mm.h 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct file_ra_state;
  18. struct user_struct;
  19. struct writeback_control;
  20. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  21. extern unsigned long max_mapnr;
  22. #endif
  23. extern unsigned long num_physpages;
  24. extern unsigned long totalram_pages;
  25. extern void * high_memory;
  26. extern int page_cluster;
  27. #ifdef CONFIG_SYSCTL
  28. extern int sysctl_legacy_va_layout;
  29. #else
  30. #define sysctl_legacy_va_layout 0
  31. #endif
  32. #include <asm/page.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  36. /* to align the pointer to the (next) page boundary */
  37. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  38. /*
  39. * Linux kernel virtual memory manager primitives.
  40. * The idea being to have a "virtual" mm in the same way
  41. * we have a virtual fs - giving a cleaner interface to the
  42. * mm details, and allowing different kinds of memory mappings
  43. * (from shared memory to executable loading to arbitrary
  44. * mmap() functions).
  45. */
  46. extern struct kmem_cache *vm_area_cachep;
  47. #ifndef CONFIG_MMU
  48. extern struct rb_root nommu_region_tree;
  49. extern struct rw_semaphore nommu_region_sem;
  50. extern unsigned int kobjsize(const void *objp);
  51. #endif
  52. /*
  53. * vm_flags in vm_area_struct, see mm_types.h.
  54. */
  55. #define VM_READ 0x00000001 /* currently active flags */
  56. #define VM_WRITE 0x00000002
  57. #define VM_EXEC 0x00000004
  58. #define VM_SHARED 0x00000008
  59. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  60. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  61. #define VM_MAYWRITE 0x00000020
  62. #define VM_MAYEXEC 0x00000040
  63. #define VM_MAYSHARE 0x00000080
  64. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  65. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  66. #define VM_GROWSUP 0x00000200
  67. #else
  68. #define VM_GROWSUP 0x00000000
  69. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  70. #endif
  71. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  72. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  73. #define VM_EXECUTABLE 0x00001000
  74. #define VM_LOCKED 0x00002000
  75. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  76. /* Used by sys_madvise() */
  77. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  78. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  79. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  80. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  81. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  82. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  83. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  84. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  85. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  86. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  87. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  88. #else
  89. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  90. #endif
  91. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  92. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  93. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  94. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  95. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  96. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  97. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  98. /* Bits set in the VMA until the stack is in its final location */
  99. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  100. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  101. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  102. #endif
  103. #ifdef CONFIG_STACK_GROWSUP
  104. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  105. #else
  106. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  107. #endif
  108. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  109. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  110. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  111. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  112. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  113. /*
  114. * special vmas that are non-mergable, non-mlock()able
  115. */
  116. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  117. /*
  118. * mapping from the currently active vm_flags protection bits (the
  119. * low four bits) to a page protection mask..
  120. */
  121. extern pgprot_t protection_map[16];
  122. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  123. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  124. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  125. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  126. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  127. /*
  128. * This interface is used by x86 PAT code to identify a pfn mapping that is
  129. * linear over entire vma. This is to optimize PAT code that deals with
  130. * marking the physical region with a particular prot. This is not for generic
  131. * mm use. Note also that this check will not work if the pfn mapping is
  132. * linear for a vma starting at physical address 0. In which case PAT code
  133. * falls back to slow path of reserving physical range page by page.
  134. */
  135. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  136. {
  137. return (vma->vm_flags & VM_PFN_AT_MMAP);
  138. }
  139. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  140. {
  141. return (vma->vm_flags & VM_PFNMAP);
  142. }
  143. /*
  144. * vm_fault is filled by the the pagefault handler and passed to the vma's
  145. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  146. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  147. *
  148. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  149. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  150. * mapping support.
  151. */
  152. struct vm_fault {
  153. unsigned int flags; /* FAULT_FLAG_xxx flags */
  154. pgoff_t pgoff; /* Logical page offset based on vma */
  155. void __user *virtual_address; /* Faulting virtual address */
  156. struct page *page; /* ->fault handlers should return a
  157. * page here, unless VM_FAULT_NOPAGE
  158. * is set (which is also implied by
  159. * VM_FAULT_ERROR).
  160. */
  161. };
  162. /*
  163. * These are the virtual MM functions - opening of an area, closing and
  164. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  165. * to the functions called when a no-page or a wp-page exception occurs.
  166. */
  167. struct vm_operations_struct {
  168. void (*open)(struct vm_area_struct * area);
  169. void (*close)(struct vm_area_struct * area);
  170. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  171. /* notification that a previously read-only page is about to become
  172. * writable, if an error is returned it will cause a SIGBUS */
  173. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  174. /* called by access_process_vm when get_user_pages() fails, typically
  175. * for use by special VMAs that can switch between memory and hardware
  176. */
  177. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  178. void *buf, int len, int write);
  179. #ifdef CONFIG_NUMA
  180. /*
  181. * set_policy() op must add a reference to any non-NULL @new mempolicy
  182. * to hold the policy upon return. Caller should pass NULL @new to
  183. * remove a policy and fall back to surrounding context--i.e. do not
  184. * install a MPOL_DEFAULT policy, nor the task or system default
  185. * mempolicy.
  186. */
  187. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  188. /*
  189. * get_policy() op must add reference [mpol_get()] to any policy at
  190. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  191. * in mm/mempolicy.c will do this automatically.
  192. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  193. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  194. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  195. * must return NULL--i.e., do not "fallback" to task or system default
  196. * policy.
  197. */
  198. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  199. unsigned long addr);
  200. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  201. const nodemask_t *to, unsigned long flags);
  202. #endif
  203. };
  204. struct mmu_gather;
  205. struct inode;
  206. #define page_private(page) ((page)->private)
  207. #define set_page_private(page, v) ((page)->private = (v))
  208. /*
  209. * FIXME: take this include out, include page-flags.h in
  210. * files which need it (119 of them)
  211. */
  212. #include <linux/page-flags.h>
  213. #include <linux/huge_mm.h>
  214. /*
  215. * Methods to modify the page usage count.
  216. *
  217. * What counts for a page usage:
  218. * - cache mapping (page->mapping)
  219. * - private data (page->private)
  220. * - page mapped in a task's page tables, each mapping
  221. * is counted separately
  222. *
  223. * Also, many kernel routines increase the page count before a critical
  224. * routine so they can be sure the page doesn't go away from under them.
  225. */
  226. /*
  227. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  228. */
  229. static inline int put_page_testzero(struct page *page)
  230. {
  231. VM_BUG_ON(atomic_read(&page->_count) == 0);
  232. return atomic_dec_and_test(&page->_count);
  233. }
  234. /*
  235. * Try to grab a ref unless the page has a refcount of zero, return false if
  236. * that is the case.
  237. */
  238. static inline int get_page_unless_zero(struct page *page)
  239. {
  240. return atomic_inc_not_zero(&page->_count);
  241. }
  242. extern int page_is_ram(unsigned long pfn);
  243. /* Support for virtually mapped pages */
  244. struct page *vmalloc_to_page(const void *addr);
  245. unsigned long vmalloc_to_pfn(const void *addr);
  246. /*
  247. * Determine if an address is within the vmalloc range
  248. *
  249. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  250. * is no special casing required.
  251. */
  252. static inline int is_vmalloc_addr(const void *x)
  253. {
  254. #ifdef CONFIG_MMU
  255. unsigned long addr = (unsigned long)x;
  256. return addr >= VMALLOC_START && addr < VMALLOC_END;
  257. #else
  258. return 0;
  259. #endif
  260. }
  261. #ifdef CONFIG_MMU
  262. extern int is_vmalloc_or_module_addr(const void *x);
  263. #else
  264. static inline int is_vmalloc_or_module_addr(const void *x)
  265. {
  266. return 0;
  267. }
  268. #endif
  269. static inline void compound_lock(struct page *page)
  270. {
  271. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  272. bit_spin_lock(PG_compound_lock, &page->flags);
  273. #endif
  274. }
  275. static inline void compound_unlock(struct page *page)
  276. {
  277. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  278. bit_spin_unlock(PG_compound_lock, &page->flags);
  279. #endif
  280. }
  281. static inline unsigned long compound_lock_irqsave(struct page *page)
  282. {
  283. unsigned long uninitialized_var(flags);
  284. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  285. local_irq_save(flags);
  286. compound_lock(page);
  287. #endif
  288. return flags;
  289. }
  290. static inline void compound_unlock_irqrestore(struct page *page,
  291. unsigned long flags)
  292. {
  293. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  294. compound_unlock(page);
  295. local_irq_restore(flags);
  296. #endif
  297. }
  298. static inline struct page *compound_head(struct page *page)
  299. {
  300. if (unlikely(PageTail(page)))
  301. return page->first_page;
  302. return page;
  303. }
  304. static inline int page_count(struct page *page)
  305. {
  306. return atomic_read(&compound_head(page)->_count);
  307. }
  308. static inline void get_page(struct page *page)
  309. {
  310. /*
  311. * Getting a normal page or the head of a compound page
  312. * requires to already have an elevated page->_count. Only if
  313. * we're getting a tail page, the elevated page->_count is
  314. * required only in the head page, so for tail pages the
  315. * bugcheck only verifies that the page->_count isn't
  316. * negative.
  317. */
  318. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  319. atomic_inc(&page->_count);
  320. /*
  321. * Getting a tail page will elevate both the head and tail
  322. * page->_count(s).
  323. */
  324. if (unlikely(PageTail(page))) {
  325. /*
  326. * This is safe only because
  327. * __split_huge_page_refcount can't run under
  328. * get_page().
  329. */
  330. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  331. atomic_inc(&page->first_page->_count);
  332. }
  333. }
  334. static inline struct page *virt_to_head_page(const void *x)
  335. {
  336. struct page *page = virt_to_page(x);
  337. return compound_head(page);
  338. }
  339. /*
  340. * Setup the page count before being freed into the page allocator for
  341. * the first time (boot or memory hotplug)
  342. */
  343. static inline void init_page_count(struct page *page)
  344. {
  345. atomic_set(&page->_count, 1);
  346. }
  347. /*
  348. * PageBuddy() indicate that the page is free and in the buddy system
  349. * (see mm/page_alloc.c).
  350. *
  351. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  352. * -2 so that an underflow of the page_mapcount() won't be mistaken
  353. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  354. * efficiently by most CPU architectures.
  355. */
  356. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  357. static inline int PageBuddy(struct page *page)
  358. {
  359. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  360. }
  361. static inline void __SetPageBuddy(struct page *page)
  362. {
  363. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  364. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  365. }
  366. static inline void __ClearPageBuddy(struct page *page)
  367. {
  368. VM_BUG_ON(!PageBuddy(page));
  369. atomic_set(&page->_mapcount, -1);
  370. }
  371. void put_page(struct page *page);
  372. void put_pages_list(struct list_head *pages);
  373. void split_page(struct page *page, unsigned int order);
  374. int split_free_page(struct page *page);
  375. /*
  376. * Compound pages have a destructor function. Provide a
  377. * prototype for that function and accessor functions.
  378. * These are _only_ valid on the head of a PG_compound page.
  379. */
  380. typedef void compound_page_dtor(struct page *);
  381. static inline void set_compound_page_dtor(struct page *page,
  382. compound_page_dtor *dtor)
  383. {
  384. page[1].lru.next = (void *)dtor;
  385. }
  386. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  387. {
  388. return (compound_page_dtor *)page[1].lru.next;
  389. }
  390. static inline int compound_order(struct page *page)
  391. {
  392. if (!PageHead(page))
  393. return 0;
  394. return (unsigned long)page[1].lru.prev;
  395. }
  396. static inline int compound_trans_order(struct page *page)
  397. {
  398. int order;
  399. unsigned long flags;
  400. if (!PageHead(page))
  401. return 0;
  402. flags = compound_lock_irqsave(page);
  403. order = compound_order(page);
  404. compound_unlock_irqrestore(page, flags);
  405. return order;
  406. }
  407. static inline void set_compound_order(struct page *page, unsigned long order)
  408. {
  409. page[1].lru.prev = (void *)order;
  410. }
  411. #ifdef CONFIG_MMU
  412. /*
  413. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  414. * servicing faults for write access. In the normal case, do always want
  415. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  416. * that do not have writing enabled, when used by access_process_vm.
  417. */
  418. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  419. {
  420. if (likely(vma->vm_flags & VM_WRITE))
  421. pte = pte_mkwrite(pte);
  422. return pte;
  423. }
  424. #endif
  425. /*
  426. * Multiple processes may "see" the same page. E.g. for untouched
  427. * mappings of /dev/null, all processes see the same page full of
  428. * zeroes, and text pages of executables and shared libraries have
  429. * only one copy in memory, at most, normally.
  430. *
  431. * For the non-reserved pages, page_count(page) denotes a reference count.
  432. * page_count() == 0 means the page is free. page->lru is then used for
  433. * freelist management in the buddy allocator.
  434. * page_count() > 0 means the page has been allocated.
  435. *
  436. * Pages are allocated by the slab allocator in order to provide memory
  437. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  438. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  439. * unless a particular usage is carefully commented. (the responsibility of
  440. * freeing the kmalloc memory is the caller's, of course).
  441. *
  442. * A page may be used by anyone else who does a __get_free_page().
  443. * In this case, page_count still tracks the references, and should only
  444. * be used through the normal accessor functions. The top bits of page->flags
  445. * and page->virtual store page management information, but all other fields
  446. * are unused and could be used privately, carefully. The management of this
  447. * page is the responsibility of the one who allocated it, and those who have
  448. * subsequently been given references to it.
  449. *
  450. * The other pages (we may call them "pagecache pages") are completely
  451. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  452. * The following discussion applies only to them.
  453. *
  454. * A pagecache page contains an opaque `private' member, which belongs to the
  455. * page's address_space. Usually, this is the address of a circular list of
  456. * the page's disk buffers. PG_private must be set to tell the VM to call
  457. * into the filesystem to release these pages.
  458. *
  459. * A page may belong to an inode's memory mapping. In this case, page->mapping
  460. * is the pointer to the inode, and page->index is the file offset of the page,
  461. * in units of PAGE_CACHE_SIZE.
  462. *
  463. * If pagecache pages are not associated with an inode, they are said to be
  464. * anonymous pages. These may become associated with the swapcache, and in that
  465. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  466. *
  467. * In either case (swapcache or inode backed), the pagecache itself holds one
  468. * reference to the page. Setting PG_private should also increment the
  469. * refcount. The each user mapping also has a reference to the page.
  470. *
  471. * The pagecache pages are stored in a per-mapping radix tree, which is
  472. * rooted at mapping->page_tree, and indexed by offset.
  473. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  474. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  475. *
  476. * All pagecache pages may be subject to I/O:
  477. * - inode pages may need to be read from disk,
  478. * - inode pages which have been modified and are MAP_SHARED may need
  479. * to be written back to the inode on disk,
  480. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  481. * modified may need to be swapped out to swap space and (later) to be read
  482. * back into memory.
  483. */
  484. /*
  485. * The zone field is never updated after free_area_init_core()
  486. * sets it, so none of the operations on it need to be atomic.
  487. */
  488. /*
  489. * page->flags layout:
  490. *
  491. * There are three possibilities for how page->flags get
  492. * laid out. The first is for the normal case, without
  493. * sparsemem. The second is for sparsemem when there is
  494. * plenty of space for node and section. The last is when
  495. * we have run out of space and have to fall back to an
  496. * alternate (slower) way of determining the node.
  497. *
  498. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  499. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  500. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  501. */
  502. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  503. #define SECTIONS_WIDTH SECTIONS_SHIFT
  504. #else
  505. #define SECTIONS_WIDTH 0
  506. #endif
  507. #define ZONES_WIDTH ZONES_SHIFT
  508. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  509. #define NODES_WIDTH NODES_SHIFT
  510. #else
  511. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  512. #error "Vmemmap: No space for nodes field in page flags"
  513. #endif
  514. #define NODES_WIDTH 0
  515. #endif
  516. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  517. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  518. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  519. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  520. /*
  521. * We are going to use the flags for the page to node mapping if its in
  522. * there. This includes the case where there is no node, so it is implicit.
  523. */
  524. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  525. #define NODE_NOT_IN_PAGE_FLAGS
  526. #endif
  527. #ifndef PFN_SECTION_SHIFT
  528. #define PFN_SECTION_SHIFT 0
  529. #endif
  530. /*
  531. * Define the bit shifts to access each section. For non-existant
  532. * sections we define the shift as 0; that plus a 0 mask ensures
  533. * the compiler will optimise away reference to them.
  534. */
  535. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  536. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  537. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  538. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  539. #ifdef NODE_NOT_IN_PAGE_FLAGS
  540. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  541. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  542. SECTIONS_PGOFF : ZONES_PGOFF)
  543. #else
  544. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  545. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  546. NODES_PGOFF : ZONES_PGOFF)
  547. #endif
  548. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  549. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  550. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  551. #endif
  552. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  553. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  554. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  555. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  556. static inline enum zone_type page_zonenum(struct page *page)
  557. {
  558. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  559. }
  560. /*
  561. * The identification function is only used by the buddy allocator for
  562. * determining if two pages could be buddies. We are not really
  563. * identifying a zone since we could be using a the section number
  564. * id if we have not node id available in page flags.
  565. * We guarantee only that it will return the same value for two
  566. * combinable pages in a zone.
  567. */
  568. static inline int page_zone_id(struct page *page)
  569. {
  570. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  571. }
  572. static inline int zone_to_nid(struct zone *zone)
  573. {
  574. #ifdef CONFIG_NUMA
  575. return zone->node;
  576. #else
  577. return 0;
  578. #endif
  579. }
  580. #ifdef NODE_NOT_IN_PAGE_FLAGS
  581. extern int page_to_nid(struct page *page);
  582. #else
  583. static inline int page_to_nid(struct page *page)
  584. {
  585. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  586. }
  587. #endif
  588. static inline struct zone *page_zone(struct page *page)
  589. {
  590. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  591. }
  592. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  593. static inline unsigned long page_to_section(struct page *page)
  594. {
  595. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  596. }
  597. #endif
  598. static inline void set_page_zone(struct page *page, enum zone_type zone)
  599. {
  600. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  601. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  602. }
  603. static inline void set_page_node(struct page *page, unsigned long node)
  604. {
  605. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  606. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  607. }
  608. static inline void set_page_section(struct page *page, unsigned long section)
  609. {
  610. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  611. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  612. }
  613. static inline void set_page_links(struct page *page, enum zone_type zone,
  614. unsigned long node, unsigned long pfn)
  615. {
  616. set_page_zone(page, zone);
  617. set_page_node(page, node);
  618. set_page_section(page, pfn_to_section_nr(pfn));
  619. }
  620. /*
  621. * Some inline functions in vmstat.h depend on page_zone()
  622. */
  623. #include <linux/vmstat.h>
  624. static __always_inline void *lowmem_page_address(struct page *page)
  625. {
  626. return __va(PFN_PHYS(page_to_pfn(page)));
  627. }
  628. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  629. #define HASHED_PAGE_VIRTUAL
  630. #endif
  631. #if defined(WANT_PAGE_VIRTUAL)
  632. #define page_address(page) ((page)->virtual)
  633. #define set_page_address(page, address) \
  634. do { \
  635. (page)->virtual = (address); \
  636. } while(0)
  637. #define page_address_init() do { } while(0)
  638. #endif
  639. #if defined(HASHED_PAGE_VIRTUAL)
  640. void *page_address(struct page *page);
  641. void set_page_address(struct page *page, void *virtual);
  642. void page_address_init(void);
  643. #endif
  644. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  645. #define page_address(page) lowmem_page_address(page)
  646. #define set_page_address(page, address) do { } while(0)
  647. #define page_address_init() do { } while(0)
  648. #endif
  649. /*
  650. * On an anonymous page mapped into a user virtual memory area,
  651. * page->mapping points to its anon_vma, not to a struct address_space;
  652. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  653. *
  654. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  655. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  656. * and then page->mapping points, not to an anon_vma, but to a private
  657. * structure which KSM associates with that merged page. See ksm.h.
  658. *
  659. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  660. *
  661. * Please note that, confusingly, "page_mapping" refers to the inode
  662. * address_space which maps the page from disk; whereas "page_mapped"
  663. * refers to user virtual address space into which the page is mapped.
  664. */
  665. #define PAGE_MAPPING_ANON 1
  666. #define PAGE_MAPPING_KSM 2
  667. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  668. extern struct address_space swapper_space;
  669. static inline struct address_space *page_mapping(struct page *page)
  670. {
  671. struct address_space *mapping = page->mapping;
  672. VM_BUG_ON(PageSlab(page));
  673. if (unlikely(PageSwapCache(page)))
  674. mapping = &swapper_space;
  675. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  676. mapping = NULL;
  677. return mapping;
  678. }
  679. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  680. static inline void *page_rmapping(struct page *page)
  681. {
  682. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  683. }
  684. static inline int PageAnon(struct page *page)
  685. {
  686. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  687. }
  688. /*
  689. * Return the pagecache index of the passed page. Regular pagecache pages
  690. * use ->index whereas swapcache pages use ->private
  691. */
  692. static inline pgoff_t page_index(struct page *page)
  693. {
  694. if (unlikely(PageSwapCache(page)))
  695. return page_private(page);
  696. return page->index;
  697. }
  698. /*
  699. * The atomic page->_mapcount, like _count, starts from -1:
  700. * so that transitions both from it and to it can be tracked,
  701. * using atomic_inc_and_test and atomic_add_negative(-1).
  702. */
  703. static inline void reset_page_mapcount(struct page *page)
  704. {
  705. atomic_set(&(page)->_mapcount, -1);
  706. }
  707. static inline int page_mapcount(struct page *page)
  708. {
  709. return atomic_read(&(page)->_mapcount) + 1;
  710. }
  711. /*
  712. * Return true if this page is mapped into pagetables.
  713. */
  714. static inline int page_mapped(struct page *page)
  715. {
  716. return atomic_read(&(page)->_mapcount) >= 0;
  717. }
  718. /*
  719. * Different kinds of faults, as returned by handle_mm_fault().
  720. * Used to decide whether a process gets delivered SIGBUS or
  721. * just gets major/minor fault counters bumped up.
  722. */
  723. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  724. #define VM_FAULT_OOM 0x0001
  725. #define VM_FAULT_SIGBUS 0x0002
  726. #define VM_FAULT_MAJOR 0x0004
  727. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  728. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  729. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  730. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  731. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  732. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  733. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  734. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  735. VM_FAULT_HWPOISON_LARGE)
  736. /* Encode hstate index for a hwpoisoned large page */
  737. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  738. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  739. /*
  740. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  741. */
  742. extern void pagefault_out_of_memory(void);
  743. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  744. /*
  745. * Flags passed to __show_mem() and __show_free_areas() to suppress output in
  746. * various contexts.
  747. */
  748. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  749. extern void show_free_areas(void);
  750. extern void __show_free_areas(unsigned int flags);
  751. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  752. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  753. int shmem_zero_setup(struct vm_area_struct *);
  754. #ifndef CONFIG_MMU
  755. extern unsigned long shmem_get_unmapped_area(struct file *file,
  756. unsigned long addr,
  757. unsigned long len,
  758. unsigned long pgoff,
  759. unsigned long flags);
  760. #endif
  761. extern int can_do_mlock(void);
  762. extern int user_shm_lock(size_t, struct user_struct *);
  763. extern void user_shm_unlock(size_t, struct user_struct *);
  764. /*
  765. * Parameter block passed down to zap_pte_range in exceptional cases.
  766. */
  767. struct zap_details {
  768. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  769. struct address_space *check_mapping; /* Check page->mapping if set */
  770. pgoff_t first_index; /* Lowest page->index to unmap */
  771. pgoff_t last_index; /* Highest page->index to unmap */
  772. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  773. unsigned long truncate_count; /* Compare vm_truncate_count */
  774. };
  775. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  776. pte_t pte);
  777. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  778. unsigned long size);
  779. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  780. unsigned long size, struct zap_details *);
  781. unsigned long unmap_vmas(struct mmu_gather **tlb,
  782. struct vm_area_struct *start_vma, unsigned long start_addr,
  783. unsigned long end_addr, unsigned long *nr_accounted,
  784. struct zap_details *);
  785. /**
  786. * mm_walk - callbacks for walk_page_range
  787. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  788. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  789. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  790. * this handler is required to be able to handle
  791. * pmd_trans_huge() pmds. They may simply choose to
  792. * split_huge_page() instead of handling it explicitly.
  793. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  794. * @pte_hole: if set, called for each hole at all levels
  795. * @hugetlb_entry: if set, called for each hugetlb entry
  796. *
  797. * (see walk_page_range for more details)
  798. */
  799. struct mm_walk {
  800. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  801. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  802. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  803. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  804. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  805. int (*hugetlb_entry)(pte_t *, unsigned long,
  806. unsigned long, unsigned long, struct mm_walk *);
  807. struct mm_struct *mm;
  808. void *private;
  809. };
  810. int walk_page_range(unsigned long addr, unsigned long end,
  811. struct mm_walk *walk);
  812. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  813. unsigned long end, unsigned long floor, unsigned long ceiling);
  814. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  815. struct vm_area_struct *vma);
  816. void unmap_mapping_range(struct address_space *mapping,
  817. loff_t const holebegin, loff_t const holelen, int even_cows);
  818. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  819. unsigned long *pfn);
  820. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  821. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  822. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  823. void *buf, int len, int write);
  824. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  825. loff_t const holebegin, loff_t const holelen)
  826. {
  827. unmap_mapping_range(mapping, holebegin, holelen, 0);
  828. }
  829. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  830. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  831. extern int vmtruncate(struct inode *inode, loff_t offset);
  832. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  833. int truncate_inode_page(struct address_space *mapping, struct page *page);
  834. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  835. int invalidate_inode_page(struct page *page);
  836. #ifdef CONFIG_MMU
  837. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  838. unsigned long address, unsigned int flags);
  839. #else
  840. static inline int handle_mm_fault(struct mm_struct *mm,
  841. struct vm_area_struct *vma, unsigned long address,
  842. unsigned int flags)
  843. {
  844. /* should never happen if there's no MMU */
  845. BUG();
  846. return VM_FAULT_SIGBUS;
  847. }
  848. #endif
  849. extern int make_pages_present(unsigned long addr, unsigned long end);
  850. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  851. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  852. unsigned long start, int len, unsigned int foll_flags,
  853. struct page **pages, struct vm_area_struct **vmas,
  854. int *nonblocking);
  855. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  856. unsigned long start, int nr_pages, int write, int force,
  857. struct page **pages, struct vm_area_struct **vmas);
  858. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  859. struct page **pages);
  860. struct page *get_dump_page(unsigned long addr);
  861. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  862. extern void do_invalidatepage(struct page *page, unsigned long offset);
  863. int __set_page_dirty_nobuffers(struct page *page);
  864. int __set_page_dirty_no_writeback(struct page *page);
  865. int redirty_page_for_writepage(struct writeback_control *wbc,
  866. struct page *page);
  867. void account_page_dirtied(struct page *page, struct address_space *mapping);
  868. void account_page_writeback(struct page *page);
  869. int set_page_dirty(struct page *page);
  870. int set_page_dirty_lock(struct page *page);
  871. int clear_page_dirty_for_io(struct page *page);
  872. /* Is the vma a continuation of the stack vma above it? */
  873. static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
  874. {
  875. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  876. }
  877. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  878. unsigned long old_addr, struct vm_area_struct *new_vma,
  879. unsigned long new_addr, unsigned long len);
  880. extern unsigned long do_mremap(unsigned long addr,
  881. unsigned long old_len, unsigned long new_len,
  882. unsigned long flags, unsigned long new_addr);
  883. extern int mprotect_fixup(struct vm_area_struct *vma,
  884. struct vm_area_struct **pprev, unsigned long start,
  885. unsigned long end, unsigned long newflags);
  886. /*
  887. * doesn't attempt to fault and will return short.
  888. */
  889. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  890. struct page **pages);
  891. /*
  892. * per-process(per-mm_struct) statistics.
  893. */
  894. #if defined(SPLIT_RSS_COUNTING)
  895. /*
  896. * The mm counters are not protected by its page_table_lock,
  897. * so must be incremented atomically.
  898. */
  899. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  900. {
  901. atomic_long_set(&mm->rss_stat.count[member], value);
  902. }
  903. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  904. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  905. {
  906. atomic_long_add(value, &mm->rss_stat.count[member]);
  907. }
  908. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  909. {
  910. atomic_long_inc(&mm->rss_stat.count[member]);
  911. }
  912. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  913. {
  914. atomic_long_dec(&mm->rss_stat.count[member]);
  915. }
  916. #else /* !USE_SPLIT_PTLOCKS */
  917. /*
  918. * The mm counters are protected by its page_table_lock,
  919. * so can be incremented directly.
  920. */
  921. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  922. {
  923. mm->rss_stat.count[member] = value;
  924. }
  925. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  926. {
  927. return mm->rss_stat.count[member];
  928. }
  929. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  930. {
  931. mm->rss_stat.count[member] += value;
  932. }
  933. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  934. {
  935. mm->rss_stat.count[member]++;
  936. }
  937. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  938. {
  939. mm->rss_stat.count[member]--;
  940. }
  941. #endif /* !USE_SPLIT_PTLOCKS */
  942. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  943. {
  944. return get_mm_counter(mm, MM_FILEPAGES) +
  945. get_mm_counter(mm, MM_ANONPAGES);
  946. }
  947. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  948. {
  949. return max(mm->hiwater_rss, get_mm_rss(mm));
  950. }
  951. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  952. {
  953. return max(mm->hiwater_vm, mm->total_vm);
  954. }
  955. static inline void update_hiwater_rss(struct mm_struct *mm)
  956. {
  957. unsigned long _rss = get_mm_rss(mm);
  958. if ((mm)->hiwater_rss < _rss)
  959. (mm)->hiwater_rss = _rss;
  960. }
  961. static inline void update_hiwater_vm(struct mm_struct *mm)
  962. {
  963. if (mm->hiwater_vm < mm->total_vm)
  964. mm->hiwater_vm = mm->total_vm;
  965. }
  966. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  967. struct mm_struct *mm)
  968. {
  969. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  970. if (*maxrss < hiwater_rss)
  971. *maxrss = hiwater_rss;
  972. }
  973. #if defined(SPLIT_RSS_COUNTING)
  974. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  975. #else
  976. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  977. {
  978. }
  979. #endif
  980. /*
  981. * A callback you can register to apply pressure to ageable caches.
  982. *
  983. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  984. * look through the least-recently-used 'nr_to_scan' entries and
  985. * attempt to free them up. It should return the number of objects
  986. * which remain in the cache. If it returns -1, it means it cannot do
  987. * any scanning at this time (eg. there is a risk of deadlock).
  988. *
  989. * The 'gfpmask' refers to the allocation we are currently trying to
  990. * fulfil.
  991. *
  992. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  993. * querying the cache size, so a fastpath for that case is appropriate.
  994. */
  995. struct shrinker {
  996. int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
  997. int seeks; /* seeks to recreate an obj */
  998. /* These are for internal use */
  999. struct list_head list;
  1000. long nr; /* objs pending delete */
  1001. };
  1002. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  1003. extern void register_shrinker(struct shrinker *);
  1004. extern void unregister_shrinker(struct shrinker *);
  1005. int vma_wants_writenotify(struct vm_area_struct *vma);
  1006. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1007. spinlock_t **ptl);
  1008. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1009. spinlock_t **ptl)
  1010. {
  1011. pte_t *ptep;
  1012. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1013. return ptep;
  1014. }
  1015. #ifdef __PAGETABLE_PUD_FOLDED
  1016. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1017. unsigned long address)
  1018. {
  1019. return 0;
  1020. }
  1021. #else
  1022. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1023. #endif
  1024. #ifdef __PAGETABLE_PMD_FOLDED
  1025. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1026. unsigned long address)
  1027. {
  1028. return 0;
  1029. }
  1030. #else
  1031. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1032. #endif
  1033. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1034. pmd_t *pmd, unsigned long address);
  1035. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1036. /*
  1037. * The following ifdef needed to get the 4level-fixup.h header to work.
  1038. * Remove it when 4level-fixup.h has been removed.
  1039. */
  1040. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1041. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1042. {
  1043. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1044. NULL: pud_offset(pgd, address);
  1045. }
  1046. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1047. {
  1048. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1049. NULL: pmd_offset(pud, address);
  1050. }
  1051. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1052. #if USE_SPLIT_PTLOCKS
  1053. /*
  1054. * We tuck a spinlock to guard each pagetable page into its struct page,
  1055. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1056. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1057. * When freeing, reset page->mapping so free_pages_check won't complain.
  1058. */
  1059. #define __pte_lockptr(page) &((page)->ptl)
  1060. #define pte_lock_init(_page) do { \
  1061. spin_lock_init(__pte_lockptr(_page)); \
  1062. } while (0)
  1063. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1064. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1065. #else /* !USE_SPLIT_PTLOCKS */
  1066. /*
  1067. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1068. */
  1069. #define pte_lock_init(page) do {} while (0)
  1070. #define pte_lock_deinit(page) do {} while (0)
  1071. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1072. #endif /* USE_SPLIT_PTLOCKS */
  1073. static inline void pgtable_page_ctor(struct page *page)
  1074. {
  1075. pte_lock_init(page);
  1076. inc_zone_page_state(page, NR_PAGETABLE);
  1077. }
  1078. static inline void pgtable_page_dtor(struct page *page)
  1079. {
  1080. pte_lock_deinit(page);
  1081. dec_zone_page_state(page, NR_PAGETABLE);
  1082. }
  1083. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1084. ({ \
  1085. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1086. pte_t *__pte = pte_offset_map(pmd, address); \
  1087. *(ptlp) = __ptl; \
  1088. spin_lock(__ptl); \
  1089. __pte; \
  1090. })
  1091. #define pte_unmap_unlock(pte, ptl) do { \
  1092. spin_unlock(ptl); \
  1093. pte_unmap(pte); \
  1094. } while (0)
  1095. #define pte_alloc_map(mm, vma, pmd, address) \
  1096. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1097. pmd, address))? \
  1098. NULL: pte_offset_map(pmd, address))
  1099. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1100. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1101. pmd, address))? \
  1102. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1103. #define pte_alloc_kernel(pmd, address) \
  1104. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1105. NULL: pte_offset_kernel(pmd, address))
  1106. extern void free_area_init(unsigned long * zones_size);
  1107. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1108. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1109. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1110. /*
  1111. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1112. * zones, allocate the backing mem_map and account for memory holes in a more
  1113. * architecture independent manner. This is a substitute for creating the
  1114. * zone_sizes[] and zholes_size[] arrays and passing them to
  1115. * free_area_init_node()
  1116. *
  1117. * An architecture is expected to register range of page frames backed by
  1118. * physical memory with add_active_range() before calling
  1119. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1120. * usage, an architecture is expected to do something like
  1121. *
  1122. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1123. * max_highmem_pfn};
  1124. * for_each_valid_physical_page_range()
  1125. * add_active_range(node_id, start_pfn, end_pfn)
  1126. * free_area_init_nodes(max_zone_pfns);
  1127. *
  1128. * If the architecture guarantees that there are no holes in the ranges
  1129. * registered with add_active_range(), free_bootmem_active_regions()
  1130. * will call free_bootmem_node() for each registered physical page range.
  1131. * Similarly sparse_memory_present_with_active_regions() calls
  1132. * memory_present() for each range when SPARSEMEM is enabled.
  1133. *
  1134. * See mm/page_alloc.c for more information on each function exposed by
  1135. * CONFIG_ARCH_POPULATES_NODE_MAP
  1136. */
  1137. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1138. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1139. unsigned long end_pfn);
  1140. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1141. unsigned long end_pfn);
  1142. extern void remove_all_active_ranges(void);
  1143. void sort_node_map(void);
  1144. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1145. unsigned long end_pfn);
  1146. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1147. unsigned long end_pfn);
  1148. extern void get_pfn_range_for_nid(unsigned int nid,
  1149. unsigned long *start_pfn, unsigned long *end_pfn);
  1150. extern unsigned long find_min_pfn_with_active_regions(void);
  1151. extern void free_bootmem_with_active_regions(int nid,
  1152. unsigned long max_low_pfn);
  1153. int add_from_early_node_map(struct range *range, int az,
  1154. int nr_range, int nid);
  1155. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1156. u64 goal, u64 limit);
  1157. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1158. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1159. extern void sparse_memory_present_with_active_regions(int nid);
  1160. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1161. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1162. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1163. static inline int __early_pfn_to_nid(unsigned long pfn)
  1164. {
  1165. return 0;
  1166. }
  1167. #else
  1168. /* please see mm/page_alloc.c */
  1169. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1170. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1171. /* there is a per-arch backend function. */
  1172. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1173. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1174. #endif
  1175. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1176. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1177. unsigned long, enum memmap_context);
  1178. extern void setup_per_zone_wmarks(void);
  1179. extern void calculate_zone_inactive_ratio(struct zone *zone);
  1180. extern void mem_init(void);
  1181. extern void __init mmap_init(void);
  1182. extern void show_mem(void);
  1183. extern void __show_mem(unsigned int flags);
  1184. extern void si_meminfo(struct sysinfo * val);
  1185. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1186. extern int after_bootmem;
  1187. extern void setup_per_cpu_pageset(void);
  1188. extern void zone_pcp_update(struct zone *zone);
  1189. /* nommu.c */
  1190. extern atomic_long_t mmap_pages_allocated;
  1191. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1192. /* prio_tree.c */
  1193. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1194. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1195. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1196. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1197. struct prio_tree_iter *iter);
  1198. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1199. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1200. (vma = vma_prio_tree_next(vma, iter)); )
  1201. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1202. struct list_head *list)
  1203. {
  1204. vma->shared.vm_set.parent = NULL;
  1205. list_add_tail(&vma->shared.vm_set.list, list);
  1206. }
  1207. /* mmap.c */
  1208. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1209. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1210. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1211. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1212. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1213. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1214. struct mempolicy *);
  1215. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1216. extern int split_vma(struct mm_struct *,
  1217. struct vm_area_struct *, unsigned long addr, int new_below);
  1218. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1219. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1220. struct rb_node **, struct rb_node *);
  1221. extern void unlink_file_vma(struct vm_area_struct *);
  1222. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1223. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1224. extern void exit_mmap(struct mm_struct *);
  1225. extern int mm_take_all_locks(struct mm_struct *mm);
  1226. extern void mm_drop_all_locks(struct mm_struct *mm);
  1227. #ifdef CONFIG_PROC_FS
  1228. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1229. extern void added_exe_file_vma(struct mm_struct *mm);
  1230. extern void removed_exe_file_vma(struct mm_struct *mm);
  1231. #else
  1232. static inline void added_exe_file_vma(struct mm_struct *mm)
  1233. {}
  1234. static inline void removed_exe_file_vma(struct mm_struct *mm)
  1235. {}
  1236. #endif /* CONFIG_PROC_FS */
  1237. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1238. extern int install_special_mapping(struct mm_struct *mm,
  1239. unsigned long addr, unsigned long len,
  1240. unsigned long flags, struct page **pages);
  1241. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1242. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1243. unsigned long len, unsigned long prot,
  1244. unsigned long flag, unsigned long pgoff);
  1245. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1246. unsigned long len, unsigned long flags,
  1247. unsigned int vm_flags, unsigned long pgoff);
  1248. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1249. unsigned long len, unsigned long prot,
  1250. unsigned long flag, unsigned long offset)
  1251. {
  1252. unsigned long ret = -EINVAL;
  1253. if ((offset + PAGE_ALIGN(len)) < offset)
  1254. goto out;
  1255. if (!(offset & ~PAGE_MASK))
  1256. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1257. out:
  1258. return ret;
  1259. }
  1260. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1261. extern unsigned long do_brk(unsigned long, unsigned long);
  1262. /* filemap.c */
  1263. extern unsigned long page_unuse(struct page *);
  1264. extern void truncate_inode_pages(struct address_space *, loff_t);
  1265. extern void truncate_inode_pages_range(struct address_space *,
  1266. loff_t lstart, loff_t lend);
  1267. /* generic vm_area_ops exported for stackable file systems */
  1268. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1269. /* mm/page-writeback.c */
  1270. int write_one_page(struct page *page, int wait);
  1271. void task_dirty_inc(struct task_struct *tsk);
  1272. /* readahead.c */
  1273. #define VM_MAX_READAHEAD 128 /* kbytes */
  1274. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1275. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1276. pgoff_t offset, unsigned long nr_to_read);
  1277. void page_cache_sync_readahead(struct address_space *mapping,
  1278. struct file_ra_state *ra,
  1279. struct file *filp,
  1280. pgoff_t offset,
  1281. unsigned long size);
  1282. void page_cache_async_readahead(struct address_space *mapping,
  1283. struct file_ra_state *ra,
  1284. struct file *filp,
  1285. struct page *pg,
  1286. pgoff_t offset,
  1287. unsigned long size);
  1288. unsigned long max_sane_readahead(unsigned long nr);
  1289. unsigned long ra_submit(struct file_ra_state *ra,
  1290. struct address_space *mapping,
  1291. struct file *filp);
  1292. /* Do stack extension */
  1293. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1294. #if VM_GROWSUP
  1295. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1296. #else
  1297. #define expand_upwards(vma, address) do { } while (0)
  1298. #endif
  1299. extern int expand_stack_downwards(struct vm_area_struct *vma,
  1300. unsigned long address);
  1301. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1302. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1303. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1304. struct vm_area_struct **pprev);
  1305. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1306. NULL if none. Assume start_addr < end_addr. */
  1307. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1308. {
  1309. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1310. if (vma && end_addr <= vma->vm_start)
  1311. vma = NULL;
  1312. return vma;
  1313. }
  1314. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1315. {
  1316. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1317. }
  1318. #ifdef CONFIG_MMU
  1319. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1320. #else
  1321. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1322. {
  1323. return __pgprot(0);
  1324. }
  1325. #endif
  1326. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1327. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1328. unsigned long pfn, unsigned long size, pgprot_t);
  1329. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1330. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1331. unsigned long pfn);
  1332. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1333. unsigned long pfn);
  1334. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1335. unsigned int foll_flags);
  1336. #define FOLL_WRITE 0x01 /* check pte is writable */
  1337. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1338. #define FOLL_GET 0x04 /* do get_page on page */
  1339. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1340. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1341. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1342. * and return without waiting upon it */
  1343. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1344. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1345. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1346. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1347. void *data);
  1348. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1349. unsigned long size, pte_fn_t fn, void *data);
  1350. #ifdef CONFIG_PROC_FS
  1351. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1352. #else
  1353. static inline void vm_stat_account(struct mm_struct *mm,
  1354. unsigned long flags, struct file *file, long pages)
  1355. {
  1356. }
  1357. #endif /* CONFIG_PROC_FS */
  1358. #ifdef CONFIG_DEBUG_PAGEALLOC
  1359. extern int debug_pagealloc_enabled;
  1360. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1361. static inline void enable_debug_pagealloc(void)
  1362. {
  1363. debug_pagealloc_enabled = 1;
  1364. }
  1365. #ifdef CONFIG_HIBERNATION
  1366. extern bool kernel_page_present(struct page *page);
  1367. #endif /* CONFIG_HIBERNATION */
  1368. #else
  1369. static inline void
  1370. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1371. static inline void enable_debug_pagealloc(void)
  1372. {
  1373. }
  1374. #ifdef CONFIG_HIBERNATION
  1375. static inline bool kernel_page_present(struct page *page) { return true; }
  1376. #endif /* CONFIG_HIBERNATION */
  1377. #endif
  1378. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1379. #ifdef __HAVE_ARCH_GATE_AREA
  1380. int in_gate_area_no_task(unsigned long addr);
  1381. int in_gate_area(struct task_struct *task, unsigned long addr);
  1382. #else
  1383. int in_gate_area_no_task(unsigned long addr);
  1384. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1385. #endif /* __HAVE_ARCH_GATE_AREA */
  1386. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1387. void __user *, size_t *, loff_t *);
  1388. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1389. unsigned long lru_pages);
  1390. #ifndef CONFIG_MMU
  1391. #define randomize_va_space 0
  1392. #else
  1393. extern int randomize_va_space;
  1394. #endif
  1395. const char * arch_vma_name(struct vm_area_struct *vma);
  1396. void print_vma_addr(char *prefix, unsigned long rip);
  1397. void sparse_mem_maps_populate_node(struct page **map_map,
  1398. unsigned long pnum_begin,
  1399. unsigned long pnum_end,
  1400. unsigned long map_count,
  1401. int nodeid);
  1402. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1403. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1404. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1405. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1406. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1407. void *vmemmap_alloc_block(unsigned long size, int node);
  1408. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1409. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1410. int vmemmap_populate_basepages(struct page *start_page,
  1411. unsigned long pages, int node);
  1412. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1413. void vmemmap_populate_print_last(void);
  1414. enum mf_flags {
  1415. MF_COUNT_INCREASED = 1 << 0,
  1416. };
  1417. extern void memory_failure(unsigned long pfn, int trapno);
  1418. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1419. extern int unpoison_memory(unsigned long pfn);
  1420. extern int sysctl_memory_failure_early_kill;
  1421. extern int sysctl_memory_failure_recovery;
  1422. extern void shake_page(struct page *p, int access);
  1423. extern atomic_long_t mce_bad_pages;
  1424. extern int soft_offline_page(struct page *page, int flags);
  1425. extern void dump_page(struct page *page);
  1426. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1427. extern void clear_huge_page(struct page *page,
  1428. unsigned long addr,
  1429. unsigned int pages_per_huge_page);
  1430. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1431. unsigned long addr, struct vm_area_struct *vma,
  1432. unsigned int pages_per_huge_page);
  1433. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1434. #endif /* __KERNEL__ */
  1435. #endif /* _LINUX_MM_H */