func__);
  4345. if (hc == syncmaster)
  4346. syncmaster = NULL;
  4347. kfree(hc);
  4348. if (debug & DEBUG_HFCMULTI_INIT)
  4349. printk(KERN_DEBUG "%s: card successfully removed\n",
  4350. __func__);
  4351. }
  4352. static void
  4353. init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
  4354. {
  4355. /* set optical line type */
  4356. if (port[Port_cnt] & 0x001) {
  4357. if (!m->opticalsupport) {
  4358. printk(KERN_INFO
  4359. "This board has no optical "
  4360. "support\n");
  4361. } else {
  4362. if (debug & DEBUG_HFCMULTI_INIT)
  4363. printk(KERN_DEBUG
  4364. "%s: PORT set optical "
  4365. "interfacs: card(%d) "
  4366. "port(%d)\n",
  4367. __func__,
  4368. HFC_cnt + 1, 1);
  4369. test_and_set_bit(HFC_CFG_OPTICAL,
  4370. &hc->chan[hc->dnum[0]].cfg);
  4371. }
  4372. }
  4373. /* set LOS report */
  4374. if (port[Port_cnt] & 0x004) {
  4375. if (debug & DEBUG_HFCMULTI_INIT)
  4376. printk(KERN_DEBUG "%s: PORT set "
  4377. "LOS report: card(%d) port(%d)\n",
  4378. __func__, HFC_cnt + 1, 1);
  4379. test_and_set_bit(HFC_CFG_REPORT_LOS,
  4380. &hc->chan[hc->dnum[0]].cfg);
  4381. }
  4382. /* set AIS report */
  4383. if (port[Port_cnt] & 0x008) {
  4384. if (debug & DEBUG_HFCMULTI_INIT)
  4385. printk(KERN_DEBUG "%s: PORT set "
  4386. "AIS report: card(%d) port(%d)\n",
  4387. __func__, HFC_cnt + 1, 1);
  4388. test_and_set_bit(HFC_CFG_REPORT_AIS,
  4389. &hc->chan[hc->dnum[0]].cfg);
  4390. }
  4391. /* set SLIP report */
  4392. if (port[Port_cnt] & 0x010) {
  4393. if (debug & DEBUG_HFCMULTI_INIT)
  4394. printk(KERN_DEBUG
  4395. "%s: PORT set SLIP report: "
  4396. "card(%d) port(%d)\n",
  4397. __func__, HFC_cnt + 1, 1);
  4398. test_and_set_bit(HFC_CFG_REPORT_SLIP,
  4399. &hc->chan[hc->dnum[0]].cfg);
  4400. }
  4401. /* set RDI report */
  4402. if (port[Port_cnt] & 0x020) {
  4403. if (debug & DEBUG_HFCMULTI_INIT)
  4404. printk(KERN_DEBUG
  4405. "%s: PORT set RDI report: "
  4406. "card(%d) port(%d)\n",
  4407. __func__, HFC_cnt + 1, 1);
  4408. test_and_set_bit(HFC_CFG_REPORT_RDI,
  4409. &hc->chan[hc->dnum[0]].cfg);
  4410. }
  4411. /* set CRC-4 Mode */
  4412. if (!(port[Port_cnt] & 0x100)) {
  4413. if (debug & DEBUG_HFCMULTI_INIT)
  4414. printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
  4415. " card(%d) port(%d)\n",
  4416. __func__, HFC_cnt + 1, 1);
  4417. test_and_set_bit(HFC_CFG_CRC4,
  4418. &hc->chan[hc->dnum[0]].cfg);
  4419. } else {
  4420. if (debug & DEBUG_HFCMULTI_INIT)
  4421. printk(KERN_DEBUG "%s: PORT turn off CRC4"
  4422. " report: card(%d) port(%d)\n",
  4423. __func__, HFC_cnt + 1, 1);
  4424. }
  4425. /* set forced clock */
  4426. if (port[Port_cnt] & 0x0200) {
  4427. if (debug & DEBUG_HFCMULTI_INIT)
  4428. printk(KERN_DEBUG "%s: PORT force getting clock from "
  4429. "E1: card(%d) port(%d)\n",
  4430. __func__, HFC_cnt + 1, 1);
  4431. test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
  4432. } else
  4433. if (port[Port_cnt] & 0x0400) {
  4434. if (debug & DEBUG_HFCMULTI_INIT)
  4435. printk(KERN_DEBUG "%s: PORT force putting clock to "
  4436. "E1: card(%d) port(%d)\n",
  4437. __func__, HFC_cnt + 1, 1);
  4438. test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
  4439. }
  4440. /* set JATT PLL */
  4441. if (port[Port_cnt] & 0x0800) {
  4442. if (debug & DEBUG_HFCMULTI_INIT)
  4443. printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
  4444. "E1: card(%d) port(%d)\n",
  4445. __func__, HFC_cnt + 1, 1);
  4446. test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
  4447. }
  4448. /* set elastic jitter buffer */
  4449. if (port[Port_cnt] & 0x3000) {
  4450. hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
  4451. if (debug & DEBUG_HFCMULTI_INIT)
  4452. printk(KERN_DEBUG
  4453. "%s: PORT set elastic "
  4454. "buffer to %d: card(%d) port(%d)\n",
  4455. __func__, hc->chan[hc->dnum[0]].jitter,
  4456. HFC_cnt + 1, 1);
  4457. } else
  4458. hc->chan[hc->dnum[0]].jitter = 2; /* default */
  4459. }
  4460. static int
  4461. init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
  4462. {
  4463. struct dchannel *dch;
  4464. struct bchannel *bch;
  4465. int ch, ret = 0;
  4466. char name[MISDN_MAX_IDLEN];
  4467. int bcount = 0;
  4468. dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
  4469. if (!dch)
  4470. return -ENOMEM;
  4471. dch->debug = debug;
  4472. mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
  4473. dch->hw = hc;
  4474. dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
  4475. dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
  4476. (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
  4477. dch->dev.D.send = handle_dmsg;
  4478. dch->dev.D.ctrl = hfcm_dctrl;
  4479. dch->slot = hc->dnum[pt];
  4480. hc->chan[hc->dnum[pt]].dch = dch;
  4481. hc->chan[hc->dnum[pt]].port = pt;
  4482. hc->chan[hc->dnum[pt]].nt_timer = -1;
  4483. for (ch = 1; ch <= 31; ch++) {
  4484. if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
  4485. continue;
  4486. bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
  4487. if (!bch) {
  4488. printk(KERN_ERR "%s: no memory for bchannel\n",
  4489. __func__);
  4490. ret = -ENOMEM;
  4491. goto free_chan;
  4492. }
  4493. hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
  4494. if (!hc->chan[ch].coeff) {
  4495. printk(KERN_ERR "%s: no memory for coeffs\n",
  4496. __func__);
  4497. ret = -ENOMEM;
  4498. kfree(bch);
  4499. goto free_chan;
  4500. }
  4501. bch->nr = ch;
  4502. bch->slot = ch;
  4503. bch->debug = debug;
  4504. mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
  4505. bch->hw = hc;
  4506. bch->ch.send = handle_bmsg;
  4507. bch->ch.ctrl = hfcm_bctrl;
  4508. bch->ch.nr = ch;
  4509. list_add(&bch->ch.list, &dch->dev.bchannels);
  4510. hc->chan[ch].bch = bch;
  4511. hc->chan[ch].port = pt;
  4512. set_channelmap(bch->nr, dch->dev.channelmap);
  4513. bcount++;
  4514. }
  4515. dch->dev.nrbchan = bcount;
  4516. if (pt == 0)
  4517. init_e1_port_hw(hc, m);
  4518. if (hc->ports > 1)
  4519. snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
  4520. HFC_cnt + 1, pt+1);
  4521. else
  4522. snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
  4523. ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
  4524. if (ret)
  4525. goto free_chan;
  4526. hc->created[pt] = 1;
  4527. return ret;
  4528. free_chan:
  4529. release_port(hc, dch);
  4530. return ret;
  4531. }
  4532. static int
  4533. init_multi_port(struct hfc_multi *hc, int pt)
  4534. {
  4535. struct dchannel *dch;
  4536. struct bchannel *bch;
  4537. int ch, i, ret = 0;
  4538. char name[MISDN_MAX_IDLEN];
  4539. dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
  4540. if (!dch)
  4541. return -ENOMEM;
  4542. dch->debug = debug;
  4543. mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
  4544. dch->hw = hc;
  4545. dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
  4546. dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
  4547. (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
  4548. dch->dev.D.send = handle_dmsg;
  4549. dch->dev.D.ctrl = hfcm_dctrl;
  4550. dch->dev.nrbchan = 2;
  4551. i = pt << 2;
  4552. dch->slot = i + 2;
  4553. hc->chan[i + 2].dch = dch;
  4554. hc->chan[i + 2].port = pt;
  4555. hc->chan[i + 2].nt_timer = -1;
  4556. for (ch = 0; ch < dch->dev.nrbchan; ch++) {
  4557. bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
  4558. if (!bch) {
  4559. printk(KERN_ERR "%s: no memory for bchannel\n",
  4560. __func__);
  4561. ret = -ENOMEM;
  4562. goto free_chan;
  4563. }
  4564. hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
  4565. if (!hc->chan[i + ch].coeff) {
  4566. printk(KERN_ERR "%s: no memory for coeffs\n",
  4567. __func__);
  4568. ret = -ENOMEM;
  4569. kfree(bch);
  4570. goto free_chan;
  4571. }
  4572. bch->nr = ch + 1;
  4573. bch->slot = i + ch;
  4574. bch->debug = debug;
  4575. mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
  4576. bch->hw = hc;
  4577. bch->ch.send = handle_bmsg;
  4578. bch->ch.ctrl = hfcm_bctrl;
  4579. bch->ch.nr = ch + 1;
  4580. list_add(&bch->ch.list, &dch->dev.bchannels);
  4581. hc->chan[i + ch].bch = bch;
  4582. hc->chan[i + ch].port = pt;
  4583. set_channelmap(bch->nr, dch->dev.channelmap);
  4584. }
  4585. /* set master clock */
  4586. if (port[Port_cnt] & 0x001) {
  4587. if (debug & DEBUG_HFCMULTI_INIT)
  4588. printk(KERN_DEBUG
  4589. "%s: PROTOCOL set master clock: "
  4590. "card(%d) port(%d)\n",
  4591. __func__, HFC_cnt + 1, pt + 1);
  4592. if (dch->dev.D.protocol != ISDN_P_TE_S0) {
  4593. printk(KERN_ERR "Error: Master clock "
  4594. "for port(%d) of card(%d) is only"
  4595. " possible with TE-mode\n",
  4596. pt + 1, HFC_cnt + 1);
  4597. ret = -EINVAL;
  4598. goto free_chan;
  4599. }
  4600. if (hc->masterclk >= 0) {
  4601. printk(KERN_ERR "Error: Master clock "
  4602. "for port(%d) of card(%d) already "
  4603. "defined for port(%d)\n",
  4604. pt + 1, HFC_cnt + 1, hc->masterclk + 1);
  4605. ret = -EINVAL;
  4606. goto free_chan;
  4607. }
  4608. hc->masterclk = pt;
  4609. }
  4610. /* set transmitter line to non capacitive */
  4611. if (port[Port_cnt] & 0x002) {
  4612. if (debug & DEBUG_HFCMULTI_INIT)
  4613. printk(KERN_DEBUG
  4614. "%s: PROTOCOL set non capacitive "
  4615. "transmitter: card(%d) port(%d)\n",
  4616. __func__, HFC_cnt + 1, pt + 1);
  4617. test_and_set_bit(HFC_CFG_NONCAP_TX,
  4618. &hc->chan[i + 2].cfg);
  4619. }
  4620. /* disable E-channel */
  4621. if (port[Port_cnt] & 0x004) {
  4622. if (debug & DEBUG_HFCMULTI_INIT)
  4623. printk(KERN_DEBUG
  4624. "%s: PROTOCOL disable E-channel: "
  4625. "card(%d) port(%d)\n",
  4626. __func__, HFC_cnt + 1, pt + 1);
  4627. test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
  4628. &hc->chan[i + 2].cfg);
  4629. }
  4630. if (hc->ctype == HFC_TYPE_XHFC) {
  4631. snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
  4632. HFC_cnt + 1, pt + 1);
  4633. ret = mISDN_register_device(&dch->dev, NULL, name);
  4634. } else {
  4635. snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
  4636. hc->ctype, HFC_cnt + 1, pt + 1);
  4637. ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
  4638. }
  4639. if (ret)
  4640. goto free_chan;
  4641. hc->created[pt] = 1;
  4642. return ret;
  4643. free_chan:
  4644. release_port(hc, dch);
  4645. return ret;
  4646. }
  4647. static int
  4648. hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
  4649. const struct pci_device_id *ent)
  4650. {
  4651. int ret_err = 0;
  4652. int pt;
  4653. struct hfc_multi *hc;
  4654. u_long flags;
  4655. u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
  4656. int i, ch;
  4657. u_int maskcheck;
  4658. if (HFC_cnt >= MAX_CARDS) {
  4659. printk(KERN_ERR "too many cards (max=%d).\n",
  4660. MAX_CARDS);
  4661. return -EINVAL;
  4662. }
  4663. if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
  4664. printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
  4665. "type[%d] %d was supplied as module parameter\n",
  4666. m->vendor_name, m->card_name, m->type, HFC_cnt,
  4667. type[HFC_cnt] & 0xff);
  4668. printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
  4669. "first, to see cards and their types.");
  4670. return -EINVAL;
  4671. }
  4672. if (debug & DEBUG_HFCMULTI_INIT)
  4673. printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
  4674. __func__, m->vendor_name, m->card_name, m->type,
  4675. type[HFC_cnt]);
  4676. /* allocate card+fifo structure */
  4677. hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
  4678. if (!hc) {
  4679. printk(KERN_ERR "No kmem for HFC-Multi card\n");
  4680. return -ENOMEM;
  4681. }
  4682. spin_lock_init(&hc->lock);
  4683. hc->mtyp = m;
  4684. hc->ctype = m->type;
  4685. hc->ports = m->ports;
  4686. hc->id = HFC_cnt;
  4687. hc->pcm = pcm[HFC_cnt];
  4688. hc->io_mode = iomode[HFC_cnt];
  4689. if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
  4690. /* fragment card */
  4691. pt = 0;
  4692. maskcheck = 0;
  4693. for (ch = 0; ch <= 31; ch++) {
  4694. if (!((1 << ch) & dmask[E1_cnt]))
  4695. continue;
  4696. hc->dnum[pt] = ch;
  4697. hc->bmask[pt] = bmask[bmask_cnt++];
  4698. if ((maskcheck & hc->bmask[pt])
  4699. || (dmask[E1_cnt] & hc->bmask[pt])) {
  4700. printk(KERN_INFO
  4701. "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
  4702. E1_cnt + 1, pt);
  4703. return -EINVAL;
  4704. }
  4705. maskcheck |= hc->bmask[pt];
  4706. printk(KERN_INFO
  4707. "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
  4708. E1_cnt + 1, ch, hc->bmask[pt]);
  4709. pt++;
  4710. }
  4711. hc->ports = pt;
  4712. }
  4713. if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
  4714. /* default card layout */
  4715. hc->dnum[0] = 16;
  4716. hc->bmask[0] = 0xfffefffe;
  4717. hc->ports = 1;
  4718. }
  4719. /* set chip specific features */
  4720. hc->masterclk = -1;
  4721. if (type[HFC_cnt] & 0x100) {
  4722. test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
  4723. hc->silence = 0xff; /* ulaw silence */
  4724. } else
  4725. hc->silence = 0x2a; /* alaw silence */
  4726. if ((poll >> 1) > sizeof(hc->silence_data)) {
  4727. printk(KERN_ERR "HFCMULTI error: silence_data too small, "
  4728. "please fix\n");
  4729. return -EINVAL;
  4730. }
  4731. for (i = 0; i < (poll >> 1); i++)
  4732. hc->silence_data[i] = hc->silence;
  4733. if (hc->ctype != HFC_TYPE_XHFC) {
  4734. if (!(type[HFC_cnt] & 0x200))
  4735. test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
  4736. test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
  4737. }
  4738. if (type[HFC_cnt] & 0x800)
  4739. test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
  4740. if (type[HFC_cnt] & 0x1000) {
  4741. test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
  4742. test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
  4743. }
  4744. if (type[HFC_cnt] & 0x4000)
  4745. test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
  4746. if (type[HFC_cnt] & 0x8000)
  4747. test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
  4748. hc->slots = 32;
  4749. if (type[HFC_cnt] & 0x10000)
  4750. hc->slots = 64;
  4751. if (type[HFC_cnt] & 0x20000)
  4752. hc->slots = 128;
  4753. if (type[HFC_cnt] & 0x80000) {
  4754. test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
  4755. hc->wdcount = 0;
  4756. hc->wdbyte = V_GPIO_OUT2;
  4757. printk(KERN_NOTICE "Watchdog enabled\n");
  4758. }
  4759. if (pdev && ent)
  4760. /* setup pci, hc->slots may change due to PLXSD */
  4761. ret_err = setup_pci(hc, pdev, ent);
  4762. else
  4763. #ifdef CONFIG_MISDN_HFCMULTI_8xx
  4764. ret_err = setup_embedded(hc, m);
  4765. #else
  4766. {
  4767. printk(KERN_WARNING "Embedded IO Mode not selected\n");
  4768. ret_err = -EIO;
  4769. }
  4770. #endif
  4771. if (ret_err) {
  4772. if (hc == syncmaster)
  4773. syncmaster = NULL;
  4774. kfree(hc);
  4775. return ret_err;
  4776. }
  4777. hc->HFC_outb_nodebug = hc->HFC_outb;
  4778. hc->HFC_inb_nodebug = hc->HFC_inb;
  4779. hc->HFC_inw_nodebug = hc->HFC_inw;
  4780. hc->HFC_wait_nodebug = hc->HFC_wait;
  4781. #ifdef HFC_REGISTER_DEBUG
  4782. hc->HFC_outb = HFC_outb_debug;
  4783. hc->HFC_inb = HFC_inb_debug;
  4784. hc->HFC_inw = HFC_inw_debug;
  4785. hc->HFC_wait = HFC_wait_debug;
  4786. #endif
  4787. /* create channels */
  4788. for (pt = 0; pt < hc->ports; pt++) {
  4789. if (Port_cnt >= MAX_PORTS) {
  4790. printk(KERN_ERR "too many ports (max=%d).\n",
  4791. MAX_PORTS);
  4792. ret_err = -EINVAL;
  4793. goto free_card;
  4794. }
  4795. if (hc->ctype == HFC_TYPE_E1)
  4796. ret_err = init_e1_port(hc, m, pt);
  4797. else
  4798. ret_err = init_multi_port(hc, pt);
  4799. if (debug & DEBUG_HFCMULTI_INIT)
  4800. printk(KERN_DEBUG
  4801. "%s: Registering D-channel, card(%d) port(%d) "
  4802. "result %d\n",
  4803. __func__, HFC_cnt + 1, pt + 1, ret_err);
  4804. if (ret_err) {
  4805. while (pt) { /* release already registered ports */
  4806. pt--;
  4807. if (hc->ctype == HFC_TYPE_E1)
  4808. release_port(hc,
  4809. hc->chan[hc->dnum[pt]].dch);
  4810. else
  4811. release_port(hc,
  4812. hc->chan[(pt << 2) + 2].dch);
  4813. }
  4814. goto free_card;
  4815. }
  4816. if (hc->ctype != HFC_TYPE_E1)
  4817. Port_cnt++; /* for each S0 port */
  4818. }
  4819. if (hc->ctype == HFC_TYPE_E1) {
  4820. Port_cnt++; /* for each E1 port */
  4821. E1_cnt++;
  4822. }
  4823. /* disp switches */
  4824. switch (m->dip_type) {
  4825. case DIP_4S:
  4826. /*
  4827. * Get DIP setting for beroNet 1S/2S/4S cards
  4828. * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
  4829. * GPI 19/23 (R_GPI_IN2))
  4830. */
  4831. dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
  4832. ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
  4833. (~HFC_inb(hc, R_GPI_IN2) & 0x08);
  4834. /* Port mode (TE/NT) jumpers */
  4835. pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
  4836. if (test_bit(HFC_CHIP_B410P, &hc->chip))
  4837. pmj = ~pmj & 0xf;
  4838. printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
  4839. m->vendor_name, m->card_name, dips, pmj);
  4840. break;
  4841. case DIP_8S:
  4842. /*
  4843. * Get DIP Setting for beroNet 8S0+ cards
  4844. * Enable PCI auxbridge function
  4845. */
  4846. HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
  4847. /* prepare access to auxport */
  4848. outw(0x4000, hc->pci_iobase + 4);
  4849. /*
  4850. * some dummy reads are required to
  4851. * read valid DIP switch data
  4852. */
  4853. dips = inb(hc->pci_iobase);
  4854. dips = inb(hc->pci_iobase);
  4855. dips = inb(hc->pci_iobase);
  4856. dips = ~inb(hc->pci_iobase) & 0x3F;
  4857. outw(0x0, hc->pci_iobase + 4);
  4858. /* disable PCI auxbridge function */
  4859. HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
  4860. printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
  4861. m->vendor_name, m->card_name, dips);
  4862. break;
  4863. case DIP_E1:
  4864. /*
  4865. * get DIP Setting for beroNet E1 cards
  4866. * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
  4867. */
  4868. dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
  4869. printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
  4870. m->vendor_name, m->card_name, dips);
  4871. break;
  4872. }
  4873. /* add to list */
  4874. spin_lock_irqsave(&HFClock, flags);
  4875. list_add_tail(&hc->list, &HFClist);
  4876. spin_unlock_irqrestore(&HFClock, flags);
  4877. /* use as clock source */
  4878. if (clock == HFC_cnt + 1)
  4879. hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
  4880. /* initialize hardware */
  4881. hc->irq = (m->irq) ? : hc->pci_dev->irq;
  4882. ret_err = init_card(hc);
  4883. if (ret_err) {
  4884. printk(KERN_ERR "init card returns %d\n", ret_err);
  4885. release_card(hc);
  4886. return ret_err;
  4887. }
  4888. /* start IRQ and return */
  4889. spin_lock_irqsave(&hc->lock, flags);
  4890. enable_hwirq(hc);
  4891. spin_unlock_irqrestore(&hc->lock, flags);
  4892. return 0;
  4893. free_card:
  4894. release_io_hfcmulti(hc);
  4895. if (hc == syncmaster)
  4896. syncmaster = NULL;
  4897. kfree(hc);
  4898. return ret_err;
  4899. }
  4900. static void __devexit hfc_remove_pci(struct pci_dev *pdev)
  4901. {
  4902. struct hfc_multi *card = pci_get_drvdata(pdev);
  4903. u_long flags;
  4904. if (debug)
  4905. printk(KERN_INFO "removing hfc_multi card vendor:%x "
  4906. "device:%x subvendor:%x subdevice:%x\n",
  4907. pdev->vendor, pdev->device,
  4908. pdev->subsystem_vendor, pdev->subsystem_device);
  4909. if (card) {
  4910. spin_lock_irqsave(&HFClock, flags);
  4911. release_card(card);
  4912. spin_unlock_irqrestore(&HFClock, flags);
  4913. } else {
  4914. if (debug)
  4915. printk(KERN_DEBUG "%s: drvdata already removed\n",
  4916. __func__);
  4917. }
  4918. }
  4919. #define VENDOR_CCD "Cologne Chip AG"
  4920. #define VENDOR_BN "beroNet GmbH"
  4921. #define VENDOR_DIG "Digium Inc."
  4922. #define VENDOR_JH "Junghanns.NET GmbH"
  4923. #define VENDOR_PRIM "PrimuX"
  4924. static const struct hm_map hfcm_map[] = {
  4925. /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
  4926. /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
  4927. /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
  4928. /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
  4929. /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
  4930. /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
  4931. /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
  4932. /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
  4933. /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
  4934. /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
  4935. /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
  4936. /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
  4937. /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
  4938. /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
  4939. HFC_IO_MODE_REGIO, 0},
  4940. /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
  4941. /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
  4942. /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
  4943. /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
  4944. /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
  4945. /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
  4946. /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
  4947. /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
  4948. /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
  4949. /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
  4950. /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
  4951. /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
  4952. /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
  4953. HFC_IO_MODE_PLXSD, 0},
  4954. /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
  4955. HFC_IO_MODE_PLXSD, 0},
  4956. /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
  4957. /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
  4958. /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
  4959. /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
  4960. HFC_IO_MODE_EMBSD, XHFC_IRQ},
  4961. /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
  4962. /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
  4963. /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
  4964. };
  4965. #undef H
  4966. #define H(x) ((unsigned long)&hfcm_map[x])
  4967. static struct pci_device_id hfmultipci_ids[] __devinitdata = {
  4968. /* Cards with HFC-4S Chip */
  4969. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4970. PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
  4971. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4972. PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
  4973. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4974. PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
  4975. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4976. PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
  4977. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4978. PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
  4979. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4980. PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
  4981. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4982. PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
  4983. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4984. PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
  4985. { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
  4986. PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
  4987. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4988. PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
  4989. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4990. PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
  4991. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4992. PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
  4993. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4994. PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
  4995. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4996. PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
  4997. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  4998. 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
  4999. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
  5000. 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
  5001. /* Cards with HFC-8S Chip */
  5002. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5003. PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
  5004. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5005. PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
  5006. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5007. PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
  5008. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5009. PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
  5010. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5011. PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
  5012. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5013. PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
  5014. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5015. PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
  5016. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5017. PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
  5018. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
  5019. PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
  5020. /* Cards with HFC-E1 Chip */
  5021. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5022. PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
  5023. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5024. PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
  5025. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5026. PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
  5027. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5028. PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
  5029. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5030. PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
  5031. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5032. PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
  5033. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5034. PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
  5035. { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
  5036. PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
  5037. { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
  5038. PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
  5039. { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
  5040. PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
  5041. { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
  5042. { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
  5043. { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
  5044. {0, }
  5045. };
  5046. #undef H
  5047. MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
  5048. static int
  5049. hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  5050. {
  5051. struct hm_map *m = (struct hm_map *)ent->driver_data;
  5052. int ret;
  5053. if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
  5054. ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
  5055. ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
  5056. ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
  5057. printk(KERN_ERR
  5058. "Unknown HFC multiport controller (vendor:%04x device:%04x "
  5059. "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
  5060. pdev->device, pdev->subsystem_vendor,
  5061. pdev->subsystem_device);
  5062. printk(KERN_ERR
  5063. "Please contact the driver maintainer for support.\n");
  5064. return -ENODEV;
  5065. }
  5066. ret = hfcmulti_init(m, pdev, ent);
  5067. if (ret)
  5068. return ret;
  5069. HFC_cnt++;
  5070. printk(KERN_INFO "%d devices registered\n", HFC_cnt);
  5071. return 0;
  5072. }
  5073. static struct pci_driver hfcmultipci_driver = {
  5074. .name = "hfc_multi",
  5075. .probe = hfcmulti_probe,
  5076. .remove = __devexit_p(hfc_remove_pci),
  5077. .id_table = hfmultipci_ids,
  5078. };
  5079. static void __exit
  5080. HFCmulti_cleanup(void)
  5081. {
  5082. struct hfc_multi *card, *next;
  5083. /* get rid of all devices of this driver */
  5084. list_for_each_entry_safe(card, next, &HFClist, list)
  5085. release_card(card);
  5086. pci_unregister_driver(&hfcmultipci_driver);
  5087. }
  5088. static int __init
  5089. HFCmulti_init(void)
  5090. {
  5091. int err;
  5092. int i, xhfc = 0;
  5093. struct hm_map m;
  5094. printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
  5095. #ifdef IRQ_DEBUG
  5096. printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
  5097. #endif
  5098. spin_lock_init(&HFClock);
  5099. spin_lock_init(&plx_lock);
  5100. if (debug & DEBUG_HFCMULTI_INIT)
  5101. printk(KERN_DEBUG "%s: init entered\n", __func__);
  5102. switch (poll) {
  5103. case 0:
  5104. poll_timer = 6;
  5105. poll = 128;
  5106. break;
  5107. case 8:
  5108. poll_timer = 2;
  5109. break;
  5110. case 16:
  5111. poll_timer = 3;
  5112. break;
  5113. case 32:
  5114. poll_timer = 4;
  5115. break;
  5116. case 64:
  5117. poll_timer = 5;
  5118. break;
  5119. case 128:
  5120. poll_timer = 6;
  5121. break;
  5122. case 256:
  5123. poll_timer = 7;
  5124. break;
  5125. default:
  5126. printk(KERN_ERR
  5127. "%s: Wrong poll value (%d).\n", __func__, poll);
  5128. err = -EINVAL;
  5129. return err;
  5130. }
  5131. if (!clock)
  5132. clock = 1;
  5133. /* Register the embedded devices.
  5134. * This should be done before the PCI cards registration */
  5135. switch (hwid) {
  5136. case HWID_MINIP4:
  5137. xhfc = 1;
  5138. m = hfcm_map[31];
  5139. break;
  5140. case HWID_MINIP8:
  5141. xhfc = 2;
  5142. m = hfcm_map[31];
  5143. break;
  5144. case HWID_MINIP16:
  5145. xhfc = 4;
  5146. m = hfcm_map[31];
  5147. break;
  5148. default:
  5149. xhfc = 0;
  5150. }
  5151. for (i = 0; i < xhfc; ++i) {
  5152. err = hfcmulti_init(&m, NULL, NULL);
  5153. if (err) {
  5154. printk(KERN_ERR "error registering embedded driver: "
  5155. "%x\n", err);
  5156. return err;
  5157. }
  5158. HFC_cnt++;
  5159. printk(KERN_INFO "%d devices registered\n", HFC_cnt);
  5160. }
  5161. /* Register the PCI cards */
  5162. err = pci_register_driver(&hfcmultipci_driver);
  5163. if (err < 0) {
  5164. printk(KERN_ERR "error registering pci driver: %x\n", err);
  5165. return err;
  5166. }
  5167. return 0;
  5168. }
  5169. module_init(HFCmulti_init);
  5170. module_exit(HFCmulti_cleanup);