oxygen_mixer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  30. info->count = 8;
  31. info->value.integer.min = 0;
  32. info->value.integer.max = 0xff;
  33. return 0;
  34. }
  35. static int dac_volume_get(struct snd_kcontrol *ctl,
  36. struct snd_ctl_elem_value *value)
  37. {
  38. struct oxygen *chip = ctl->private_data;
  39. unsigned int i;
  40. mutex_lock(&chip->mutex);
  41. for (i = 0; i < 8; ++i)
  42. value->value.integer.value[i] = chip->dac_volume[i];
  43. mutex_unlock(&chip->mutex);
  44. return 0;
  45. }
  46. static int dac_volume_put(struct snd_kcontrol *ctl,
  47. struct snd_ctl_elem_value *value)
  48. {
  49. struct oxygen *chip = ctl->private_data;
  50. unsigned int i;
  51. int changed;
  52. changed = 0;
  53. mutex_lock(&chip->mutex);
  54. for (i = 0; i < 8; ++i)
  55. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  56. chip->dac_volume[i] = value->value.integer.value[i];
  57. changed = 1;
  58. }
  59. if (changed)
  60. chip->model->update_dac_volume(chip);
  61. mutex_unlock(&chip->mutex);
  62. return changed;
  63. }
  64. static int dac_mute_get(struct snd_kcontrol *ctl,
  65. struct snd_ctl_elem_value *value)
  66. {
  67. struct oxygen *chip = ctl->private_data;
  68. mutex_lock(&chip->mutex);
  69. value->value.integer.value[0] = !chip->dac_mute;
  70. mutex_unlock(&chip->mutex);
  71. return 0;
  72. }
  73. static int dac_mute_put(struct snd_kcontrol *ctl,
  74. struct snd_ctl_elem_value *value)
  75. {
  76. struct oxygen *chip = ctl->private_data;
  77. int changed;
  78. mutex_lock(&chip->mutex);
  79. changed = !value->value.integer.value[0] != chip->dac_mute;
  80. if (changed) {
  81. chip->dac_mute = !value->value.integer.value[0];
  82. chip->model->update_dac_mute(chip);
  83. }
  84. mutex_unlock(&chip->mutex);
  85. return changed;
  86. }
  87. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  88. {
  89. static const char *const names[3] = {
  90. "Front", "Front+Surround", "Front+Surround+Back"
  91. };
  92. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  93. info->count = 1;
  94. info->value.enumerated.items = 3;
  95. if (info->value.enumerated.item > 2)
  96. info->value.enumerated.item = 2;
  97. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  98. return 0;
  99. }
  100. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  101. {
  102. struct oxygen *chip = ctl->private_data;
  103. mutex_lock(&chip->mutex);
  104. value->value.enumerated.item[0] = chip->dac_routing;
  105. mutex_unlock(&chip->mutex);
  106. return 0;
  107. }
  108. void oxygen_update_dac_routing(struct oxygen *chip)
  109. {
  110. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  111. static const unsigned int reg_values[3] = {
  112. /* stereo -> front */
  113. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  114. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  115. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  116. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  117. /* stereo -> front+surround */
  118. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  119. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  120. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  121. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  122. /* stereo -> front+surround+back */
  123. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  124. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  125. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  126. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  127. };
  128. u8 channels;
  129. unsigned int reg_value;
  130. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  131. OXYGEN_PLAY_CHANNELS_MASK;
  132. if (channels == OXYGEN_PLAY_CHANNELS_2)
  133. reg_value = reg_values[chip->dac_routing];
  134. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  135. /* in 7.1 mode, "rear" channels go to the "back" jack */
  136. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  137. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  138. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  139. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  140. else
  141. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  142. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  143. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  144. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  145. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  146. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  147. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  148. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  149. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  150. }
  151. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  152. {
  153. struct oxygen *chip = ctl->private_data;
  154. int changed;
  155. mutex_lock(&chip->mutex);
  156. changed = value->value.enumerated.item[0] != chip->dac_routing;
  157. if (changed) {
  158. chip->dac_routing = min(value->value.enumerated.item[0], 2u);
  159. spin_lock_irq(&chip->reg_lock);
  160. oxygen_update_dac_routing(chip);
  161. spin_unlock_irq(&chip->reg_lock);
  162. }
  163. mutex_unlock(&chip->mutex);
  164. return changed;
  165. }
  166. static int spdif_switch_get(struct snd_kcontrol *ctl,
  167. struct snd_ctl_elem_value *value)
  168. {
  169. struct oxygen *chip = ctl->private_data;
  170. mutex_lock(&chip->mutex);
  171. value->value.integer.value[0] = chip->spdif_playback_enable;
  172. mutex_unlock(&chip->mutex);
  173. return 0;
  174. }
  175. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  176. {
  177. switch (oxygen_rate) {
  178. case OXYGEN_RATE_32000:
  179. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  180. case OXYGEN_RATE_44100:
  181. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  182. default: /* OXYGEN_RATE_48000 */
  183. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  184. case OXYGEN_RATE_64000:
  185. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  186. case OXYGEN_RATE_88200:
  187. return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  188. case OXYGEN_RATE_96000:
  189. return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
  190. case OXYGEN_RATE_176400:
  191. return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
  192. case OXYGEN_RATE_192000:
  193. return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
  194. }
  195. }
  196. void oxygen_update_spdif_source(struct oxygen *chip)
  197. {
  198. u32 old_control, new_control;
  199. u16 old_routing, new_routing;
  200. unsigned int oxygen_rate;
  201. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  202. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  203. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  204. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  205. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  206. | OXYGEN_PLAY_SPDIF_SPDIF;
  207. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  208. & OXYGEN_I2S_RATE_MASK;
  209. /* S/PDIF rate was already set by the caller */
  210. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  211. chip->spdif_playback_enable) {
  212. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  213. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  214. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  215. & OXYGEN_I2S_RATE_MASK;
  216. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  217. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  218. OXYGEN_SPDIF_OUT_ENABLE;
  219. } else {
  220. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  221. new_routing = old_routing;
  222. oxygen_rate = OXYGEN_RATE_44100;
  223. }
  224. if (old_routing != new_routing) {
  225. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  226. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  227. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  228. }
  229. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  230. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  231. oxygen_spdif_rate(oxygen_rate) |
  232. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  233. chip->spdif_pcm_bits : chip->spdif_bits));
  234. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  235. }
  236. static int spdif_switch_put(struct snd_kcontrol *ctl,
  237. struct snd_ctl_elem_value *value)
  238. {
  239. struct oxygen *chip = ctl->private_data;
  240. int changed;
  241. mutex_lock(&chip->mutex);
  242. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  243. if (changed) {
  244. chip->spdif_playback_enable = !!value->value.integer.value[0];
  245. spin_lock_irq(&chip->reg_lock);
  246. oxygen_update_spdif_source(chip);
  247. spin_unlock_irq(&chip->reg_lock);
  248. }
  249. mutex_unlock(&chip->mutex);
  250. return changed;
  251. }
  252. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  253. {
  254. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  255. info->count = 1;
  256. return 0;
  257. }
  258. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  259. {
  260. value->value.iec958.status[0] =
  261. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  262. OXYGEN_SPDIF_PREEMPHASIS);
  263. value->value.iec958.status[1] = /* category and original */
  264. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  265. }
  266. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  267. {
  268. u32 bits;
  269. bits = value->value.iec958.status[0] &
  270. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  271. OXYGEN_SPDIF_PREEMPHASIS);
  272. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  273. if (bits & OXYGEN_SPDIF_NONAUDIO)
  274. bits |= OXYGEN_SPDIF_V;
  275. return bits;
  276. }
  277. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  278. {
  279. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  280. OXYGEN_SPDIF_NONAUDIO |
  281. OXYGEN_SPDIF_C |
  282. OXYGEN_SPDIF_PREEMPHASIS |
  283. OXYGEN_SPDIF_CATEGORY_MASK |
  284. OXYGEN_SPDIF_ORIGINAL |
  285. OXYGEN_SPDIF_V);
  286. }
  287. static int spdif_default_get(struct snd_kcontrol *ctl,
  288. struct snd_ctl_elem_value *value)
  289. {
  290. struct oxygen *chip = ctl->private_data;
  291. mutex_lock(&chip->mutex);
  292. oxygen_to_iec958(chip->spdif_bits, value);
  293. mutex_unlock(&chip->mutex);
  294. return 0;
  295. }
  296. static int spdif_default_put(struct snd_kcontrol *ctl,
  297. struct snd_ctl_elem_value *value)
  298. {
  299. struct oxygen *chip = ctl->private_data;
  300. u32 new_bits;
  301. int changed;
  302. new_bits = iec958_to_oxygen(value);
  303. mutex_lock(&chip->mutex);
  304. changed = new_bits != chip->spdif_bits;
  305. if (changed) {
  306. chip->spdif_bits = new_bits;
  307. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  308. write_spdif_bits(chip, new_bits);
  309. }
  310. mutex_unlock(&chip->mutex);
  311. return changed;
  312. }
  313. static int spdif_mask_get(struct snd_kcontrol *ctl,
  314. struct snd_ctl_elem_value *value)
  315. {
  316. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  317. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  318. value->value.iec958.status[1] =
  319. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  320. return 0;
  321. }
  322. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  323. struct snd_ctl_elem_value *value)
  324. {
  325. struct oxygen *chip = ctl->private_data;
  326. mutex_lock(&chip->mutex);
  327. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  328. mutex_unlock(&chip->mutex);
  329. return 0;
  330. }
  331. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  332. struct snd_ctl_elem_value *value)
  333. {
  334. struct oxygen *chip = ctl->private_data;
  335. u32 new_bits;
  336. int changed;
  337. new_bits = iec958_to_oxygen(value);
  338. mutex_lock(&chip->mutex);
  339. changed = new_bits != chip->spdif_pcm_bits;
  340. if (changed) {
  341. chip->spdif_pcm_bits = new_bits;
  342. if (chip->pcm_active & (1 << PCM_SPDIF))
  343. write_spdif_bits(chip, new_bits);
  344. }
  345. mutex_unlock(&chip->mutex);
  346. return changed;
  347. }
  348. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  349. struct snd_ctl_elem_value *value)
  350. {
  351. value->value.iec958.status[0] = 0xff;
  352. value->value.iec958.status[1] = 0xff;
  353. value->value.iec958.status[2] = 0xff;
  354. value->value.iec958.status[3] = 0xff;
  355. return 0;
  356. }
  357. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  358. struct snd_ctl_elem_value *value)
  359. {
  360. struct oxygen *chip = ctl->private_data;
  361. u32 bits;
  362. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  363. value->value.iec958.status[0] = bits;
  364. value->value.iec958.status[1] = bits >> 8;
  365. value->value.iec958.status[2] = bits >> 16;
  366. value->value.iec958.status[3] = bits >> 24;
  367. return 0;
  368. }
  369. static int spdif_loopback_get(struct snd_kcontrol *ctl,
  370. struct snd_ctl_elem_value *value)
  371. {
  372. struct oxygen *chip = ctl->private_data;
  373. value->value.integer.value[0] =
  374. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
  375. & OXYGEN_SPDIF_LOOPBACK);
  376. return 0;
  377. }
  378. static int spdif_loopback_put(struct snd_kcontrol *ctl,
  379. struct snd_ctl_elem_value *value)
  380. {
  381. struct oxygen *chip = ctl->private_data;
  382. u32 oldreg, newreg;
  383. int changed;
  384. spin_lock_irq(&chip->reg_lock);
  385. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  386. if (value->value.integer.value[0])
  387. newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
  388. else
  389. newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
  390. changed = newreg != oldreg;
  391. if (changed)
  392. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  393. spin_unlock_irq(&chip->reg_lock);
  394. return changed;
  395. }
  396. static int ac97_switch_get(struct snd_kcontrol *ctl,
  397. struct snd_ctl_elem_value *value)
  398. {
  399. struct oxygen *chip = ctl->private_data;
  400. unsigned int index = ctl->private_value & 0xff;
  401. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  402. int invert = ctl->private_value & (1 << 16);
  403. u16 reg;
  404. mutex_lock(&chip->mutex);
  405. reg = oxygen_read_ac97(chip, 0, index);
  406. mutex_unlock(&chip->mutex);
  407. if (!(reg & (1 << bitnr)) ^ !invert)
  408. value->value.integer.value[0] = 1;
  409. else
  410. value->value.integer.value[0] = 0;
  411. return 0;
  412. }
  413. static void ac97_mute_ctl(struct oxygen *chip, unsigned int control)
  414. {
  415. unsigned int index = chip->controls[control]->private_value & 0xff;
  416. u16 value;
  417. value = oxygen_read_ac97(chip, 0, index);
  418. if (!(value & 0x8000)) {
  419. oxygen_write_ac97(chip, 0, index, value | 0x8000);
  420. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  421. &chip->controls[control]->id);
  422. }
  423. }
  424. static int ac97_switch_put(struct snd_kcontrol *ctl,
  425. struct snd_ctl_elem_value *value)
  426. {
  427. struct oxygen *chip = ctl->private_data;
  428. unsigned int index = ctl->private_value & 0xff;
  429. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  430. int invert = ctl->private_value & (1 << 16);
  431. u16 oldreg, newreg;
  432. int change;
  433. mutex_lock(&chip->mutex);
  434. oldreg = oxygen_read_ac97(chip, 0, index);
  435. newreg = oldreg;
  436. if (!value->value.integer.value[0] ^ !invert)
  437. newreg |= 1 << bitnr;
  438. else
  439. newreg &= ~(1 << bitnr);
  440. change = newreg != oldreg;
  441. if (change) {
  442. oxygen_write_ac97(chip, 0, index, newreg);
  443. if (index == AC97_LINE) {
  444. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  445. newreg & 0x8000 ?
  446. CM9780_GPO0 : 0, CM9780_GPO0);
  447. if (!(newreg & 0x8000)) {
  448. ac97_mute_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  449. ac97_mute_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  450. ac97_mute_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  451. }
  452. } else if ((index == AC97_MIC || index == AC97_CD ||
  453. index == AC97_VIDEO || index == AC97_AUX) &&
  454. bitnr == 15 && !(newreg & 0x8000)) {
  455. ac97_mute_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  456. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  457. CM9780_GPO0, CM9780_GPO0);
  458. }
  459. }
  460. mutex_unlock(&chip->mutex);
  461. return change;
  462. }
  463. static int ac97_volume_info(struct snd_kcontrol *ctl,
  464. struct snd_ctl_elem_info *info)
  465. {
  466. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  467. info->count = 2;
  468. info->value.integer.min = 0;
  469. info->value.integer.max = 0x1f;
  470. return 0;
  471. }
  472. static int ac97_volume_get(struct snd_kcontrol *ctl,
  473. struct snd_ctl_elem_value *value)
  474. {
  475. struct oxygen *chip = ctl->private_data;
  476. unsigned int index = ctl->private_value;
  477. u16 reg;
  478. mutex_lock(&chip->mutex);
  479. reg = oxygen_read_ac97(chip, 0, index);
  480. mutex_unlock(&chip->mutex);
  481. value->value.integer.value[0] = 31 - (reg & 0x1f);
  482. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  483. return 0;
  484. }
  485. static int ac97_volume_put(struct snd_kcontrol *ctl,
  486. struct snd_ctl_elem_value *value)
  487. {
  488. struct oxygen *chip = ctl->private_data;
  489. unsigned int index = ctl->private_value;
  490. u16 oldreg, newreg;
  491. int change;
  492. mutex_lock(&chip->mutex);
  493. oldreg = oxygen_read_ac97(chip, 0, index);
  494. newreg = oldreg;
  495. newreg = (newreg & ~0x1f) |
  496. (31 - (value->value.integer.value[0] & 0x1f));
  497. newreg = (newreg & ~0x1f00) |
  498. ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
  499. change = newreg != oldreg;
  500. if (change)
  501. oxygen_write_ac97(chip, 0, index, newreg);
  502. mutex_unlock(&chip->mutex);
  503. return change;
  504. }
  505. #define AC97_SWITCH(xname, index, bitnr, invert) { \
  506. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  507. .name = xname, \
  508. .info = snd_ctl_boolean_mono_info, \
  509. .get = ac97_switch_get, \
  510. .put = ac97_switch_put, \
  511. .private_value = ((invert) << 16) | ((bitnr) << 8) | (index), \
  512. }
  513. #define AC97_VOLUME(xname, index) { \
  514. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  515. .name = xname, \
  516. .info = ac97_volume_info, \
  517. .get = ac97_volume_get, \
  518. .put = ac97_volume_put, \
  519. .tlv = { .p = ac97_db_scale, }, \
  520. .private_value = (index), \
  521. }
  522. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  523. static const struct snd_kcontrol_new controls[] = {
  524. {
  525. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  526. .name = "Master Playback Volume",
  527. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  528. .info = dac_volume_info,
  529. .get = dac_volume_get,
  530. .put = dac_volume_put,
  531. },
  532. {
  533. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  534. .name = "Master Playback Switch",
  535. .info = snd_ctl_boolean_mono_info,
  536. .get = dac_mute_get,
  537. .put = dac_mute_put,
  538. },
  539. {
  540. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  541. .name = "Stereo Upmixing",
  542. .info = upmix_info,
  543. .get = upmix_get,
  544. .put = upmix_put,
  545. },
  546. {
  547. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  548. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  549. .info = snd_ctl_boolean_mono_info,
  550. .get = spdif_switch_get,
  551. .put = spdif_switch_put,
  552. },
  553. {
  554. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  555. .device = 1,
  556. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  557. .info = spdif_info,
  558. .get = spdif_default_get,
  559. .put = spdif_default_put,
  560. },
  561. {
  562. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  563. .device = 1,
  564. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  565. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  566. .info = spdif_info,
  567. .get = spdif_mask_get,
  568. },
  569. {
  570. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  571. .device = 1,
  572. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  573. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  574. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  575. .info = spdif_info,
  576. .get = spdif_pcm_get,
  577. .put = spdif_pcm_put,
  578. },
  579. {
  580. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  581. .device = 1,
  582. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  583. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  584. .info = spdif_info,
  585. .get = spdif_input_mask_get,
  586. },
  587. {
  588. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  589. .device = 1,
  590. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  591. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  592. .info = spdif_info,
  593. .get = spdif_input_default_get,
  594. },
  595. {
  596. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  597. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  598. .info = snd_ctl_boolean_mono_info,
  599. .get = spdif_loopback_get,
  600. .put = spdif_loopback_put,
  601. },
  602. };
  603. static const struct snd_kcontrol_new ac97_controls[] = {
  604. AC97_VOLUME("Mic Capture Volume", AC97_MIC),
  605. AC97_SWITCH("Mic Capture Switch", AC97_MIC, 15, 1),
  606. AC97_SWITCH("Mic Boost (+20dB)", AC97_MIC, 6, 0),
  607. AC97_SWITCH("Line Capture Switch", AC97_LINE, 15, 1),
  608. AC97_VOLUME("CD Capture Volume", AC97_CD),
  609. AC97_SWITCH("CD Capture Switch", AC97_CD, 15, 1),
  610. AC97_VOLUME("Aux Capture Volume", AC97_AUX),
  611. AC97_SWITCH("Aux Capture Switch", AC97_AUX, 15, 1),
  612. };
  613. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  614. {
  615. struct oxygen *chip = ctl->private_data;
  616. unsigned int i;
  617. /* I'm too lazy to write a function for each control :-) */
  618. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  619. chip->controls[i] = NULL;
  620. }
  621. static int add_controls(struct oxygen *chip,
  622. const struct snd_kcontrol_new controls[],
  623. unsigned int count)
  624. {
  625. static const char *const known_ctl_names[CONTROL_COUNT] = {
  626. [CONTROL_SPDIF_PCM] =
  627. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  628. [CONTROL_SPDIF_INPUT_BITS] =
  629. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  630. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  631. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  632. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  633. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  634. };
  635. unsigned int i, j;
  636. struct snd_kcontrol_new template;
  637. struct snd_kcontrol *ctl;
  638. int err;
  639. for (i = 0; i < count; ++i) {
  640. template = controls[i];
  641. err = chip->model->control_filter(&template);
  642. if (err < 0)
  643. return err;
  644. ctl = snd_ctl_new1(&template, chip);
  645. if (!ctl)
  646. return -ENOMEM;
  647. err = snd_ctl_add(chip->card, ctl);
  648. if (err < 0)
  649. return err;
  650. for (j = 0; j < CONTROL_COUNT; ++j)
  651. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  652. chip->controls[j] = ctl;
  653. ctl->private_free = oxygen_any_ctl_free;
  654. }
  655. }
  656. return 0;
  657. }
  658. int oxygen_mixer_init(struct oxygen *chip)
  659. {
  660. int err;
  661. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  662. if (err < 0)
  663. return err;
  664. if (chip->has_ac97_0) {
  665. err = add_controls(chip, ac97_controls,
  666. ARRAY_SIZE(ac97_controls));
  667. if (err < 0)
  668. return err;
  669. }
  670. return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
  671. }