dma.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. static struct kmem_cache *rsxx_dma_pool;
  76. struct dma_tracker {
  77. int next_tag;
  78. struct rsxx_dma *dma;
  79. };
  80. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  81. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  82. struct dma_tracker_list {
  83. spinlock_t lock;
  84. int head;
  85. struct dma_tracker list[0];
  86. };
  87. /*----------------- Misc Utility Functions -------------------*/
  88. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  89. {
  90. unsigned long long tgt_addr8;
  91. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  92. card->_stripe.upper_mask) |
  93. ((addr8) & card->_stripe.lower_mask);
  94. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  95. return tgt_addr8;
  96. }
  97. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  98. {
  99. unsigned int tgt;
  100. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  101. return tgt;
  102. }
  103. void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  104. {
  105. /* Reset all DMA Command/Status Queues */
  106. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  107. }
  108. static unsigned int get_dma_size(struct rsxx_dma *dma)
  109. {
  110. if (dma->sub_page.cnt)
  111. return dma->sub_page.cnt << 9;
  112. else
  113. return RSXX_HW_BLK_SIZE;
  114. }
  115. /*----------------- DMA Tracker -------------------*/
  116. static void set_tracker_dma(struct dma_tracker_list *trackers,
  117. int tag,
  118. struct rsxx_dma *dma)
  119. {
  120. trackers->list[tag].dma = dma;
  121. }
  122. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  123. int tag)
  124. {
  125. return trackers->list[tag].dma;
  126. }
  127. static int pop_tracker(struct dma_tracker_list *trackers)
  128. {
  129. int tag;
  130. spin_lock(&trackers->lock);
  131. tag = trackers->head;
  132. if (tag != -1) {
  133. trackers->head = trackers->list[tag].next_tag;
  134. trackers->list[tag].next_tag = -1;
  135. }
  136. spin_unlock(&trackers->lock);
  137. return tag;
  138. }
  139. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  140. {
  141. spin_lock(&trackers->lock);
  142. trackers->list[tag].next_tag = trackers->head;
  143. trackers->head = tag;
  144. trackers->list[tag].dma = NULL;
  145. spin_unlock(&trackers->lock);
  146. }
  147. /*----------------- Interrupt Coalescing -------------*/
  148. /*
  149. * Interrupt Coalescing Register Format:
  150. * Interrupt Timer (64ns units) [15:0]
  151. * Interrupt Count [24:16]
  152. * Reserved [31:25]
  153. */
  154. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  155. #define INTR_COAL_COUNT_SHIFT 16
  156. #define INTR_COAL_COUNT_BITS 9
  157. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  158. INTR_COAL_COUNT_SHIFT)
  159. #define INTR_COAL_LATENCY_UNITS_NS 64
  160. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  161. {
  162. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  163. if (mode == RSXX_INTR_COAL_DISABLED)
  164. return 0;
  165. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  166. (latency_units & INTR_COAL_LATENCY_MASK);
  167. }
  168. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  169. {
  170. int i;
  171. u32 q_depth = 0;
  172. u32 intr_coal;
  173. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE ||
  174. unlikely(card->eeh_state))
  175. return;
  176. for (i = 0; i < card->n_targets; i++)
  177. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  178. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  179. q_depth / 2,
  180. card->config.data.intr_coal.latency);
  181. iowrite32(intr_coal, card->regmap + INTR_COAL);
  182. }
  183. /*----------------- RSXX DMA Handling -------------------*/
  184. static void rsxx_free_dma(struct rsxx_dma_ctrl *ctrl, struct rsxx_dma *dma)
  185. {
  186. if (!pci_dma_mapping_error(ctrl->card->dev, dma->dma_addr)) {
  187. pci_unmap_page(ctrl->card->dev, dma->dma_addr,
  188. get_dma_size(dma),
  189. dma->cmd == HW_CMD_BLK_WRITE ?
  190. PCI_DMA_TODEVICE :
  191. PCI_DMA_FROMDEVICE);
  192. }
  193. kmem_cache_free(rsxx_dma_pool, dma);
  194. }
  195. static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl,
  196. struct rsxx_dma *dma,
  197. unsigned int status)
  198. {
  199. if (status & DMA_SW_ERR)
  200. ctrl->stats.dma_sw_err++;
  201. if (status & DMA_HW_FAULT)
  202. ctrl->stats.dma_hw_fault++;
  203. if (status & DMA_CANCELLED)
  204. ctrl->stats.dma_cancelled++;
  205. if (dma->cb)
  206. dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0);
  207. rsxx_free_dma(ctrl, dma);
  208. }
  209. int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl,
  210. struct list_head *q, unsigned int done)
  211. {
  212. struct rsxx_dma *dma;
  213. struct rsxx_dma *tmp;
  214. int cnt = 0;
  215. list_for_each_entry_safe(dma, tmp, q, list) {
  216. list_del(&dma->list);
  217. if (done & COMPLETE_DMA)
  218. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  219. else
  220. rsxx_free_dma(ctrl, dma);
  221. cnt++;
  222. }
  223. return cnt;
  224. }
  225. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  226. struct rsxx_dma *dma)
  227. {
  228. /*
  229. * Requeued DMAs go to the front of the queue so they are issued
  230. * first.
  231. */
  232. spin_lock_bh(&ctrl->queue_lock);
  233. ctrl->stats.sw_q_depth++;
  234. list_add(&dma->list, &ctrl->queue);
  235. spin_unlock_bh(&ctrl->queue_lock);
  236. }
  237. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  238. struct rsxx_dma *dma,
  239. u8 hw_st)
  240. {
  241. unsigned int status = 0;
  242. int requeue_cmd = 0;
  243. dev_dbg(CARD_TO_DEV(ctrl->card),
  244. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  245. dma->cmd, dma->laddr, hw_st);
  246. if (hw_st & HW_STATUS_CRC)
  247. ctrl->stats.crc_errors++;
  248. if (hw_st & HW_STATUS_HARD_ERR)
  249. ctrl->stats.hard_errors++;
  250. if (hw_st & HW_STATUS_SOFT_ERR)
  251. ctrl->stats.soft_errors++;
  252. switch (dma->cmd) {
  253. case HW_CMD_BLK_READ:
  254. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  255. if (ctrl->card->scrub_hard) {
  256. dma->cmd = HW_CMD_BLK_RECON_READ;
  257. requeue_cmd = 1;
  258. ctrl->stats.reads_retried++;
  259. } else {
  260. status |= DMA_HW_FAULT;
  261. ctrl->stats.reads_failed++;
  262. }
  263. } else if (hw_st & HW_STATUS_FAULT) {
  264. status |= DMA_HW_FAULT;
  265. ctrl->stats.reads_failed++;
  266. }
  267. break;
  268. case HW_CMD_BLK_RECON_READ:
  269. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  270. /* Data could not be reconstructed. */
  271. status |= DMA_HW_FAULT;
  272. ctrl->stats.reads_failed++;
  273. }
  274. break;
  275. case HW_CMD_BLK_WRITE:
  276. status |= DMA_HW_FAULT;
  277. ctrl->stats.writes_failed++;
  278. break;
  279. case HW_CMD_BLK_DISCARD:
  280. status |= DMA_HW_FAULT;
  281. ctrl->stats.discards_failed++;
  282. break;
  283. default:
  284. dev_err(CARD_TO_DEV(ctrl->card),
  285. "Unknown command in DMA!(cmd: x%02x "
  286. "laddr x%08x st: x%02x\n",
  287. dma->cmd, dma->laddr, hw_st);
  288. status |= DMA_SW_ERR;
  289. break;
  290. }
  291. if (requeue_cmd)
  292. rsxx_requeue_dma(ctrl, dma);
  293. else
  294. rsxx_complete_dma(ctrl, dma, status);
  295. }
  296. static void dma_engine_stalled(unsigned long data)
  297. {
  298. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  299. int cnt;
  300. if (atomic_read(&ctrl->stats.hw_q_depth) == 0 ||
  301. unlikely(ctrl->card->eeh_state))
  302. return;
  303. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  304. /*
  305. * The dma engine was stalled because the SW_CMD_IDX write
  306. * was lost. Issue it again to recover.
  307. */
  308. dev_warn(CARD_TO_DEV(ctrl->card),
  309. "SW_CMD_IDX write was lost, re-writing...\n");
  310. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  311. mod_timer(&ctrl->activity_timer,
  312. jiffies + DMA_ACTIVITY_TIMEOUT);
  313. } else {
  314. dev_warn(CARD_TO_DEV(ctrl->card),
  315. "DMA channel %d has stalled, faulting interface.\n",
  316. ctrl->id);
  317. ctrl->card->dma_fault = 1;
  318. /* Clean up the DMA queue */
  319. spin_lock(&ctrl->queue_lock);
  320. cnt = rsxx_cleanup_dma_queue(ctrl, &ctrl->queue, COMPLETE_DMA);
  321. spin_unlock(&ctrl->queue_lock);
  322. cnt += rsxx_dma_cancel(ctrl);
  323. if (cnt)
  324. dev_info(CARD_TO_DEV(ctrl->card),
  325. "Freed %d queued DMAs on channel %d\n",
  326. cnt, ctrl->id);
  327. }
  328. }
  329. static void rsxx_issue_dmas(struct rsxx_dma_ctrl *ctrl)
  330. {
  331. struct rsxx_dma *dma;
  332. int tag;
  333. int cmds_pending = 0;
  334. struct hw_cmd *hw_cmd_buf;
  335. int dir;
  336. hw_cmd_buf = ctrl->cmd.buf;
  337. if (unlikely(ctrl->card->halt) ||
  338. unlikely(ctrl->card->eeh_state))
  339. return;
  340. while (1) {
  341. spin_lock_bh(&ctrl->queue_lock);
  342. if (list_empty(&ctrl->queue)) {
  343. spin_unlock_bh(&ctrl->queue_lock);
  344. break;
  345. }
  346. spin_unlock_bh(&ctrl->queue_lock);
  347. tag = pop_tracker(ctrl->trackers);
  348. if (tag == -1)
  349. break;
  350. spin_lock_bh(&ctrl->queue_lock);
  351. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  352. list_del(&dma->list);
  353. ctrl->stats.sw_q_depth--;
  354. spin_unlock_bh(&ctrl->queue_lock);
  355. /*
  356. * This will catch any DMAs that slipped in right before the
  357. * fault, but was queued after all the other DMAs were
  358. * cancelled.
  359. */
  360. if (unlikely(ctrl->card->dma_fault)) {
  361. push_tracker(ctrl->trackers, tag);
  362. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  363. continue;
  364. }
  365. if (dma->cmd != HW_CMD_BLK_DISCARD) {
  366. if (dma->cmd == HW_CMD_BLK_WRITE)
  367. dir = PCI_DMA_TODEVICE;
  368. else
  369. dir = PCI_DMA_FROMDEVICE;
  370. /*
  371. * The function pci_map_page is placed here because we
  372. * can only, by design, issue up to 255 commands to the
  373. * hardware at one time per DMA channel. So the maximum
  374. * amount of mapped memory would be 255 * 4 channels *
  375. * 4096 Bytes which is less than 2GB, the limit of a x8
  376. * Non-HWWD PCIe slot. This way the pci_map_page
  377. * function should never fail because of a lack of
  378. * mappable memory.
  379. */
  380. dma->dma_addr = pci_map_page(ctrl->card->dev, dma->page,
  381. dma->pg_off, dma->sub_page.cnt << 9, dir);
  382. if (pci_dma_mapping_error(ctrl->card->dev, dma->dma_addr)) {
  383. push_tracker(ctrl->trackers, tag);
  384. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  385. continue;
  386. }
  387. }
  388. set_tracker_dma(ctrl->trackers, tag, dma);
  389. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  390. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  391. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  392. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  393. ((dma->sub_page.cnt & 0x7) << 4) |
  394. (dma->sub_page.off & 0x7);
  395. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  396. cpu_to_le32(dma->laddr);
  397. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  398. cpu_to_le64(dma->dma_addr);
  399. dev_dbg(CARD_TO_DEV(ctrl->card),
  400. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  401. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  402. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  403. cmds_pending++;
  404. if (dma->cmd == HW_CMD_BLK_WRITE)
  405. ctrl->stats.writes_issued++;
  406. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  407. ctrl->stats.discards_issued++;
  408. else
  409. ctrl->stats.reads_issued++;
  410. }
  411. /* Let HW know we've queued commands. */
  412. if (cmds_pending) {
  413. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  414. mod_timer(&ctrl->activity_timer,
  415. jiffies + DMA_ACTIVITY_TIMEOUT);
  416. if (unlikely(ctrl->card->eeh_state)) {
  417. del_timer_sync(&ctrl->activity_timer);
  418. return;
  419. }
  420. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  421. }
  422. }
  423. static void rsxx_dma_done(struct rsxx_dma_ctrl *ctrl)
  424. {
  425. struct rsxx_dma *dma;
  426. unsigned long flags;
  427. u16 count;
  428. u8 status;
  429. u8 tag;
  430. struct hw_status *hw_st_buf;
  431. hw_st_buf = ctrl->status.buf;
  432. if (unlikely(ctrl->card->halt) ||
  433. unlikely(ctrl->card->dma_fault) ||
  434. unlikely(ctrl->card->eeh_state))
  435. return;
  436. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  437. while (count == ctrl->e_cnt) {
  438. /*
  439. * The read memory-barrier is necessary to keep aggressive
  440. * processors/optimizers (such as the PPC Apple G5) from
  441. * reordering the following status-buffer tag & status read
  442. * *before* the count read on subsequent iterations of the
  443. * loop!
  444. */
  445. rmb();
  446. status = hw_st_buf[ctrl->status.idx].status;
  447. tag = hw_st_buf[ctrl->status.idx].tag;
  448. dma = get_tracker_dma(ctrl->trackers, tag);
  449. if (dma == NULL) {
  450. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  451. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  452. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  453. dev_err(CARD_TO_DEV(ctrl->card),
  454. "No tracker for tag %d "
  455. "(idx %d id %d)\n",
  456. tag, ctrl->status.idx, ctrl->id);
  457. return;
  458. }
  459. dev_dbg(CARD_TO_DEV(ctrl->card),
  460. "Completing DMA%d"
  461. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  462. ctrl->id, dma->laddr, tag, status, count,
  463. ctrl->status.idx);
  464. atomic_dec(&ctrl->stats.hw_q_depth);
  465. mod_timer(&ctrl->activity_timer,
  466. jiffies + DMA_ACTIVITY_TIMEOUT);
  467. if (status)
  468. rsxx_handle_dma_error(ctrl, dma, status);
  469. else
  470. rsxx_complete_dma(ctrl, dma, 0);
  471. push_tracker(ctrl->trackers, tag);
  472. ctrl->status.idx = (ctrl->status.idx + 1) &
  473. RSXX_CS_IDX_MASK;
  474. ctrl->e_cnt++;
  475. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  476. }
  477. dma_intr_coal_auto_tune(ctrl->card);
  478. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  479. del_timer_sync(&ctrl->activity_timer);
  480. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  481. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  482. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  483. spin_lock_bh(&ctrl->queue_lock);
  484. if (ctrl->stats.sw_q_depth)
  485. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  486. spin_unlock_bh(&ctrl->queue_lock);
  487. }
  488. static void rsxx_schedule_issue(struct work_struct *work)
  489. {
  490. struct rsxx_dma_ctrl *ctrl;
  491. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  492. mutex_lock(&ctrl->work_lock);
  493. rsxx_issue_dmas(ctrl);
  494. mutex_unlock(&ctrl->work_lock);
  495. }
  496. static void rsxx_schedule_done(struct work_struct *work)
  497. {
  498. struct rsxx_dma_ctrl *ctrl;
  499. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  500. mutex_lock(&ctrl->work_lock);
  501. rsxx_dma_done(ctrl);
  502. mutex_unlock(&ctrl->work_lock);
  503. }
  504. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  505. struct list_head *q,
  506. unsigned int laddr,
  507. rsxx_dma_cb cb,
  508. void *cb_data)
  509. {
  510. struct rsxx_dma *dma;
  511. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  512. if (!dma)
  513. return -ENOMEM;
  514. dma->cmd = HW_CMD_BLK_DISCARD;
  515. dma->laddr = laddr;
  516. dma->dma_addr = 0;
  517. dma->sub_page.off = 0;
  518. dma->sub_page.cnt = 0;
  519. dma->page = NULL;
  520. dma->pg_off = 0;
  521. dma->cb = cb;
  522. dma->cb_data = cb_data;
  523. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  524. list_add_tail(&dma->list, q);
  525. return 0;
  526. }
  527. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  528. struct list_head *q,
  529. int dir,
  530. unsigned int dma_off,
  531. unsigned int dma_len,
  532. unsigned int laddr,
  533. struct page *page,
  534. unsigned int pg_off,
  535. rsxx_dma_cb cb,
  536. void *cb_data)
  537. {
  538. struct rsxx_dma *dma;
  539. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  540. if (!dma)
  541. return -ENOMEM;
  542. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  543. dma->laddr = laddr;
  544. dma->sub_page.off = (dma_off >> 9);
  545. dma->sub_page.cnt = (dma_len >> 9);
  546. dma->page = page;
  547. dma->pg_off = pg_off;
  548. dma->cb = cb;
  549. dma->cb_data = cb_data;
  550. dev_dbg(CARD_TO_DEV(card),
  551. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  552. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  553. dma->sub_page.cnt, dma->page, dma->pg_off);
  554. /* Queue the DMA */
  555. list_add_tail(&dma->list, q);
  556. return 0;
  557. }
  558. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  559. struct bio *bio,
  560. atomic_t *n_dmas,
  561. rsxx_dma_cb cb,
  562. void *cb_data)
  563. {
  564. struct list_head dma_list[RSXX_MAX_TARGETS];
  565. struct bio_vec *bvec;
  566. unsigned long long addr8;
  567. unsigned int laddr;
  568. unsigned int bv_len;
  569. unsigned int bv_off;
  570. unsigned int dma_off;
  571. unsigned int dma_len;
  572. int dma_cnt[RSXX_MAX_TARGETS];
  573. int tgt;
  574. int st;
  575. int i;
  576. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  577. atomic_set(n_dmas, 0);
  578. for (i = 0; i < card->n_targets; i++) {
  579. INIT_LIST_HEAD(&dma_list[i]);
  580. dma_cnt[i] = 0;
  581. }
  582. if (bio->bi_rw & REQ_DISCARD) {
  583. bv_len = bio->bi_size;
  584. while (bv_len > 0) {
  585. tgt = rsxx_get_dma_tgt(card, addr8);
  586. laddr = rsxx_addr8_to_laddr(addr8, card);
  587. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  588. cb, cb_data);
  589. if (st)
  590. goto bvec_err;
  591. dma_cnt[tgt]++;
  592. atomic_inc(n_dmas);
  593. addr8 += RSXX_HW_BLK_SIZE;
  594. bv_len -= RSXX_HW_BLK_SIZE;
  595. }
  596. } else {
  597. bio_for_each_segment(bvec, bio, i) {
  598. bv_len = bvec->bv_len;
  599. bv_off = bvec->bv_offset;
  600. while (bv_len > 0) {
  601. tgt = rsxx_get_dma_tgt(card, addr8);
  602. laddr = rsxx_addr8_to_laddr(addr8, card);
  603. dma_off = addr8 & RSXX_HW_BLK_MASK;
  604. dma_len = min(bv_len,
  605. RSXX_HW_BLK_SIZE - dma_off);
  606. st = rsxx_queue_dma(card, &dma_list[tgt],
  607. bio_data_dir(bio),
  608. dma_off, dma_len,
  609. laddr, bvec->bv_page,
  610. bv_off, cb, cb_data);
  611. if (st)
  612. goto bvec_err;
  613. dma_cnt[tgt]++;
  614. atomic_inc(n_dmas);
  615. addr8 += dma_len;
  616. bv_off += dma_len;
  617. bv_len -= dma_len;
  618. }
  619. }
  620. }
  621. for (i = 0; i < card->n_targets; i++) {
  622. if (!list_empty(&dma_list[i])) {
  623. spin_lock_bh(&card->ctrl[i].queue_lock);
  624. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  625. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  626. spin_unlock_bh(&card->ctrl[i].queue_lock);
  627. queue_work(card->ctrl[i].issue_wq,
  628. &card->ctrl[i].issue_dma_work);
  629. }
  630. }
  631. return 0;
  632. bvec_err:
  633. for (i = 0; i < card->n_targets; i++)
  634. rsxx_cleanup_dma_queue(&card->ctrl[i], &dma_list[i],
  635. FREE_DMA);
  636. return st;
  637. }
  638. /*----------------- DMA Engine Initialization & Setup -------------------*/
  639. int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl)
  640. {
  641. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  642. &ctrl->status.dma_addr);
  643. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  644. &ctrl->cmd.dma_addr);
  645. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  646. return -ENOMEM;
  647. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  648. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  649. ctrl->regmap + SB_ADD_LO);
  650. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  651. ctrl->regmap + SB_ADD_HI);
  652. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  653. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  654. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  655. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  656. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  657. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  658. ctrl->status.idx);
  659. return -EINVAL;
  660. }
  661. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  662. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  663. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  664. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  665. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  666. ctrl->status.idx);
  667. return -EINVAL;
  668. }
  669. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  670. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  671. return 0;
  672. }
  673. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  674. struct rsxx_dma_ctrl *ctrl)
  675. {
  676. int i;
  677. int st;
  678. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  679. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  680. if (!ctrl->trackers)
  681. return -ENOMEM;
  682. ctrl->trackers->head = 0;
  683. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  684. ctrl->trackers->list[i].next_tag = i + 1;
  685. ctrl->trackers->list[i].dma = NULL;
  686. }
  687. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  688. spin_lock_init(&ctrl->trackers->lock);
  689. spin_lock_init(&ctrl->queue_lock);
  690. mutex_init(&ctrl->work_lock);
  691. INIT_LIST_HEAD(&ctrl->queue);
  692. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  693. (unsigned long)ctrl);
  694. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  695. if (!ctrl->issue_wq)
  696. return -ENOMEM;
  697. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  698. if (!ctrl->done_wq)
  699. return -ENOMEM;
  700. INIT_WORK(&ctrl->issue_dma_work, rsxx_schedule_issue);
  701. INIT_WORK(&ctrl->dma_done_work, rsxx_schedule_done);
  702. st = rsxx_hw_buffers_init(dev, ctrl);
  703. if (st)
  704. return st;
  705. return 0;
  706. }
  707. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  708. unsigned int stripe_size8)
  709. {
  710. if (!is_power_of_2(stripe_size8)) {
  711. dev_err(CARD_TO_DEV(card),
  712. "stripe_size is NOT a power of 2!\n");
  713. return -EINVAL;
  714. }
  715. card->_stripe.lower_mask = stripe_size8 - 1;
  716. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  717. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  718. card->_stripe.target_mask = card->n_targets - 1;
  719. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  720. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  721. card->_stripe.lower_mask);
  722. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  723. card->_stripe.upper_shift);
  724. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  725. card->_stripe.upper_mask);
  726. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  727. card->_stripe.target_mask);
  728. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  729. card->_stripe.target_shift);
  730. return 0;
  731. }
  732. int rsxx_dma_configure(struct rsxx_cardinfo *card)
  733. {
  734. u32 intr_coal;
  735. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  736. card->config.data.intr_coal.count,
  737. card->config.data.intr_coal.latency);
  738. iowrite32(intr_coal, card->regmap + INTR_COAL);
  739. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  740. }
  741. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  742. {
  743. unsigned long flags;
  744. int st;
  745. int i;
  746. dev_info(CARD_TO_DEV(card),
  747. "Initializing %d DMA targets\n",
  748. card->n_targets);
  749. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  750. for (i = 0; i < card->n_targets; i++)
  751. card->ctrl[i].regmap = card->regmap + (i * 4096);
  752. card->dma_fault = 0;
  753. /* Reset the DMA queues */
  754. rsxx_dma_queue_reset(card);
  755. /************* Setup DMA Control *************/
  756. for (i = 0; i < card->n_targets; i++) {
  757. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  758. if (st)
  759. goto failed_dma_setup;
  760. card->ctrl[i].card = card;
  761. card->ctrl[i].id = i;
  762. }
  763. card->scrub_hard = 1;
  764. if (card->config_valid)
  765. rsxx_dma_configure(card);
  766. /* Enable the interrupts after all setup has completed. */
  767. for (i = 0; i < card->n_targets; i++) {
  768. spin_lock_irqsave(&card->irq_lock, flags);
  769. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  770. spin_unlock_irqrestore(&card->irq_lock, flags);
  771. }
  772. return 0;
  773. failed_dma_setup:
  774. for (i = 0; i < card->n_targets; i++) {
  775. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  776. if (ctrl->issue_wq) {
  777. destroy_workqueue(ctrl->issue_wq);
  778. ctrl->issue_wq = NULL;
  779. }
  780. if (ctrl->done_wq) {
  781. destroy_workqueue(ctrl->done_wq);
  782. ctrl->done_wq = NULL;
  783. }
  784. if (ctrl->trackers)
  785. vfree(ctrl->trackers);
  786. if (ctrl->status.buf)
  787. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  788. ctrl->status.buf,
  789. ctrl->status.dma_addr);
  790. if (ctrl->cmd.buf)
  791. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  792. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  793. }
  794. return st;
  795. }
  796. int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl)
  797. {
  798. struct rsxx_dma *dma;
  799. int i;
  800. int cnt = 0;
  801. /* Clean up issued DMAs */
  802. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  803. dma = get_tracker_dma(ctrl->trackers, i);
  804. if (dma) {
  805. atomic_dec(&ctrl->stats.hw_q_depth);
  806. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  807. push_tracker(ctrl->trackers, i);
  808. cnt++;
  809. }
  810. }
  811. return cnt;
  812. }
  813. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  814. {
  815. struct rsxx_dma_ctrl *ctrl;
  816. int i;
  817. for (i = 0; i < card->n_targets; i++) {
  818. ctrl = &card->ctrl[i];
  819. if (ctrl->issue_wq) {
  820. destroy_workqueue(ctrl->issue_wq);
  821. ctrl->issue_wq = NULL;
  822. }
  823. if (ctrl->done_wq) {
  824. destroy_workqueue(ctrl->done_wq);
  825. ctrl->done_wq = NULL;
  826. }
  827. if (timer_pending(&ctrl->activity_timer))
  828. del_timer_sync(&ctrl->activity_timer);
  829. /* Clean up the DMA queue */
  830. spin_lock_bh(&ctrl->queue_lock);
  831. rsxx_cleanup_dma_queue(ctrl, &ctrl->queue, COMPLETE_DMA);
  832. spin_unlock_bh(&ctrl->queue_lock);
  833. rsxx_dma_cancel(ctrl);
  834. vfree(ctrl->trackers);
  835. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  836. ctrl->status.buf, ctrl->status.dma_addr);
  837. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  838. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  839. }
  840. }
  841. int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card)
  842. {
  843. int i;
  844. int j;
  845. int cnt;
  846. struct rsxx_dma *dma;
  847. struct list_head *issued_dmas;
  848. issued_dmas = kzalloc(sizeof(*issued_dmas) * card->n_targets,
  849. GFP_KERNEL);
  850. if (!issued_dmas)
  851. return -ENOMEM;
  852. for (i = 0; i < card->n_targets; i++) {
  853. INIT_LIST_HEAD(&issued_dmas[i]);
  854. cnt = 0;
  855. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  856. dma = get_tracker_dma(card->ctrl[i].trackers, j);
  857. if (dma == NULL)
  858. continue;
  859. if (dma->cmd == HW_CMD_BLK_WRITE)
  860. card->ctrl[i].stats.writes_issued--;
  861. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  862. card->ctrl[i].stats.discards_issued--;
  863. else
  864. card->ctrl[i].stats.reads_issued--;
  865. pci_unmap_page(card->dev, dma->dma_addr,
  866. get_dma_size(dma),
  867. dma->cmd == HW_CMD_BLK_WRITE ?
  868. PCI_DMA_TODEVICE :
  869. PCI_DMA_FROMDEVICE);
  870. list_add_tail(&dma->list, &issued_dmas[i]);
  871. push_tracker(card->ctrl[i].trackers, j);
  872. cnt++;
  873. }
  874. spin_lock_bh(&card->ctrl[i].queue_lock);
  875. list_splice(&issued_dmas[i], &card->ctrl[i].queue);
  876. atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth);
  877. card->ctrl[i].stats.sw_q_depth += cnt;
  878. card->ctrl[i].e_cnt = 0;
  879. spin_unlock_bh(&card->ctrl[i].queue_lock);
  880. }
  881. kfree(issued_dmas);
  882. return 0;
  883. }
  884. int rsxx_dma_init(void)
  885. {
  886. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  887. if (!rsxx_dma_pool)
  888. return -ENOMEM;
  889. return 0;
  890. }
  891. void rsxx_dma_cleanup(void)
  892. {
  893. kmem_cache_destroy(rsxx_dma_pool);
  894. }