s3c2410.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /* linux/drivers/mtd/nand/s3c2410.c
  2. *
  3. * Copyright (c) 2004,2005 Simtec Electronics
  4. * http://www.simtec.co.uk/products/SWLINUX/
  5. * Ben Dooks <ben@simtec.co.uk>
  6. *
  7. * Samsung S3C2410/S3C240 NAND driver
  8. *
  9. * Changelog:
  10. * 21-Sep-2004 BJD Initial version
  11. * 23-Sep-2004 BJD Mulitple device support
  12. * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
  13. * 12-Oct-2004 BJD Fixed errors in use of platform data
  14. * 18-Feb-2005 BJD Fix sparse errors
  15. * 14-Mar-2005 BJD Applied tglx's code reduction patch
  16. * 02-May-2005 BJD Fixed s3c2440 support
  17. * 02-May-2005 BJD Reduced hwcontrol decode
  18. * 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
  19. * 08-Jul-2005 BJD Fix OOPS when no platform data supplied
  20. * 20-Oct-2005 BJD Fix timing calculation bug
  21. *
  22. * $Id: s3c2410.c,v 1.20 2005/11/07 11:14:31 gleixner Exp $
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2 of the License, or
  27. * (at your option) any later version.
  28. *
  29. * This program is distributed in the hope that it will be useful,
  30. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  31. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  32. * GNU General Public License for more details.
  33. *
  34. * You should have received a copy of the GNU General Public License
  35. * along with this program; if not, write to the Free Software
  36. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  37. */
  38. #include <config/mtd/nand/s3c2410/hwecc.h>
  39. #include <config/mtd/nand/s3c2410/debug.h>
  40. #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  41. #define DEBUG
  42. #endif
  43. #include <linux/module.h>
  44. #include <linux/types.h>
  45. #include <linux/init.h>
  46. #include <linux/kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/ioport.h>
  49. #include <linux/platform_device.h>
  50. #include <linux/delay.h>
  51. #include <linux/err.h>
  52. #include <linux/slab.h>
  53. #include <linux/clk.h>
  54. #include <linux/mtd/mtd.h>
  55. #include <linux/mtd/nand.h>
  56. #include <linux/mtd/nand_ecc.h>
  57. #include <linux/mtd/partitions.h>
  58. #include <asm/io.h>
  59. #include <asm/arch/regs-nand.h>
  60. #include <asm/arch/nand.h>
  61. #define PFX "s3c2410-nand: "
  62. #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
  63. static int hardware_ecc = 1;
  64. #else
  65. static int hardware_ecc = 0;
  66. #endif
  67. /* new oob placement block for use with hardware ecc generation
  68. */
  69. static struct nand_oobinfo nand_hw_eccoob = {
  70. .useecc = MTD_NANDECC_AUTOPLACE,
  71. .eccbytes = 3,
  72. .eccpos = {0, 1, 2},
  73. .oobfree = {{8, 8}}
  74. };
  75. /* controller and mtd information */
  76. struct s3c2410_nand_info;
  77. struct s3c2410_nand_mtd {
  78. struct mtd_info mtd;
  79. struct nand_chip chip;
  80. struct s3c2410_nand_set *set;
  81. struct s3c2410_nand_info *info;
  82. int scan_res;
  83. };
  84. /* overview of the s3c2410 nand state */
  85. struct s3c2410_nand_info {
  86. /* mtd info */
  87. struct nand_hw_control controller;
  88. struct s3c2410_nand_mtd *mtds;
  89. struct s3c2410_platform_nand *platform;
  90. /* device info */
  91. struct device *device;
  92. struct resource *area;
  93. struct clk *clk;
  94. void __iomem *regs;
  95. int mtd_count;
  96. unsigned char is_s3c2440;
  97. };
  98. /* conversion functions */
  99. static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
  100. {
  101. return container_of(mtd, struct s3c2410_nand_mtd, mtd);
  102. }
  103. static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
  104. {
  105. return s3c2410_nand_mtd_toours(mtd)->info;
  106. }
  107. static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
  108. {
  109. return platform_get_drvdata(dev);
  110. }
  111. static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
  112. {
  113. return dev->dev.platform_data;
  114. }
  115. /* timing calculations */
  116. #define NS_IN_KHZ 1000000
  117. static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
  118. {
  119. int result;
  120. result = (wanted * clk) / NS_IN_KHZ;
  121. result++;
  122. pr_debug("result %d from %ld, %d\n", result, clk, wanted);
  123. if (result > max) {
  124. printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
  125. return -1;
  126. }
  127. if (result < 1)
  128. result = 1;
  129. return result;
  130. }
  131. #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
  132. /* controller setup */
  133. static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, struct platform_device *pdev)
  134. {
  135. struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
  136. unsigned long clkrate = clk_get_rate(info->clk);
  137. int tacls, twrph0, twrph1;
  138. unsigned long cfg;
  139. /* calculate the timing information for the controller */
  140. clkrate /= 1000; /* turn clock into kHz for ease of use */
  141. if (plat != NULL) {
  142. tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
  143. twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
  144. twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
  145. } else {
  146. /* default timings */
  147. tacls = 4;
  148. twrph0 = 8;
  149. twrph1 = 8;
  150. }
  151. if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
  152. printk(KERN_ERR PFX "cannot get timings suitable for board\n");
  153. return -EINVAL;
  154. }
  155. printk(KERN_INFO PFX "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
  156. tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
  157. if (!info->is_s3c2440) {
  158. cfg = S3C2410_NFCONF_EN;
  159. cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
  160. cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
  161. cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
  162. } else {
  163. cfg = S3C2440_NFCONF_TACLS(tacls - 1);
  164. cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
  165. cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
  166. }
  167. pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
  168. writel(cfg, info->regs + S3C2410_NFCONF);
  169. return 0;
  170. }
  171. /* select chip */
  172. static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
  173. {
  174. struct s3c2410_nand_info *info;
  175. struct s3c2410_nand_mtd *nmtd;
  176. struct nand_chip *this = mtd->priv;
  177. void __iomem *reg;
  178. unsigned long cur;
  179. unsigned long bit;
  180. nmtd = this->priv;
  181. info = nmtd->info;
  182. bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
  183. reg = info->regs + ((info->is_s3c2440) ? S3C2440_NFCONT : S3C2410_NFCONF);
  184. cur = readl(reg);
  185. if (chip == -1) {
  186. cur |= bit;
  187. } else {
  188. if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
  189. printk(KERN_ERR PFX "chip %d out of range\n", chip);
  190. return;
  191. }
  192. if (info->platform != NULL) {
  193. if (info->platform->select_chip != NULL)
  194. (info->platform->select_chip) (nmtd->set, chip);
  195. }
  196. cur &= ~bit;
  197. }
  198. writel(cur, reg);
  199. }
  200. /* command and control functions
  201. *
  202. * Note, these all use tglx's method of changing the IO_ADDR_W field
  203. * to make the code simpler, and use the nand layer's code to issue the
  204. * command and address sequences via the proper IO ports.
  205. *
  206. */
  207. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
  208. unsigend int ctrl)
  209. {
  210. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  211. struct nand_chip *chip = mtd->priv;
  212. if (cmd == NAND_CMD_NONE)
  213. return;
  214. if (cmd & NAND_CLE)
  215. writeb(cmd, info->regs + S3C2410_NFCMD);
  216. else
  217. writeb(cmd, info->regs + S3C2410_NFADDR);
  218. }
  219. /* command and control functions */
  220. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
  221. unsigend int ctrl)
  222. {
  223. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  224. struct nand_chip *chip = mtd->priv;
  225. if (cmd == NAND_CMD_NONE)
  226. return;
  227. if (cmd & NAND_CLE)
  228. writeb(cmd, info->regs + S3C2440_NFCMD);
  229. else
  230. writeb(cmd, info->regs + S3C2440_NFADDR);
  231. }
  232. /* s3c2410_nand_devready()
  233. *
  234. * returns 0 if the nand is busy, 1 if it is ready
  235. */
  236. static int s3c2410_nand_devready(struct mtd_info *mtd)
  237. {
  238. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  239. if (info->is_s3c2440)
  240. return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
  241. return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
  242. }
  243. /* ECC handling functions */
  244. static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
  245. {
  246. pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n", mtd, dat, read_ecc, calc_ecc);
  247. pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
  248. read_ecc[0], read_ecc[1], read_ecc[2], calc_ecc[0], calc_ecc[1], calc_ecc[2]);
  249. if (read_ecc[0] == calc_ecc[0] && read_ecc[1] == calc_ecc[1] && read_ecc[2] == calc_ecc[2])
  250. return 0;
  251. /* we curently have no method for correcting the error */
  252. return -1;
  253. }
  254. /* ECC functions
  255. *
  256. * These allow the s3c2410 and s3c2440 to use the controller's ECC
  257. * generator block to ECC the data as it passes through]
  258. */
  259. static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  260. {
  261. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  262. unsigned long ctrl;
  263. ctrl = readl(info->regs + S3C2410_NFCONF);
  264. ctrl |= S3C2410_NFCONF_INITECC;
  265. writel(ctrl, info->regs + S3C2410_NFCONF);
  266. }
  267. static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  268. {
  269. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  270. unsigned long ctrl;
  271. ctrl = readl(info->regs + S3C2440_NFCONT);
  272. writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
  273. }
  274. static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  275. {
  276. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  277. ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
  278. ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
  279. ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
  280. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
  281. return 0;
  282. }
  283. static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  284. {
  285. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  286. unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
  287. ecc_code[0] = ecc;
  288. ecc_code[1] = ecc >> 8;
  289. ecc_code[2] = ecc >> 16;
  290. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
  291. return 0;
  292. }
  293. /* over-ride the standard functions for a little more speed. We can
  294. * use read/write block to move the data buffers to/from the controller
  295. */
  296. static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  297. {
  298. struct nand_chip *this = mtd->priv;
  299. readsb(this->IO_ADDR_R, buf, len);
  300. }
  301. static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  302. {
  303. struct nand_chip *this = mtd->priv;
  304. writesb(this->IO_ADDR_W, buf, len);
  305. }
  306. /* device management functions */
  307. static int s3c2410_nand_remove(struct platform_device *pdev)
  308. {
  309. struct s3c2410_nand_info *info = to_nand_info(pdev);
  310. platform_set_drvdata(pdev, NULL);
  311. if (info == NULL)
  312. return 0;
  313. /* first thing we need to do is release all our mtds
  314. * and their partitions, then go through freeing the
  315. * resources used
  316. */
  317. if (info->mtds != NULL) {
  318. struct s3c2410_nand_mtd *ptr = info->mtds;
  319. int mtdno;
  320. for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
  321. pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
  322. nand_release(&ptr->mtd);
  323. }
  324. kfree(info->mtds);
  325. }
  326. /* free the common resources */
  327. if (info->clk != NULL && !IS_ERR(info->clk)) {
  328. clk_disable(info->clk);
  329. clk_put(info->clk);
  330. }
  331. if (info->regs != NULL) {
  332. iounmap(info->regs);
  333. info->regs = NULL;
  334. }
  335. if (info->area != NULL) {
  336. release_resource(info->area);
  337. kfree(info->area);
  338. info->area = NULL;
  339. }
  340. kfree(info);
  341. return 0;
  342. }
  343. #ifdef CONFIG_MTD_PARTITIONS
  344. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  345. struct s3c2410_nand_mtd *mtd,
  346. struct s3c2410_nand_set *set)
  347. {
  348. if (set == NULL)
  349. return add_mtd_device(&mtd->mtd);
  350. if (set->nr_partitions > 0 && set->partitions != NULL) {
  351. return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
  352. }
  353. return add_mtd_device(&mtd->mtd);
  354. }
  355. #else
  356. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  357. struct s3c2410_nand_mtd *mtd,
  358. struct s3c2410_nand_set *set)
  359. {
  360. return add_mtd_device(&mtd->mtd);
  361. }
  362. #endif
  363. /* s3c2410_nand_init_chip
  364. *
  365. * init a single instance of an chip
  366. */
  367. static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
  368. struct s3c2410_nand_mtd *nmtd,
  369. struct s3c2410_nand_set *set)
  370. {
  371. struct nand_chip *chip = &nmtd->chip;
  372. chip->IO_ADDR_R = info->regs + S3C2410_NFDATA;
  373. chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
  374. chip->cmd_ctrl = s3c2410_nand_hwcontrol;
  375. chip->dev_ready = s3c2410_nand_devready;
  376. chip->write_buf = s3c2410_nand_write_buf;
  377. chip->read_buf = s3c2410_nand_read_buf;
  378. chip->select_chip = s3c2410_nand_select_chip;
  379. chip->chip_delay = 50;
  380. chip->priv = nmtd;
  381. chip->options = 0;
  382. chip->controller = &info->controller;
  383. if (info->is_s3c2440) {
  384. chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
  385. chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
  386. chip->cmd_ctrl = s3c2440_nand_hwcontrol;
  387. }
  388. nmtd->info = info;
  389. nmtd->mtd.priv = chip;
  390. nmtd->mtd.owner = THIS_MODULE;
  391. nmtd->set = set;
  392. if (hardware_ecc) {
  393. chip->ecc.correct = s3c2410_nand_correct_data;
  394. chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
  395. chip->ecc.calculate = s3c2410_nand_calculate_ecc;
  396. chip->ecc.mode = NAND_ECC_HW;
  397. chip->ecc.size = 512;
  398. chip->ecc.bytes = 3;
  399. chip->autooob = &nand_hw_eccoob;
  400. if (info->is_s3c2440) {
  401. chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
  402. chip->ecc.calculate = s3c2440_nand_calculate_ecc;
  403. }
  404. } else {
  405. chip->ecc.mode = NAND_ECC_SOFT;
  406. }
  407. }
  408. /* s3c2410_nand_probe
  409. *
  410. * called by device layer when it finds a device matching
  411. * one our driver can handled. This code checks to see if
  412. * it can allocate all necessary resources then calls the
  413. * nand layer to look for devices
  414. */
  415. static int s3c24xx_nand_probe(struct platform_device *pdev, int is_s3c2440)
  416. {
  417. struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
  418. struct s3c2410_nand_info *info;
  419. struct s3c2410_nand_mtd *nmtd;
  420. struct s3c2410_nand_set *sets;
  421. struct resource *res;
  422. int err = 0;
  423. int size;
  424. int nr_sets;
  425. int setno;
  426. pr_debug("s3c2410_nand_probe(%p)\n", pdev);
  427. info = kmalloc(sizeof(*info), GFP_KERNEL);
  428. if (info == NULL) {
  429. dev_err(&pdev->dev, "no memory for flash info\n");
  430. err = -ENOMEM;
  431. goto exit_error;
  432. }
  433. memzero(info, sizeof(*info));
  434. platform_set_drvdata(pdev, info);
  435. spin_lock_init(&info->controller.lock);
  436. init_waitqueue_head(&info->controller.wq);
  437. /* get the clock source and enable it */
  438. info->clk = clk_get(&pdev->dev, "nand");
  439. if (IS_ERR(info->clk)) {
  440. dev_err(&pdev->dev, "failed to get clock");
  441. err = -ENOENT;
  442. goto exit_error;
  443. }
  444. clk_enable(info->clk);
  445. /* allocate and map the resource */
  446. /* currently we assume we have the one resource */
  447. res = pdev->resource;
  448. size = res->end - res->start + 1;
  449. info->area = request_mem_region(res->start, size, pdev->name);
  450. if (info->area == NULL) {
  451. dev_err(&pdev->dev, "cannot reserve register region\n");
  452. err = -ENOENT;
  453. goto exit_error;
  454. }
  455. info->device = &pdev->dev;
  456. info->platform = plat;
  457. info->regs = ioremap(res->start, size);
  458. info->is_s3c2440 = is_s3c2440;
  459. if (info->regs == NULL) {
  460. dev_err(&pdev->dev, "cannot reserve register region\n");
  461. err = -EIO;
  462. goto exit_error;
  463. }
  464. dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
  465. /* initialise the hardware */
  466. err = s3c2410_nand_inithw(info, pdev);
  467. if (err != 0)
  468. goto exit_error;
  469. sets = (plat != NULL) ? plat->sets : NULL;
  470. nr_sets = (plat != NULL) ? plat->nr_sets : 1;
  471. info->mtd_count = nr_sets;
  472. /* allocate our information */
  473. size = nr_sets * sizeof(*info->mtds);
  474. info->mtds = kmalloc(size, GFP_KERNEL);
  475. if (info->mtds == NULL) {
  476. dev_err(&pdev->dev, "failed to allocate mtd storage\n");
  477. err = -ENOMEM;
  478. goto exit_error;
  479. }
  480. memzero(info->mtds, size);
  481. /* initialise all possible chips */
  482. nmtd = info->mtds;
  483. for (setno = 0; setno < nr_sets; setno++, nmtd++) {
  484. pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
  485. s3c2410_nand_init_chip(info, nmtd, sets);
  486. nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);
  487. if (nmtd->scan_res == 0) {
  488. s3c2410_nand_add_partition(info, nmtd, sets);
  489. }
  490. if (sets != NULL)
  491. sets++;
  492. }
  493. pr_debug("initialised ok\n");
  494. return 0;
  495. exit_error:
  496. s3c2410_nand_remove(pdev);
  497. if (err == 0)
  498. err = -EINVAL;
  499. return err;
  500. }
  501. /* driver device registration */
  502. static int s3c2410_nand_probe(struct platform_device *dev)
  503. {
  504. return s3c24xx_nand_probe(dev, 0);
  505. }
  506. static int s3c2440_nand_probe(struct platform_device *dev)
  507. {
  508. return s3c24xx_nand_probe(dev, 1);
  509. }
  510. static struct platform_driver s3c2410_nand_driver = {
  511. .probe = s3c2410_nand_probe,
  512. .remove = s3c2410_nand_remove,
  513. .driver = {
  514. .name = "s3c2410-nand",
  515. .owner = THIS_MODULE,
  516. },
  517. };
  518. static struct platform_driver s3c2440_nand_driver = {
  519. .probe = s3c2440_nand_probe,
  520. .remove = s3c2410_nand_remove,
  521. .driver = {
  522. .name = "s3c2440-nand",
  523. .owner = THIS_MODULE,
  524. },
  525. };
  526. static int __init s3c2410_nand_init(void)
  527. {
  528. printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
  529. platform_driver_register(&s3c2440_nand_driver);
  530. return platform_driver_register(&s3c2410_nand_driver);
  531. }
  532. static void __exit s3c2410_nand_exit(void)
  533. {
  534. platform_driver_unregister(&s3c2440_nand_driver);
  535. platform_driver_unregister(&s3c2410_nand_driver);
  536. }
  537. module_init(s3c2410_nand_init);
  538. module_exit(s3c2410_nand_exit);
  539. MODULE_LICENSE("GPL");
  540. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  541. MODULE_DESCRIPTION("S3C24XX MTD NAND driver");