as-iosched.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505
  1. /*
  2. * Anticipatory & deadline i/o scheduler.
  3. *
  4. * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
  5. * Nick Piggin <nickpiggin@yahoo.com.au>
  6. *
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/fs.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/bio.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/init.h>
  16. #include <linux/compiler.h>
  17. #include <linux/rbtree.h>
  18. #include <linux/interrupt.h>
  19. #define REQ_SYNC 1
  20. #define REQ_ASYNC 0
  21. /*
  22. * See Documentation/block/as-iosched.txt
  23. */
  24. /*
  25. * max time before a read is submitted.
  26. */
  27. #define default_read_expire (HZ / 8)
  28. /*
  29. * ditto for writes, these limits are not hard, even
  30. * if the disk is capable of satisfying them.
  31. */
  32. #define default_write_expire (HZ / 4)
  33. /*
  34. * read_batch_expire describes how long we will allow a stream of reads to
  35. * persist before looking to see whether it is time to switch over to writes.
  36. */
  37. #define default_read_batch_expire (HZ / 2)
  38. /*
  39. * write_batch_expire describes how long we want a stream of writes to run for.
  40. * This is not a hard limit, but a target we set for the auto-tuning thingy.
  41. * See, the problem is: we can send a lot of writes to disk cache / TCQ in
  42. * a short amount of time...
  43. */
  44. #define default_write_batch_expire (HZ / 8)
  45. /*
  46. * max time we may wait to anticipate a read (default around 6ms)
  47. */
  48. #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
  49. /*
  50. * Keep track of up to 20ms thinktimes. We can go as big as we like here,
  51. * however huge values tend to interfere and not decay fast enough. A program
  52. * might be in a non-io phase of operation. Waiting on user input for example,
  53. * or doing a lengthy computation. A small penalty can be justified there, and
  54. * will still catch out those processes that constantly have large thinktimes.
  55. */
  56. #define MAX_THINKTIME (HZ/50UL)
  57. /* Bits in as_io_context.state */
  58. enum as_io_states {
  59. AS_TASK_RUNNING=0, /* Process has not exited */
  60. AS_TASK_IOSTARTED, /* Process has started some IO */
  61. AS_TASK_IORUNNING, /* Process has completed some IO */
  62. };
  63. enum anticipation_status {
  64. ANTIC_OFF=0, /* Not anticipating (normal operation) */
  65. ANTIC_WAIT_REQ, /* The last read has not yet completed */
  66. ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
  67. last read (which has completed) */
  68. ANTIC_FINISHED, /* Anticipating but have found a candidate
  69. * or timed out */
  70. };
  71. struct as_data {
  72. /*
  73. * run time data
  74. */
  75. struct request_queue *q; /* the "owner" queue */
  76. /*
  77. * requests (as_rq s) are present on both sort_list and fifo_list
  78. */
  79. struct rb_root sort_list[2];
  80. struct list_head fifo_list[2];
  81. struct request *next_rq[2]; /* next in sort order */
  82. sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
  83. unsigned long exit_prob; /* probability a task will exit while
  84. being waited on */
  85. unsigned long exit_no_coop; /* probablility an exited task will
  86. not be part of a later cooperating
  87. request */
  88. unsigned long new_ttime_total; /* mean thinktime on new proc */
  89. unsigned long new_ttime_mean;
  90. u64 new_seek_total; /* mean seek on new proc */
  91. sector_t new_seek_mean;
  92. unsigned long current_batch_expires;
  93. unsigned long last_check_fifo[2];
  94. int changed_batch; /* 1: waiting for old batch to end */
  95. int new_batch; /* 1: waiting on first read complete */
  96. int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
  97. int write_batch_count; /* max # of reqs in a write batch */
  98. int current_write_count; /* how many requests left this batch */
  99. int write_batch_idled; /* has the write batch gone idle? */
  100. enum anticipation_status antic_status;
  101. unsigned long antic_start; /* jiffies: when it started */
  102. struct timer_list antic_timer; /* anticipatory scheduling timer */
  103. struct work_struct antic_work; /* Deferred unplugging */
  104. struct io_context *io_context; /* Identify the expected process */
  105. int ioc_finished; /* IO associated with io_context is finished */
  106. int nr_dispatched;
  107. /*
  108. * settings that change how the i/o scheduler behaves
  109. */
  110. unsigned long fifo_expire[2];
  111. unsigned long batch_expire[2];
  112. unsigned long antic_expire;
  113. };
  114. /*
  115. * per-request data.
  116. */
  117. enum arq_state {
  118. AS_RQ_NEW=0, /* New - not referenced and not on any lists */
  119. AS_RQ_QUEUED, /* In the request queue. It belongs to the
  120. scheduler */
  121. AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
  122. driver now */
  123. AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
  124. AS_RQ_REMOVED,
  125. AS_RQ_MERGED,
  126. AS_RQ_POSTSCHED, /* when they shouldn't be */
  127. };
  128. #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
  129. #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
  130. #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
  131. static DEFINE_PER_CPU(unsigned long, ioc_count);
  132. static struct completion *ioc_gone;
  133. static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
  134. static void as_antic_stop(struct as_data *ad);
  135. /*
  136. * IO Context helper functions
  137. */
  138. /* Called to deallocate the as_io_context */
  139. static void free_as_io_context(struct as_io_context *aic)
  140. {
  141. kfree(aic);
  142. elv_ioc_count_dec(ioc_count);
  143. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  144. complete(ioc_gone);
  145. }
  146. static void as_trim(struct io_context *ioc)
  147. {
  148. spin_lock_irq(&ioc->lock);
  149. if (ioc->aic)
  150. free_as_io_context(ioc->aic);
  151. ioc->aic = NULL;
  152. spin_unlock_irq(&ioc->lock);
  153. }
  154. /* Called when the task exits */
  155. static void exit_as_io_context(struct as_io_context *aic)
  156. {
  157. WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
  158. clear_bit(AS_TASK_RUNNING, &aic->state);
  159. }
  160. static struct as_io_context *alloc_as_io_context(void)
  161. {
  162. struct as_io_context *ret;
  163. ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
  164. if (ret) {
  165. ret->dtor = free_as_io_context;
  166. ret->exit = exit_as_io_context;
  167. ret->state = 1 << AS_TASK_RUNNING;
  168. atomic_set(&ret->nr_queued, 0);
  169. atomic_set(&ret->nr_dispatched, 0);
  170. spin_lock_init(&ret->lock);
  171. ret->ttime_total = 0;
  172. ret->ttime_samples = 0;
  173. ret->ttime_mean = 0;
  174. ret->seek_total = 0;
  175. ret->seek_samples = 0;
  176. ret->seek_mean = 0;
  177. elv_ioc_count_inc(ioc_count);
  178. }
  179. return ret;
  180. }
  181. /*
  182. * If the current task has no AS IO context then create one and initialise it.
  183. * Then take a ref on the task's io context and return it.
  184. */
  185. static struct io_context *as_get_io_context(int node)
  186. {
  187. struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
  188. if (ioc && !ioc->aic) {
  189. ioc->aic = alloc_as_io_context();
  190. if (!ioc->aic) {
  191. put_io_context(ioc);
  192. ioc = NULL;
  193. }
  194. }
  195. return ioc;
  196. }
  197. static void as_put_io_context(struct request *rq)
  198. {
  199. struct as_io_context *aic;
  200. if (unlikely(!RQ_IOC(rq)))
  201. return;
  202. aic = RQ_IOC(rq)->aic;
  203. if (rq_is_sync(rq) && aic) {
  204. unsigned long flags;
  205. spin_lock_irqsave(&aic->lock, flags);
  206. set_bit(AS_TASK_IORUNNING, &aic->state);
  207. aic->last_end_request = jiffies;
  208. spin_unlock_irqrestore(&aic->lock, flags);
  209. }
  210. put_io_context(RQ_IOC(rq));
  211. }
  212. /*
  213. * rb tree support functions
  214. */
  215. #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
  216. static void as_add_rq_rb(struct as_data *ad, struct request *rq)
  217. {
  218. struct request *alias;
  219. while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
  220. as_move_to_dispatch(ad, alias);
  221. as_antic_stop(ad);
  222. }
  223. }
  224. static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
  225. {
  226. elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
  227. }
  228. /*
  229. * IO Scheduler proper
  230. */
  231. #define MAXBACK (1024 * 1024) /*
  232. * Maximum distance the disk will go backward
  233. * for a request.
  234. */
  235. #define BACK_PENALTY 2
  236. /*
  237. * as_choose_req selects the preferred one of two requests of the same data_dir
  238. * ignoring time - eg. timeouts, which is the job of as_dispatch_request
  239. */
  240. static struct request *
  241. as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
  242. {
  243. int data_dir;
  244. sector_t last, s1, s2, d1, d2;
  245. int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
  246. const sector_t maxback = MAXBACK;
  247. if (rq1 == NULL || rq1 == rq2)
  248. return rq2;
  249. if (rq2 == NULL)
  250. return rq1;
  251. data_dir = rq_is_sync(rq1);
  252. last = ad->last_sector[data_dir];
  253. s1 = rq1->sector;
  254. s2 = rq2->sector;
  255. BUG_ON(data_dir != rq_is_sync(rq2));
  256. /*
  257. * Strict one way elevator _except_ in the case where we allow
  258. * short backward seeks which are biased as twice the cost of a
  259. * similar forward seek.
  260. */
  261. if (s1 >= last)
  262. d1 = s1 - last;
  263. else if (s1+maxback >= last)
  264. d1 = (last - s1)*BACK_PENALTY;
  265. else {
  266. r1_wrap = 1;
  267. d1 = 0; /* shut up, gcc */
  268. }
  269. if (s2 >= last)
  270. d2 = s2 - last;
  271. else if (s2+maxback >= last)
  272. d2 = (last - s2)*BACK_PENALTY;
  273. else {
  274. r2_wrap = 1;
  275. d2 = 0;
  276. }
  277. /* Found required data */
  278. if (!r1_wrap && r2_wrap)
  279. return rq1;
  280. else if (!r2_wrap && r1_wrap)
  281. return rq2;
  282. else if (r1_wrap && r2_wrap) {
  283. /* both behind the head */
  284. if (s1 <= s2)
  285. return rq1;
  286. else
  287. return rq2;
  288. }
  289. /* Both requests in front of the head */
  290. if (d1 < d2)
  291. return rq1;
  292. else if (d2 < d1)
  293. return rq2;
  294. else {
  295. if (s1 >= s2)
  296. return rq1;
  297. else
  298. return rq2;
  299. }
  300. }
  301. /*
  302. * as_find_next_rq finds the next request after @prev in elevator order.
  303. * this with as_choose_req form the basis for how the scheduler chooses
  304. * what request to process next. Anticipation works on top of this.
  305. */
  306. static struct request *
  307. as_find_next_rq(struct as_data *ad, struct request *last)
  308. {
  309. struct rb_node *rbnext = rb_next(&last->rb_node);
  310. struct rb_node *rbprev = rb_prev(&last->rb_node);
  311. struct request *next = NULL, *prev = NULL;
  312. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  313. if (rbprev)
  314. prev = rb_entry_rq(rbprev);
  315. if (rbnext)
  316. next = rb_entry_rq(rbnext);
  317. else {
  318. const int data_dir = rq_is_sync(last);
  319. rbnext = rb_first(&ad->sort_list[data_dir]);
  320. if (rbnext && rbnext != &last->rb_node)
  321. next = rb_entry_rq(rbnext);
  322. }
  323. return as_choose_req(ad, next, prev);
  324. }
  325. /*
  326. * anticipatory scheduling functions follow
  327. */
  328. /*
  329. * as_antic_expired tells us when we have anticipated too long.
  330. * The funny "absolute difference" math on the elapsed time is to handle
  331. * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
  332. */
  333. static int as_antic_expired(struct as_data *ad)
  334. {
  335. long delta_jif;
  336. delta_jif = jiffies - ad->antic_start;
  337. if (unlikely(delta_jif < 0))
  338. delta_jif = -delta_jif;
  339. if (delta_jif < ad->antic_expire)
  340. return 0;
  341. return 1;
  342. }
  343. /*
  344. * as_antic_waitnext starts anticipating that a nice request will soon be
  345. * submitted. See also as_antic_waitreq
  346. */
  347. static void as_antic_waitnext(struct as_data *ad)
  348. {
  349. unsigned long timeout;
  350. BUG_ON(ad->antic_status != ANTIC_OFF
  351. && ad->antic_status != ANTIC_WAIT_REQ);
  352. timeout = ad->antic_start + ad->antic_expire;
  353. mod_timer(&ad->antic_timer, timeout);
  354. ad->antic_status = ANTIC_WAIT_NEXT;
  355. }
  356. /*
  357. * as_antic_waitreq starts anticipating. We don't start timing the anticipation
  358. * until the request that we're anticipating on has finished. This means we
  359. * are timing from when the candidate process wakes up hopefully.
  360. */
  361. static void as_antic_waitreq(struct as_data *ad)
  362. {
  363. BUG_ON(ad->antic_status == ANTIC_FINISHED);
  364. if (ad->antic_status == ANTIC_OFF) {
  365. if (!ad->io_context || ad->ioc_finished)
  366. as_antic_waitnext(ad);
  367. else
  368. ad->antic_status = ANTIC_WAIT_REQ;
  369. }
  370. }
  371. /*
  372. * This is called directly by the functions in this file to stop anticipation.
  373. * We kill the timer and schedule a call to the request_fn asap.
  374. */
  375. static void as_antic_stop(struct as_data *ad)
  376. {
  377. int status = ad->antic_status;
  378. if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
  379. if (status == ANTIC_WAIT_NEXT)
  380. del_timer(&ad->antic_timer);
  381. ad->antic_status = ANTIC_FINISHED;
  382. /* see as_work_handler */
  383. kblockd_schedule_work(&ad->antic_work);
  384. }
  385. }
  386. /*
  387. * as_antic_timeout is the timer function set by as_antic_waitnext.
  388. */
  389. static void as_antic_timeout(unsigned long data)
  390. {
  391. struct request_queue *q = (struct request_queue *)data;
  392. struct as_data *ad = q->elevator->elevator_data;
  393. unsigned long flags;
  394. spin_lock_irqsave(q->queue_lock, flags);
  395. if (ad->antic_status == ANTIC_WAIT_REQ
  396. || ad->antic_status == ANTIC_WAIT_NEXT) {
  397. struct as_io_context *aic;
  398. spin_lock(&ad->io_context->lock);
  399. aic = ad->io_context->aic;
  400. ad->antic_status = ANTIC_FINISHED;
  401. kblockd_schedule_work(&ad->antic_work);
  402. if (aic->ttime_samples == 0) {
  403. /* process anticipated on has exited or timed out*/
  404. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  405. }
  406. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  407. /* process not "saved" by a cooperating request */
  408. ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
  409. }
  410. spin_unlock(&ad->io_context->lock);
  411. }
  412. spin_unlock_irqrestore(q->queue_lock, flags);
  413. }
  414. static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
  415. unsigned long ttime)
  416. {
  417. /* fixed point: 1.0 == 1<<8 */
  418. if (aic->ttime_samples == 0) {
  419. ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
  420. ad->new_ttime_mean = ad->new_ttime_total / 256;
  421. ad->exit_prob = (7*ad->exit_prob)/8;
  422. }
  423. aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
  424. aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
  425. aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
  426. }
  427. static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
  428. sector_t sdist)
  429. {
  430. u64 total;
  431. if (aic->seek_samples == 0) {
  432. ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
  433. ad->new_seek_mean = ad->new_seek_total / 256;
  434. }
  435. /*
  436. * Don't allow the seek distance to get too large from the
  437. * odd fragment, pagein, etc
  438. */
  439. if (aic->seek_samples <= 60) /* second&third seek */
  440. sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
  441. else
  442. sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
  443. aic->seek_samples = (7*aic->seek_samples + 256) / 8;
  444. aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
  445. total = aic->seek_total + (aic->seek_samples/2);
  446. do_div(total, aic->seek_samples);
  447. aic->seek_mean = (sector_t)total;
  448. }
  449. /*
  450. * as_update_iohist keeps a decaying histogram of IO thinktimes, and
  451. * updates @aic->ttime_mean based on that. It is called when a new
  452. * request is queued.
  453. */
  454. static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
  455. struct request *rq)
  456. {
  457. int data_dir = rq_is_sync(rq);
  458. unsigned long thinktime = 0;
  459. sector_t seek_dist;
  460. if (aic == NULL)
  461. return;
  462. if (data_dir == REQ_SYNC) {
  463. unsigned long in_flight = atomic_read(&aic->nr_queued)
  464. + atomic_read(&aic->nr_dispatched);
  465. spin_lock(&aic->lock);
  466. if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
  467. test_bit(AS_TASK_IOSTARTED, &aic->state)) {
  468. /* Calculate read -> read thinktime */
  469. if (test_bit(AS_TASK_IORUNNING, &aic->state)
  470. && in_flight == 0) {
  471. thinktime = jiffies - aic->last_end_request;
  472. thinktime = min(thinktime, MAX_THINKTIME-1);
  473. }
  474. as_update_thinktime(ad, aic, thinktime);
  475. /* Calculate read -> read seek distance */
  476. if (aic->last_request_pos < rq->sector)
  477. seek_dist = rq->sector - aic->last_request_pos;
  478. else
  479. seek_dist = aic->last_request_pos - rq->sector;
  480. as_update_seekdist(ad, aic, seek_dist);
  481. }
  482. aic->last_request_pos = rq->sector + rq->nr_sectors;
  483. set_bit(AS_TASK_IOSTARTED, &aic->state);
  484. spin_unlock(&aic->lock);
  485. }
  486. }
  487. /*
  488. * as_close_req decides if one request is considered "close" to the
  489. * previous one issued.
  490. */
  491. static int as_close_req(struct as_data *ad, struct as_io_context *aic,
  492. struct request *rq)
  493. {
  494. unsigned long delay; /* jiffies */
  495. sector_t last = ad->last_sector[ad->batch_data_dir];
  496. sector_t next = rq->sector;
  497. sector_t delta; /* acceptable close offset (in sectors) */
  498. sector_t s;
  499. if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
  500. delay = 0;
  501. else
  502. delay = jiffies - ad->antic_start;
  503. if (delay == 0)
  504. delta = 8192;
  505. else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
  506. delta = 8192 << delay;
  507. else
  508. return 1;
  509. if ((last <= next + (delta>>1)) && (next <= last + delta))
  510. return 1;
  511. if (last < next)
  512. s = next - last;
  513. else
  514. s = last - next;
  515. if (aic->seek_samples == 0) {
  516. /*
  517. * Process has just started IO. Use past statistics to
  518. * gauge success possibility
  519. */
  520. if (ad->new_seek_mean > s) {
  521. /* this request is better than what we're expecting */
  522. return 1;
  523. }
  524. } else {
  525. if (aic->seek_mean > s) {
  526. /* this request is better than what we're expecting */
  527. return 1;
  528. }
  529. }
  530. return 0;
  531. }
  532. /*
  533. * as_can_break_anticipation returns true if we have been anticipating this
  534. * request.
  535. *
  536. * It also returns true if the process against which we are anticipating
  537. * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
  538. * dispatch it ASAP, because we know that application will not be submitting
  539. * any new reads.
  540. *
  541. * If the task which has submitted the request has exited, break anticipation.
  542. *
  543. * If this task has queued some other IO, do not enter enticipation.
  544. */
  545. static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
  546. {
  547. struct io_context *ioc;
  548. struct as_io_context *aic;
  549. ioc = ad->io_context;
  550. BUG_ON(!ioc);
  551. spin_lock(&ioc->lock);
  552. if (rq && ioc == RQ_IOC(rq)) {
  553. /* request from same process */
  554. spin_unlock(&ioc->lock);
  555. return 1;
  556. }
  557. if (ad->ioc_finished && as_antic_expired(ad)) {
  558. /*
  559. * In this situation status should really be FINISHED,
  560. * however the timer hasn't had the chance to run yet.
  561. */
  562. spin_unlock(&ioc->lock);
  563. return 1;
  564. }
  565. aic = ioc->aic;
  566. if (!aic) {
  567. spin_unlock(&ioc->lock);
  568. return 0;
  569. }
  570. if (atomic_read(&aic->nr_queued) > 0) {
  571. /* process has more requests queued */
  572. spin_unlock(&ioc->lock);
  573. return 1;
  574. }
  575. if (atomic_read(&aic->nr_dispatched) > 0) {
  576. /* process has more requests dispatched */
  577. spin_unlock(&ioc->lock);
  578. return 1;
  579. }
  580. if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
  581. /*
  582. * Found a close request that is not one of ours.
  583. *
  584. * This makes close requests from another process update
  585. * our IO history. Is generally useful when there are
  586. * two or more cooperating processes working in the same
  587. * area.
  588. */
  589. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  590. if (aic->ttime_samples == 0)
  591. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  592. ad->exit_no_coop = (7*ad->exit_no_coop)/8;
  593. }
  594. as_update_iohist(ad, aic, rq);
  595. spin_unlock(&ioc->lock);
  596. return 1;
  597. }
  598. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  599. /* process anticipated on has exited */
  600. if (aic->ttime_samples == 0)
  601. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  602. if (ad->exit_no_coop > 128) {
  603. spin_unlock(&ioc->lock);
  604. return 1;
  605. }
  606. }
  607. if (aic->ttime_samples == 0) {
  608. if (ad->new_ttime_mean > ad->antic_expire) {
  609. spin_unlock(&ioc->lock);
  610. return 1;
  611. }
  612. if (ad->exit_prob * ad->exit_no_coop > 128*256) {
  613. spin_unlock(&ioc->lock);
  614. return 1;
  615. }
  616. } else if (aic->ttime_mean > ad->antic_expire) {
  617. /* the process thinks too much between requests */
  618. spin_unlock(&ioc->lock);
  619. return 1;
  620. }
  621. spin_unlock(&ioc->lock);
  622. return 0;
  623. }
  624. /*
  625. * as_can_anticipate indicates whether we should either run rq
  626. * or keep anticipating a better request.
  627. */
  628. static int as_can_anticipate(struct as_data *ad, struct request *rq)
  629. {
  630. if (!ad->io_context)
  631. /*
  632. * Last request submitted was a write
  633. */
  634. return 0;
  635. if (ad->antic_status == ANTIC_FINISHED)
  636. /*
  637. * Don't restart if we have just finished. Run the next request
  638. */
  639. return 0;
  640. if (as_can_break_anticipation(ad, rq))
  641. /*
  642. * This request is a good candidate. Don't keep anticipating,
  643. * run it.
  644. */
  645. return 0;
  646. /*
  647. * OK from here, we haven't finished, and don't have a decent request!
  648. * Status is either ANTIC_OFF so start waiting,
  649. * ANTIC_WAIT_REQ so continue waiting for request to finish
  650. * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
  651. */
  652. return 1;
  653. }
  654. /*
  655. * as_update_rq must be called whenever a request (rq) is added to
  656. * the sort_list. This function keeps caches up to date, and checks if the
  657. * request might be one we are "anticipating"
  658. */
  659. static void as_update_rq(struct as_data *ad, struct request *rq)
  660. {
  661. const int data_dir = rq_is_sync(rq);
  662. /* keep the next_rq cache up to date */
  663. ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
  664. /*
  665. * have we been anticipating this request?
  666. * or does it come from the same process as the one we are anticipating
  667. * for?
  668. */
  669. if (ad->antic_status == ANTIC_WAIT_REQ
  670. || ad->antic_status == ANTIC_WAIT_NEXT) {
  671. if (as_can_break_anticipation(ad, rq))
  672. as_antic_stop(ad);
  673. }
  674. }
  675. /*
  676. * Gathers timings and resizes the write batch automatically
  677. */
  678. static void update_write_batch(struct as_data *ad)
  679. {
  680. unsigned long batch = ad->batch_expire[REQ_ASYNC];
  681. long write_time;
  682. write_time = (jiffies - ad->current_batch_expires) + batch;
  683. if (write_time < 0)
  684. write_time = 0;
  685. if (write_time > batch && !ad->write_batch_idled) {
  686. if (write_time > batch * 3)
  687. ad->write_batch_count /= 2;
  688. else
  689. ad->write_batch_count--;
  690. } else if (write_time < batch && ad->current_write_count == 0) {
  691. if (batch > write_time * 3)
  692. ad->write_batch_count *= 2;
  693. else
  694. ad->write_batch_count++;
  695. }
  696. if (ad->write_batch_count < 1)
  697. ad->write_batch_count = 1;
  698. }
  699. /*
  700. * as_completed_request is to be called when a request has completed and
  701. * returned something to the requesting process, be it an error or data.
  702. */
  703. static void as_completed_request(struct request_queue *q, struct request *rq)
  704. {
  705. struct as_data *ad = q->elevator->elevator_data;
  706. WARN_ON(!list_empty(&rq->queuelist));
  707. if (RQ_STATE(rq) != AS_RQ_REMOVED) {
  708. printk("rq->state %d\n", RQ_STATE(rq));
  709. WARN_ON(1);
  710. goto out;
  711. }
  712. if (ad->changed_batch && ad->nr_dispatched == 1) {
  713. ad->current_batch_expires = jiffies +
  714. ad->batch_expire[ad->batch_data_dir];
  715. kblockd_schedule_work(&ad->antic_work);
  716. ad->changed_batch = 0;
  717. if (ad->batch_data_dir == REQ_SYNC)
  718. ad->new_batch = 1;
  719. }
  720. WARN_ON(ad->nr_dispatched == 0);
  721. ad->nr_dispatched--;
  722. /*
  723. * Start counting the batch from when a request of that direction is
  724. * actually serviced. This should help devices with big TCQ windows
  725. * and writeback caches
  726. */
  727. if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
  728. update_write_batch(ad);
  729. ad->current_batch_expires = jiffies +
  730. ad->batch_expire[REQ_SYNC];
  731. ad->new_batch = 0;
  732. }
  733. if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
  734. ad->antic_start = jiffies;
  735. ad->ioc_finished = 1;
  736. if (ad->antic_status == ANTIC_WAIT_REQ) {
  737. /*
  738. * We were waiting on this request, now anticipate
  739. * the next one
  740. */
  741. as_antic_waitnext(ad);
  742. }
  743. }
  744. as_put_io_context(rq);
  745. out:
  746. RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
  747. }
  748. /*
  749. * as_remove_queued_request removes a request from the pre dispatch queue
  750. * without updating refcounts. It is expected the caller will drop the
  751. * reference unless it replaces the request at somepart of the elevator
  752. * (ie. the dispatch queue)
  753. */
  754. static void as_remove_queued_request(struct request_queue *q,
  755. struct request *rq)
  756. {
  757. const int data_dir = rq_is_sync(rq);
  758. struct as_data *ad = q->elevator->elevator_data;
  759. struct io_context *ioc;
  760. WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
  761. ioc = RQ_IOC(rq);
  762. if (ioc && ioc->aic) {
  763. BUG_ON(!atomic_read(&ioc->aic->nr_queued));
  764. atomic_dec(&ioc->aic->nr_queued);
  765. }
  766. /*
  767. * Update the "next_rq" cache if we are about to remove its
  768. * entry
  769. */
  770. if (ad->next_rq[data_dir] == rq)
  771. ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
  772. rq_fifo_clear(rq);
  773. as_del_rq_rb(ad, rq);
  774. }
  775. /*
  776. * as_fifo_expired returns 0 if there are no expired requests on the fifo,
  777. * 1 otherwise. It is ratelimited so that we only perform the check once per
  778. * `fifo_expire' interval. Otherwise a large number of expired requests
  779. * would create a hopeless seekstorm.
  780. *
  781. * See as_antic_expired comment.
  782. */
  783. static int as_fifo_expired(struct as_data *ad, int adir)
  784. {
  785. struct request *rq;
  786. long delta_jif;
  787. delta_jif = jiffies - ad->last_check_fifo[adir];
  788. if (unlikely(delta_jif < 0))
  789. delta_jif = -delta_jif;
  790. if (delta_jif < ad->fifo_expire[adir])
  791. return 0;
  792. ad->last_check_fifo[adir] = jiffies;
  793. if (list_empty(&ad->fifo_list[adir]))
  794. return 0;
  795. rq = rq_entry_fifo(ad->fifo_list[adir].next);
  796. return time_after(jiffies, rq_fifo_time(rq));
  797. }
  798. /*
  799. * as_batch_expired returns true if the current batch has expired. A batch
  800. * is a set of reads or a set of writes.
  801. */
  802. static inline int as_batch_expired(struct as_data *ad)
  803. {
  804. if (ad->changed_batch || ad->new_batch)
  805. return 0;
  806. if (ad->batch_data_dir == REQ_SYNC)
  807. /* TODO! add a check so a complete fifo gets written? */
  808. return time_after(jiffies, ad->current_batch_expires);
  809. return time_after(jiffies, ad->current_batch_expires)
  810. || ad->current_write_count == 0;
  811. }
  812. /*
  813. * move an entry to dispatch queue
  814. */
  815. static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
  816. {
  817. const int data_dir = rq_is_sync(rq);
  818. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  819. as_antic_stop(ad);
  820. ad->antic_status = ANTIC_OFF;
  821. /*
  822. * This has to be set in order to be correctly updated by
  823. * as_find_next_rq
  824. */
  825. ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
  826. if (data_dir == REQ_SYNC) {
  827. struct io_context *ioc = RQ_IOC(rq);
  828. /* In case we have to anticipate after this */
  829. copy_io_context(&ad->io_context, &ioc);
  830. } else {
  831. if (ad->io_context) {
  832. put_io_context(ad->io_context);
  833. ad->io_context = NULL;
  834. }
  835. if (ad->current_write_count != 0)
  836. ad->current_write_count--;
  837. }
  838. ad->ioc_finished = 0;
  839. ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
  840. /*
  841. * take it off the sort and fifo list, add to dispatch queue
  842. */
  843. as_remove_queued_request(ad->q, rq);
  844. WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
  845. elv_dispatch_sort(ad->q, rq);
  846. RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
  847. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  848. atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
  849. ad->nr_dispatched++;
  850. }
  851. /*
  852. * as_dispatch_request selects the best request according to
  853. * read/write expire, batch expire, etc, and moves it to the dispatch
  854. * queue. Returns 1 if a request was found, 0 otherwise.
  855. */
  856. static int as_dispatch_request(struct request_queue *q, int force)
  857. {
  858. struct as_data *ad = q->elevator->elevator_data;
  859. const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
  860. const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
  861. struct request *rq;
  862. if (unlikely(force)) {
  863. /*
  864. * Forced dispatch, accounting is useless. Reset
  865. * accounting states and dump fifo_lists. Note that
  866. * batch_data_dir is reset to REQ_SYNC to avoid
  867. * screwing write batch accounting as write batch
  868. * accounting occurs on W->R transition.
  869. */
  870. int dispatched = 0;
  871. ad->batch_data_dir = REQ_SYNC;
  872. ad->changed_batch = 0;
  873. ad->new_batch = 0;
  874. while (ad->next_rq[REQ_SYNC]) {
  875. as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
  876. dispatched++;
  877. }
  878. ad->last_check_fifo[REQ_SYNC] = jiffies;
  879. while (ad->next_rq[REQ_ASYNC]) {
  880. as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
  881. dispatched++;
  882. }
  883. ad->last_check_fifo[REQ_ASYNC] = jiffies;
  884. return dispatched;
  885. }
  886. /* Signal that the write batch was uncontended, so we can't time it */
  887. if (ad->batch_data_dir == REQ_ASYNC && !reads) {
  888. if (ad->current_write_count == 0 || !writes)
  889. ad->write_batch_idled = 1;
  890. }
  891. if (!(reads || writes)
  892. || ad->antic_status == ANTIC_WAIT_REQ
  893. || ad->antic_status == ANTIC_WAIT_NEXT
  894. || ad->changed_batch)
  895. return 0;
  896. if (!(reads && writes && as_batch_expired(ad))) {
  897. /*
  898. * batch is still running or no reads or no writes
  899. */
  900. rq = ad->next_rq[ad->batch_data_dir];
  901. if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
  902. if (as_fifo_expired(ad, REQ_SYNC))
  903. goto fifo_expired;
  904. if (as_can_anticipate(ad, rq)) {
  905. as_antic_waitreq(ad);
  906. return 0;
  907. }
  908. }
  909. if (rq) {
  910. /* we have a "next request" */
  911. if (reads && !writes)
  912. ad->current_batch_expires =
  913. jiffies + ad->batch_expire[REQ_SYNC];
  914. goto dispatch_request;
  915. }
  916. }
  917. /*
  918. * at this point we are not running a batch. select the appropriate
  919. * data direction (read / write)
  920. */
  921. if (reads) {
  922. BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
  923. if (writes && ad->batch_data_dir == REQ_SYNC)
  924. /*
  925. * Last batch was a read, switch to writes
  926. */
  927. goto dispatch_writes;
  928. if (ad->batch_data_dir == REQ_ASYNC) {
  929. WARN_ON(ad->new_batch);
  930. ad->changed_batch = 1;
  931. }
  932. ad->batch_data_dir = REQ_SYNC;
  933. rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
  934. ad->last_check_fifo[ad->batch_data_dir] = jiffies;
  935. goto dispatch_request;
  936. }
  937. /*
  938. * the last batch was a read
  939. */
  940. if (writes) {
  941. dispatch_writes:
  942. BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
  943. if (ad->batch_data_dir == REQ_SYNC) {
  944. ad->changed_batch = 1;
  945. /*
  946. * new_batch might be 1 when the queue runs out of
  947. * reads. A subsequent submission of a write might
  948. * cause a change of batch before the read is finished.
  949. */
  950. ad->new_batch = 0;
  951. }
  952. ad->batch_data_dir = REQ_ASYNC;
  953. ad->current_write_count = ad->write_batch_count;
  954. ad->write_batch_idled = 0;
  955. rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next);
  956. ad->last_check_fifo[REQ_ASYNC] = jiffies;
  957. goto dispatch_request;
  958. }
  959. BUG();
  960. return 0;
  961. dispatch_request:
  962. /*
  963. * If a request has expired, service it.
  964. */
  965. if (as_fifo_expired(ad, ad->batch_data_dir)) {
  966. fifo_expired:
  967. rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
  968. }
  969. if (ad->changed_batch) {
  970. WARN_ON(ad->new_batch);
  971. if (ad->nr_dispatched)
  972. return 0;
  973. if (ad->batch_data_dir == REQ_ASYNC)
  974. ad->current_batch_expires = jiffies +
  975. ad->batch_expire[REQ_ASYNC];
  976. else
  977. ad->new_batch = 1;
  978. ad->changed_batch = 0;
  979. }
  980. /*
  981. * rq is the selected appropriate request.
  982. */
  983. as_move_to_dispatch(ad, rq);
  984. return 1;
  985. }
  986. /*
  987. * add rq to rbtree and fifo
  988. */
  989. static void as_add_request(struct request_queue *q, struct request *rq)
  990. {
  991. struct as_data *ad = q->elevator->elevator_data;
  992. int data_dir;
  993. RQ_SET_STATE(rq, AS_RQ_NEW);
  994. data_dir = rq_is_sync(rq);
  995. rq->elevator_private = as_get_io_context(q->node);
  996. if (RQ_IOC(rq)) {
  997. as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
  998. atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
  999. }
  1000. as_add_rq_rb(ad, rq);
  1001. /*
  1002. * set expire time and add to fifo list
  1003. */
  1004. rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
  1005. list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
  1006. as_update_rq(ad, rq); /* keep state machine up to date */
  1007. RQ_SET_STATE(rq, AS_RQ_QUEUED);
  1008. }
  1009. static void as_activate_request(struct request_queue *q, struct request *rq)
  1010. {
  1011. WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
  1012. RQ_SET_STATE(rq, AS_RQ_REMOVED);
  1013. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  1014. atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
  1015. }
  1016. static void as_deactivate_request(struct request_queue *q, struct request *rq)
  1017. {
  1018. WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
  1019. RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
  1020. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  1021. atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
  1022. }
  1023. /*
  1024. * as_queue_empty tells us if there are requests left in the device. It may
  1025. * not be the case that a driver can get the next request even if the queue
  1026. * is not empty - it is used in the block layer to check for plugging and
  1027. * merging opportunities
  1028. */
  1029. static int as_queue_empty(struct request_queue *q)
  1030. {
  1031. struct as_data *ad = q->elevator->elevator_data;
  1032. return list_empty(&ad->fifo_list[REQ_ASYNC])
  1033. && list_empty(&ad->fifo_list[REQ_SYNC]);
  1034. }
  1035. static int
  1036. as_merge(struct request_queue *q, struct request **req, struct bio *bio)
  1037. {
  1038. struct as_data *ad = q->elevator->elevator_data;
  1039. sector_t rb_key = bio->bi_sector + bio_sectors(bio);
  1040. struct request *__rq;
  1041. /*
  1042. * check for front merge
  1043. */
  1044. __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
  1045. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1046. *req = __rq;
  1047. return ELEVATOR_FRONT_MERGE;
  1048. }
  1049. return ELEVATOR_NO_MERGE;
  1050. }
  1051. static void as_merged_request(struct request_queue *q, struct request *req,
  1052. int type)
  1053. {
  1054. struct as_data *ad = q->elevator->elevator_data;
  1055. /*
  1056. * if the merge was a front merge, we need to reposition request
  1057. */
  1058. if (type == ELEVATOR_FRONT_MERGE) {
  1059. as_del_rq_rb(ad, req);
  1060. as_add_rq_rb(ad, req);
  1061. /*
  1062. * Note! At this stage of this and the next function, our next
  1063. * request may not be optimal - eg the request may have "grown"
  1064. * behind the disk head. We currently don't bother adjusting.
  1065. */
  1066. }
  1067. }
  1068. static void as_merged_requests(struct request_queue *q, struct request *req,
  1069. struct request *next)
  1070. {
  1071. /*
  1072. * if next expires before rq, assign its expire time to arq
  1073. * and move into next position (next will be deleted) in fifo
  1074. */
  1075. if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
  1076. if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
  1077. list_move(&req->queuelist, &next->queuelist);
  1078. rq_set_fifo_time(req, rq_fifo_time(next));
  1079. }
  1080. }
  1081. /*
  1082. * kill knowledge of next, this one is a goner
  1083. */
  1084. as_remove_queued_request(q, next);
  1085. as_put_io_context(next);
  1086. RQ_SET_STATE(next, AS_RQ_MERGED);
  1087. }
  1088. /*
  1089. * This is executed in a "deferred" process context, by kblockd. It calls the
  1090. * driver's request_fn so the driver can submit that request.
  1091. *
  1092. * IMPORTANT! This guy will reenter the elevator, so set up all queue global
  1093. * state before calling, and don't rely on any state over calls.
  1094. *
  1095. * FIXME! dispatch queue is not a queue at all!
  1096. */
  1097. static void as_work_handler(struct work_struct *work)
  1098. {
  1099. struct as_data *ad = container_of(work, struct as_data, antic_work);
  1100. struct request_queue *q = ad->q;
  1101. unsigned long flags;
  1102. spin_lock_irqsave(q->queue_lock, flags);
  1103. blk_start_queueing(q);
  1104. spin_unlock_irqrestore(q->queue_lock, flags);
  1105. }
  1106. static int as_may_queue(struct request_queue *q, int rw)
  1107. {
  1108. int ret = ELV_MQUEUE_MAY;
  1109. struct as_data *ad = q->elevator->elevator_data;
  1110. struct io_context *ioc;
  1111. if (ad->antic_status == ANTIC_WAIT_REQ ||
  1112. ad->antic_status == ANTIC_WAIT_NEXT) {
  1113. ioc = as_get_io_context(q->node);
  1114. if (ad->io_context == ioc)
  1115. ret = ELV_MQUEUE_MUST;
  1116. put_io_context(ioc);
  1117. }
  1118. return ret;
  1119. }
  1120. static void as_exit_queue(elevator_t *e)
  1121. {
  1122. struct as_data *ad = e->elevator_data;
  1123. del_timer_sync(&ad->antic_timer);
  1124. kblockd_flush_work(&ad->antic_work);
  1125. BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
  1126. BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
  1127. put_io_context(ad->io_context);
  1128. kfree(ad);
  1129. }
  1130. /*
  1131. * initialize elevator private data (as_data).
  1132. */
  1133. static void *as_init_queue(struct request_queue *q)
  1134. {
  1135. struct as_data *ad;
  1136. ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
  1137. if (!ad)
  1138. return NULL;
  1139. ad->q = q; /* Identify what queue the data belongs to */
  1140. /* anticipatory scheduling helpers */
  1141. ad->antic_timer.function = as_antic_timeout;
  1142. ad->antic_timer.data = (unsigned long)q;
  1143. init_timer(&ad->antic_timer);
  1144. INIT_WORK(&ad->antic_work, as_work_handler);
  1145. INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
  1146. INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
  1147. ad->sort_list[REQ_SYNC] = RB_ROOT;
  1148. ad->sort_list[REQ_ASYNC] = RB_ROOT;
  1149. ad->fifo_expire[REQ_SYNC] = default_read_expire;
  1150. ad->fifo_expire[REQ_ASYNC] = default_write_expire;
  1151. ad->antic_expire = default_antic_expire;
  1152. ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
  1153. ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
  1154. ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
  1155. ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
  1156. if (ad->write_batch_count < 2)
  1157. ad->write_batch_count = 2;
  1158. return ad;
  1159. }
  1160. /*
  1161. * sysfs parts below
  1162. */
  1163. static ssize_t
  1164. as_var_show(unsigned int var, char *page)
  1165. {
  1166. return sprintf(page, "%d\n", var);
  1167. }
  1168. static ssize_t
  1169. as_var_store(unsigned long *var, const char *page, size_t count)
  1170. {
  1171. char *p = (char *) page;
  1172. *var = simple_strtoul(p, &p, 10);
  1173. return count;
  1174. }
  1175. static ssize_t est_time_show(elevator_t *e, char *page)
  1176. {
  1177. struct as_data *ad = e->elevator_data;
  1178. int pos = 0;
  1179. pos += sprintf(page+pos, "%lu %% exit probability\n",
  1180. 100*ad->exit_prob/256);
  1181. pos += sprintf(page+pos, "%lu %% probability of exiting without a "
  1182. "cooperating process submitting IO\n",
  1183. 100*ad->exit_no_coop/256);
  1184. pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
  1185. pos += sprintf(page+pos, "%llu sectors new seek distance\n",
  1186. (unsigned long long)ad->new_seek_mean);
  1187. return pos;
  1188. }
  1189. #define SHOW_FUNCTION(__FUNC, __VAR) \
  1190. static ssize_t __FUNC(elevator_t *e, char *page) \
  1191. { \
  1192. struct as_data *ad = e->elevator_data; \
  1193. return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
  1194. }
  1195. SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
  1196. SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
  1197. SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
  1198. SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
  1199. SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
  1200. #undef SHOW_FUNCTION
  1201. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
  1202. static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
  1203. { \
  1204. struct as_data *ad = e->elevator_data; \
  1205. int ret = as_var_store(__PTR, (page), count); \
  1206. if (*(__PTR) < (MIN)) \
  1207. *(__PTR) = (MIN); \
  1208. else if (*(__PTR) > (MAX)) \
  1209. *(__PTR) = (MAX); \
  1210. *(__PTR) = msecs_to_jiffies(*(__PTR)); \
  1211. return ret; \
  1212. }
  1213. STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
  1214. STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
  1215. STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
  1216. STORE_FUNCTION(as_read_batch_expire_store,
  1217. &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
  1218. STORE_FUNCTION(as_write_batch_expire_store,
  1219. &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
  1220. #undef STORE_FUNCTION
  1221. #define AS_ATTR(name) \
  1222. __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
  1223. static struct elv_fs_entry as_attrs[] = {
  1224. __ATTR_RO(est_time),
  1225. AS_ATTR(read_expire),
  1226. AS_ATTR(write_expire),
  1227. AS_ATTR(antic_expire),
  1228. AS_ATTR(read_batch_expire),
  1229. AS_ATTR(write_batch_expire),
  1230. __ATTR_NULL
  1231. };
  1232. static struct elevator_type iosched_as = {
  1233. .ops = {
  1234. .elevator_merge_fn = as_merge,
  1235. .elevator_merged_fn = as_merged_request,
  1236. .elevator_merge_req_fn = as_merged_requests,
  1237. .elevator_dispatch_fn = as_dispatch_request,
  1238. .elevator_add_req_fn = as_add_request,
  1239. .elevator_activate_req_fn = as_activate_request,
  1240. .elevator_deactivate_req_fn = as_deactivate_request,
  1241. .elevator_queue_empty_fn = as_queue_empty,
  1242. .elevator_completed_req_fn = as_completed_request,
  1243. .elevator_former_req_fn = elv_rb_former_request,
  1244. .elevator_latter_req_fn = elv_rb_latter_request,
  1245. .elevator_may_queue_fn = as_may_queue,
  1246. .elevator_init_fn = as_init_queue,
  1247. .elevator_exit_fn = as_exit_queue,
  1248. .trim = as_trim,
  1249. },
  1250. .elevator_attrs = as_attrs,
  1251. .elevator_name = "anticipatory",
  1252. .elevator_owner = THIS_MODULE,
  1253. };
  1254. static int __init as_init(void)
  1255. {
  1256. elv_register(&iosched_as);
  1257. return 0;
  1258. }
  1259. static void __exit as_exit(void)
  1260. {
  1261. DECLARE_COMPLETION_ONSTACK(all_gone);
  1262. elv_unregister(&iosched_as);
  1263. ioc_gone = &all_gone;
  1264. /* ioc_gone's update must be visible before reading ioc_count */
  1265. smp_wmb();
  1266. if (elv_ioc_count_read(ioc_count))
  1267. wait_for_completion(ioc_gone);
  1268. synchronize_rcu();
  1269. }
  1270. module_init(as_init);
  1271. module_exit(as_exit);
  1272. MODULE_AUTHOR("Nick Piggin");
  1273. MODULE_LICENSE("GPL");
  1274. MODULE_DESCRIPTION("anticipatory IO scheduler");