md.c 224 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. static int remove_and_add_spares(struct mddev *mddev,
  62. struct md_rdev *this);
  63. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  64. /*
  65. * Default number of read corrections we'll attempt on an rdev
  66. * before ejecting it from the array. We divide the read error
  67. * count by 2 for every hour elapsed between read errors.
  68. */
  69. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  70. /*
  71. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  72. * is 1000 KB/sec, so the extra system load does not show up that much.
  73. * Increase it if you want to have more _guaranteed_ speed. Note that
  74. * the RAID driver will use the maximum available bandwidth if the IO
  75. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  76. * speed limit - in case reconstruction slows down your system despite
  77. * idle IO detection.
  78. *
  79. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  80. * or /sys/block/mdX/md/sync_speed_{min,max}
  81. */
  82. static int sysctl_speed_limit_min = 1000;
  83. static int sysctl_speed_limit_max = 200000;
  84. static inline int speed_min(struct mddev *mddev)
  85. {
  86. return mddev->sync_speed_min ?
  87. mddev->sync_speed_min : sysctl_speed_limit_min;
  88. }
  89. static inline int speed_max(struct mddev *mddev)
  90. {
  91. return mddev->sync_speed_max ?
  92. mddev->sync_speed_max : sysctl_speed_limit_max;
  93. }
  94. static struct ctl_table_header *raid_table_header;
  95. static ctl_table raid_table[] = {
  96. {
  97. .procname = "speed_limit_min",
  98. .data = &sysctl_speed_limit_min,
  99. .maxlen = sizeof(int),
  100. .mode = S_IRUGO|S_IWUSR,
  101. .proc_handler = proc_dointvec,
  102. },
  103. {
  104. .procname = "speed_limit_max",
  105. .data = &sysctl_speed_limit_max,
  106. .maxlen = sizeof(int),
  107. .mode = S_IRUGO|S_IWUSR,
  108. .proc_handler = proc_dointvec,
  109. },
  110. { }
  111. };
  112. static ctl_table raid_dir_table[] = {
  113. {
  114. .procname = "raid",
  115. .maxlen = 0,
  116. .mode = S_IRUGO|S_IXUGO,
  117. .child = raid_table,
  118. },
  119. { }
  120. };
  121. static ctl_table raid_root_table[] = {
  122. {
  123. .procname = "dev",
  124. .maxlen = 0,
  125. .mode = 0555,
  126. .child = raid_dir_table,
  127. },
  128. { }
  129. };
  130. static const struct block_device_operations md_fops;
  131. static int start_readonly;
  132. /* bio_clone_mddev
  133. * like bio_clone, but with a local bio set
  134. */
  135. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  136. struct mddev *mddev)
  137. {
  138. struct bio *b;
  139. if (!mddev || !mddev->bio_set)
  140. return bio_alloc(gfp_mask, nr_iovecs);
  141. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  142. if (!b)
  143. return NULL;
  144. return b;
  145. }
  146. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  147. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  148. struct mddev *mddev)
  149. {
  150. if (!mddev || !mddev->bio_set)
  151. return bio_clone(bio, gfp_mask);
  152. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  153. }
  154. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  155. void md_trim_bio(struct bio *bio, int offset, int size)
  156. {
  157. /* 'bio' is a cloned bio which we need to trim to match
  158. * the given offset and size.
  159. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  160. */
  161. int i;
  162. struct bio_vec *bvec;
  163. int sofar = 0;
  164. size <<= 9;
  165. if (offset == 0 && size == bio->bi_size)
  166. return;
  167. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  168. bio_advance(bio, offset << 9);
  169. bio->bi_size = size;
  170. /* avoid any complications with bi_idx being non-zero*/
  171. if (bio->bi_idx) {
  172. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  173. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  174. bio->bi_vcnt -= bio->bi_idx;
  175. bio->bi_idx = 0;
  176. }
  177. /* Make sure vcnt and last bv are not too big */
  178. bio_for_each_segment(bvec, bio, i) {
  179. if (sofar + bvec->bv_len > size)
  180. bvec->bv_len = size - sofar;
  181. if (bvec->bv_len == 0) {
  182. bio->bi_vcnt = i;
  183. break;
  184. }
  185. sofar += bvec->bv_len;
  186. }
  187. }
  188. EXPORT_SYMBOL_GPL(md_trim_bio);
  189. /*
  190. * We have a system wide 'event count' that is incremented
  191. * on any 'interesting' event, and readers of /proc/mdstat
  192. * can use 'poll' or 'select' to find out when the event
  193. * count increases.
  194. *
  195. * Events are:
  196. * start array, stop array, error, add device, remove device,
  197. * start build, activate spare
  198. */
  199. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  200. static atomic_t md_event_count;
  201. void md_new_event(struct mddev *mddev)
  202. {
  203. atomic_inc(&md_event_count);
  204. wake_up(&md_event_waiters);
  205. }
  206. EXPORT_SYMBOL_GPL(md_new_event);
  207. /* Alternate version that can be called from interrupts
  208. * when calling sysfs_notify isn't needed.
  209. */
  210. static void md_new_event_inintr(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. /*
  216. * Enables to iterate over all existing md arrays
  217. * all_mddevs_lock protects this list.
  218. */
  219. static LIST_HEAD(all_mddevs);
  220. static DEFINE_SPINLOCK(all_mddevs_lock);
  221. /*
  222. * iterates through all used mddevs in the system.
  223. * We take care to grab the all_mddevs_lock whenever navigating
  224. * the list, and to always hold a refcount when unlocked.
  225. * Any code which breaks out of this loop while own
  226. * a reference to the current mddev and must mddev_put it.
  227. */
  228. #define for_each_mddev(_mddev,_tmp) \
  229. \
  230. for (({ spin_lock(&all_mddevs_lock); \
  231. _tmp = all_mddevs.next; \
  232. _mddev = NULL;}); \
  233. ({ if (_tmp != &all_mddevs) \
  234. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  235. spin_unlock(&all_mddevs_lock); \
  236. if (_mddev) mddev_put(_mddev); \
  237. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  238. _tmp != &all_mddevs;}); \
  239. ({ spin_lock(&all_mddevs_lock); \
  240. _tmp = _tmp->next;}) \
  241. )
  242. /* Rather than calling directly into the personality make_request function,
  243. * IO requests come here first so that we can check if the device is
  244. * being suspended pending a reconfiguration.
  245. * We hold a refcount over the call to ->make_request. By the time that
  246. * call has finished, the bio has been linked into some internal structure
  247. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  248. */
  249. static void md_make_request(struct request_queue *q, struct bio *bio)
  250. {
  251. const int rw = bio_data_dir(bio);
  252. struct mddev *mddev = q->queuedata;
  253. int cpu;
  254. unsigned int sectors;
  255. if (mddev == NULL || mddev->pers == NULL
  256. || !mddev->ready) {
  257. bio_io_error(bio);
  258. return;
  259. }
  260. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  261. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  262. return;
  263. }
  264. smp_rmb(); /* Ensure implications of 'active' are visible */
  265. rcu_read_lock();
  266. if (mddev->suspended) {
  267. DEFINE_WAIT(__wait);
  268. for (;;) {
  269. prepare_to_wait(&mddev->sb_wait, &__wait,
  270. TASK_UNINTERRUPTIBLE);
  271. if (!mddev->suspended)
  272. break;
  273. rcu_read_unlock();
  274. schedule();
  275. rcu_read_lock();
  276. }
  277. finish_wait(&mddev->sb_wait, &__wait);
  278. }
  279. atomic_inc(&mddev->active_io);
  280. rcu_read_unlock();
  281. /*
  282. * save the sectors now since our bio can
  283. * go away inside make_request
  284. */
  285. sectors = bio_sectors(bio);
  286. mddev->pers->make_request(mddev, bio);
  287. cpu = part_stat_lock();
  288. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  289. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  290. part_stat_unlock();
  291. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  292. wake_up(&mddev->sb_wait);
  293. }
  294. /* mddev_suspend makes sure no new requests are submitted
  295. * to the device, and that any requests that have been submitted
  296. * are completely handled.
  297. * Once ->stop is called and completes, the module will be completely
  298. * unused.
  299. */
  300. void mddev_suspend(struct mddev *mddev)
  301. {
  302. BUG_ON(mddev->suspended);
  303. mddev->suspended = 1;
  304. synchronize_rcu();
  305. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  306. mddev->pers->quiesce(mddev, 1);
  307. del_timer_sync(&mddev->safemode_timer);
  308. }
  309. EXPORT_SYMBOL_GPL(mddev_suspend);
  310. void mddev_resume(struct mddev *mddev)
  311. {
  312. mddev->suspended = 0;
  313. wake_up(&mddev->sb_wait);
  314. mddev->pers->quiesce(mddev, 0);
  315. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  316. md_wakeup_thread(mddev->thread);
  317. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  318. }
  319. EXPORT_SYMBOL_GPL(mddev_resume);
  320. int mddev_congested(struct mddev *mddev, int bits)
  321. {
  322. return mddev->suspended;
  323. }
  324. EXPORT_SYMBOL(mddev_congested);
  325. /*
  326. * Generic flush handling for md
  327. */
  328. static void md_end_flush(struct bio *bio, int err)
  329. {
  330. struct md_rdev *rdev = bio->bi_private;
  331. struct mddev *mddev = rdev->mddev;
  332. rdev_dec_pending(rdev, mddev);
  333. if (atomic_dec_and_test(&mddev->flush_pending)) {
  334. /* The pre-request flush has finished */
  335. queue_work(md_wq, &mddev->flush_work);
  336. }
  337. bio_put(bio);
  338. }
  339. static void md_submit_flush_data(struct work_struct *ws);
  340. static void submit_flushes(struct work_struct *ws)
  341. {
  342. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  343. struct md_rdev *rdev;
  344. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  345. atomic_set(&mddev->flush_pending, 1);
  346. rcu_read_lock();
  347. rdev_for_each_rcu(rdev, mddev)
  348. if (rdev->raid_disk >= 0 &&
  349. !test_bit(Faulty, &rdev->flags)) {
  350. /* Take two references, one is dropped
  351. * when request finishes, one after
  352. * we reclaim rcu_read_lock
  353. */
  354. struct bio *bi;
  355. atomic_inc(&rdev->nr_pending);
  356. atomic_inc(&rdev->nr_pending);
  357. rcu_read_unlock();
  358. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  359. bi->bi_end_io = md_end_flush;
  360. bi->bi_private = rdev;
  361. bi->bi_bdev = rdev->bdev;
  362. atomic_inc(&mddev->flush_pending);
  363. submit_bio(WRITE_FLUSH, bi);
  364. rcu_read_lock();
  365. rdev_dec_pending(rdev, mddev);
  366. }
  367. rcu_read_unlock();
  368. if (atomic_dec_and_test(&mddev->flush_pending))
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. static void md_submit_flush_data(struct work_struct *ws)
  372. {
  373. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  374. struct bio *bio = mddev->flush_bio;
  375. if (bio->bi_size == 0)
  376. /* an empty barrier - all done */
  377. bio_endio(bio, 0);
  378. else {
  379. bio->bi_rw &= ~REQ_FLUSH;
  380. mddev->pers->make_request(mddev, bio);
  381. }
  382. mddev->flush_bio = NULL;
  383. wake_up(&mddev->sb_wait);
  384. }
  385. void md_flush_request(struct mddev *mddev, struct bio *bio)
  386. {
  387. spin_lock_irq(&mddev->write_lock);
  388. wait_event_lock_irq(mddev->sb_wait,
  389. !mddev->flush_bio,
  390. mddev->write_lock);
  391. mddev->flush_bio = bio;
  392. spin_unlock_irq(&mddev->write_lock);
  393. INIT_WORK(&mddev->flush_work, submit_flushes);
  394. queue_work(md_wq, &mddev->flush_work);
  395. }
  396. EXPORT_SYMBOL(md_flush_request);
  397. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  398. {
  399. struct mddev *mddev = cb->data;
  400. md_wakeup_thread(mddev->thread);
  401. kfree(cb);
  402. }
  403. EXPORT_SYMBOL(md_unplug);
  404. static inline struct mddev *mddev_get(struct mddev *mddev)
  405. {
  406. atomic_inc(&mddev->active);
  407. return mddev;
  408. }
  409. static void mddev_delayed_delete(struct work_struct *ws);
  410. static void mddev_put(struct mddev *mddev)
  411. {
  412. struct bio_set *bs = NULL;
  413. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  414. return;
  415. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  416. mddev->ctime == 0 && !mddev->hold_active) {
  417. /* Array is not configured at all, and not held active,
  418. * so destroy it */
  419. list_del_init(&mddev->all_mddevs);
  420. bs = mddev->bio_set;
  421. mddev->bio_set = NULL;
  422. if (mddev->gendisk) {
  423. /* We did a probe so need to clean up. Call
  424. * queue_work inside the spinlock so that
  425. * flush_workqueue() after mddev_find will
  426. * succeed in waiting for the work to be done.
  427. */
  428. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  429. queue_work(md_misc_wq, &mddev->del_work);
  430. } else
  431. kfree(mddev);
  432. }
  433. spin_unlock(&all_mddevs_lock);
  434. if (bs)
  435. bioset_free(bs);
  436. }
  437. void mddev_init(struct mddev *mddev)
  438. {
  439. mutex_init(&mddev->open_mutex);
  440. mutex_init(&mddev->reconfig_mutex);
  441. mutex_init(&mddev->bitmap_info.mutex);
  442. INIT_LIST_HEAD(&mddev->disks);
  443. INIT_LIST_HEAD(&mddev->all_mddevs);
  444. init_timer(&mddev->safemode_timer);
  445. atomic_set(&mddev->active, 1);
  446. atomic_set(&mddev->openers, 0);
  447. atomic_set(&mddev->active_io, 0);
  448. spin_lock_init(&mddev->write_lock);
  449. atomic_set(&mddev->flush_pending, 0);
  450. init_waitqueue_head(&mddev->sb_wait);
  451. init_waitqueue_head(&mddev->recovery_wait);
  452. mddev->reshape_position = MaxSector;
  453. mddev->reshape_backwards = 0;
  454. mddev->last_sync_action = "none";
  455. mddev->resync_min = 0;
  456. mddev->resync_max = MaxSector;
  457. mddev->level = LEVEL_NONE;
  458. }
  459. EXPORT_SYMBOL_GPL(mddev_init);
  460. static struct mddev * mddev_find(dev_t unit)
  461. {
  462. struct mddev *mddev, *new = NULL;
  463. if (unit && MAJOR(unit) != MD_MAJOR)
  464. unit &= ~((1<<MdpMinorShift)-1);
  465. retry:
  466. spin_lock(&all_mddevs_lock);
  467. if (unit) {
  468. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  469. if (mddev->unit == unit) {
  470. mddev_get(mddev);
  471. spin_unlock(&all_mddevs_lock);
  472. kfree(new);
  473. return mddev;
  474. }
  475. if (new) {
  476. list_add(&new->all_mddevs, &all_mddevs);
  477. spin_unlock(&all_mddevs_lock);
  478. new->hold_active = UNTIL_IOCTL;
  479. return new;
  480. }
  481. } else if (new) {
  482. /* find an unused unit number */
  483. static int next_minor = 512;
  484. int start = next_minor;
  485. int is_free = 0;
  486. int dev = 0;
  487. while (!is_free) {
  488. dev = MKDEV(MD_MAJOR, next_minor);
  489. next_minor++;
  490. if (next_minor > MINORMASK)
  491. next_minor = 0;
  492. if (next_minor == start) {
  493. /* Oh dear, all in use. */
  494. spin_unlock(&all_mddevs_lock);
  495. kfree(new);
  496. return NULL;
  497. }
  498. is_free = 1;
  499. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  500. if (mddev->unit == dev) {
  501. is_free = 0;
  502. break;
  503. }
  504. }
  505. new->unit = dev;
  506. new->md_minor = MINOR(dev);
  507. new->hold_active = UNTIL_STOP;
  508. list_add(&new->all_mddevs, &all_mddevs);
  509. spin_unlock(&all_mddevs_lock);
  510. return new;
  511. }
  512. spin_unlock(&all_mddevs_lock);
  513. new = kzalloc(sizeof(*new), GFP_KERNEL);
  514. if (!new)
  515. return NULL;
  516. new->unit = unit;
  517. if (MAJOR(unit) == MD_MAJOR)
  518. new->md_minor = MINOR(unit);
  519. else
  520. new->md_minor = MINOR(unit) >> MdpMinorShift;
  521. mddev_init(new);
  522. goto retry;
  523. }
  524. static inline int mddev_lock(struct mddev * mddev)
  525. {
  526. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  527. }
  528. static inline int mddev_is_locked(struct mddev *mddev)
  529. {
  530. return mutex_is_locked(&mddev->reconfig_mutex);
  531. }
  532. static inline int mddev_trylock(struct mddev * mddev)
  533. {
  534. return mutex_trylock(&mddev->reconfig_mutex);
  535. }
  536. static struct attribute_group md_redundancy_group;
  537. static void mddev_unlock(struct mddev * mddev)
  538. {
  539. if (mddev->to_remove) {
  540. /* These cannot be removed under reconfig_mutex as
  541. * an access to the files will try to take reconfig_mutex
  542. * while holding the file unremovable, which leads to
  543. * a deadlock.
  544. * So hold set sysfs_active while the remove in happeing,
  545. * and anything else which might set ->to_remove or my
  546. * otherwise change the sysfs namespace will fail with
  547. * -EBUSY if sysfs_active is still set.
  548. * We set sysfs_active under reconfig_mutex and elsewhere
  549. * test it under the same mutex to ensure its correct value
  550. * is seen.
  551. */
  552. struct attribute_group *to_remove = mddev->to_remove;
  553. mddev->to_remove = NULL;
  554. mddev->sysfs_active = 1;
  555. mutex_unlock(&mddev->reconfig_mutex);
  556. if (mddev->kobj.sd) {
  557. if (to_remove != &md_redundancy_group)
  558. sysfs_remove_group(&mddev->kobj, to_remove);
  559. if (mddev->pers == NULL ||
  560. mddev->pers->sync_request == NULL) {
  561. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  562. if (mddev->sysfs_action)
  563. sysfs_put(mddev->sysfs_action);
  564. mddev->sysfs_action = NULL;
  565. }
  566. }
  567. mddev->sysfs_active = 0;
  568. } else
  569. mutex_unlock(&mddev->reconfig_mutex);
  570. /* As we've dropped the mutex we need a spinlock to
  571. * make sure the thread doesn't disappear
  572. */
  573. spin_lock(&pers_lock);
  574. md_wakeup_thread(mddev->thread);
  575. spin_unlock(&pers_lock);
  576. }
  577. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  578. {
  579. struct md_rdev *rdev;
  580. rdev_for_each(rdev, mddev)
  581. if (rdev->desc_nr == nr)
  582. return rdev;
  583. return NULL;
  584. }
  585. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  586. {
  587. struct md_rdev *rdev;
  588. rdev_for_each_rcu(rdev, mddev)
  589. if (rdev->desc_nr == nr)
  590. return rdev;
  591. return NULL;
  592. }
  593. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  594. {
  595. struct md_rdev *rdev;
  596. rdev_for_each(rdev, mddev)
  597. if (rdev->bdev->bd_dev == dev)
  598. return rdev;
  599. return NULL;
  600. }
  601. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  602. {
  603. struct md_rdev *rdev;
  604. rdev_for_each_rcu(rdev, mddev)
  605. if (rdev->bdev->bd_dev == dev)
  606. return rdev;
  607. return NULL;
  608. }
  609. static struct md_personality *find_pers(int level, char *clevel)
  610. {
  611. struct md_personality *pers;
  612. list_for_each_entry(pers, &pers_list, list) {
  613. if (level != LEVEL_NONE && pers->level == level)
  614. return pers;
  615. if (strcmp(pers->name, clevel)==0)
  616. return pers;
  617. }
  618. return NULL;
  619. }
  620. /* return the offset of the super block in 512byte sectors */
  621. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  622. {
  623. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  624. return MD_NEW_SIZE_SECTORS(num_sectors);
  625. }
  626. static int alloc_disk_sb(struct md_rdev * rdev)
  627. {
  628. if (rdev->sb_page)
  629. MD_BUG();
  630. rdev->sb_page = alloc_page(GFP_KERNEL);
  631. if (!rdev->sb_page) {
  632. printk(KERN_ALERT "md: out of memory.\n");
  633. return -ENOMEM;
  634. }
  635. return 0;
  636. }
  637. void md_rdev_clear(struct md_rdev *rdev)
  638. {
  639. if (rdev->sb_page) {
  640. put_page(rdev->sb_page);
  641. rdev->sb_loaded = 0;
  642. rdev->sb_page = NULL;
  643. rdev->sb_start = 0;
  644. rdev->sectors = 0;
  645. }
  646. if (rdev->bb_page) {
  647. put_page(rdev->bb_page);
  648. rdev->bb_page = NULL;
  649. }
  650. kfree(rdev->badblocks.page);
  651. rdev->badblocks.page = NULL;
  652. }
  653. EXPORT_SYMBOL_GPL(md_rdev_clear);
  654. static void super_written(struct bio *bio, int error)
  655. {
  656. struct md_rdev *rdev = bio->bi_private;
  657. struct mddev *mddev = rdev->mddev;
  658. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  659. printk("md: super_written gets error=%d, uptodate=%d\n",
  660. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  661. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  662. md_error(mddev, rdev);
  663. }
  664. if (atomic_dec_and_test(&mddev->pending_writes))
  665. wake_up(&mddev->sb_wait);
  666. bio_put(bio);
  667. }
  668. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  669. sector_t sector, int size, struct page *page)
  670. {
  671. /* write first size bytes of page to sector of rdev
  672. * Increment mddev->pending_writes before returning
  673. * and decrement it on completion, waking up sb_wait
  674. * if zero is reached.
  675. * If an error occurred, call md_error
  676. */
  677. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  678. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  679. bio->bi_sector = sector;
  680. bio_add_page(bio, page, size, 0);
  681. bio->bi_private = rdev;
  682. bio->bi_end_io = super_written;
  683. atomic_inc(&mddev->pending_writes);
  684. submit_bio(WRITE_FLUSH_FUA, bio);
  685. }
  686. void md_super_wait(struct mddev *mddev)
  687. {
  688. /* wait for all superblock writes that were scheduled to complete */
  689. DEFINE_WAIT(wq);
  690. for(;;) {
  691. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  692. if (atomic_read(&mddev->pending_writes)==0)
  693. break;
  694. schedule();
  695. }
  696. finish_wait(&mddev->sb_wait, &wq);
  697. }
  698. static void bi_complete(struct bio *bio, int error)
  699. {
  700. complete((struct completion*)bio->bi_private);
  701. }
  702. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  703. struct page *page, int rw, bool metadata_op)
  704. {
  705. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  706. struct completion event;
  707. int ret;
  708. rw |= REQ_SYNC;
  709. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  710. rdev->meta_bdev : rdev->bdev;
  711. if (metadata_op)
  712. bio->bi_sector = sector + rdev->sb_start;
  713. else if (rdev->mddev->reshape_position != MaxSector &&
  714. (rdev->mddev->reshape_backwards ==
  715. (sector >= rdev->mddev->reshape_position)))
  716. bio->bi_sector = sector + rdev->new_data_offset;
  717. else
  718. bio->bi_sector = sector + rdev->data_offset;
  719. bio_add_page(bio, page, size, 0);
  720. init_completion(&event);
  721. bio->bi_private = &event;
  722. bio->bi_end_io = bi_complete;
  723. submit_bio(rw, bio);
  724. wait_for_completion(&event);
  725. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  726. bio_put(bio);
  727. return ret;
  728. }
  729. EXPORT_SYMBOL_GPL(sync_page_io);
  730. static int read_disk_sb(struct md_rdev * rdev, int size)
  731. {
  732. char b[BDEVNAME_SIZE];
  733. if (!rdev->sb_page) {
  734. MD_BUG();
  735. return -EINVAL;
  736. }
  737. if (rdev->sb_loaded)
  738. return 0;
  739. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  740. goto fail;
  741. rdev->sb_loaded = 1;
  742. return 0;
  743. fail:
  744. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  745. bdevname(rdev->bdev,b));
  746. return -EINVAL;
  747. }
  748. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  749. {
  750. return sb1->set_uuid0 == sb2->set_uuid0 &&
  751. sb1->set_uuid1 == sb2->set_uuid1 &&
  752. sb1->set_uuid2 == sb2->set_uuid2 &&
  753. sb1->set_uuid3 == sb2->set_uuid3;
  754. }
  755. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  756. {
  757. int ret;
  758. mdp_super_t *tmp1, *tmp2;
  759. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  760. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  761. if (!tmp1 || !tmp2) {
  762. ret = 0;
  763. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  764. goto abort;
  765. }
  766. *tmp1 = *sb1;
  767. *tmp2 = *sb2;
  768. /*
  769. * nr_disks is not constant
  770. */
  771. tmp1->nr_disks = 0;
  772. tmp2->nr_disks = 0;
  773. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  774. abort:
  775. kfree(tmp1);
  776. kfree(tmp2);
  777. return ret;
  778. }
  779. static u32 md_csum_fold(u32 csum)
  780. {
  781. csum = (csum & 0xffff) + (csum >> 16);
  782. return (csum & 0xffff) + (csum >> 16);
  783. }
  784. static unsigned int calc_sb_csum(mdp_super_t * sb)
  785. {
  786. u64 newcsum = 0;
  787. u32 *sb32 = (u32*)sb;
  788. int i;
  789. unsigned int disk_csum, csum;
  790. disk_csum = sb->sb_csum;
  791. sb->sb_csum = 0;
  792. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  793. newcsum += sb32[i];
  794. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  795. #ifdef CONFIG_ALPHA
  796. /* This used to use csum_partial, which was wrong for several
  797. * reasons including that different results are returned on
  798. * different architectures. It isn't critical that we get exactly
  799. * the same return value as before (we always csum_fold before
  800. * testing, and that removes any differences). However as we
  801. * know that csum_partial always returned a 16bit value on
  802. * alphas, do a fold to maximise conformity to previous behaviour.
  803. */
  804. sb->sb_csum = md_csum_fold(disk_csum);
  805. #else
  806. sb->sb_csum = disk_csum;
  807. #endif
  808. return csum;
  809. }
  810. /*
  811. * Handle superblock details.
  812. * We want to be able to handle multiple superblock formats
  813. * so we have a common interface to them all, and an array of
  814. * different handlers.
  815. * We rely on user-space to write the initial superblock, and support
  816. * reading and updating of superblocks.
  817. * Interface methods are:
  818. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  819. * loads and validates a superblock on dev.
  820. * if refdev != NULL, compare superblocks on both devices
  821. * Return:
  822. * 0 - dev has a superblock that is compatible with refdev
  823. * 1 - dev has a superblock that is compatible and newer than refdev
  824. * so dev should be used as the refdev in future
  825. * -EINVAL superblock incompatible or invalid
  826. * -othererror e.g. -EIO
  827. *
  828. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  829. * Verify that dev is acceptable into mddev.
  830. * The first time, mddev->raid_disks will be 0, and data from
  831. * dev should be merged in. Subsequent calls check that dev
  832. * is new enough. Return 0 or -EINVAL
  833. *
  834. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  835. * Update the superblock for rdev with data in mddev
  836. * This does not write to disc.
  837. *
  838. */
  839. struct super_type {
  840. char *name;
  841. struct module *owner;
  842. int (*load_super)(struct md_rdev *rdev,
  843. struct md_rdev *refdev,
  844. int minor_version);
  845. int (*validate_super)(struct mddev *mddev,
  846. struct md_rdev *rdev);
  847. void (*sync_super)(struct mddev *mddev,
  848. struct md_rdev *rdev);
  849. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  850. sector_t num_sectors);
  851. int (*allow_new_offset)(struct md_rdev *rdev,
  852. unsigned long long new_offset);
  853. };
  854. /*
  855. * Check that the given mddev has no bitmap.
  856. *
  857. * This function is called from the run method of all personalities that do not
  858. * support bitmaps. It prints an error message and returns non-zero if mddev
  859. * has a bitmap. Otherwise, it returns 0.
  860. *
  861. */
  862. int md_check_no_bitmap(struct mddev *mddev)
  863. {
  864. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  865. return 0;
  866. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  867. mdname(mddev), mddev->pers->name);
  868. return 1;
  869. }
  870. EXPORT_SYMBOL(md_check_no_bitmap);
  871. /*
  872. * load_super for 0.90.0
  873. */
  874. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  875. {
  876. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  877. mdp_super_t *sb;
  878. int ret;
  879. /*
  880. * Calculate the position of the superblock (512byte sectors),
  881. * it's at the end of the disk.
  882. *
  883. * It also happens to be a multiple of 4Kb.
  884. */
  885. rdev->sb_start = calc_dev_sboffset(rdev);
  886. ret = read_disk_sb(rdev, MD_SB_BYTES);
  887. if (ret) return ret;
  888. ret = -EINVAL;
  889. bdevname(rdev->bdev, b);
  890. sb = page_address(rdev->sb_page);
  891. if (sb->md_magic != MD_SB_MAGIC) {
  892. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  893. b);
  894. goto abort;
  895. }
  896. if (sb->major_version != 0 ||
  897. sb->minor_version < 90 ||
  898. sb->minor_version > 91) {
  899. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  900. sb->major_version, sb->minor_version,
  901. b);
  902. goto abort;
  903. }
  904. if (sb->raid_disks <= 0)
  905. goto abort;
  906. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  907. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  908. b);
  909. goto abort;
  910. }
  911. rdev->preferred_minor = sb->md_minor;
  912. rdev->data_offset = 0;
  913. rdev->new_data_offset = 0;
  914. rdev->sb_size = MD_SB_BYTES;
  915. rdev->badblocks.shift = -1;
  916. if (sb->level == LEVEL_MULTIPATH)
  917. rdev->desc_nr = -1;
  918. else
  919. rdev->desc_nr = sb->this_disk.number;
  920. if (!refdev) {
  921. ret = 1;
  922. } else {
  923. __u64 ev1, ev2;
  924. mdp_super_t *refsb = page_address(refdev->sb_page);
  925. if (!uuid_equal(refsb, sb)) {
  926. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  927. b, bdevname(refdev->bdev,b2));
  928. goto abort;
  929. }
  930. if (!sb_equal(refsb, sb)) {
  931. printk(KERN_WARNING "md: %s has same UUID"
  932. " but different superblock to %s\n",
  933. b, bdevname(refdev->bdev, b2));
  934. goto abort;
  935. }
  936. ev1 = md_event(sb);
  937. ev2 = md_event(refsb);
  938. if (ev1 > ev2)
  939. ret = 1;
  940. else
  941. ret = 0;
  942. }
  943. rdev->sectors = rdev->sb_start;
  944. /* Limit to 4TB as metadata cannot record more than that.
  945. * (not needed for Linear and RAID0 as metadata doesn't
  946. * record this size)
  947. */
  948. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  949. rdev->sectors = (2ULL << 32) - 2;
  950. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  951. /* "this cannot possibly happen" ... */
  952. ret = -EINVAL;
  953. abort:
  954. return ret;
  955. }
  956. /*
  957. * validate_super for 0.90.0
  958. */
  959. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  960. {
  961. mdp_disk_t *desc;
  962. mdp_super_t *sb = page_address(rdev->sb_page);
  963. __u64 ev1 = md_event(sb);
  964. rdev->raid_disk = -1;
  965. clear_bit(Faulty, &rdev->flags);
  966. clear_bit(In_sync, &rdev->flags);
  967. clear_bit(WriteMostly, &rdev->flags);
  968. if (mddev->raid_disks == 0) {
  969. mddev->major_version = 0;
  970. mddev->minor_version = sb->minor_version;
  971. mddev->patch_version = sb->patch_version;
  972. mddev->external = 0;
  973. mddev->chunk_sectors = sb->chunk_size >> 9;
  974. mddev->ctime = sb->ctime;
  975. mddev->utime = sb->utime;
  976. mddev->level = sb->level;
  977. mddev->clevel[0] = 0;
  978. mddev->layout = sb->layout;
  979. mddev->raid_disks = sb->raid_disks;
  980. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  981. mddev->events = ev1;
  982. mddev->bitmap_info.offset = 0;
  983. mddev->bitmap_info.space = 0;
  984. /* bitmap can use 60 K after the 4K superblocks */
  985. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  986. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  987. mddev->reshape_backwards = 0;
  988. if (mddev->minor_version >= 91) {
  989. mddev->reshape_position = sb->reshape_position;
  990. mddev->delta_disks = sb->delta_disks;
  991. mddev->new_level = sb->new_level;
  992. mddev->new_layout = sb->new_layout;
  993. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  994. if (mddev->delta_disks < 0)
  995. mddev->reshape_backwards = 1;
  996. } else {
  997. mddev->reshape_position = MaxSector;
  998. mddev->delta_disks = 0;
  999. mddev->new_level = mddev->level;
  1000. mddev->new_layout = mddev->layout;
  1001. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1002. }
  1003. if (sb->state & (1<<MD_SB_CLEAN))
  1004. mddev->recovery_cp = MaxSector;
  1005. else {
  1006. if (sb->events_hi == sb->cp_events_hi &&
  1007. sb->events_lo == sb->cp_events_lo) {
  1008. mddev->recovery_cp = sb->recovery_cp;
  1009. } else
  1010. mddev->recovery_cp = 0;
  1011. }
  1012. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1013. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1014. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1015. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1016. mddev->max_disks = MD_SB_DISKS;
  1017. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1018. mddev->bitmap_info.file == NULL) {
  1019. mddev->bitmap_info.offset =
  1020. mddev->bitmap_info.default_offset;
  1021. mddev->bitmap_info.space =
  1022. mddev->bitmap_info.default_space;
  1023. }
  1024. } else if (mddev->pers == NULL) {
  1025. /* Insist on good event counter while assembling, except
  1026. * for spares (which don't need an event count) */
  1027. ++ev1;
  1028. if (sb->disks[rdev->desc_nr].state & (
  1029. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1030. if (ev1 < mddev->events)
  1031. return -EINVAL;
  1032. } else if (mddev->bitmap) {
  1033. /* if adding to array with a bitmap, then we can accept an
  1034. * older device ... but not too old.
  1035. */
  1036. if (ev1 < mddev->bitmap->events_cleared)
  1037. return 0;
  1038. } else {
  1039. if (ev1 < mddev->events)
  1040. /* just a hot-add of a new device, leave raid_disk at -1 */
  1041. return 0;
  1042. }
  1043. if (mddev->level != LEVEL_MULTIPATH) {
  1044. desc = sb->disks + rdev->desc_nr;
  1045. if (desc->state & (1<<MD_DISK_FAULTY))
  1046. set_bit(Faulty, &rdev->flags);
  1047. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1048. desc->raid_disk < mddev->raid_disks */) {
  1049. set_bit(In_sync, &rdev->flags);
  1050. rdev->raid_disk = desc->raid_disk;
  1051. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1052. /* active but not in sync implies recovery up to
  1053. * reshape position. We don't know exactly where
  1054. * that is, so set to zero for now */
  1055. if (mddev->minor_version >= 91) {
  1056. rdev->recovery_offset = 0;
  1057. rdev->raid_disk = desc->raid_disk;
  1058. }
  1059. }
  1060. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1061. set_bit(WriteMostly, &rdev->flags);
  1062. } else /* MULTIPATH are always insync */
  1063. set_bit(In_sync, &rdev->flags);
  1064. return 0;
  1065. }
  1066. /*
  1067. * sync_super for 0.90.0
  1068. */
  1069. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1070. {
  1071. mdp_super_t *sb;
  1072. struct md_rdev *rdev2;
  1073. int next_spare = mddev->raid_disks;
  1074. /* make rdev->sb match mddev data..
  1075. *
  1076. * 1/ zero out disks
  1077. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1078. * 3/ any empty disks < next_spare become removed
  1079. *
  1080. * disks[0] gets initialised to REMOVED because
  1081. * we cannot be sure from other fields if it has
  1082. * been initialised or not.
  1083. */
  1084. int i;
  1085. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1086. rdev->sb_size = MD_SB_BYTES;
  1087. sb = page_address(rdev->sb_page);
  1088. memset(sb, 0, sizeof(*sb));
  1089. sb->md_magic = MD_SB_MAGIC;
  1090. sb->major_version = mddev->major_version;
  1091. sb->patch_version = mddev->patch_version;
  1092. sb->gvalid_words = 0; /* ignored */
  1093. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1094. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1095. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1096. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1097. sb->ctime = mddev->ctime;
  1098. sb->level = mddev->level;
  1099. sb->size = mddev->dev_sectors / 2;
  1100. sb->raid_disks = mddev->raid_disks;
  1101. sb->md_minor = mddev->md_minor;
  1102. sb->not_persistent = 0;
  1103. sb->utime = mddev->utime;
  1104. sb->state = 0;
  1105. sb->events_hi = (mddev->events>>32);
  1106. sb->events_lo = (u32)mddev->events;
  1107. if (mddev->reshape_position == MaxSector)
  1108. sb->minor_version = 90;
  1109. else {
  1110. sb->minor_version = 91;
  1111. sb->reshape_position = mddev->reshape_position;
  1112. sb->new_level = mddev->new_level;
  1113. sb->delta_disks = mddev->delta_disks;
  1114. sb->new_layout = mddev->new_layout;
  1115. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1116. }
  1117. mddev->minor_version = sb->minor_version;
  1118. if (mddev->in_sync)
  1119. {
  1120. sb->recovery_cp = mddev->recovery_cp;
  1121. sb->cp_events_hi = (mddev->events>>32);
  1122. sb->cp_events_lo = (u32)mddev->events;
  1123. if (mddev->recovery_cp == MaxSector)
  1124. sb->state = (1<< MD_SB_CLEAN);
  1125. } else
  1126. sb->recovery_cp = 0;
  1127. sb->layout = mddev->layout;
  1128. sb->chunk_size = mddev->chunk_sectors << 9;
  1129. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1130. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1131. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1132. rdev_for_each(rdev2, mddev) {
  1133. mdp_disk_t *d;
  1134. int desc_nr;
  1135. int is_active = test_bit(In_sync, &rdev2->flags);
  1136. if (rdev2->raid_disk >= 0 &&
  1137. sb->minor_version >= 91)
  1138. /* we have nowhere to store the recovery_offset,
  1139. * but if it is not below the reshape_position,
  1140. * we can piggy-back on that.
  1141. */
  1142. is_active = 1;
  1143. if (rdev2->raid_disk < 0 ||
  1144. test_bit(Faulty, &rdev2->flags))
  1145. is_active = 0;
  1146. if (is_active)
  1147. desc_nr = rdev2->raid_disk;
  1148. else
  1149. desc_nr = next_spare++;
  1150. rdev2->desc_nr = desc_nr;
  1151. d = &sb->disks[rdev2->desc_nr];
  1152. nr_disks++;
  1153. d->number = rdev2->desc_nr;
  1154. d->major = MAJOR(rdev2->bdev->bd_dev);
  1155. d->minor = MINOR(rdev2->bdev->bd_dev);
  1156. if (is_active)
  1157. d->raid_disk = rdev2->raid_disk;
  1158. else
  1159. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1160. if (test_bit(Faulty, &rdev2->flags))
  1161. d->state = (1<<MD_DISK_FAULTY);
  1162. else if (is_active) {
  1163. d->state = (1<<MD_DISK_ACTIVE);
  1164. if (test_bit(In_sync, &rdev2->flags))
  1165. d->state |= (1<<MD_DISK_SYNC);
  1166. active++;
  1167. working++;
  1168. } else {
  1169. d->state = 0;
  1170. spare++;
  1171. working++;
  1172. }
  1173. if (test_bit(WriteMostly, &rdev2->flags))
  1174. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1175. }
  1176. /* now set the "removed" and "faulty" bits on any missing devices */
  1177. for (i=0 ; i < mddev->raid_disks ; i++) {
  1178. mdp_disk_t *d = &sb->disks[i];
  1179. if (d->state == 0 && d->number == 0) {
  1180. d->number = i;
  1181. d->raid_disk = i;
  1182. d->state = (1<<MD_DISK_REMOVED);
  1183. d->state |= (1<<MD_DISK_FAULTY);
  1184. failed++;
  1185. }
  1186. }
  1187. sb->nr_disks = nr_disks;
  1188. sb->active_disks = active;
  1189. sb->working_disks = working;
  1190. sb->failed_disks = failed;
  1191. sb->spare_disks = spare;
  1192. sb->this_disk = sb->disks[rdev->desc_nr];
  1193. sb->sb_csum = calc_sb_csum(sb);
  1194. }
  1195. /*
  1196. * rdev_size_change for 0.90.0
  1197. */
  1198. static unsigned long long
  1199. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1200. {
  1201. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1202. return 0; /* component must fit device */
  1203. if (rdev->mddev->bitmap_info.offset)
  1204. return 0; /* can't move bitmap */
  1205. rdev->sb_start = calc_dev_sboffset(rdev);
  1206. if (!num_sectors || num_sectors > rdev->sb_start)
  1207. num_sectors = rdev->sb_start;
  1208. /* Limit to 4TB as metadata cannot record more than that.
  1209. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1210. */
  1211. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1212. num_sectors = (2ULL << 32) - 2;
  1213. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1214. rdev->sb_page);
  1215. md_super_wait(rdev->mddev);
  1216. return num_sectors;
  1217. }
  1218. static int
  1219. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1220. {
  1221. /* non-zero offset changes not possible with v0.90 */
  1222. return new_offset == 0;
  1223. }
  1224. /*
  1225. * version 1 superblock
  1226. */
  1227. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1228. {
  1229. __le32 disk_csum;
  1230. u32 csum;
  1231. unsigned long long newcsum;
  1232. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1233. __le32 *isuper = (__le32*)sb;
  1234. disk_csum = sb->sb_csum;
  1235. sb->sb_csum = 0;
  1236. newcsum = 0;
  1237. for (; size >= 4; size -= 4)
  1238. newcsum += le32_to_cpu(*isuper++);
  1239. if (size == 2)
  1240. newcsum += le16_to_cpu(*(__le16*) isuper);
  1241. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1242. sb->sb_csum = disk_csum;
  1243. return cpu_to_le32(csum);
  1244. }
  1245. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1246. int acknowledged);
  1247. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1248. {
  1249. struct mdp_superblock_1 *sb;
  1250. int ret;
  1251. sector_t sb_start;
  1252. sector_t sectors;
  1253. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1254. int bmask;
  1255. /*
  1256. * Calculate the position of the superblock in 512byte sectors.
  1257. * It is always aligned to a 4K boundary and
  1258. * depeding on minor_version, it can be:
  1259. * 0: At least 8K, but less than 12K, from end of device
  1260. * 1: At start of device
  1261. * 2: 4K from start of device.
  1262. */
  1263. switch(minor_version) {
  1264. case 0:
  1265. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1266. sb_start -= 8*2;
  1267. sb_start &= ~(sector_t)(4*2-1);
  1268. break;
  1269. case 1:
  1270. sb_start = 0;
  1271. break;
  1272. case 2:
  1273. sb_start = 8;
  1274. break;
  1275. default:
  1276. return -EINVAL;
  1277. }
  1278. rdev->sb_start = sb_start;
  1279. /* superblock is rarely larger than 1K, but it can be larger,
  1280. * and it is safe to read 4k, so we do that
  1281. */
  1282. ret = read_disk_sb(rdev, 4096);
  1283. if (ret) return ret;
  1284. sb = page_address(rdev->sb_page);
  1285. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1286. sb->major_version != cpu_to_le32(1) ||
  1287. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1288. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1289. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1290. return -EINVAL;
  1291. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1292. printk("md: invalid superblock checksum on %s\n",
  1293. bdevname(rdev->bdev,b));
  1294. return -EINVAL;
  1295. }
  1296. if (le64_to_cpu(sb->data_size) < 10) {
  1297. printk("md: data_size too small on %s\n",
  1298. bdevname(rdev->bdev,b));
  1299. return -EINVAL;
  1300. }
  1301. if (sb->pad0 ||
  1302. sb->pad3[0] ||
  1303. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1304. /* Some padding is non-zero, might be a new feature */
  1305. return -EINVAL;
  1306. rdev->preferred_minor = 0xffff;
  1307. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1308. rdev->new_data_offset = rdev->data_offset;
  1309. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1310. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1311. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1312. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1313. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1314. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1315. if (rdev->sb_size & bmask)
  1316. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1317. if (minor_version
  1318. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1319. return -EINVAL;
  1320. if (minor_version
  1321. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1322. return -EINVAL;
  1323. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1324. rdev->desc_nr = -1;
  1325. else
  1326. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1327. if (!rdev->bb_page) {
  1328. rdev->bb_page = alloc_page(GFP_KERNEL);
  1329. if (!rdev->bb_page)
  1330. return -ENOMEM;
  1331. }
  1332. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1333. rdev->badblocks.count == 0) {
  1334. /* need to load the bad block list.
  1335. * Currently we limit it to one page.
  1336. */
  1337. s32 offset;
  1338. sector_t bb_sector;
  1339. u64 *bbp;
  1340. int i;
  1341. int sectors = le16_to_cpu(sb->bblog_size);
  1342. if (sectors > (PAGE_SIZE / 512))
  1343. return -EINVAL;
  1344. offset = le32_to_cpu(sb->bblog_offset);
  1345. if (offset == 0)
  1346. return -EINVAL;
  1347. bb_sector = (long long)offset;
  1348. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1349. rdev->bb_page, READ, true))
  1350. return -EIO;
  1351. bbp = (u64 *)page_address(rdev->bb_page);
  1352. rdev->badblocks.shift = sb->bblog_shift;
  1353. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1354. u64 bb = le64_to_cpu(*bbp);
  1355. int count = bb & (0x3ff);
  1356. u64 sector = bb >> 10;
  1357. sector <<= sb->bblog_shift;
  1358. count <<= sb->bblog_shift;
  1359. if (bb + 1 == 0)
  1360. break;
  1361. if (md_set_badblocks(&rdev->badblocks,
  1362. sector, count, 1) == 0)
  1363. return -EINVAL;
  1364. }
  1365. } else if (sb->bblog_offset != 0)
  1366. rdev->badblocks.shift = 0;
  1367. if (!refdev) {
  1368. ret = 1;
  1369. } else {
  1370. __u64 ev1, ev2;
  1371. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1372. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1373. sb->level != refsb->level ||
  1374. sb->layout != refsb->layout ||
  1375. sb->chunksize != refsb->chunksize) {
  1376. printk(KERN_WARNING "md: %s has strangely different"
  1377. " superblock to %s\n",
  1378. bdevname(rdev->bdev,b),
  1379. bdevname(refdev->bdev,b2));
  1380. return -EINVAL;
  1381. }
  1382. ev1 = le64_to_cpu(sb->events);
  1383. ev2 = le64_to_cpu(refsb->events);
  1384. if (ev1 > ev2)
  1385. ret = 1;
  1386. else
  1387. ret = 0;
  1388. }
  1389. if (minor_version) {
  1390. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1391. sectors -= rdev->data_offset;
  1392. } else
  1393. sectors = rdev->sb_start;
  1394. if (sectors < le64_to_cpu(sb->data_size))
  1395. return -EINVAL;
  1396. rdev->sectors = le64_to_cpu(sb->data_size);
  1397. return ret;
  1398. }
  1399. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1400. {
  1401. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1402. __u64 ev1 = le64_to_cpu(sb->events);
  1403. rdev->raid_disk = -1;
  1404. clear_bit(Faulty, &rdev->flags);
  1405. clear_bit(In_sync, &rdev->flags);
  1406. clear_bit(WriteMostly, &rdev->flags);
  1407. if (mddev->raid_disks == 0) {
  1408. mddev->major_version = 1;
  1409. mddev->patch_version = 0;
  1410. mddev->external = 0;
  1411. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1412. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1413. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1414. mddev->level = le32_to_cpu(sb->level);
  1415. mddev->clevel[0] = 0;
  1416. mddev->layout = le32_to_cpu(sb->layout);
  1417. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1418. mddev->dev_sectors = le64_to_cpu(sb->size);
  1419. mddev->events = ev1;
  1420. mddev->bitmap_info.offset = 0;
  1421. mddev->bitmap_info.space = 0;
  1422. /* Default location for bitmap is 1K after superblock
  1423. * using 3K - total of 4K
  1424. */
  1425. mddev->bitmap_info.default_offset = 1024 >> 9;
  1426. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1427. mddev->reshape_backwards = 0;
  1428. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1429. memcpy(mddev->uuid, sb->set_uuid, 16);
  1430. mddev->max_disks = (4096-256)/2;
  1431. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1432. mddev->bitmap_info.file == NULL) {
  1433. mddev->bitmap_info.offset =
  1434. (__s32)le32_to_cpu(sb->bitmap_offset);
  1435. /* Metadata doesn't record how much space is available.
  1436. * For 1.0, we assume we can use up to the superblock
  1437. * if before, else to 4K beyond superblock.
  1438. * For others, assume no change is possible.
  1439. */
  1440. if (mddev->minor_version > 0)
  1441. mddev->bitmap_info.space = 0;
  1442. else if (mddev->bitmap_info.offset > 0)
  1443. mddev->bitmap_info.space =
  1444. 8 - mddev->bitmap_info.offset;
  1445. else
  1446. mddev->bitmap_info.space =
  1447. -mddev->bitmap_info.offset;
  1448. }
  1449. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1450. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1451. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1452. mddev->new_level = le32_to_cpu(sb->new_level);
  1453. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1454. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1455. if (mddev->delta_disks < 0 ||
  1456. (mddev->delta_disks == 0 &&
  1457. (le32_to_cpu(sb->feature_map)
  1458. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1459. mddev->reshape_backwards = 1;
  1460. } else {
  1461. mddev->reshape_position = MaxSector;
  1462. mddev->delta_disks = 0;
  1463. mddev->new_level = mddev->level;
  1464. mddev->new_layout = mddev->layout;
  1465. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1466. }
  1467. } else if (mddev->pers == NULL) {
  1468. /* Insist of good event counter while assembling, except for
  1469. * spares (which don't need an event count) */
  1470. ++ev1;
  1471. if (rdev->desc_nr >= 0 &&
  1472. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1473. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1474. if (ev1 < mddev->events)
  1475. return -EINVAL;
  1476. } else if (mddev->bitmap) {
  1477. /* If adding to array with a bitmap, then we can accept an
  1478. * older device, but not too old.
  1479. */
  1480. if (ev1 < mddev->bitmap->events_cleared)
  1481. return 0;
  1482. } else {
  1483. if (ev1 < mddev->events)
  1484. /* just a hot-add of a new device, leave raid_disk at -1 */
  1485. return 0;
  1486. }
  1487. if (mddev->level != LEVEL_MULTIPATH) {
  1488. int role;
  1489. if (rdev->desc_nr < 0 ||
  1490. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1491. role = 0xffff;
  1492. rdev->desc_nr = -1;
  1493. } else
  1494. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1495. switch(role) {
  1496. case 0xffff: /* spare */
  1497. break;
  1498. case 0xfffe: /* faulty */
  1499. set_bit(Faulty, &rdev->flags);
  1500. break;
  1501. default:
  1502. if ((le32_to_cpu(sb->feature_map) &
  1503. MD_FEATURE_RECOVERY_OFFSET))
  1504. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1505. else
  1506. set_bit(In_sync, &rdev->flags);
  1507. rdev->raid_disk = role;
  1508. break;
  1509. }
  1510. if (sb->devflags & WriteMostly1)
  1511. set_bit(WriteMostly, &rdev->flags);
  1512. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1513. set_bit(Replacement, &rdev->flags);
  1514. } else /* MULTIPATH are always insync */
  1515. set_bit(In_sync, &rdev->flags);
  1516. return 0;
  1517. }
  1518. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1519. {
  1520. struct mdp_superblock_1 *sb;
  1521. struct md_rdev *rdev2;
  1522. int max_dev, i;
  1523. /* make rdev->sb match mddev and rdev data. */
  1524. sb = page_address(rdev->sb_page);
  1525. sb->feature_map = 0;
  1526. sb->pad0 = 0;
  1527. sb->recovery_offset = cpu_to_le64(0);
  1528. memset(sb->pad3, 0, sizeof(sb->pad3));
  1529. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1530. sb->events = cpu_to_le64(mddev->events);
  1531. if (mddev->in_sync)
  1532. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1533. else
  1534. sb->resync_offset = cpu_to_le64(0);
  1535. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1536. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1537. sb->size = cpu_to_le64(mddev->dev_sectors);
  1538. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1539. sb->level = cpu_to_le32(mddev->level);
  1540. sb->layout = cpu_to_le32(mddev->layout);
  1541. if (test_bit(WriteMostly, &rdev->flags))
  1542. sb->devflags |= WriteMostly1;
  1543. else
  1544. sb->devflags &= ~WriteMostly1;
  1545. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1546. sb->data_size = cpu_to_le64(rdev->sectors);
  1547. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1548. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1549. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1550. }
  1551. if (rdev->raid_disk >= 0 &&
  1552. !test_bit(In_sync, &rdev->flags)) {
  1553. sb->feature_map |=
  1554. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1555. sb->recovery_offset =
  1556. cpu_to_le64(rdev->recovery_offset);
  1557. }
  1558. if (test_bit(Replacement, &rdev->flags))
  1559. sb->feature_map |=
  1560. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1561. if (mddev->reshape_position != MaxSector) {
  1562. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1563. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1564. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1565. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1566. sb->new_level = cpu_to_le32(mddev->new_level);
  1567. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1568. if (mddev->delta_disks == 0 &&
  1569. mddev->reshape_backwards)
  1570. sb->feature_map
  1571. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1572. if (rdev->new_data_offset != rdev->data_offset) {
  1573. sb->feature_map
  1574. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1575. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1576. - rdev->data_offset));
  1577. }
  1578. }
  1579. if (rdev->badblocks.count == 0)
  1580. /* Nothing to do for bad blocks*/ ;
  1581. else if (sb->bblog_offset == 0)
  1582. /* Cannot record bad blocks on this device */
  1583. md_error(mddev, rdev);
  1584. else {
  1585. struct badblocks *bb = &rdev->badblocks;
  1586. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1587. u64 *p = bb->page;
  1588. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1589. if (bb->changed) {
  1590. unsigned seq;
  1591. retry:
  1592. seq = read_seqbegin(&bb->lock);
  1593. memset(bbp, 0xff, PAGE_SIZE);
  1594. for (i = 0 ; i < bb->count ; i++) {
  1595. u64 internal_bb = p[i];
  1596. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1597. | BB_LEN(internal_bb));
  1598. bbp[i] = cpu_to_le64(store_bb);
  1599. }
  1600. bb->changed = 0;
  1601. if (read_seqretry(&bb->lock, seq))
  1602. goto retry;
  1603. bb->sector = (rdev->sb_start +
  1604. (int)le32_to_cpu(sb->bblog_offset));
  1605. bb->size = le16_to_cpu(sb->bblog_size);
  1606. }
  1607. }
  1608. max_dev = 0;
  1609. rdev_for_each(rdev2, mddev)
  1610. if (rdev2->desc_nr+1 > max_dev)
  1611. max_dev = rdev2->desc_nr+1;
  1612. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1613. int bmask;
  1614. sb->max_dev = cpu_to_le32(max_dev);
  1615. rdev->sb_size = max_dev * 2 + 256;
  1616. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1617. if (rdev->sb_size & bmask)
  1618. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1619. } else
  1620. max_dev = le32_to_cpu(sb->max_dev);
  1621. for (i=0; i<max_dev;i++)
  1622. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1623. rdev_for_each(rdev2, mddev) {
  1624. i = rdev2->desc_nr;
  1625. if (test_bit(Faulty, &rdev2->flags))
  1626. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1627. else if (test_bit(In_sync, &rdev2->flags))
  1628. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1629. else if (rdev2->raid_disk >= 0)
  1630. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1631. else
  1632. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1633. }
  1634. sb->sb_csum = calc_sb_1_csum(sb);
  1635. }
  1636. static unsigned long long
  1637. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1638. {
  1639. struct mdp_superblock_1 *sb;
  1640. sector_t max_sectors;
  1641. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1642. return 0; /* component must fit device */
  1643. if (rdev->data_offset != rdev->new_data_offset)
  1644. return 0; /* too confusing */
  1645. if (rdev->sb_start < rdev->data_offset) {
  1646. /* minor versions 1 and 2; superblock before data */
  1647. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1648. max_sectors -= rdev->data_offset;
  1649. if (!num_sectors || num_sectors > max_sectors)
  1650. num_sectors = max_sectors;
  1651. } else if (rdev->mddev->bitmap_info.offset) {
  1652. /* minor version 0 with bitmap we can't move */
  1653. return 0;
  1654. } else {
  1655. /* minor version 0; superblock after data */
  1656. sector_t sb_start;
  1657. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1658. sb_start &= ~(sector_t)(4*2 - 1);
  1659. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1660. if (!num_sectors || num_sectors > max_sectors)
  1661. num_sectors = max_sectors;
  1662. rdev->sb_start = sb_start;
  1663. }
  1664. sb = page_address(rdev->sb_page);
  1665. sb->data_size = cpu_to_le64(num_sectors);
  1666. sb->super_offset = rdev->sb_start;
  1667. sb->sb_csum = calc_sb_1_csum(sb);
  1668. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1669. rdev->sb_page);
  1670. md_super_wait(rdev->mddev);
  1671. return num_sectors;
  1672. }
  1673. static int
  1674. super_1_allow_new_offset(struct md_rdev *rdev,
  1675. unsigned long long new_offset)
  1676. {
  1677. /* All necessary checks on new >= old have been done */
  1678. struct bitmap *bitmap;
  1679. if (new_offset >= rdev->data_offset)
  1680. return 1;
  1681. /* with 1.0 metadata, there is no metadata to tread on
  1682. * so we can always move back */
  1683. if (rdev->mddev->minor_version == 0)
  1684. return 1;
  1685. /* otherwise we must be sure not to step on
  1686. * any metadata, so stay:
  1687. * 36K beyond start of superblock
  1688. * beyond end of badblocks
  1689. * beyond write-intent bitmap
  1690. */
  1691. if (rdev->sb_start + (32+4)*2 > new_offset)
  1692. return 0;
  1693. bitmap = rdev->mddev->bitmap;
  1694. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1695. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1696. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1697. return 0;
  1698. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1699. return 0;
  1700. return 1;
  1701. }
  1702. static struct super_type super_types[] = {
  1703. [0] = {
  1704. .name = "0.90.0",
  1705. .owner = THIS_MODULE,
  1706. .load_super = super_90_load,
  1707. .validate_super = super_90_validate,
  1708. .sync_super = super_90_sync,
  1709. .rdev_size_change = super_90_rdev_size_change,
  1710. .allow_new_offset = super_90_allow_new_offset,
  1711. },
  1712. [1] = {
  1713. .name = "md-1",
  1714. .owner = THIS_MODULE,
  1715. .load_super = super_1_load,
  1716. .validate_super = super_1_validate,
  1717. .sync_super = super_1_sync,
  1718. .rdev_size_change = super_1_rdev_size_change,
  1719. .allow_new_offset = super_1_allow_new_offset,
  1720. },
  1721. };
  1722. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1723. {
  1724. if (mddev->sync_super) {
  1725. mddev->sync_super(mddev, rdev);
  1726. return;
  1727. }
  1728. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1729. super_types[mddev->major_version].sync_super(mddev, rdev);
  1730. }
  1731. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1732. {
  1733. struct md_rdev *rdev, *rdev2;
  1734. rcu_read_lock();
  1735. rdev_for_each_rcu(rdev, mddev1)
  1736. rdev_for_each_rcu(rdev2, mddev2)
  1737. if (rdev->bdev->bd_contains ==
  1738. rdev2->bdev->bd_contains) {
  1739. rcu_read_unlock();
  1740. return 1;
  1741. }
  1742. rcu_read_unlock();
  1743. return 0;
  1744. }
  1745. static LIST_HEAD(pending_raid_disks);
  1746. /*
  1747. * Try to register data integrity profile for an mddev
  1748. *
  1749. * This is called when an array is started and after a disk has been kicked
  1750. * from the array. It only succeeds if all working and active component devices
  1751. * are integrity capable with matching profiles.
  1752. */
  1753. int md_integrity_register(struct mddev *mddev)
  1754. {
  1755. struct md_rdev *rdev, *reference = NULL;
  1756. if (list_empty(&mddev->disks))
  1757. return 0; /* nothing to do */
  1758. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1759. return 0; /* shouldn't register, or already is */
  1760. rdev_for_each(rdev, mddev) {
  1761. /* skip spares and non-functional disks */
  1762. if (test_bit(Faulty, &rdev->flags))
  1763. continue;
  1764. if (rdev->raid_disk < 0)
  1765. continue;
  1766. if (!reference) {
  1767. /* Use the first rdev as the reference */
  1768. reference = rdev;
  1769. continue;
  1770. }
  1771. /* does this rdev's profile match the reference profile? */
  1772. if (blk_integrity_compare(reference->bdev->bd_disk,
  1773. rdev->bdev->bd_disk) < 0)
  1774. return -EINVAL;
  1775. }
  1776. if (!reference || !bdev_get_integrity(reference->bdev))
  1777. return 0;
  1778. /*
  1779. * All component devices are integrity capable and have matching
  1780. * profiles, register the common profile for the md device.
  1781. */
  1782. if (blk_integrity_register(mddev->gendisk,
  1783. bdev_get_integrity(reference->bdev)) != 0) {
  1784. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1785. mdname(mddev));
  1786. return -EINVAL;
  1787. }
  1788. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1789. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1790. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1791. mdname(mddev));
  1792. return -EINVAL;
  1793. }
  1794. return 0;
  1795. }
  1796. EXPORT_SYMBOL(md_integrity_register);
  1797. /* Disable data integrity if non-capable/non-matching disk is being added */
  1798. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1799. {
  1800. struct blk_integrity *bi_rdev;
  1801. struct blk_integrity *bi_mddev;
  1802. if (!mddev->gendisk)
  1803. return;
  1804. bi_rdev = bdev_get_integrity(rdev->bdev);
  1805. bi_mddev = blk_get_integrity(mddev->gendisk);
  1806. if (!bi_mddev) /* nothing to do */
  1807. return;
  1808. if (rdev->raid_disk < 0) /* skip spares */
  1809. return;
  1810. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1811. rdev->bdev->bd_disk) >= 0)
  1812. return;
  1813. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1814. blk_integrity_unregister(mddev->gendisk);
  1815. }
  1816. EXPORT_SYMBOL(md_integrity_add_rdev);
  1817. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1818. {
  1819. char b[BDEVNAME_SIZE];
  1820. struct kobject *ko;
  1821. char *s;
  1822. int err;
  1823. if (rdev->mddev) {
  1824. MD_BUG();
  1825. return -EINVAL;
  1826. }
  1827. /* prevent duplicates */
  1828. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1829. return -EEXIST;
  1830. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1831. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1832. rdev->sectors < mddev->dev_sectors)) {
  1833. if (mddev->pers) {
  1834. /* Cannot change size, so fail
  1835. * If mddev->level <= 0, then we don't care
  1836. * about aligning sizes (e.g. linear)
  1837. */
  1838. if (mddev->level > 0)
  1839. return -ENOSPC;
  1840. } else
  1841. mddev->dev_sectors = rdev->sectors;
  1842. }
  1843. /* Verify rdev->desc_nr is unique.
  1844. * If it is -1, assign a free number, else
  1845. * check number is not in use
  1846. */
  1847. if (rdev->desc_nr < 0) {
  1848. int choice = 0;
  1849. if (mddev->pers) choice = mddev->raid_disks;
  1850. while (find_rdev_nr(mddev, choice))
  1851. choice++;
  1852. rdev->desc_nr = choice;
  1853. } else {
  1854. if (find_rdev_nr(mddev, rdev->desc_nr))
  1855. return -EBUSY;
  1856. }
  1857. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1858. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1859. mdname(mddev), mddev->max_disks);
  1860. return -EBUSY;
  1861. }
  1862. bdevname(rdev->bdev,b);
  1863. while ( (s=strchr(b, '/')) != NULL)
  1864. *s = '!';
  1865. rdev->mddev = mddev;
  1866. printk(KERN_INFO "md: bind<%s>\n", b);
  1867. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1868. goto fail;
  1869. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1870. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1871. /* failure here is OK */;
  1872. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1873. list_add_rcu(&rdev->same_set, &mddev->disks);
  1874. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1875. /* May as well allow recovery to be retried once */
  1876. mddev->recovery_disabled++;
  1877. return 0;
  1878. fail:
  1879. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1880. b, mdname(mddev));
  1881. return err;
  1882. }
  1883. static void md_delayed_delete(struct work_struct *ws)
  1884. {
  1885. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1886. kobject_del(&rdev->kobj);
  1887. kobject_put(&rdev->kobj);
  1888. }
  1889. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1890. {
  1891. char b[BDEVNAME_SIZE];
  1892. if (!rdev->mddev) {
  1893. MD_BUG();
  1894. return;
  1895. }
  1896. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1897. list_del_rcu(&rdev->same_set);
  1898. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1899. rdev->mddev = NULL;
  1900. sysfs_remove_link(&rdev->kobj, "block");
  1901. sysfs_put(rdev->sysfs_state);
  1902. rdev->sysfs_state = NULL;
  1903. rdev->badblocks.count = 0;
  1904. /* We need to delay this, otherwise we can deadlock when
  1905. * writing to 'remove' to "dev/state". We also need
  1906. * to delay it due to rcu usage.
  1907. */
  1908. synchronize_rcu();
  1909. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1910. kobject_get(&rdev->kobj);
  1911. queue_work(md_misc_wq, &rdev->del_work);
  1912. }
  1913. /*
  1914. * prevent the device from being mounted, repartitioned or
  1915. * otherwise reused by a RAID array (or any other kernel
  1916. * subsystem), by bd_claiming the device.
  1917. */
  1918. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1919. {
  1920. int err = 0;
  1921. struct block_device *bdev;
  1922. char b[BDEVNAME_SIZE];
  1923. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1924. shared ? (struct md_rdev *)lock_rdev : rdev);
  1925. if (IS_ERR(bdev)) {
  1926. printk(KERN_ERR "md: could not open %s.\n",
  1927. __bdevname(dev, b));
  1928. return PTR_ERR(bdev);
  1929. }
  1930. rdev->bdev = bdev;
  1931. return err;
  1932. }
  1933. static void unlock_rdev(struct md_rdev *rdev)
  1934. {
  1935. struct block_device *bdev = rdev->bdev;
  1936. rdev->bdev = NULL;
  1937. if (!bdev)
  1938. MD_BUG();
  1939. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1940. }
  1941. void md_autodetect_dev(dev_t dev);
  1942. static void export_rdev(struct md_rdev * rdev)
  1943. {
  1944. char b[BDEVNAME_SIZE];
  1945. printk(KERN_INFO "md: export_rdev(%s)\n",
  1946. bdevname(rdev->bdev,b));
  1947. if (rdev->mddev)
  1948. MD_BUG();
  1949. md_rdev_clear(rdev);
  1950. #ifndef MODULE
  1951. if (test_bit(AutoDetected, &rdev->flags))
  1952. md_autodetect_dev(rdev->bdev->bd_dev);
  1953. #endif
  1954. unlock_rdev(rdev);
  1955. kobject_put(&rdev->kobj);
  1956. }
  1957. static void kick_rdev_from_array(struct md_rdev * rdev)
  1958. {
  1959. unbind_rdev_from_array(rdev);
  1960. export_rdev(rdev);
  1961. }
  1962. static void export_array(struct mddev *mddev)
  1963. {
  1964. struct md_rdev *rdev, *tmp;
  1965. rdev_for_each_safe(rdev, tmp, mddev) {
  1966. if (!rdev->mddev) {
  1967. MD_BUG();
  1968. continue;
  1969. }
  1970. kick_rdev_from_array(rdev);
  1971. }
  1972. if (!list_empty(&mddev->disks))
  1973. MD_BUG();
  1974. mddev->raid_disks = 0;
  1975. mddev->major_version = 0;
  1976. }
  1977. static void print_desc(mdp_disk_t *desc)
  1978. {
  1979. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1980. desc->major,desc->minor,desc->raid_disk,desc->state);
  1981. }
  1982. static void print_sb_90(mdp_super_t *sb)
  1983. {
  1984. int i;
  1985. printk(KERN_INFO
  1986. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1987. sb->major_version, sb->minor_version, sb->patch_version,
  1988. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1989. sb->ctime);
  1990. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1991. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1992. sb->md_minor, sb->layout, sb->chunk_size);
  1993. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1994. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1995. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1996. sb->failed_disks, sb->spare_disks,
  1997. sb->sb_csum, (unsigned long)sb->events_lo);
  1998. printk(KERN_INFO);
  1999. for (i = 0; i < MD_SB_DISKS; i++) {
  2000. mdp_disk_t *desc;
  2001. desc = sb->disks + i;
  2002. if (desc->number || desc->major || desc->minor ||
  2003. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2004. printk(" D %2d: ", i);
  2005. print_desc(desc);
  2006. }
  2007. }
  2008. printk(KERN_INFO "md: THIS: ");
  2009. print_desc(&sb->this_disk);
  2010. }
  2011. static void print_sb_1(struct mdp_superblock_1 *sb)
  2012. {
  2013. __u8 *uuid;
  2014. uuid = sb->set_uuid;
  2015. printk(KERN_INFO
  2016. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2017. "md: Name: \"%s\" CT:%llu\n",
  2018. le32_to_cpu(sb->major_version),
  2019. le32_to_cpu(sb->feature_map),
  2020. uuid,
  2021. sb->set_name,
  2022. (unsigned long long)le64_to_cpu(sb->ctime)
  2023. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2024. uuid = sb->device_uuid;
  2025. printk(KERN_INFO
  2026. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2027. " RO:%llu\n"
  2028. "md: Dev:%08x UUID: %pU\n"
  2029. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2030. "md: (MaxDev:%u) \n",
  2031. le32_to_cpu(sb->level),
  2032. (unsigned long long)le64_to_cpu(sb->size),
  2033. le32_to_cpu(sb->raid_disks),
  2034. le32_to_cpu(sb->layout),
  2035. le32_to_cpu(sb->chunksize),
  2036. (unsigned long long)le64_to_cpu(sb->data_offset),
  2037. (unsigned long long)le64_to_cpu(sb->data_size),
  2038. (unsigned long long)le64_to_cpu(sb->super_offset),
  2039. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2040. le32_to_cpu(sb->dev_number),
  2041. uuid,
  2042. sb->devflags,
  2043. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2044. (unsigned long long)le64_to_cpu(sb->events),
  2045. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2046. le32_to_cpu(sb->sb_csum),
  2047. le32_to_cpu(sb->max_dev)
  2048. );
  2049. }
  2050. static void print_rdev(struct md_rdev *rdev, int major_version)
  2051. {
  2052. char b[BDEVNAME_SIZE];
  2053. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2054. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2055. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2056. rdev->desc_nr);
  2057. if (rdev->sb_loaded) {
  2058. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2059. switch (major_version) {
  2060. case 0:
  2061. print_sb_90(page_address(rdev->sb_page));
  2062. break;
  2063. case 1:
  2064. print_sb_1(page_address(rdev->sb_page));
  2065. break;
  2066. }
  2067. } else
  2068. printk(KERN_INFO "md: no rdev superblock!\n");
  2069. }
  2070. static void md_print_devices(void)
  2071. {
  2072. struct list_head *tmp;
  2073. struct md_rdev *rdev;
  2074. struct mddev *mddev;
  2075. char b[BDEVNAME_SIZE];
  2076. printk("\n");
  2077. printk("md: **********************************\n");
  2078. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2079. printk("md: **********************************\n");
  2080. for_each_mddev(mddev, tmp) {
  2081. if (mddev->bitmap)
  2082. bitmap_print_sb(mddev->bitmap);
  2083. else
  2084. printk("%s: ", mdname(mddev));
  2085. rdev_for_each(rdev, mddev)
  2086. printk("<%s>", bdevname(rdev->bdev,b));
  2087. printk("\n");
  2088. rdev_for_each(rdev, mddev)
  2089. print_rdev(rdev, mddev->major_version);
  2090. }
  2091. printk("md: **********************************\n");
  2092. printk("\n");
  2093. }
  2094. static void sync_sbs(struct mddev * mddev, int nospares)
  2095. {
  2096. /* Update each superblock (in-memory image), but
  2097. * if we are allowed to, skip spares which already
  2098. * have the right event counter, or have one earlier
  2099. * (which would mean they aren't being marked as dirty
  2100. * with the rest of the array)
  2101. */
  2102. struct md_rdev *rdev;
  2103. rdev_for_each(rdev, mddev) {
  2104. if (rdev->sb_events == mddev->events ||
  2105. (nospares &&
  2106. rdev->raid_disk < 0 &&
  2107. rdev->sb_events+1 == mddev->events)) {
  2108. /* Don't update this superblock */
  2109. rdev->sb_loaded = 2;
  2110. } else {
  2111. sync_super(mddev, rdev);
  2112. rdev->sb_loaded = 1;
  2113. }
  2114. }
  2115. }
  2116. static void md_update_sb(struct mddev * mddev, int force_change)
  2117. {
  2118. struct md_rdev *rdev;
  2119. int sync_req;
  2120. int nospares = 0;
  2121. int any_badblocks_changed = 0;
  2122. if (mddev->ro) {
  2123. if (force_change)
  2124. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2125. return;
  2126. }
  2127. repeat:
  2128. /* First make sure individual recovery_offsets are correct */
  2129. rdev_for_each(rdev, mddev) {
  2130. if (rdev->raid_disk >= 0 &&
  2131. mddev->delta_disks >= 0 &&
  2132. !test_bit(In_sync, &rdev->flags) &&
  2133. mddev->curr_resync_completed > rdev->recovery_offset)
  2134. rdev->recovery_offset = mddev->curr_resync_completed;
  2135. }
  2136. if (!mddev->persistent) {
  2137. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2138. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2139. if (!mddev->external) {
  2140. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2141. rdev_for_each(rdev, mddev) {
  2142. if (rdev->badblocks.changed) {
  2143. rdev->badblocks.changed = 0;
  2144. md_ack_all_badblocks(&rdev->badblocks);
  2145. md_error(mddev, rdev);
  2146. }
  2147. clear_bit(Blocked, &rdev->flags);
  2148. clear_bit(BlockedBadBlocks, &rdev->flags);
  2149. wake_up(&rdev->blocked_wait);
  2150. }
  2151. }
  2152. wake_up(&mddev->sb_wait);
  2153. return;
  2154. }
  2155. spin_lock_irq(&mddev->write_lock);
  2156. mddev->utime = get_seconds();
  2157. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2158. force_change = 1;
  2159. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2160. /* just a clean<-> dirty transition, possibly leave spares alone,
  2161. * though if events isn't the right even/odd, we will have to do
  2162. * spares after all
  2163. */
  2164. nospares = 1;
  2165. if (force_change)
  2166. nospares = 0;
  2167. if (mddev->degraded)
  2168. /* If the array is degraded, then skipping spares is both
  2169. * dangerous and fairly pointless.
  2170. * Dangerous because a device that was removed from the array
  2171. * might have a event_count that still looks up-to-date,
  2172. * so it can be re-added without a resync.
  2173. * Pointless because if there are any spares to skip,
  2174. * then a recovery will happen and soon that array won't
  2175. * be degraded any more and the spare can go back to sleep then.
  2176. */
  2177. nospares = 0;
  2178. sync_req = mddev->in_sync;
  2179. /* If this is just a dirty<->clean transition, and the array is clean
  2180. * and 'events' is odd, we can roll back to the previous clean state */
  2181. if (nospares
  2182. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2183. && mddev->can_decrease_events
  2184. && mddev->events != 1) {
  2185. mddev->events--;
  2186. mddev->can_decrease_events = 0;
  2187. } else {
  2188. /* otherwise we have to go forward and ... */
  2189. mddev->events ++;
  2190. mddev->can_decrease_events = nospares;
  2191. }
  2192. if (!mddev->events) {
  2193. /*
  2194. * oops, this 64-bit counter should never wrap.
  2195. * Either we are in around ~1 trillion A.C., assuming
  2196. * 1 reboot per second, or we have a bug:
  2197. */
  2198. MD_BUG();
  2199. mddev->events --;
  2200. }
  2201. rdev_for_each(rdev, mddev) {
  2202. if (rdev->badblocks.changed)
  2203. any_badblocks_changed++;
  2204. if (test_bit(Faulty, &rdev->flags))
  2205. set_bit(FaultRecorded, &rdev->flags);
  2206. }
  2207. sync_sbs(mddev, nospares);
  2208. spin_unlock_irq(&mddev->write_lock);
  2209. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2210. mdname(mddev), mddev->in_sync);
  2211. bitmap_update_sb(mddev->bitmap);
  2212. rdev_for_each(rdev, mddev) {
  2213. char b[BDEVNAME_SIZE];
  2214. if (rdev->sb_loaded != 1)
  2215. continue; /* no noise on spare devices */
  2216. if (!test_bit(Faulty, &rdev->flags) &&
  2217. rdev->saved_raid_disk == -1) {
  2218. md_super_write(mddev,rdev,
  2219. rdev->sb_start, rdev->sb_size,
  2220. rdev->sb_page);
  2221. pr_debug("md: (write) %s's sb offset: %llu\n",
  2222. bdevname(rdev->bdev, b),
  2223. (unsigned long long)rdev->sb_start);
  2224. rdev->sb_events = mddev->events;
  2225. if (rdev->badblocks.size) {
  2226. md_super_write(mddev, rdev,
  2227. rdev->badblocks.sector,
  2228. rdev->badblocks.size << 9,
  2229. rdev->bb_page);
  2230. rdev->badblocks.size = 0;
  2231. }
  2232. } else if (test_bit(Faulty, &rdev->flags))
  2233. pr_debug("md: %s (skipping faulty)\n",
  2234. bdevname(rdev->bdev, b));
  2235. else
  2236. pr_debug("(skipping incremental s/r ");
  2237. if (mddev->level == LEVEL_MULTIPATH)
  2238. /* only need to write one superblock... */
  2239. break;
  2240. }
  2241. md_super_wait(mddev);
  2242. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2243. spin_lock_irq(&mddev->write_lock);
  2244. if (mddev->in_sync != sync_req ||
  2245. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2246. /* have to write it out again */
  2247. spin_unlock_irq(&mddev->write_lock);
  2248. goto repeat;
  2249. }
  2250. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2251. spin_unlock_irq(&mddev->write_lock);
  2252. wake_up(&mddev->sb_wait);
  2253. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2254. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2255. rdev_for_each(rdev, mddev) {
  2256. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2257. clear_bit(Blocked, &rdev->flags);
  2258. if (any_badblocks_changed)
  2259. md_ack_all_badblocks(&rdev->badblocks);
  2260. clear_bit(BlockedBadBlocks, &rdev->flags);
  2261. wake_up(&rdev->blocked_wait);
  2262. }
  2263. }
  2264. /* words written to sysfs files may, or may not, be \n terminated.
  2265. * We want to accept with case. For this we use cmd_match.
  2266. */
  2267. static int cmd_match(const char *cmd, const char *str)
  2268. {
  2269. /* See if cmd, written into a sysfs file, matches
  2270. * str. They must either be the same, or cmd can
  2271. * have a trailing newline
  2272. */
  2273. while (*cmd && *str && *cmd == *str) {
  2274. cmd++;
  2275. str++;
  2276. }
  2277. if (*cmd == '\n')
  2278. cmd++;
  2279. if (*str || *cmd)
  2280. return 0;
  2281. return 1;
  2282. }
  2283. struct rdev_sysfs_entry {
  2284. struct attribute attr;
  2285. ssize_t (*show)(struct md_rdev *, char *);
  2286. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2287. };
  2288. static ssize_t
  2289. state_show(struct md_rdev *rdev, char *page)
  2290. {
  2291. char *sep = "";
  2292. size_t len = 0;
  2293. if (test_bit(Faulty, &rdev->flags) ||
  2294. rdev->badblocks.unacked_exist) {
  2295. len+= sprintf(page+len, "%sfaulty",sep);
  2296. sep = ",";
  2297. }
  2298. if (test_bit(In_sync, &rdev->flags)) {
  2299. len += sprintf(page+len, "%sin_sync",sep);
  2300. sep = ",";
  2301. }
  2302. if (test_bit(WriteMostly, &rdev->flags)) {
  2303. len += sprintf(page+len, "%swrite_mostly",sep);
  2304. sep = ",";
  2305. }
  2306. if (test_bit(Blocked, &rdev->flags) ||
  2307. (rdev->badblocks.unacked_exist
  2308. && !test_bit(Faulty, &rdev->flags))) {
  2309. len += sprintf(page+len, "%sblocked", sep);
  2310. sep = ",";
  2311. }
  2312. if (!test_bit(Faulty, &rdev->flags) &&
  2313. !test_bit(In_sync, &rdev->flags)) {
  2314. len += sprintf(page+len, "%sspare", sep);
  2315. sep = ",";
  2316. }
  2317. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2318. len += sprintf(page+len, "%swrite_error", sep);
  2319. sep = ",";
  2320. }
  2321. if (test_bit(WantReplacement, &rdev->flags)) {
  2322. len += sprintf(page+len, "%swant_replacement", sep);
  2323. sep = ",";
  2324. }
  2325. if (test_bit(Replacement, &rdev->flags)) {
  2326. len += sprintf(page+len, "%sreplacement", sep);
  2327. sep = ",";
  2328. }
  2329. return len+sprintf(page+len, "\n");
  2330. }
  2331. static ssize_t
  2332. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2333. {
  2334. /* can write
  2335. * faulty - simulates an error
  2336. * remove - disconnects the device
  2337. * writemostly - sets write_mostly
  2338. * -writemostly - clears write_mostly
  2339. * blocked - sets the Blocked flags
  2340. * -blocked - clears the Blocked and possibly simulates an error
  2341. * insync - sets Insync providing device isn't active
  2342. * write_error - sets WriteErrorSeen
  2343. * -write_error - clears WriteErrorSeen
  2344. */
  2345. int err = -EINVAL;
  2346. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2347. md_error(rdev->mddev, rdev);
  2348. if (test_bit(Faulty, &rdev->flags))
  2349. err = 0;
  2350. else
  2351. err = -EBUSY;
  2352. } else if (cmd_match(buf, "remove")) {
  2353. if (rdev->raid_disk >= 0)
  2354. err = -EBUSY;
  2355. else {
  2356. struct mddev *mddev = rdev->mddev;
  2357. kick_rdev_from_array(rdev);
  2358. if (mddev->pers)
  2359. md_update_sb(mddev, 1);
  2360. md_new_event(mddev);
  2361. err = 0;
  2362. }
  2363. } else if (cmd_match(buf, "writemostly")) {
  2364. set_bit(WriteMostly, &rdev->flags);
  2365. err = 0;
  2366. } else if (cmd_match(buf, "-writemostly")) {
  2367. clear_bit(WriteMostly, &rdev->flags);
  2368. err = 0;
  2369. } else if (cmd_match(buf, "blocked")) {
  2370. set_bit(Blocked, &rdev->flags);
  2371. err = 0;
  2372. } else if (cmd_match(buf, "-blocked")) {
  2373. if (!test_bit(Faulty, &rdev->flags) &&
  2374. rdev->badblocks.unacked_exist) {
  2375. /* metadata handler doesn't understand badblocks,
  2376. * so we need to fail the device
  2377. */
  2378. md_error(rdev->mddev, rdev);
  2379. }
  2380. clear_bit(Blocked, &rdev->flags);
  2381. clear_bit(BlockedBadBlocks, &rdev->flags);
  2382. wake_up(&rdev->blocked_wait);
  2383. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2384. md_wakeup_thread(rdev->mddev->thread);
  2385. err = 0;
  2386. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2387. set_bit(In_sync, &rdev->flags);
  2388. err = 0;
  2389. } else if (cmd_match(buf, "write_error")) {
  2390. set_bit(WriteErrorSeen, &rdev->flags);
  2391. err = 0;
  2392. } else if (cmd_match(buf, "-write_error")) {
  2393. clear_bit(WriteErrorSeen, &rdev->flags);
  2394. err = 0;
  2395. } else if (cmd_match(buf, "want_replacement")) {
  2396. /* Any non-spare device that is not a replacement can
  2397. * become want_replacement at any time, but we then need to
  2398. * check if recovery is needed.
  2399. */
  2400. if (rdev->raid_disk >= 0 &&
  2401. !test_bit(Replacement, &rdev->flags))
  2402. set_bit(WantReplacement, &rdev->flags);
  2403. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2404. md_wakeup_thread(rdev->mddev->thread);
  2405. err = 0;
  2406. } else if (cmd_match(buf, "-want_replacement")) {
  2407. /* Clearing 'want_replacement' is always allowed.
  2408. * Once replacements starts it is too late though.
  2409. */
  2410. err = 0;
  2411. clear_bit(WantReplacement, &rdev->flags);
  2412. } else if (cmd_match(buf, "replacement")) {
  2413. /* Can only set a device as a replacement when array has not
  2414. * yet been started. Once running, replacement is automatic
  2415. * from spares, or by assigning 'slot'.
  2416. */
  2417. if (rdev->mddev->pers)
  2418. err = -EBUSY;
  2419. else {
  2420. set_bit(Replacement, &rdev->flags);
  2421. err = 0;
  2422. }
  2423. } else if (cmd_match(buf, "-replacement")) {
  2424. /* Similarly, can only clear Replacement before start */
  2425. if (rdev->mddev->pers)
  2426. err = -EBUSY;
  2427. else {
  2428. clear_bit(Replacement, &rdev->flags);
  2429. err = 0;
  2430. }
  2431. }
  2432. if (!err)
  2433. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2434. return err ? err : len;
  2435. }
  2436. static struct rdev_sysfs_entry rdev_state =
  2437. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2438. static ssize_t
  2439. errors_show(struct md_rdev *rdev, char *page)
  2440. {
  2441. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2442. }
  2443. static ssize_t
  2444. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2445. {
  2446. char *e;
  2447. unsigned long n = simple_strtoul(buf, &e, 10);
  2448. if (*buf && (*e == 0 || *e == '\n')) {
  2449. atomic_set(&rdev->corrected_errors, n);
  2450. return len;
  2451. }
  2452. return -EINVAL;
  2453. }
  2454. static struct rdev_sysfs_entry rdev_errors =
  2455. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2456. static ssize_t
  2457. slot_show(struct md_rdev *rdev, char *page)
  2458. {
  2459. if (rdev->raid_disk < 0)
  2460. return sprintf(page, "none\n");
  2461. else
  2462. return sprintf(page, "%d\n", rdev->raid_disk);
  2463. }
  2464. static ssize_t
  2465. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2466. {
  2467. char *e;
  2468. int err;
  2469. int slot = simple_strtoul(buf, &e, 10);
  2470. if (strncmp(buf, "none", 4)==0)
  2471. slot = -1;
  2472. else if (e==buf || (*e && *e!= '\n'))
  2473. return -EINVAL;
  2474. if (rdev->mddev->pers && slot == -1) {
  2475. /* Setting 'slot' on an active array requires also
  2476. * updating the 'rd%d' link, and communicating
  2477. * with the personality with ->hot_*_disk.
  2478. * For now we only support removing
  2479. * failed/spare devices. This normally happens automatically,
  2480. * but not when the metadata is externally managed.
  2481. */
  2482. if (rdev->raid_disk == -1)
  2483. return -EEXIST;
  2484. /* personality does all needed checks */
  2485. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2486. return -EINVAL;
  2487. clear_bit(Blocked, &rdev->flags);
  2488. remove_and_add_spares(rdev->mddev, rdev);
  2489. if (rdev->raid_disk >= 0)
  2490. return -EBUSY;
  2491. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2492. md_wakeup_thread(rdev->mddev->thread);
  2493. } else if (rdev->mddev->pers) {
  2494. /* Activating a spare .. or possibly reactivating
  2495. * if we ever get bitmaps working here.
  2496. */
  2497. if (rdev->raid_disk != -1)
  2498. return -EBUSY;
  2499. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2500. return -EBUSY;
  2501. if (rdev->mddev->pers->hot_add_disk == NULL)
  2502. return -EINVAL;
  2503. if (slot >= rdev->mddev->raid_disks &&
  2504. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2505. return -ENOSPC;
  2506. rdev->raid_disk = slot;
  2507. if (test_bit(In_sync, &rdev->flags))
  2508. rdev->saved_raid_disk = slot;
  2509. else
  2510. rdev->saved_raid_disk = -1;
  2511. clear_bit(In_sync, &rdev->flags);
  2512. err = rdev->mddev->pers->
  2513. hot_add_disk(rdev->mddev, rdev);
  2514. if (err) {
  2515. rdev->raid_disk = -1;
  2516. return err;
  2517. } else
  2518. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2519. if (sysfs_link_rdev(rdev->mddev, rdev))
  2520. /* failure here is OK */;
  2521. /* don't wakeup anyone, leave that to userspace. */
  2522. } else {
  2523. if (slot >= rdev->mddev->raid_disks &&
  2524. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2525. return -ENOSPC;
  2526. rdev->raid_disk = slot;
  2527. /* assume it is working */
  2528. clear_bit(Faulty, &rdev->flags);
  2529. clear_bit(WriteMostly, &rdev->flags);
  2530. set_bit(In_sync, &rdev->flags);
  2531. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2532. }
  2533. return len;
  2534. }
  2535. static struct rdev_sysfs_entry rdev_slot =
  2536. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2537. static ssize_t
  2538. offset_show(struct md_rdev *rdev, char *page)
  2539. {
  2540. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2541. }
  2542. static ssize_t
  2543. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2544. {
  2545. unsigned long long offset;
  2546. if (kstrtoull(buf, 10, &offset) < 0)
  2547. return -EINVAL;
  2548. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2549. return -EBUSY;
  2550. if (rdev->sectors && rdev->mddev->external)
  2551. /* Must set offset before size, so overlap checks
  2552. * can be sane */
  2553. return -EBUSY;
  2554. rdev->data_offset = offset;
  2555. rdev->new_data_offset = offset;
  2556. return len;
  2557. }
  2558. static struct rdev_sysfs_entry rdev_offset =
  2559. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2560. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2561. {
  2562. return sprintf(page, "%llu\n",
  2563. (unsigned long long)rdev->new_data_offset);
  2564. }
  2565. static ssize_t new_offset_store(struct md_rdev *rdev,
  2566. const char *buf, size_t len)
  2567. {
  2568. unsigned long long new_offset;
  2569. struct mddev *mddev = rdev->mddev;
  2570. if (kstrtoull(buf, 10, &new_offset) < 0)
  2571. return -EINVAL;
  2572. if (mddev->sync_thread)
  2573. return -EBUSY;
  2574. if (new_offset == rdev->data_offset)
  2575. /* reset is always permitted */
  2576. ;
  2577. else if (new_offset > rdev->data_offset) {
  2578. /* must not push array size beyond rdev_sectors */
  2579. if (new_offset - rdev->data_offset
  2580. + mddev->dev_sectors > rdev->sectors)
  2581. return -E2BIG;
  2582. }
  2583. /* Metadata worries about other space details. */
  2584. /* decreasing the offset is inconsistent with a backwards
  2585. * reshape.
  2586. */
  2587. if (new_offset < rdev->data_offset &&
  2588. mddev->reshape_backwards)
  2589. return -EINVAL;
  2590. /* Increasing offset is inconsistent with forwards
  2591. * reshape. reshape_direction should be set to
  2592. * 'backwards' first.
  2593. */
  2594. if (new_offset > rdev->data_offset &&
  2595. !mddev->reshape_backwards)
  2596. return -EINVAL;
  2597. if (mddev->pers && mddev->persistent &&
  2598. !super_types[mddev->major_version]
  2599. .allow_new_offset(rdev, new_offset))
  2600. return -E2BIG;
  2601. rdev->new_data_offset = new_offset;
  2602. if (new_offset > rdev->data_offset)
  2603. mddev->reshape_backwards = 1;
  2604. else if (new_offset < rdev->data_offset)
  2605. mddev->reshape_backwards = 0;
  2606. return len;
  2607. }
  2608. static struct rdev_sysfs_entry rdev_new_offset =
  2609. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2610. static ssize_t
  2611. rdev_size_show(struct md_rdev *rdev, char *page)
  2612. {
  2613. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2614. }
  2615. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2616. {
  2617. /* check if two start/length pairs overlap */
  2618. if (s1+l1 <= s2)
  2619. return 0;
  2620. if (s2+l2 <= s1)
  2621. return 0;
  2622. return 1;
  2623. }
  2624. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2625. {
  2626. unsigned long long blocks;
  2627. sector_t new;
  2628. if (kstrtoull(buf, 10, &blocks) < 0)
  2629. return -EINVAL;
  2630. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2631. return -EINVAL; /* sector conversion overflow */
  2632. new = blocks * 2;
  2633. if (new != blocks * 2)
  2634. return -EINVAL; /* unsigned long long to sector_t overflow */
  2635. *sectors = new;
  2636. return 0;
  2637. }
  2638. static ssize_t
  2639. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2640. {
  2641. struct mddev *my_mddev = rdev->mddev;
  2642. sector_t oldsectors = rdev->sectors;
  2643. sector_t sectors;
  2644. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2645. return -EINVAL;
  2646. if (rdev->data_offset != rdev->new_data_offset)
  2647. return -EINVAL; /* too confusing */
  2648. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2649. if (my_mddev->persistent) {
  2650. sectors = super_types[my_mddev->major_version].
  2651. rdev_size_change(rdev, sectors);
  2652. if (!sectors)
  2653. return -EBUSY;
  2654. } else if (!sectors)
  2655. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2656. rdev->data_offset;
  2657. if (!my_mddev->pers->resize)
  2658. /* Cannot change size for RAID0 or Linear etc */
  2659. return -EINVAL;
  2660. }
  2661. if (sectors < my_mddev->dev_sectors)
  2662. return -EINVAL; /* component must fit device */
  2663. rdev->sectors = sectors;
  2664. if (sectors > oldsectors && my_mddev->external) {
  2665. /* need to check that all other rdevs with the same ->bdev
  2666. * do not overlap. We need to unlock the mddev to avoid
  2667. * a deadlock. We have already changed rdev->sectors, and if
  2668. * we have to change it back, we will have the lock again.
  2669. */
  2670. struct mddev *mddev;
  2671. int overlap = 0;
  2672. struct list_head *tmp;
  2673. mddev_unlock(my_mddev);
  2674. for_each_mddev(mddev, tmp) {
  2675. struct md_rdev *rdev2;
  2676. mddev_lock(mddev);
  2677. rdev_for_each(rdev2, mddev)
  2678. if (rdev->bdev == rdev2->bdev &&
  2679. rdev != rdev2 &&
  2680. overlaps(rdev->data_offset, rdev->sectors,
  2681. rdev2->data_offset,
  2682. rdev2->sectors)) {
  2683. overlap = 1;
  2684. break;
  2685. }
  2686. mddev_unlock(mddev);
  2687. if (overlap) {
  2688. mddev_put(mddev);
  2689. break;
  2690. }
  2691. }
  2692. mddev_lock(my_mddev);
  2693. if (overlap) {
  2694. /* Someone else could have slipped in a size
  2695. * change here, but doing so is just silly.
  2696. * We put oldsectors back because we *know* it is
  2697. * safe, and trust userspace not to race with
  2698. * itself
  2699. */
  2700. rdev->sectors = oldsectors;
  2701. return -EBUSY;
  2702. }
  2703. }
  2704. return len;
  2705. }
  2706. static struct rdev_sysfs_entry rdev_size =
  2707. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2708. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2709. {
  2710. unsigned long long recovery_start = rdev->recovery_offset;
  2711. if (test_bit(In_sync, &rdev->flags) ||
  2712. recovery_start == MaxSector)
  2713. return sprintf(page, "none\n");
  2714. return sprintf(page, "%llu\n", recovery_start);
  2715. }
  2716. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2717. {
  2718. unsigned long long recovery_start;
  2719. if (cmd_match(buf, "none"))
  2720. recovery_start = MaxSector;
  2721. else if (kstrtoull(buf, 10, &recovery_start))
  2722. return -EINVAL;
  2723. if (rdev->mddev->pers &&
  2724. rdev->raid_disk >= 0)
  2725. return -EBUSY;
  2726. rdev->recovery_offset = recovery_start;
  2727. if (recovery_start == MaxSector)
  2728. set_bit(In_sync, &rdev->flags);
  2729. else
  2730. clear_bit(In_sync, &rdev->flags);
  2731. return len;
  2732. }
  2733. static struct rdev_sysfs_entry rdev_recovery_start =
  2734. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2735. static ssize_t
  2736. badblocks_show(struct badblocks *bb, char *page, int unack);
  2737. static ssize_t
  2738. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2739. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2740. {
  2741. return badblocks_show(&rdev->badblocks, page, 0);
  2742. }
  2743. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2744. {
  2745. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2746. /* Maybe that ack was all we needed */
  2747. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2748. wake_up(&rdev->blocked_wait);
  2749. return rv;
  2750. }
  2751. static struct rdev_sysfs_entry rdev_bad_blocks =
  2752. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2753. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2754. {
  2755. return badblocks_show(&rdev->badblocks, page, 1);
  2756. }
  2757. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2758. {
  2759. return badblocks_store(&rdev->badblocks, page, len, 1);
  2760. }
  2761. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2762. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2763. static struct attribute *rdev_default_attrs[] = {
  2764. &rdev_state.attr,
  2765. &rdev_errors.attr,
  2766. &rdev_slot.attr,
  2767. &rdev_offset.attr,
  2768. &rdev_new_offset.attr,
  2769. &rdev_size.attr,
  2770. &rdev_recovery_start.attr,
  2771. &rdev_bad_blocks.attr,
  2772. &rdev_unack_bad_blocks.attr,
  2773. NULL,
  2774. };
  2775. static ssize_t
  2776. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2777. {
  2778. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2779. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2780. struct mddev *mddev = rdev->mddev;
  2781. ssize_t rv;
  2782. if (!entry->show)
  2783. return -EIO;
  2784. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2785. if (!rv) {
  2786. if (rdev->mddev == NULL)
  2787. rv = -EBUSY;
  2788. else
  2789. rv = entry->show(rdev, page);
  2790. mddev_unlock(mddev);
  2791. }
  2792. return rv;
  2793. }
  2794. static ssize_t
  2795. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2796. const char *page, size_t length)
  2797. {
  2798. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2799. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2800. ssize_t rv;
  2801. struct mddev *mddev = rdev->mddev;
  2802. if (!entry->store)
  2803. return -EIO;
  2804. if (!capable(CAP_SYS_ADMIN))
  2805. return -EACCES;
  2806. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2807. if (!rv) {
  2808. if (rdev->mddev == NULL)
  2809. rv = -EBUSY;
  2810. else
  2811. rv = entry->store(rdev, page, length);
  2812. mddev_unlock(mddev);
  2813. }
  2814. return rv;
  2815. }
  2816. static void rdev_free(struct kobject *ko)
  2817. {
  2818. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2819. kfree(rdev);
  2820. }
  2821. static const struct sysfs_ops rdev_sysfs_ops = {
  2822. .show = rdev_attr_show,
  2823. .store = rdev_attr_store,
  2824. };
  2825. static struct kobj_type rdev_ktype = {
  2826. .release = rdev_free,
  2827. .sysfs_ops = &rdev_sysfs_ops,
  2828. .default_attrs = rdev_default_attrs,
  2829. };
  2830. int md_rdev_init(struct md_rdev *rdev)
  2831. {
  2832. rdev->desc_nr = -1;
  2833. rdev->saved_raid_disk = -1;
  2834. rdev->raid_disk = -1;
  2835. rdev->flags = 0;
  2836. rdev->data_offset = 0;
  2837. rdev->new_data_offset = 0;
  2838. rdev->sb_events = 0;
  2839. rdev->last_read_error.tv_sec = 0;
  2840. rdev->last_read_error.tv_nsec = 0;
  2841. rdev->sb_loaded = 0;
  2842. rdev->bb_page = NULL;
  2843. atomic_set(&rdev->nr_pending, 0);
  2844. atomic_set(&rdev->read_errors, 0);
  2845. atomic_set(&rdev->corrected_errors, 0);
  2846. INIT_LIST_HEAD(&rdev->same_set);
  2847. init_waitqueue_head(&rdev->blocked_wait);
  2848. /* Add space to store bad block list.
  2849. * This reserves the space even on arrays where it cannot
  2850. * be used - I wonder if that matters
  2851. */
  2852. rdev->badblocks.count = 0;
  2853. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2854. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2855. seqlock_init(&rdev->badblocks.lock);
  2856. if (rdev->badblocks.page == NULL)
  2857. return -ENOMEM;
  2858. return 0;
  2859. }
  2860. EXPORT_SYMBOL_GPL(md_rdev_init);
  2861. /*
  2862. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2863. *
  2864. * mark the device faulty if:
  2865. *
  2866. * - the device is nonexistent (zero size)
  2867. * - the device has no valid superblock
  2868. *
  2869. * a faulty rdev _never_ has rdev->sb set.
  2870. */
  2871. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2872. {
  2873. char b[BDEVNAME_SIZE];
  2874. int err;
  2875. struct md_rdev *rdev;
  2876. sector_t size;
  2877. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2878. if (!rdev) {
  2879. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2880. return ERR_PTR(-ENOMEM);
  2881. }
  2882. err = md_rdev_init(rdev);
  2883. if (err)
  2884. goto abort_free;
  2885. err = alloc_disk_sb(rdev);
  2886. if (err)
  2887. goto abort_free;
  2888. err = lock_rdev(rdev, newdev, super_format == -2);
  2889. if (err)
  2890. goto abort_free;
  2891. kobject_init(&rdev->kobj, &rdev_ktype);
  2892. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2893. if (!size) {
  2894. printk(KERN_WARNING
  2895. "md: %s has zero or unknown size, marking faulty!\n",
  2896. bdevname(rdev->bdev,b));
  2897. err = -EINVAL;
  2898. goto abort_free;
  2899. }
  2900. if (super_format >= 0) {
  2901. err = super_types[super_format].
  2902. load_super(rdev, NULL, super_minor);
  2903. if (err == -EINVAL) {
  2904. printk(KERN_WARNING
  2905. "md: %s does not have a valid v%d.%d "
  2906. "superblock, not importing!\n",
  2907. bdevname(rdev->bdev,b),
  2908. super_format, super_minor);
  2909. goto abort_free;
  2910. }
  2911. if (err < 0) {
  2912. printk(KERN_WARNING
  2913. "md: could not read %s's sb, not importing!\n",
  2914. bdevname(rdev->bdev,b));
  2915. goto abort_free;
  2916. }
  2917. }
  2918. return rdev;
  2919. abort_free:
  2920. if (rdev->bdev)
  2921. unlock_rdev(rdev);
  2922. md_rdev_clear(rdev);
  2923. kfree(rdev);
  2924. return ERR_PTR(err);
  2925. }
  2926. /*
  2927. * Check a full RAID array for plausibility
  2928. */
  2929. static void analyze_sbs(struct mddev * mddev)
  2930. {
  2931. int i;
  2932. struct md_rdev *rdev, *freshest, *tmp;
  2933. char b[BDEVNAME_SIZE];
  2934. freshest = NULL;
  2935. rdev_for_each_safe(rdev, tmp, mddev)
  2936. switch (super_types[mddev->major_version].
  2937. load_super(rdev, freshest, mddev->minor_version)) {
  2938. case 1:
  2939. freshest = rdev;
  2940. break;
  2941. case 0:
  2942. break;
  2943. default:
  2944. printk( KERN_ERR \
  2945. "md: fatal superblock inconsistency in %s"
  2946. " -- removing from array\n",
  2947. bdevname(rdev->bdev,b));
  2948. kick_rdev_from_array(rdev);
  2949. }
  2950. super_types[mddev->major_version].
  2951. validate_super(mddev, freshest);
  2952. i = 0;
  2953. rdev_for_each_safe(rdev, tmp, mddev) {
  2954. if (mddev->max_disks &&
  2955. (rdev->desc_nr >= mddev->max_disks ||
  2956. i > mddev->max_disks)) {
  2957. printk(KERN_WARNING
  2958. "md: %s: %s: only %d devices permitted\n",
  2959. mdname(mddev), bdevname(rdev->bdev, b),
  2960. mddev->max_disks);
  2961. kick_rdev_from_array(rdev);
  2962. continue;
  2963. }
  2964. if (rdev != freshest)
  2965. if (super_types[mddev->major_version].
  2966. validate_super(mddev, rdev)) {
  2967. printk(KERN_WARNING "md: kicking non-fresh %s"
  2968. " from array!\n",
  2969. bdevname(rdev->bdev,b));
  2970. kick_rdev_from_array(rdev);
  2971. continue;
  2972. }
  2973. if (mddev->level == LEVEL_MULTIPATH) {
  2974. rdev->desc_nr = i++;
  2975. rdev->raid_disk = rdev->desc_nr;
  2976. set_bit(In_sync, &rdev->flags);
  2977. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2978. rdev->raid_disk = -1;
  2979. clear_bit(In_sync, &rdev->flags);
  2980. }
  2981. }
  2982. }
  2983. /* Read a fixed-point number.
  2984. * Numbers in sysfs attributes should be in "standard" units where
  2985. * possible, so time should be in seconds.
  2986. * However we internally use a a much smaller unit such as
  2987. * milliseconds or jiffies.
  2988. * This function takes a decimal number with a possible fractional
  2989. * component, and produces an integer which is the result of
  2990. * multiplying that number by 10^'scale'.
  2991. * all without any floating-point arithmetic.
  2992. */
  2993. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2994. {
  2995. unsigned long result = 0;
  2996. long decimals = -1;
  2997. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2998. if (*cp == '.')
  2999. decimals = 0;
  3000. else if (decimals < scale) {
  3001. unsigned int value;
  3002. value = *cp - '0';
  3003. result = result * 10 + value;
  3004. if (decimals >= 0)
  3005. decimals++;
  3006. }
  3007. cp++;
  3008. }
  3009. if (*cp == '\n')
  3010. cp++;
  3011. if (*cp)
  3012. return -EINVAL;
  3013. if (decimals < 0)
  3014. decimals = 0;
  3015. while (decimals < scale) {
  3016. result *= 10;
  3017. decimals ++;
  3018. }
  3019. *res = result;
  3020. return 0;
  3021. }
  3022. static void md_safemode_timeout(unsigned long data);
  3023. static ssize_t
  3024. safe_delay_show(struct mddev *mddev, char *page)
  3025. {
  3026. int msec = (mddev->safemode_delay*1000)/HZ;
  3027. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3028. }
  3029. static ssize_t
  3030. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3031. {
  3032. unsigned long msec;
  3033. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3034. return -EINVAL;
  3035. if (msec == 0)
  3036. mddev->safemode_delay = 0;
  3037. else {
  3038. unsigned long old_delay = mddev->safemode_delay;
  3039. mddev->safemode_delay = (msec*HZ)/1000;
  3040. if (mddev->safemode_delay == 0)
  3041. mddev->safemode_delay = 1;
  3042. if (mddev->safemode_delay < old_delay || old_delay == 0)
  3043. md_safemode_timeout((unsigned long)mddev);
  3044. }
  3045. return len;
  3046. }
  3047. static struct md_sysfs_entry md_safe_delay =
  3048. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3049. static ssize_t
  3050. level_show(struct mddev *mddev, char *page)
  3051. {
  3052. struct md_personality *p = mddev->pers;
  3053. if (p)
  3054. return sprintf(page, "%s\n", p->name);
  3055. else if (mddev->clevel[0])
  3056. return sprintf(page, "%s\n", mddev->clevel);
  3057. else if (mddev->level != LEVEL_NONE)
  3058. return sprintf(page, "%d\n", mddev->level);
  3059. else
  3060. return 0;
  3061. }
  3062. static ssize_t
  3063. level_store(struct mddev *mddev, const char *buf, size_t len)
  3064. {
  3065. char clevel[16];
  3066. ssize_t rv = len;
  3067. struct md_personality *pers;
  3068. long level;
  3069. void *priv;
  3070. struct md_rdev *rdev;
  3071. if (mddev->pers == NULL) {
  3072. if (len == 0)
  3073. return 0;
  3074. if (len >= sizeof(mddev->clevel))
  3075. return -ENOSPC;
  3076. strncpy(mddev->clevel, buf, len);
  3077. if (mddev->clevel[len-1] == '\n')
  3078. len--;
  3079. mddev->clevel[len] = 0;
  3080. mddev->level = LEVEL_NONE;
  3081. return rv;
  3082. }
  3083. /* request to change the personality. Need to ensure:
  3084. * - array is not engaged in resync/recovery/reshape
  3085. * - old personality can be suspended
  3086. * - new personality will access other array.
  3087. */
  3088. if (mddev->sync_thread ||
  3089. mddev->reshape_position != MaxSector ||
  3090. mddev->sysfs_active)
  3091. return -EBUSY;
  3092. if (!mddev->pers->quiesce) {
  3093. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3094. mdname(mddev), mddev->pers->name);
  3095. return -EINVAL;
  3096. }
  3097. /* Now find the new personality */
  3098. if (len == 0 || len >= sizeof(clevel))
  3099. return -EINVAL;
  3100. strncpy(clevel, buf, len);
  3101. if (clevel[len-1] == '\n')
  3102. len--;
  3103. clevel[len] = 0;
  3104. if (kstrtol(clevel, 10, &level))
  3105. level = LEVEL_NONE;
  3106. if (request_module("md-%s", clevel) != 0)
  3107. request_module("md-level-%s", clevel);
  3108. spin_lock(&pers_lock);
  3109. pers = find_pers(level, clevel);
  3110. if (!pers || !try_module_get(pers->owner)) {
  3111. spin_unlock(&pers_lock);
  3112. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3113. return -EINVAL;
  3114. }
  3115. spin_unlock(&pers_lock);
  3116. if (pers == mddev->pers) {
  3117. /* Nothing to do! */
  3118. module_put(pers->owner);
  3119. return rv;
  3120. }
  3121. if (!pers->takeover) {
  3122. module_put(pers->owner);
  3123. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3124. mdname(mddev), clevel);
  3125. return -EINVAL;
  3126. }
  3127. rdev_for_each(rdev, mddev)
  3128. rdev->new_raid_disk = rdev->raid_disk;
  3129. /* ->takeover must set new_* and/or delta_disks
  3130. * if it succeeds, and may set them when it fails.
  3131. */
  3132. priv = pers->takeover(mddev);
  3133. if (IS_ERR(priv)) {
  3134. mddev->new_level = mddev->level;
  3135. mddev->new_layout = mddev->layout;
  3136. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3137. mddev->raid_disks -= mddev->delta_disks;
  3138. mddev->delta_disks = 0;
  3139. mddev->reshape_backwards = 0;
  3140. module_put(pers->owner);
  3141. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3142. mdname(mddev), clevel);
  3143. return PTR_ERR(priv);
  3144. }
  3145. /* Looks like we have a winner */
  3146. mddev_suspend(mddev);
  3147. mddev->pers->stop(mddev);
  3148. if (mddev->pers->sync_request == NULL &&
  3149. pers->sync_request != NULL) {
  3150. /* need to add the md_redundancy_group */
  3151. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3152. printk(KERN_WARNING
  3153. "md: cannot register extra attributes for %s\n",
  3154. mdname(mddev));
  3155. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3156. }
  3157. if (mddev->pers->sync_request != NULL &&
  3158. pers->sync_request == NULL) {
  3159. /* need to remove the md_redundancy_group */
  3160. if (mddev->to_remove == NULL)
  3161. mddev->to_remove = &md_redundancy_group;
  3162. }
  3163. if (mddev->pers->sync_request == NULL &&
  3164. mddev->external) {
  3165. /* We are converting from a no-redundancy array
  3166. * to a redundancy array and metadata is managed
  3167. * externally so we need to be sure that writes
  3168. * won't block due to a need to transition
  3169. * clean->dirty
  3170. * until external management is started.
  3171. */
  3172. mddev->in_sync = 0;
  3173. mddev->safemode_delay = 0;
  3174. mddev->safemode = 0;
  3175. }
  3176. rdev_for_each(rdev, mddev) {
  3177. if (rdev->raid_disk < 0)
  3178. continue;
  3179. if (rdev->new_raid_disk >= mddev->raid_disks)
  3180. rdev->new_raid_disk = -1;
  3181. if (rdev->new_raid_disk == rdev->raid_disk)
  3182. continue;
  3183. sysfs_unlink_rdev(mddev, rdev);
  3184. }
  3185. rdev_for_each(rdev, mddev) {
  3186. if (rdev->raid_disk < 0)
  3187. continue;
  3188. if (rdev->new_raid_disk == rdev->raid_disk)
  3189. continue;
  3190. rdev->raid_disk = rdev->new_raid_disk;
  3191. if (rdev->raid_disk < 0)
  3192. clear_bit(In_sync, &rdev->flags);
  3193. else {
  3194. if (sysfs_link_rdev(mddev, rdev))
  3195. printk(KERN_WARNING "md: cannot register rd%d"
  3196. " for %s after level change\n",
  3197. rdev->raid_disk, mdname(mddev));
  3198. }
  3199. }
  3200. module_put(mddev->pers->owner);
  3201. mddev->pers = pers;
  3202. mddev->private = priv;
  3203. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3204. mddev->level = mddev->new_level;
  3205. mddev->layout = mddev->new_layout;
  3206. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3207. mddev->delta_disks = 0;
  3208. mddev->reshape_backwards = 0;
  3209. mddev->degraded = 0;
  3210. if (mddev->pers->sync_request == NULL) {
  3211. /* this is now an array without redundancy, so
  3212. * it must always be in_sync
  3213. */
  3214. mddev->in_sync = 1;
  3215. del_timer_sync(&mddev->safemode_timer);
  3216. }
  3217. blk_set_stacking_limits(&mddev->queue->limits);
  3218. pers->run(mddev);
  3219. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3220. mddev_resume(mddev);
  3221. sysfs_notify(&mddev->kobj, NULL, "level");
  3222. md_new_event(mddev);
  3223. return rv;
  3224. }
  3225. static struct md_sysfs_entry md_level =
  3226. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3227. static ssize_t
  3228. layout_show(struct mddev *mddev, char *page)
  3229. {
  3230. /* just a number, not meaningful for all levels */
  3231. if (mddev->reshape_position != MaxSector &&
  3232. mddev->layout != mddev->new_layout)
  3233. return sprintf(page, "%d (%d)\n",
  3234. mddev->new_layout, mddev->layout);
  3235. return sprintf(page, "%d\n", mddev->layout);
  3236. }
  3237. static ssize_t
  3238. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3239. {
  3240. char *e;
  3241. unsigned long n = simple_strtoul(buf, &e, 10);
  3242. if (!*buf || (*e && *e != '\n'))
  3243. return -EINVAL;
  3244. if (mddev->pers) {
  3245. int err;
  3246. if (mddev->pers->check_reshape == NULL)
  3247. return -EBUSY;
  3248. mddev->new_layout = n;
  3249. err = mddev->pers->check_reshape(mddev);
  3250. if (err) {
  3251. mddev->new_layout = mddev->layout;
  3252. return err;
  3253. }
  3254. } else {
  3255. mddev->new_layout = n;
  3256. if (mddev->reshape_position == MaxSector)
  3257. mddev->layout = n;
  3258. }
  3259. return len;
  3260. }
  3261. static struct md_sysfs_entry md_layout =
  3262. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3263. static ssize_t
  3264. raid_disks_show(struct mddev *mddev, char *page)
  3265. {
  3266. if (mddev->raid_disks == 0)
  3267. return 0;
  3268. if (mddev->reshape_position != MaxSector &&
  3269. mddev->delta_disks != 0)
  3270. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3271. mddev->raid_disks - mddev->delta_disks);
  3272. return sprintf(page, "%d\n", mddev->raid_disks);
  3273. }
  3274. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3275. static ssize_t
  3276. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3277. {
  3278. char *e;
  3279. int rv = 0;
  3280. unsigned long n = simple_strtoul(buf, &e, 10);
  3281. if (!*buf || (*e && *e != '\n'))
  3282. return -EINVAL;
  3283. if (mddev->pers)
  3284. rv = update_raid_disks(mddev, n);
  3285. else if (mddev->reshape_position != MaxSector) {
  3286. struct md_rdev *rdev;
  3287. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3288. rdev_for_each(rdev, mddev) {
  3289. if (olddisks < n &&
  3290. rdev->data_offset < rdev->new_data_offset)
  3291. return -EINVAL;
  3292. if (olddisks > n &&
  3293. rdev->data_offset > rdev->new_data_offset)
  3294. return -EINVAL;
  3295. }
  3296. mddev->delta_disks = n - olddisks;
  3297. mddev->raid_disks = n;
  3298. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3299. } else
  3300. mddev->raid_disks = n;
  3301. return rv ? rv : len;
  3302. }
  3303. static struct md_sysfs_entry md_raid_disks =
  3304. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3305. static ssize_t
  3306. chunk_size_show(struct mddev *mddev, char *page)
  3307. {
  3308. if (mddev->reshape_position != MaxSector &&
  3309. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3310. return sprintf(page, "%d (%d)\n",
  3311. mddev->new_chunk_sectors << 9,
  3312. mddev->chunk_sectors << 9);
  3313. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3314. }
  3315. static ssize_t
  3316. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3317. {
  3318. char *e;
  3319. unsigned long n = simple_strtoul(buf, &e, 10);
  3320. if (!*buf || (*e && *e != '\n'))
  3321. return -EINVAL;
  3322. if (mddev->pers) {
  3323. int err;
  3324. if (mddev->pers->check_reshape == NULL)
  3325. return -EBUSY;
  3326. mddev->new_chunk_sectors = n >> 9;
  3327. err = mddev->pers->check_reshape(mddev);
  3328. if (err) {
  3329. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3330. return err;
  3331. }
  3332. } else {
  3333. mddev->new_chunk_sectors = n >> 9;
  3334. if (mddev->reshape_position == MaxSector)
  3335. mddev->chunk_sectors = n >> 9;
  3336. }
  3337. return len;
  3338. }
  3339. static struct md_sysfs_entry md_chunk_size =
  3340. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3341. static ssize_t
  3342. resync_start_show(struct mddev *mddev, char *page)
  3343. {
  3344. if (mddev->recovery_cp == MaxSector)
  3345. return sprintf(page, "none\n");
  3346. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3347. }
  3348. static ssize_t
  3349. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3350. {
  3351. char *e;
  3352. unsigned long long n = simple_strtoull(buf, &e, 10);
  3353. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3354. return -EBUSY;
  3355. if (cmd_match(buf, "none"))
  3356. n = MaxSector;
  3357. else if (!*buf || (*e && *e != '\n'))
  3358. return -EINVAL;
  3359. mddev->recovery_cp = n;
  3360. if (mddev->pers)
  3361. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3362. return len;
  3363. }
  3364. static struct md_sysfs_entry md_resync_start =
  3365. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3366. /*
  3367. * The array state can be:
  3368. *
  3369. * clear
  3370. * No devices, no size, no level
  3371. * Equivalent to STOP_ARRAY ioctl
  3372. * inactive
  3373. * May have some settings, but array is not active
  3374. * all IO results in error
  3375. * When written, doesn't tear down array, but just stops it
  3376. * suspended (not supported yet)
  3377. * All IO requests will block. The array can be reconfigured.
  3378. * Writing this, if accepted, will block until array is quiescent
  3379. * readonly
  3380. * no resync can happen. no superblocks get written.
  3381. * write requests fail
  3382. * read-auto
  3383. * like readonly, but behaves like 'clean' on a write request.
  3384. *
  3385. * clean - no pending writes, but otherwise active.
  3386. * When written to inactive array, starts without resync
  3387. * If a write request arrives then
  3388. * if metadata is known, mark 'dirty' and switch to 'active'.
  3389. * if not known, block and switch to write-pending
  3390. * If written to an active array that has pending writes, then fails.
  3391. * active
  3392. * fully active: IO and resync can be happening.
  3393. * When written to inactive array, starts with resync
  3394. *
  3395. * write-pending
  3396. * clean, but writes are blocked waiting for 'active' to be written.
  3397. *
  3398. * active-idle
  3399. * like active, but no writes have been seen for a while (100msec).
  3400. *
  3401. */
  3402. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3403. write_pending, active_idle, bad_word};
  3404. static char *array_states[] = {
  3405. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3406. "write-pending", "active-idle", NULL };
  3407. static int match_word(const char *word, char **list)
  3408. {
  3409. int n;
  3410. for (n=0; list[n]; n++)
  3411. if (cmd_match(word, list[n]))
  3412. break;
  3413. return n;
  3414. }
  3415. static ssize_t
  3416. array_state_show(struct mddev *mddev, char *page)
  3417. {
  3418. enum array_state st = inactive;
  3419. if (mddev->pers)
  3420. switch(mddev->ro) {
  3421. case 1:
  3422. st = readonly;
  3423. break;
  3424. case 2:
  3425. st = read_auto;
  3426. break;
  3427. case 0:
  3428. if (mddev->in_sync)
  3429. st = clean;
  3430. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3431. st = write_pending;
  3432. else if (mddev->safemode)
  3433. st = active_idle;
  3434. else
  3435. st = active;
  3436. }
  3437. else {
  3438. if (list_empty(&mddev->disks) &&
  3439. mddev->raid_disks == 0 &&
  3440. mddev->dev_sectors == 0)
  3441. st = clear;
  3442. else
  3443. st = inactive;
  3444. }
  3445. return sprintf(page, "%s\n", array_states[st]);
  3446. }
  3447. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3448. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3449. static int do_md_run(struct mddev * mddev);
  3450. static int restart_array(struct mddev *mddev);
  3451. static ssize_t
  3452. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3453. {
  3454. int err = -EINVAL;
  3455. enum array_state st = match_word(buf, array_states);
  3456. switch(st) {
  3457. case bad_word:
  3458. break;
  3459. case clear:
  3460. /* stopping an active array */
  3461. err = do_md_stop(mddev, 0, NULL);
  3462. break;
  3463. case inactive:
  3464. /* stopping an active array */
  3465. if (mddev->pers)
  3466. err = do_md_stop(mddev, 2, NULL);
  3467. else
  3468. err = 0; /* already inactive */
  3469. break;
  3470. case suspended:
  3471. break; /* not supported yet */
  3472. case readonly:
  3473. if (mddev->pers)
  3474. err = md_set_readonly(mddev, NULL);
  3475. else {
  3476. mddev->ro = 1;
  3477. set_disk_ro(mddev->gendisk, 1);
  3478. err = do_md_run(mddev);
  3479. }
  3480. break;
  3481. case read_auto:
  3482. if (mddev->pers) {
  3483. if (mddev->ro == 0)
  3484. err = md_set_readonly(mddev, NULL);
  3485. else if (mddev->ro == 1)
  3486. err = restart_array(mddev);
  3487. if (err == 0) {
  3488. mddev->ro = 2;
  3489. set_disk_ro(mddev->gendisk, 0);
  3490. }
  3491. } else {
  3492. mddev->ro = 2;
  3493. err = do_md_run(mddev);
  3494. }
  3495. break;
  3496. case clean:
  3497. if (mddev->pers) {
  3498. restart_array(mddev);
  3499. spin_lock_irq(&mddev->write_lock);
  3500. if (atomic_read(&mddev->writes_pending) == 0) {
  3501. if (mddev->in_sync == 0) {
  3502. mddev->in_sync = 1;
  3503. if (mddev->safemode == 1)
  3504. mddev->safemode = 0;
  3505. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3506. }
  3507. err = 0;
  3508. } else
  3509. err = -EBUSY;
  3510. spin_unlock_irq(&mddev->write_lock);
  3511. } else
  3512. err = -EINVAL;
  3513. break;
  3514. case active:
  3515. if (mddev->pers) {
  3516. restart_array(mddev);
  3517. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3518. wake_up(&mddev->sb_wait);
  3519. err = 0;
  3520. } else {
  3521. mddev->ro = 0;
  3522. set_disk_ro(mddev->gendisk, 0);
  3523. err = do_md_run(mddev);
  3524. }
  3525. break;
  3526. case write_pending:
  3527. case active_idle:
  3528. /* these cannot be set */
  3529. break;
  3530. }
  3531. if (err)
  3532. return err;
  3533. else {
  3534. if (mddev->hold_active == UNTIL_IOCTL)
  3535. mddev->hold_active = 0;
  3536. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3537. return len;
  3538. }
  3539. }
  3540. static struct md_sysfs_entry md_array_state =
  3541. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3542. static ssize_t
  3543. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3544. return sprintf(page, "%d\n",
  3545. atomic_read(&mddev->max_corr_read_errors));
  3546. }
  3547. static ssize_t
  3548. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3549. {
  3550. char *e;
  3551. unsigned long n = simple_strtoul(buf, &e, 10);
  3552. if (*buf && (*e == 0 || *e == '\n')) {
  3553. atomic_set(&mddev->max_corr_read_errors, n);
  3554. return len;
  3555. }
  3556. return -EINVAL;
  3557. }
  3558. static struct md_sysfs_entry max_corr_read_errors =
  3559. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3560. max_corrected_read_errors_store);
  3561. static ssize_t
  3562. null_show(struct mddev *mddev, char *page)
  3563. {
  3564. return -EINVAL;
  3565. }
  3566. static ssize_t
  3567. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3568. {
  3569. /* buf must be %d:%d\n? giving major and minor numbers */
  3570. /* The new device is added to the array.
  3571. * If the array has a persistent superblock, we read the
  3572. * superblock to initialise info and check validity.
  3573. * Otherwise, only checking done is that in bind_rdev_to_array,
  3574. * which mainly checks size.
  3575. */
  3576. char *e;
  3577. int major = simple_strtoul(buf, &e, 10);
  3578. int minor;
  3579. dev_t dev;
  3580. struct md_rdev *rdev;
  3581. int err;
  3582. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3583. return -EINVAL;
  3584. minor = simple_strtoul(e+1, &e, 10);
  3585. if (*e && *e != '\n')
  3586. return -EINVAL;
  3587. dev = MKDEV(major, minor);
  3588. if (major != MAJOR(dev) ||
  3589. minor != MINOR(dev))
  3590. return -EOVERFLOW;
  3591. if (mddev->persistent) {
  3592. rdev = md_import_device(dev, mddev->major_version,
  3593. mddev->minor_version);
  3594. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3595. struct md_rdev *rdev0
  3596. = list_entry(mddev->disks.next,
  3597. struct md_rdev, same_set);
  3598. err = super_types[mddev->major_version]
  3599. .load_super(rdev, rdev0, mddev->minor_version);
  3600. if (err < 0)
  3601. goto out;
  3602. }
  3603. } else if (mddev->external)
  3604. rdev = md_import_device(dev, -2, -1);
  3605. else
  3606. rdev = md_import_device(dev, -1, -1);
  3607. if (IS_ERR(rdev))
  3608. return PTR_ERR(rdev);
  3609. err = bind_rdev_to_array(rdev, mddev);
  3610. out:
  3611. if (err)
  3612. export_rdev(rdev);
  3613. return err ? err : len;
  3614. }
  3615. static struct md_sysfs_entry md_new_device =
  3616. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3617. static ssize_t
  3618. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3619. {
  3620. char *end;
  3621. unsigned long chunk, end_chunk;
  3622. if (!mddev->bitmap)
  3623. goto out;
  3624. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3625. while (*buf) {
  3626. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3627. if (buf == end) break;
  3628. if (*end == '-') { /* range */
  3629. buf = end + 1;
  3630. end_chunk = simple_strtoul(buf, &end, 0);
  3631. if (buf == end) break;
  3632. }
  3633. if (*end && !isspace(*end)) break;
  3634. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3635. buf = skip_spaces(end);
  3636. }
  3637. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3638. out:
  3639. return len;
  3640. }
  3641. static struct md_sysfs_entry md_bitmap =
  3642. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3643. static ssize_t
  3644. size_show(struct mddev *mddev, char *page)
  3645. {
  3646. return sprintf(page, "%llu\n",
  3647. (unsigned long long)mddev->dev_sectors / 2);
  3648. }
  3649. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3650. static ssize_t
  3651. size_store(struct mddev *mddev, const char *buf, size_t len)
  3652. {
  3653. /* If array is inactive, we can reduce the component size, but
  3654. * not increase it (except from 0).
  3655. * If array is active, we can try an on-line resize
  3656. */
  3657. sector_t sectors;
  3658. int err = strict_blocks_to_sectors(buf, &sectors);
  3659. if (err < 0)
  3660. return err;
  3661. if (mddev->pers) {
  3662. err = update_size(mddev, sectors);
  3663. md_update_sb(mddev, 1);
  3664. } else {
  3665. if (mddev->dev_sectors == 0 ||
  3666. mddev->dev_sectors > sectors)
  3667. mddev->dev_sectors = sectors;
  3668. else
  3669. err = -ENOSPC;
  3670. }
  3671. return err ? err : len;
  3672. }
  3673. static struct md_sysfs_entry md_size =
  3674. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3675. /* Metadata version.
  3676. * This is one of
  3677. * 'none' for arrays with no metadata (good luck...)
  3678. * 'external' for arrays with externally managed metadata,
  3679. * or N.M for internally known formats
  3680. */
  3681. static ssize_t
  3682. metadata_show(struct mddev *mddev, char *page)
  3683. {
  3684. if (mddev->persistent)
  3685. return sprintf(page, "%d.%d\n",
  3686. mddev->major_version, mddev->minor_version);
  3687. else if (mddev->external)
  3688. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3689. else
  3690. return sprintf(page, "none\n");
  3691. }
  3692. static ssize_t
  3693. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3694. {
  3695. int major, minor;
  3696. char *e;
  3697. /* Changing the details of 'external' metadata is
  3698. * always permitted. Otherwise there must be
  3699. * no devices attached to the array.
  3700. */
  3701. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3702. ;
  3703. else if (!list_empty(&mddev->disks))
  3704. return -EBUSY;
  3705. if (cmd_match(buf, "none")) {
  3706. mddev->persistent = 0;
  3707. mddev->external = 0;
  3708. mddev->major_version = 0;
  3709. mddev->minor_version = 90;
  3710. return len;
  3711. }
  3712. if (strncmp(buf, "external:", 9) == 0) {
  3713. size_t namelen = len-9;
  3714. if (namelen >= sizeof(mddev->metadata_type))
  3715. namelen = sizeof(mddev->metadata_type)-1;
  3716. strncpy(mddev->metadata_type, buf+9, namelen);
  3717. mddev->metadata_type[namelen] = 0;
  3718. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3719. mddev->metadata_type[--namelen] = 0;
  3720. mddev->persistent = 0;
  3721. mddev->external = 1;
  3722. mddev->major_version = 0;
  3723. mddev->minor_version = 90;
  3724. return len;
  3725. }
  3726. major = simple_strtoul(buf, &e, 10);
  3727. if (e==buf || *e != '.')
  3728. return -EINVAL;
  3729. buf = e+1;
  3730. minor = simple_strtoul(buf, &e, 10);
  3731. if (e==buf || (*e && *e != '\n') )
  3732. return -EINVAL;
  3733. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3734. return -ENOENT;
  3735. mddev->major_version = major;
  3736. mddev->minor_version = minor;
  3737. mddev->persistent = 1;
  3738. mddev->external = 0;
  3739. return len;
  3740. }
  3741. static struct md_sysfs_entry md_metadata =
  3742. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3743. static ssize_t
  3744. action_show(struct mddev *mddev, char *page)
  3745. {
  3746. char *type = "idle";
  3747. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3748. type = "frozen";
  3749. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3750. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3751. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3752. type = "reshape";
  3753. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3754. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3755. type = "resync";
  3756. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3757. type = "check";
  3758. else
  3759. type = "repair";
  3760. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3761. type = "recover";
  3762. }
  3763. return sprintf(page, "%s\n", type);
  3764. }
  3765. static ssize_t
  3766. action_store(struct mddev *mddev, const char *page, size_t len)
  3767. {
  3768. if (!mddev->pers || !mddev->pers->sync_request)
  3769. return -EINVAL;
  3770. if (cmd_match(page, "frozen"))
  3771. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3772. else
  3773. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3774. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3775. if (mddev->sync_thread) {
  3776. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3777. md_reap_sync_thread(mddev);
  3778. }
  3779. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3780. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3781. return -EBUSY;
  3782. else if (cmd_match(page, "resync"))
  3783. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3784. else if (cmd_match(page, "recover")) {
  3785. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3786. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3787. } else if (cmd_match(page, "reshape")) {
  3788. int err;
  3789. if (mddev->pers->start_reshape == NULL)
  3790. return -EINVAL;
  3791. err = mddev->pers->start_reshape(mddev);
  3792. if (err)
  3793. return err;
  3794. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3795. } else {
  3796. if (cmd_match(page, "check"))
  3797. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3798. else if (!cmd_match(page, "repair"))
  3799. return -EINVAL;
  3800. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3801. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3802. }
  3803. if (mddev->ro == 2) {
  3804. /* A write to sync_action is enough to justify
  3805. * canceling read-auto mode
  3806. */
  3807. mddev->ro = 0;
  3808. md_wakeup_thread(mddev->sync_thread);
  3809. }
  3810. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3811. md_wakeup_thread(mddev->thread);
  3812. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3813. return len;
  3814. }
  3815. static struct md_sysfs_entry md_scan_mode =
  3816. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3817. static ssize_t
  3818. last_sync_action_show(struct mddev *mddev, char *page)
  3819. {
  3820. return sprintf(page, "%s\n", mddev->last_sync_action);
  3821. }
  3822. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3823. static ssize_t
  3824. mismatch_cnt_show(struct mddev *mddev, char *page)
  3825. {
  3826. return sprintf(page, "%llu\n",
  3827. (unsigned long long)
  3828. atomic64_read(&mddev->resync_mismatches));
  3829. }
  3830. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3831. static ssize_t
  3832. sync_min_show(struct mddev *mddev, char *page)
  3833. {
  3834. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3835. mddev->sync_speed_min ? "local": "system");
  3836. }
  3837. static ssize_t
  3838. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3839. {
  3840. int min;
  3841. char *e;
  3842. if (strncmp(buf, "system", 6)==0) {
  3843. mddev->sync_speed_min = 0;
  3844. return len;
  3845. }
  3846. min = simple_strtoul(buf, &e, 10);
  3847. if (buf == e || (*e && *e != '\n') || min <= 0)
  3848. return -EINVAL;
  3849. mddev->sync_speed_min = min;
  3850. return len;
  3851. }
  3852. static struct md_sysfs_entry md_sync_min =
  3853. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3854. static ssize_t
  3855. sync_max_show(struct mddev *mddev, char *page)
  3856. {
  3857. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3858. mddev->sync_speed_max ? "local": "system");
  3859. }
  3860. static ssize_t
  3861. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3862. {
  3863. int max;
  3864. char *e;
  3865. if (strncmp(buf, "system", 6)==0) {
  3866. mddev->sync_speed_max = 0;
  3867. return len;
  3868. }
  3869. max = simple_strtoul(buf, &e, 10);
  3870. if (buf == e || (*e && *e != '\n') || max <= 0)
  3871. return -EINVAL;
  3872. mddev->sync_speed_max = max;
  3873. return len;
  3874. }
  3875. static struct md_sysfs_entry md_sync_max =
  3876. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3877. static ssize_t
  3878. degraded_show(struct mddev *mddev, char *page)
  3879. {
  3880. return sprintf(page, "%d\n", mddev->degraded);
  3881. }
  3882. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3883. static ssize_t
  3884. sync_force_parallel_show(struct mddev *mddev, char *page)
  3885. {
  3886. return sprintf(page, "%d\n", mddev->parallel_resync);
  3887. }
  3888. static ssize_t
  3889. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3890. {
  3891. long n;
  3892. if (kstrtol(buf, 10, &n))
  3893. return -EINVAL;
  3894. if (n != 0 && n != 1)
  3895. return -EINVAL;
  3896. mddev->parallel_resync = n;
  3897. if (mddev->sync_thread)
  3898. wake_up(&resync_wait);
  3899. return len;
  3900. }
  3901. /* force parallel resync, even with shared block devices */
  3902. static struct md_sysfs_entry md_sync_force_parallel =
  3903. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3904. sync_force_parallel_show, sync_force_parallel_store);
  3905. static ssize_t
  3906. sync_speed_show(struct mddev *mddev, char *page)
  3907. {
  3908. unsigned long resync, dt, db;
  3909. if (mddev->curr_resync == 0)
  3910. return sprintf(page, "none\n");
  3911. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3912. dt = (jiffies - mddev->resync_mark) / HZ;
  3913. if (!dt) dt++;
  3914. db = resync - mddev->resync_mark_cnt;
  3915. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3916. }
  3917. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3918. static ssize_t
  3919. sync_completed_show(struct mddev *mddev, char *page)
  3920. {
  3921. unsigned long long max_sectors, resync;
  3922. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3923. return sprintf(page, "none\n");
  3924. if (mddev->curr_resync == 1 ||
  3925. mddev->curr_resync == 2)
  3926. return sprintf(page, "delayed\n");
  3927. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3928. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3929. max_sectors = mddev->resync_max_sectors;
  3930. else
  3931. max_sectors = mddev->dev_sectors;
  3932. resync = mddev->curr_resync_completed;
  3933. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3934. }
  3935. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3936. static ssize_t
  3937. min_sync_show(struct mddev *mddev, char *page)
  3938. {
  3939. return sprintf(page, "%llu\n",
  3940. (unsigned long long)mddev->resync_min);
  3941. }
  3942. static ssize_t
  3943. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3944. {
  3945. unsigned long long min;
  3946. if (kstrtoull(buf, 10, &min))
  3947. return -EINVAL;
  3948. if (min > mddev->resync_max)
  3949. return -EINVAL;
  3950. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3951. return -EBUSY;
  3952. /* Must be a multiple of chunk_size */
  3953. if (mddev->chunk_sectors) {
  3954. sector_t temp = min;
  3955. if (sector_div(temp, mddev->chunk_sectors))
  3956. return -EINVAL;
  3957. }
  3958. mddev->resync_min = min;
  3959. return len;
  3960. }
  3961. static struct md_sysfs_entry md_min_sync =
  3962. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3963. static ssize_t
  3964. max_sync_show(struct mddev *mddev, char *page)
  3965. {
  3966. if (mddev->resync_max == MaxSector)
  3967. return sprintf(page, "max\n");
  3968. else
  3969. return sprintf(page, "%llu\n",
  3970. (unsigned long long)mddev->resync_max);
  3971. }
  3972. static ssize_t
  3973. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3974. {
  3975. if (strncmp(buf, "max", 3) == 0)
  3976. mddev->resync_max = MaxSector;
  3977. else {
  3978. unsigned long long max;
  3979. if (kstrtoull(buf, 10, &max))
  3980. return -EINVAL;
  3981. if (max < mddev->resync_min)
  3982. return -EINVAL;
  3983. if (max < mddev->resync_max &&
  3984. mddev->ro == 0 &&
  3985. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3986. return -EBUSY;
  3987. /* Must be a multiple of chunk_size */
  3988. if (mddev->chunk_sectors) {
  3989. sector_t temp = max;
  3990. if (sector_div(temp, mddev->chunk_sectors))
  3991. return -EINVAL;
  3992. }
  3993. mddev->resync_max = max;
  3994. }
  3995. wake_up(&mddev->recovery_wait);
  3996. return len;
  3997. }
  3998. static struct md_sysfs_entry md_max_sync =
  3999. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4000. static ssize_t
  4001. suspend_lo_show(struct mddev *mddev, char *page)
  4002. {
  4003. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4004. }
  4005. static ssize_t
  4006. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4007. {
  4008. char *e;
  4009. unsigned long long new = simple_strtoull(buf, &e, 10);
  4010. unsigned long long old = mddev->suspend_lo;
  4011. if (mddev->pers == NULL ||
  4012. mddev->pers->quiesce == NULL)
  4013. return -EINVAL;
  4014. if (buf == e || (*e && *e != '\n'))
  4015. return -EINVAL;
  4016. mddev->suspend_lo = new;
  4017. if (new >= old)
  4018. /* Shrinking suspended region */
  4019. mddev->pers->quiesce(mddev, 2);
  4020. else {
  4021. /* Expanding suspended region - need to wait */
  4022. mddev->pers->quiesce(mddev, 1);
  4023. mddev->pers->quiesce(mddev, 0);
  4024. }
  4025. return len;
  4026. }
  4027. static struct md_sysfs_entry md_suspend_lo =
  4028. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4029. static ssize_t
  4030. suspend_hi_show(struct mddev *mddev, char *page)
  4031. {
  4032. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4033. }
  4034. static ssize_t
  4035. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4036. {
  4037. char *e;
  4038. unsigned long long new = simple_strtoull(buf, &e, 10);
  4039. unsigned long long old = mddev->suspend_hi;
  4040. if (mddev->pers == NULL ||
  4041. mddev->pers->quiesce == NULL)
  4042. return -EINVAL;
  4043. if (buf == e || (*e && *e != '\n'))
  4044. return -EINVAL;
  4045. mddev->suspend_hi = new;
  4046. if (new <= old)
  4047. /* Shrinking suspended region */
  4048. mddev->pers->quiesce(mddev, 2);
  4049. else {
  4050. /* Expanding suspended region - need to wait */
  4051. mddev->pers->quiesce(mddev, 1);
  4052. mddev->pers->quiesce(mddev, 0);
  4053. }
  4054. return len;
  4055. }
  4056. static struct md_sysfs_entry md_suspend_hi =
  4057. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4058. static ssize_t
  4059. reshape_position_show(struct mddev *mddev, char *page)
  4060. {
  4061. if (mddev->reshape_position != MaxSector)
  4062. return sprintf(page, "%llu\n",
  4063. (unsigned long long)mddev->reshape_position);
  4064. strcpy(page, "none\n");
  4065. return 5;
  4066. }
  4067. static ssize_t
  4068. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4069. {
  4070. struct md_rdev *rdev;
  4071. char *e;
  4072. unsigned long long new = simple_strtoull(buf, &e, 10);
  4073. if (mddev->pers)
  4074. return -EBUSY;
  4075. if (buf == e || (*e && *e != '\n'))
  4076. return -EINVAL;
  4077. mddev->reshape_position = new;
  4078. mddev->delta_disks = 0;
  4079. mddev->reshape_backwards = 0;
  4080. mddev->new_level = mddev->level;
  4081. mddev->new_layout = mddev->layout;
  4082. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4083. rdev_for_each(rdev, mddev)
  4084. rdev->new_data_offset = rdev->data_offset;
  4085. return len;
  4086. }
  4087. static struct md_sysfs_entry md_reshape_position =
  4088. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4089. reshape_position_store);
  4090. static ssize_t
  4091. reshape_direction_show(struct mddev *mddev, char *page)
  4092. {
  4093. return sprintf(page, "%s\n",
  4094. mddev->reshape_backwards ? "backwards" : "forwards");
  4095. }
  4096. static ssize_t
  4097. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4098. {
  4099. int backwards = 0;
  4100. if (cmd_match(buf, "forwards"))
  4101. backwards = 0;
  4102. else if (cmd_match(buf, "backwards"))
  4103. backwards = 1;
  4104. else
  4105. return -EINVAL;
  4106. if (mddev->reshape_backwards == backwards)
  4107. return len;
  4108. /* check if we are allowed to change */
  4109. if (mddev->delta_disks)
  4110. return -EBUSY;
  4111. if (mddev->persistent &&
  4112. mddev->major_version == 0)
  4113. return -EINVAL;
  4114. mddev->reshape_backwards = backwards;
  4115. return len;
  4116. }
  4117. static struct md_sysfs_entry md_reshape_direction =
  4118. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4119. reshape_direction_store);
  4120. static ssize_t
  4121. array_size_show(struct mddev *mddev, char *page)
  4122. {
  4123. if (mddev->external_size)
  4124. return sprintf(page, "%llu\n",
  4125. (unsigned long long)mddev->array_sectors/2);
  4126. else
  4127. return sprintf(page, "default\n");
  4128. }
  4129. static ssize_t
  4130. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4131. {
  4132. sector_t sectors;
  4133. if (strncmp(buf, "default", 7) == 0) {
  4134. if (mddev->pers)
  4135. sectors = mddev->pers->size(mddev, 0, 0);
  4136. else
  4137. sectors = mddev->array_sectors;
  4138. mddev->external_size = 0;
  4139. } else {
  4140. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4141. return -EINVAL;
  4142. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4143. return -E2BIG;
  4144. mddev->external_size = 1;
  4145. }
  4146. mddev->array_sectors = sectors;
  4147. if (mddev->pers) {
  4148. set_capacity(mddev->gendisk, mddev->array_sectors);
  4149. revalidate_disk(mddev->gendisk);
  4150. }
  4151. return len;
  4152. }
  4153. static struct md_sysfs_entry md_array_size =
  4154. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4155. array_size_store);
  4156. static struct attribute *md_default_attrs[] = {
  4157. &md_level.attr,
  4158. &md_layout.attr,
  4159. &md_raid_disks.attr,
  4160. &md_chunk_size.attr,
  4161. &md_size.attr,
  4162. &md_resync_start.attr,
  4163. &md_metadata.attr,
  4164. &md_new_device.attr,
  4165. &md_safe_delay.attr,
  4166. &md_array_state.attr,
  4167. &md_reshape_position.attr,
  4168. &md_reshape_direction.attr,
  4169. &md_array_size.attr,
  4170. &max_corr_read_errors.attr,
  4171. NULL,
  4172. };
  4173. static struct attribute *md_redundancy_attrs[] = {
  4174. &md_scan_mode.attr,
  4175. &md_last_scan_mode.attr,
  4176. &md_mismatches.attr,
  4177. &md_sync_min.attr,
  4178. &md_sync_max.attr,
  4179. &md_sync_speed.attr,
  4180. &md_sync_force_parallel.attr,
  4181. &md_sync_completed.attr,
  4182. &md_min_sync.attr,
  4183. &md_max_sync.attr,
  4184. &md_suspend_lo.attr,
  4185. &md_suspend_hi.attr,
  4186. &md_bitmap.attr,
  4187. &md_degraded.attr,
  4188. NULL,
  4189. };
  4190. static struct attribute_group md_redundancy_group = {
  4191. .name = NULL,
  4192. .attrs = md_redundancy_attrs,
  4193. };
  4194. static ssize_t
  4195. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4196. {
  4197. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4198. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4199. ssize_t rv;
  4200. if (!entry->show)
  4201. return -EIO;
  4202. spin_lock(&all_mddevs_lock);
  4203. if (list_empty(&mddev->all_mddevs)) {
  4204. spin_unlock(&all_mddevs_lock);
  4205. return -EBUSY;
  4206. }
  4207. mddev_get(mddev);
  4208. spin_unlock(&all_mddevs_lock);
  4209. rv = mddev_lock(mddev);
  4210. if (!rv) {
  4211. rv = entry->show(mddev, page);
  4212. mddev_unlock(mddev);
  4213. }
  4214. mddev_put(mddev);
  4215. return rv;
  4216. }
  4217. static ssize_t
  4218. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4219. const char *page, size_t length)
  4220. {
  4221. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4222. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4223. ssize_t rv;
  4224. if (!entry->store)
  4225. return -EIO;
  4226. if (!capable(CAP_SYS_ADMIN))
  4227. return -EACCES;
  4228. spin_lock(&all_mddevs_lock);
  4229. if (list_empty(&mddev->all_mddevs)) {
  4230. spin_unlock(&all_mddevs_lock);
  4231. return -EBUSY;
  4232. }
  4233. mddev_get(mddev);
  4234. spin_unlock(&all_mddevs_lock);
  4235. if (entry->store == new_dev_store)
  4236. flush_workqueue(md_misc_wq);
  4237. rv = mddev_lock(mddev);
  4238. if (!rv) {
  4239. rv = entry->store(mddev, page, length);
  4240. mddev_unlock(mddev);
  4241. }
  4242. mddev_put(mddev);
  4243. return rv;
  4244. }
  4245. static void md_free(struct kobject *ko)
  4246. {
  4247. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4248. if (mddev->sysfs_state)
  4249. sysfs_put(mddev->sysfs_state);
  4250. if (mddev->gendisk) {
  4251. del_gendisk(mddev->gendisk);
  4252. put_disk(mddev->gendisk);
  4253. }
  4254. if (mddev->queue)
  4255. blk_cleanup_queue(mddev->queue);
  4256. kfree(mddev);
  4257. }
  4258. static const struct sysfs_ops md_sysfs_ops = {
  4259. .show = md_attr_show,
  4260. .store = md_attr_store,
  4261. };
  4262. static struct kobj_type md_ktype = {
  4263. .release = md_free,
  4264. .sysfs_ops = &md_sysfs_ops,
  4265. .default_attrs = md_default_attrs,
  4266. };
  4267. int mdp_major = 0;
  4268. static void mddev_delayed_delete(struct work_struct *ws)
  4269. {
  4270. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4271. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4272. kobject_del(&mddev->kobj);
  4273. kobject_put(&mddev->kobj);
  4274. }
  4275. static int md_alloc(dev_t dev, char *name)
  4276. {
  4277. static DEFINE_MUTEX(disks_mutex);
  4278. struct mddev *mddev = mddev_find(dev);
  4279. struct gendisk *disk;
  4280. int partitioned;
  4281. int shift;
  4282. int unit;
  4283. int error;
  4284. if (!mddev)
  4285. return -ENODEV;
  4286. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4287. shift = partitioned ? MdpMinorShift : 0;
  4288. unit = MINOR(mddev->unit) >> shift;
  4289. /* wait for any previous instance of this device to be
  4290. * completely removed (mddev_delayed_delete).
  4291. */
  4292. flush_workqueue(md_misc_wq);
  4293. mutex_lock(&disks_mutex);
  4294. error = -EEXIST;
  4295. if (mddev->gendisk)
  4296. goto abort;
  4297. if (name) {
  4298. /* Need to ensure that 'name' is not a duplicate.
  4299. */
  4300. struct mddev *mddev2;
  4301. spin_lock(&all_mddevs_lock);
  4302. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4303. if (mddev2->gendisk &&
  4304. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4305. spin_unlock(&all_mddevs_lock);
  4306. goto abort;
  4307. }
  4308. spin_unlock(&all_mddevs_lock);
  4309. }
  4310. error = -ENOMEM;
  4311. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4312. if (!mddev->queue)
  4313. goto abort;
  4314. mddev->queue->queuedata = mddev;
  4315. blk_queue_make_request(mddev->queue, md_make_request);
  4316. blk_set_stacking_limits(&mddev->queue->limits);
  4317. disk = alloc_disk(1 << shift);
  4318. if (!disk) {
  4319. blk_cleanup_queue(mddev->queue);
  4320. mddev->queue = NULL;
  4321. goto abort;
  4322. }
  4323. disk->major = MAJOR(mddev->unit);
  4324. disk->first_minor = unit << shift;
  4325. if (name)
  4326. strcpy(disk->disk_name, name);
  4327. else if (partitioned)
  4328. sprintf(disk->disk_name, "md_d%d", unit);
  4329. else
  4330. sprintf(disk->disk_name, "md%d", unit);
  4331. disk->fops = &md_fops;
  4332. disk->private_data = mddev;
  4333. disk->queue = mddev->queue;
  4334. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4335. /* Allow extended partitions. This makes the
  4336. * 'mdp' device redundant, but we can't really
  4337. * remove it now.
  4338. */
  4339. disk->flags |= GENHD_FL_EXT_DEVT;
  4340. mddev->gendisk = disk;
  4341. /* As soon as we call add_disk(), another thread could get
  4342. * through to md_open, so make sure it doesn't get too far
  4343. */
  4344. mutex_lock(&mddev->open_mutex);
  4345. add_disk(disk);
  4346. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4347. &disk_to_dev(disk)->kobj, "%s", "md");
  4348. if (error) {
  4349. /* This isn't possible, but as kobject_init_and_add is marked
  4350. * __must_check, we must do something with the result
  4351. */
  4352. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4353. disk->disk_name);
  4354. error = 0;
  4355. }
  4356. if (mddev->kobj.sd &&
  4357. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4358. printk(KERN_DEBUG "pointless warning\n");
  4359. mutex_unlock(&mddev->open_mutex);
  4360. abort:
  4361. mutex_unlock(&disks_mutex);
  4362. if (!error && mddev->kobj.sd) {
  4363. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4364. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4365. }
  4366. mddev_put(mddev);
  4367. return error;
  4368. }
  4369. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4370. {
  4371. md_alloc(dev, NULL);
  4372. return NULL;
  4373. }
  4374. static int add_named_array(const char *val, struct kernel_param *kp)
  4375. {
  4376. /* val must be "md_*" where * is not all digits.
  4377. * We allocate an array with a large free minor number, and
  4378. * set the name to val. val must not already be an active name.
  4379. */
  4380. int len = strlen(val);
  4381. char buf[DISK_NAME_LEN];
  4382. while (len && val[len-1] == '\n')
  4383. len--;
  4384. if (len >= DISK_NAME_LEN)
  4385. return -E2BIG;
  4386. strlcpy(buf, val, len+1);
  4387. if (strncmp(buf, "md_", 3) != 0)
  4388. return -EINVAL;
  4389. return md_alloc(0, buf);
  4390. }
  4391. static void md_safemode_timeout(unsigned long data)
  4392. {
  4393. struct mddev *mddev = (struct mddev *) data;
  4394. if (!atomic_read(&mddev->writes_pending)) {
  4395. mddev->safemode = 1;
  4396. if (mddev->external)
  4397. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4398. }
  4399. md_wakeup_thread(mddev->thread);
  4400. }
  4401. static int start_dirty_degraded;
  4402. int md_run(struct mddev *mddev)
  4403. {
  4404. int err;
  4405. struct md_rdev *rdev;
  4406. struct md_personality *pers;
  4407. if (list_empty(&mddev->disks))
  4408. /* cannot run an array with no devices.. */
  4409. return -EINVAL;
  4410. if (mddev->pers)
  4411. return -EBUSY;
  4412. /* Cannot run until previous stop completes properly */
  4413. if (mddev->sysfs_active)
  4414. return -EBUSY;
  4415. /*
  4416. * Analyze all RAID superblock(s)
  4417. */
  4418. if (!mddev->raid_disks) {
  4419. if (!mddev->persistent)
  4420. return -EINVAL;
  4421. analyze_sbs(mddev);
  4422. }
  4423. if (mddev->level != LEVEL_NONE)
  4424. request_module("md-level-%d", mddev->level);
  4425. else if (mddev->clevel[0])
  4426. request_module("md-%s", mddev->clevel);
  4427. /*
  4428. * Drop all container device buffers, from now on
  4429. * the only valid external interface is through the md
  4430. * device.
  4431. */
  4432. rdev_for_each(rdev, mddev) {
  4433. if (test_bit(Faulty, &rdev->flags))
  4434. continue;
  4435. sync_blockdev(rdev->bdev);
  4436. invalidate_bdev(rdev->bdev);
  4437. /* perform some consistency tests on the device.
  4438. * We don't want the data to overlap the metadata,
  4439. * Internal Bitmap issues have been handled elsewhere.
  4440. */
  4441. if (rdev->meta_bdev) {
  4442. /* Nothing to check */;
  4443. } else if (rdev->data_offset < rdev->sb_start) {
  4444. if (mddev->dev_sectors &&
  4445. rdev->data_offset + mddev->dev_sectors
  4446. > rdev->sb_start) {
  4447. printk("md: %s: data overlaps metadata\n",
  4448. mdname(mddev));
  4449. return -EINVAL;
  4450. }
  4451. } else {
  4452. if (rdev->sb_start + rdev->sb_size/512
  4453. > rdev->data_offset) {
  4454. printk("md: %s: metadata overlaps data\n",
  4455. mdname(mddev));
  4456. return -EINVAL;
  4457. }
  4458. }
  4459. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4460. }
  4461. if (mddev->bio_set == NULL)
  4462. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4463. spin_lock(&pers_lock);
  4464. pers = find_pers(mddev->level, mddev->clevel);
  4465. if (!pers || !try_module_get(pers->owner)) {
  4466. spin_unlock(&pers_lock);
  4467. if (mddev->level != LEVEL_NONE)
  4468. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4469. mddev->level);
  4470. else
  4471. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4472. mddev->clevel);
  4473. return -EINVAL;
  4474. }
  4475. mddev->pers = pers;
  4476. spin_unlock(&pers_lock);
  4477. if (mddev->level != pers->level) {
  4478. mddev->level = pers->level;
  4479. mddev->new_level = pers->level;
  4480. }
  4481. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4482. if (mddev->reshape_position != MaxSector &&
  4483. pers->start_reshape == NULL) {
  4484. /* This personality cannot handle reshaping... */
  4485. mddev->pers = NULL;
  4486. module_put(pers->owner);
  4487. return -EINVAL;
  4488. }
  4489. if (pers->sync_request) {
  4490. /* Warn if this is a potentially silly
  4491. * configuration.
  4492. */
  4493. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4494. struct md_rdev *rdev2;
  4495. int warned = 0;
  4496. rdev_for_each(rdev, mddev)
  4497. rdev_for_each(rdev2, mddev) {
  4498. if (rdev < rdev2 &&
  4499. rdev->bdev->bd_contains ==
  4500. rdev2->bdev->bd_contains) {
  4501. printk(KERN_WARNING
  4502. "%s: WARNING: %s appears to be"
  4503. " on the same physical disk as"
  4504. " %s.\n",
  4505. mdname(mddev),
  4506. bdevname(rdev->bdev,b),
  4507. bdevname(rdev2->bdev,b2));
  4508. warned = 1;
  4509. }
  4510. }
  4511. if (warned)
  4512. printk(KERN_WARNING
  4513. "True protection against single-disk"
  4514. " failure might be compromised.\n");
  4515. }
  4516. mddev->recovery = 0;
  4517. /* may be over-ridden by personality */
  4518. mddev->resync_max_sectors = mddev->dev_sectors;
  4519. mddev->ok_start_degraded = start_dirty_degraded;
  4520. if (start_readonly && mddev->ro == 0)
  4521. mddev->ro = 2; /* read-only, but switch on first write */
  4522. err = mddev->pers->run(mddev);
  4523. if (err)
  4524. printk(KERN_ERR "md: pers->run() failed ...\n");
  4525. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4526. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4527. " but 'external_size' not in effect?\n", __func__);
  4528. printk(KERN_ERR
  4529. "md: invalid array_size %llu > default size %llu\n",
  4530. (unsigned long long)mddev->array_sectors / 2,
  4531. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4532. err = -EINVAL;
  4533. mddev->pers->stop(mddev);
  4534. }
  4535. if (err == 0 && mddev->pers->sync_request &&
  4536. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4537. err = bitmap_create(mddev);
  4538. if (err) {
  4539. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4540. mdname(mddev), err);
  4541. mddev->pers->stop(mddev);
  4542. }
  4543. }
  4544. if (err) {
  4545. module_put(mddev->pers->owner);
  4546. mddev->pers = NULL;
  4547. bitmap_destroy(mddev);
  4548. return err;
  4549. }
  4550. if (mddev->pers->sync_request) {
  4551. if (mddev->kobj.sd &&
  4552. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4553. printk(KERN_WARNING
  4554. "md: cannot register extra attributes for %s\n",
  4555. mdname(mddev));
  4556. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4557. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4558. mddev->ro = 0;
  4559. atomic_set(&mddev->writes_pending,0);
  4560. atomic_set(&mddev->max_corr_read_errors,
  4561. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4562. mddev->safemode = 0;
  4563. mddev->safemode_timer.function = md_safemode_timeout;
  4564. mddev->safemode_timer.data = (unsigned long) mddev;
  4565. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4566. mddev->in_sync = 1;
  4567. smp_wmb();
  4568. mddev->ready = 1;
  4569. rdev_for_each(rdev, mddev)
  4570. if (rdev->raid_disk >= 0)
  4571. if (sysfs_link_rdev(mddev, rdev))
  4572. /* failure here is OK */;
  4573. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4574. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4575. md_update_sb(mddev, 0);
  4576. md_new_event(mddev);
  4577. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4578. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4579. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4580. return 0;
  4581. }
  4582. EXPORT_SYMBOL_GPL(md_run);
  4583. static int do_md_run(struct mddev *mddev)
  4584. {
  4585. int err;
  4586. err = md_run(mddev);
  4587. if (err)
  4588. goto out;
  4589. err = bitmap_load(mddev);
  4590. if (err) {
  4591. bitmap_destroy(mddev);
  4592. goto out;
  4593. }
  4594. md_wakeup_thread(mddev->thread);
  4595. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4596. set_capacity(mddev->gendisk, mddev->array_sectors);
  4597. revalidate_disk(mddev->gendisk);
  4598. mddev->changed = 1;
  4599. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4600. out:
  4601. return err;
  4602. }
  4603. static int restart_array(struct mddev *mddev)
  4604. {
  4605. struct gendisk *disk = mddev->gendisk;
  4606. /* Complain if it has no devices */
  4607. if (list_empty(&mddev->disks))
  4608. return -ENXIO;
  4609. if (!mddev->pers)
  4610. return -EINVAL;
  4611. if (!mddev->ro)
  4612. return -EBUSY;
  4613. mddev->safemode = 0;
  4614. mddev->ro = 0;
  4615. set_disk_ro(disk, 0);
  4616. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4617. mdname(mddev));
  4618. /* Kick recovery or resync if necessary */
  4619. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4620. md_wakeup_thread(mddev->thread);
  4621. md_wakeup_thread(mddev->sync_thread);
  4622. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4623. return 0;
  4624. }
  4625. /* similar to deny_write_access, but accounts for our holding a reference
  4626. * to the file ourselves */
  4627. static int deny_bitmap_write_access(struct file * file)
  4628. {
  4629. struct inode *inode = file->f_mapping->host;
  4630. spin_lock(&inode->i_lock);
  4631. if (atomic_read(&inode->i_writecount) > 1) {
  4632. spin_unlock(&inode->i_lock);
  4633. return -ETXTBSY;
  4634. }
  4635. atomic_set(&inode->i_writecount, -1);
  4636. spin_unlock(&inode->i_lock);
  4637. return 0;
  4638. }
  4639. void restore_bitmap_write_access(struct file *file)
  4640. {
  4641. struct inode *inode = file->f_mapping->host;
  4642. spin_lock(&inode->i_lock);
  4643. atomic_set(&inode->i_writecount, 1);
  4644. spin_unlock(&inode->i_lock);
  4645. }
  4646. static void md_clean(struct mddev *mddev)
  4647. {
  4648. mddev->array_sectors = 0;
  4649. mddev->external_size = 0;
  4650. mddev->dev_sectors = 0;
  4651. mddev->raid_disks = 0;
  4652. mddev->recovery_cp = 0;
  4653. mddev->resync_min = 0;
  4654. mddev->resync_max = MaxSector;
  4655. mddev->reshape_position = MaxSector;
  4656. mddev->external = 0;
  4657. mddev->persistent = 0;
  4658. mddev->level = LEVEL_NONE;
  4659. mddev->clevel[0] = 0;
  4660. mddev->flags = 0;
  4661. mddev->ro = 0;
  4662. mddev->metadata_type[0] = 0;
  4663. mddev->chunk_sectors = 0;
  4664. mddev->ctime = mddev->utime = 0;
  4665. mddev->layout = 0;
  4666. mddev->max_disks = 0;
  4667. mddev->events = 0;
  4668. mddev->can_decrease_events = 0;
  4669. mddev->delta_disks = 0;
  4670. mddev->reshape_backwards = 0;
  4671. mddev->new_level = LEVEL_NONE;
  4672. mddev->new_layout = 0;
  4673. mddev->new_chunk_sectors = 0;
  4674. mddev->curr_resync = 0;
  4675. atomic64_set(&mddev->resync_mismatches, 0);
  4676. mddev->suspend_lo = mddev->suspend_hi = 0;
  4677. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4678. mddev->recovery = 0;
  4679. mddev->in_sync = 0;
  4680. mddev->changed = 0;
  4681. mddev->degraded = 0;
  4682. mddev->safemode = 0;
  4683. mddev->merge_check_needed = 0;
  4684. mddev->bitmap_info.offset = 0;
  4685. mddev->bitmap_info.default_offset = 0;
  4686. mddev->bitmap_info.default_space = 0;
  4687. mddev->bitmap_info.chunksize = 0;
  4688. mddev->bitmap_info.daemon_sleep = 0;
  4689. mddev->bitmap_info.max_write_behind = 0;
  4690. }
  4691. static void __md_stop_writes(struct mddev *mddev)
  4692. {
  4693. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4694. if (mddev->sync_thread) {
  4695. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4696. md_reap_sync_thread(mddev);
  4697. }
  4698. del_timer_sync(&mddev->safemode_timer);
  4699. bitmap_flush(mddev);
  4700. md_super_wait(mddev);
  4701. if (mddev->ro == 0 &&
  4702. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4703. /* mark array as shutdown cleanly */
  4704. mddev->in_sync = 1;
  4705. md_update_sb(mddev, 1);
  4706. }
  4707. }
  4708. void md_stop_writes(struct mddev *mddev)
  4709. {
  4710. mddev_lock(mddev);
  4711. __md_stop_writes(mddev);
  4712. mddev_unlock(mddev);
  4713. }
  4714. EXPORT_SYMBOL_GPL(md_stop_writes);
  4715. static void __md_stop(struct mddev *mddev)
  4716. {
  4717. mddev->ready = 0;
  4718. mddev->pers->stop(mddev);
  4719. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4720. mddev->to_remove = &md_redundancy_group;
  4721. module_put(mddev->pers->owner);
  4722. mddev->pers = NULL;
  4723. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4724. }
  4725. void md_stop(struct mddev *mddev)
  4726. {
  4727. /* stop the array and free an attached data structures.
  4728. * This is called from dm-raid
  4729. */
  4730. __md_stop(mddev);
  4731. bitmap_destroy(mddev);
  4732. if (mddev->bio_set)
  4733. bioset_free(mddev->bio_set);
  4734. }
  4735. EXPORT_SYMBOL_GPL(md_stop);
  4736. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4737. {
  4738. int err = 0;
  4739. mutex_lock(&mddev->open_mutex);
  4740. if (atomic_read(&mddev->openers) > !!bdev) {
  4741. printk("md: %s still in use.\n",mdname(mddev));
  4742. err = -EBUSY;
  4743. goto out;
  4744. }
  4745. if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
  4746. /* Someone opened the device since we flushed it
  4747. * so page cache could be dirty and it is too late
  4748. * to flush. So abort
  4749. */
  4750. mutex_unlock(&mddev->open_mutex);
  4751. return -EBUSY;
  4752. }
  4753. if (mddev->pers) {
  4754. __md_stop_writes(mddev);
  4755. err = -ENXIO;
  4756. if (mddev->ro==1)
  4757. goto out;
  4758. mddev->ro = 1;
  4759. set_disk_ro(mddev->gendisk, 1);
  4760. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4761. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4762. err = 0;
  4763. }
  4764. out:
  4765. mutex_unlock(&mddev->open_mutex);
  4766. return err;
  4767. }
  4768. /* mode:
  4769. * 0 - completely stop and dis-assemble array
  4770. * 2 - stop but do not disassemble array
  4771. */
  4772. static int do_md_stop(struct mddev * mddev, int mode,
  4773. struct block_device *bdev)
  4774. {
  4775. struct gendisk *disk = mddev->gendisk;
  4776. struct md_rdev *rdev;
  4777. mutex_lock(&mddev->open_mutex);
  4778. if (atomic_read(&mddev->openers) > !!bdev ||
  4779. mddev->sysfs_active) {
  4780. printk("md: %s still in use.\n",mdname(mddev));
  4781. mutex_unlock(&mddev->open_mutex);
  4782. return -EBUSY;
  4783. }
  4784. if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
  4785. /* Someone opened the device since we flushed it
  4786. * so page cache could be dirty and it is too late
  4787. * to flush. So abort
  4788. */
  4789. mutex_unlock(&mddev->open_mutex);
  4790. return -EBUSY;
  4791. }
  4792. if (mddev->pers) {
  4793. if (mddev->ro)
  4794. set_disk_ro(disk, 0);
  4795. __md_stop_writes(mddev);
  4796. __md_stop(mddev);
  4797. mddev->queue->merge_bvec_fn = NULL;
  4798. mddev->queue->backing_dev_info.congested_fn = NULL;
  4799. /* tell userspace to handle 'inactive' */
  4800. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4801. rdev_for_each(rdev, mddev)
  4802. if (rdev->raid_disk >= 0)
  4803. sysfs_unlink_rdev(mddev, rdev);
  4804. set_capacity(disk, 0);
  4805. mutex_unlock(&mddev->open_mutex);
  4806. mddev->changed = 1;
  4807. revalidate_disk(disk);
  4808. if (mddev->ro)
  4809. mddev->ro = 0;
  4810. } else
  4811. mutex_unlock(&mddev->open_mutex);
  4812. /*
  4813. * Free resources if final stop
  4814. */
  4815. if (mode == 0) {
  4816. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4817. bitmap_destroy(mddev);
  4818. if (mddev->bitmap_info.file) {
  4819. restore_bitmap_write_access(mddev->bitmap_info.file);
  4820. fput(mddev->bitmap_info.file);
  4821. mddev->bitmap_info.file = NULL;
  4822. }
  4823. mddev->bitmap_info.offset = 0;
  4824. export_array(mddev);
  4825. md_clean(mddev);
  4826. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4827. if (mddev->hold_active == UNTIL_STOP)
  4828. mddev->hold_active = 0;
  4829. }
  4830. blk_integrity_unregister(disk);
  4831. md_new_event(mddev);
  4832. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4833. return 0;
  4834. }
  4835. #ifndef MODULE
  4836. static void autorun_array(struct mddev *mddev)
  4837. {
  4838. struct md_rdev *rdev;
  4839. int err;
  4840. if (list_empty(&mddev->disks))
  4841. return;
  4842. printk(KERN_INFO "md: running: ");
  4843. rdev_for_each(rdev, mddev) {
  4844. char b[BDEVNAME_SIZE];
  4845. printk("<%s>", bdevname(rdev->bdev,b));
  4846. }
  4847. printk("\n");
  4848. err = do_md_run(mddev);
  4849. if (err) {
  4850. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4851. do_md_stop(mddev, 0, NULL);
  4852. }
  4853. }
  4854. /*
  4855. * lets try to run arrays based on all disks that have arrived
  4856. * until now. (those are in pending_raid_disks)
  4857. *
  4858. * the method: pick the first pending disk, collect all disks with
  4859. * the same UUID, remove all from the pending list and put them into
  4860. * the 'same_array' list. Then order this list based on superblock
  4861. * update time (freshest comes first), kick out 'old' disks and
  4862. * compare superblocks. If everything's fine then run it.
  4863. *
  4864. * If "unit" is allocated, then bump its reference count
  4865. */
  4866. static void autorun_devices(int part)
  4867. {
  4868. struct md_rdev *rdev0, *rdev, *tmp;
  4869. struct mddev *mddev;
  4870. char b[BDEVNAME_SIZE];
  4871. printk(KERN_INFO "md: autorun ...\n");
  4872. while (!list_empty(&pending_raid_disks)) {
  4873. int unit;
  4874. dev_t dev;
  4875. LIST_HEAD(candidates);
  4876. rdev0 = list_entry(pending_raid_disks.next,
  4877. struct md_rdev, same_set);
  4878. printk(KERN_INFO "md: considering %s ...\n",
  4879. bdevname(rdev0->bdev,b));
  4880. INIT_LIST_HEAD(&candidates);
  4881. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4882. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4883. printk(KERN_INFO "md: adding %s ...\n",
  4884. bdevname(rdev->bdev,b));
  4885. list_move(&rdev->same_set, &candidates);
  4886. }
  4887. /*
  4888. * now we have a set of devices, with all of them having
  4889. * mostly sane superblocks. It's time to allocate the
  4890. * mddev.
  4891. */
  4892. if (part) {
  4893. dev = MKDEV(mdp_major,
  4894. rdev0->preferred_minor << MdpMinorShift);
  4895. unit = MINOR(dev) >> MdpMinorShift;
  4896. } else {
  4897. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4898. unit = MINOR(dev);
  4899. }
  4900. if (rdev0->preferred_minor != unit) {
  4901. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4902. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4903. break;
  4904. }
  4905. md_probe(dev, NULL, NULL);
  4906. mddev = mddev_find(dev);
  4907. if (!mddev || !mddev->gendisk) {
  4908. if (mddev)
  4909. mddev_put(mddev);
  4910. printk(KERN_ERR
  4911. "md: cannot allocate memory for md drive.\n");
  4912. break;
  4913. }
  4914. if (mddev_lock(mddev))
  4915. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4916. mdname(mddev));
  4917. else if (mddev->raid_disks || mddev->major_version
  4918. || !list_empty(&mddev->disks)) {
  4919. printk(KERN_WARNING
  4920. "md: %s already running, cannot run %s\n",
  4921. mdname(mddev), bdevname(rdev0->bdev,b));
  4922. mddev_unlock(mddev);
  4923. } else {
  4924. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4925. mddev->persistent = 1;
  4926. rdev_for_each_list(rdev, tmp, &candidates) {
  4927. list_del_init(&rdev->same_set);
  4928. if (bind_rdev_to_array(rdev, mddev))
  4929. export_rdev(rdev);
  4930. }
  4931. autorun_array(mddev);
  4932. mddev_unlock(mddev);
  4933. }
  4934. /* on success, candidates will be empty, on error
  4935. * it won't...
  4936. */
  4937. rdev_for_each_list(rdev, tmp, &candidates) {
  4938. list_del_init(&rdev->same_set);
  4939. export_rdev(rdev);
  4940. }
  4941. mddev_put(mddev);
  4942. }
  4943. printk(KERN_INFO "md: ... autorun DONE.\n");
  4944. }
  4945. #endif /* !MODULE */
  4946. static int get_version(void __user * arg)
  4947. {
  4948. mdu_version_t ver;
  4949. ver.major = MD_MAJOR_VERSION;
  4950. ver.minor = MD_MINOR_VERSION;
  4951. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4952. if (copy_to_user(arg, &ver, sizeof(ver)))
  4953. return -EFAULT;
  4954. return 0;
  4955. }
  4956. static int get_array_info(struct mddev * mddev, void __user * arg)
  4957. {
  4958. mdu_array_info_t info;
  4959. int nr,working,insync,failed,spare;
  4960. struct md_rdev *rdev;
  4961. nr = working = insync = failed = spare = 0;
  4962. rcu_read_lock();
  4963. rdev_for_each_rcu(rdev, mddev) {
  4964. nr++;
  4965. if (test_bit(Faulty, &rdev->flags))
  4966. failed++;
  4967. else {
  4968. working++;
  4969. if (test_bit(In_sync, &rdev->flags))
  4970. insync++;
  4971. else
  4972. spare++;
  4973. }
  4974. }
  4975. rcu_read_unlock();
  4976. info.major_version = mddev->major_version;
  4977. info.minor_version = mddev->minor_version;
  4978. info.patch_version = MD_PATCHLEVEL_VERSION;
  4979. info.ctime = mddev->ctime;
  4980. info.level = mddev->level;
  4981. info.size = mddev->dev_sectors / 2;
  4982. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4983. info.size = -1;
  4984. info.nr_disks = nr;
  4985. info.raid_disks = mddev->raid_disks;
  4986. info.md_minor = mddev->md_minor;
  4987. info.not_persistent= !mddev->persistent;
  4988. info.utime = mddev->utime;
  4989. info.state = 0;
  4990. if (mddev->in_sync)
  4991. info.state = (1<<MD_SB_CLEAN);
  4992. if (mddev->bitmap && mddev->bitmap_info.offset)
  4993. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4994. info.active_disks = insync;
  4995. info.working_disks = working;
  4996. info.failed_disks = failed;
  4997. info.spare_disks = spare;
  4998. info.layout = mddev->layout;
  4999. info.chunk_size = mddev->chunk_sectors << 9;
  5000. if (copy_to_user(arg, &info, sizeof(info)))
  5001. return -EFAULT;
  5002. return 0;
  5003. }
  5004. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  5005. {
  5006. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5007. char *ptr, *buf = NULL;
  5008. int err = -ENOMEM;
  5009. file = kmalloc(sizeof(*file), GFP_NOIO);
  5010. if (!file)
  5011. goto out;
  5012. /* bitmap disabled, zero the first byte and copy out */
  5013. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5014. file->pathname[0] = '\0';
  5015. goto copy_out;
  5016. }
  5017. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5018. if (!buf)
  5019. goto out;
  5020. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5021. buf, sizeof(file->pathname));
  5022. if (IS_ERR(ptr))
  5023. goto out;
  5024. strcpy(file->pathname, ptr);
  5025. copy_out:
  5026. err = 0;
  5027. if (copy_to_user(arg, file, sizeof(*file)))
  5028. err = -EFAULT;
  5029. out:
  5030. kfree(buf);
  5031. kfree(file);
  5032. return err;
  5033. }
  5034. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5035. {
  5036. mdu_disk_info_t info;
  5037. struct md_rdev *rdev;
  5038. if (copy_from_user(&info, arg, sizeof(info)))
  5039. return -EFAULT;
  5040. rcu_read_lock();
  5041. rdev = find_rdev_nr_rcu(mddev, info.number);
  5042. if (rdev) {
  5043. info.major = MAJOR(rdev->bdev->bd_dev);
  5044. info.minor = MINOR(rdev->bdev->bd_dev);
  5045. info.raid_disk = rdev->raid_disk;
  5046. info.state = 0;
  5047. if (test_bit(Faulty, &rdev->flags))
  5048. info.state |= (1<<MD_DISK_FAULTY);
  5049. else if (test_bit(In_sync, &rdev->flags)) {
  5050. info.state |= (1<<MD_DISK_ACTIVE);
  5051. info.state |= (1<<MD_DISK_SYNC);
  5052. }
  5053. if (test_bit(WriteMostly, &rdev->flags))
  5054. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5055. } else {
  5056. info.major = info.minor = 0;
  5057. info.raid_disk = -1;
  5058. info.state = (1<<MD_DISK_REMOVED);
  5059. }
  5060. rcu_read_unlock();
  5061. if (copy_to_user(arg, &info, sizeof(info)))
  5062. return -EFAULT;
  5063. return 0;
  5064. }
  5065. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5066. {
  5067. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5068. struct md_rdev *rdev;
  5069. dev_t dev = MKDEV(info->major,info->minor);
  5070. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5071. return -EOVERFLOW;
  5072. if (!mddev->raid_disks) {
  5073. int err;
  5074. /* expecting a device which has a superblock */
  5075. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5076. if (IS_ERR(rdev)) {
  5077. printk(KERN_WARNING
  5078. "md: md_import_device returned %ld\n",
  5079. PTR_ERR(rdev));
  5080. return PTR_ERR(rdev);
  5081. }
  5082. if (!list_empty(&mddev->disks)) {
  5083. struct md_rdev *rdev0
  5084. = list_entry(mddev->disks.next,
  5085. struct md_rdev, same_set);
  5086. err = super_types[mddev->major_version]
  5087. .load_super(rdev, rdev0, mddev->minor_version);
  5088. if (err < 0) {
  5089. printk(KERN_WARNING
  5090. "md: %s has different UUID to %s\n",
  5091. bdevname(rdev->bdev,b),
  5092. bdevname(rdev0->bdev,b2));
  5093. export_rdev(rdev);
  5094. return -EINVAL;
  5095. }
  5096. }
  5097. err = bind_rdev_to_array(rdev, mddev);
  5098. if (err)
  5099. export_rdev(rdev);
  5100. return err;
  5101. }
  5102. /*
  5103. * add_new_disk can be used once the array is assembled
  5104. * to add "hot spares". They must already have a superblock
  5105. * written
  5106. */
  5107. if (mddev->pers) {
  5108. int err;
  5109. if (!mddev->pers->hot_add_disk) {
  5110. printk(KERN_WARNING
  5111. "%s: personality does not support diskops!\n",
  5112. mdname(mddev));
  5113. return -EINVAL;
  5114. }
  5115. if (mddev->persistent)
  5116. rdev = md_import_device(dev, mddev->major_version,
  5117. mddev->minor_version);
  5118. else
  5119. rdev = md_import_device(dev, -1, -1);
  5120. if (IS_ERR(rdev)) {
  5121. printk(KERN_WARNING
  5122. "md: md_import_device returned %ld\n",
  5123. PTR_ERR(rdev));
  5124. return PTR_ERR(rdev);
  5125. }
  5126. /* set saved_raid_disk if appropriate */
  5127. if (!mddev->persistent) {
  5128. if (info->state & (1<<MD_DISK_SYNC) &&
  5129. info->raid_disk < mddev->raid_disks) {
  5130. rdev->raid_disk = info->raid_disk;
  5131. set_bit(In_sync, &rdev->flags);
  5132. } else
  5133. rdev->raid_disk = -1;
  5134. } else
  5135. super_types[mddev->major_version].
  5136. validate_super(mddev, rdev);
  5137. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5138. rdev->raid_disk != info->raid_disk) {
  5139. /* This was a hot-add request, but events doesn't
  5140. * match, so reject it.
  5141. */
  5142. export_rdev(rdev);
  5143. return -EINVAL;
  5144. }
  5145. if (test_bit(In_sync, &rdev->flags))
  5146. rdev->saved_raid_disk = rdev->raid_disk;
  5147. else
  5148. rdev->saved_raid_disk = -1;
  5149. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5150. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5151. set_bit(WriteMostly, &rdev->flags);
  5152. else
  5153. clear_bit(WriteMostly, &rdev->flags);
  5154. rdev->raid_disk = -1;
  5155. err = bind_rdev_to_array(rdev, mddev);
  5156. if (!err && !mddev->pers->hot_remove_disk) {
  5157. /* If there is hot_add_disk but no hot_remove_disk
  5158. * then added disks for geometry changes,
  5159. * and should be added immediately.
  5160. */
  5161. super_types[mddev->major_version].
  5162. validate_super(mddev, rdev);
  5163. err = mddev->pers->hot_add_disk(mddev, rdev);
  5164. if (err)
  5165. unbind_rdev_from_array(rdev);
  5166. }
  5167. if (err)
  5168. export_rdev(rdev);
  5169. else
  5170. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5171. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5172. if (mddev->degraded)
  5173. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5174. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5175. if (!err)
  5176. md_new_event(mddev);
  5177. md_wakeup_thread(mddev->thread);
  5178. return err;
  5179. }
  5180. /* otherwise, add_new_disk is only allowed
  5181. * for major_version==0 superblocks
  5182. */
  5183. if (mddev->major_version != 0) {
  5184. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5185. mdname(mddev));
  5186. return -EINVAL;
  5187. }
  5188. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5189. int err;
  5190. rdev = md_import_device(dev, -1, 0);
  5191. if (IS_ERR(rdev)) {
  5192. printk(KERN_WARNING
  5193. "md: error, md_import_device() returned %ld\n",
  5194. PTR_ERR(rdev));
  5195. return PTR_ERR(rdev);
  5196. }
  5197. rdev->desc_nr = info->number;
  5198. if (info->raid_disk < mddev->raid_disks)
  5199. rdev->raid_disk = info->raid_disk;
  5200. else
  5201. rdev->raid_disk = -1;
  5202. if (rdev->raid_disk < mddev->raid_disks)
  5203. if (info->state & (1<<MD_DISK_SYNC))
  5204. set_bit(In_sync, &rdev->flags);
  5205. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5206. set_bit(WriteMostly, &rdev->flags);
  5207. if (!mddev->persistent) {
  5208. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5209. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5210. } else
  5211. rdev->sb_start = calc_dev_sboffset(rdev);
  5212. rdev->sectors = rdev->sb_start;
  5213. err = bind_rdev_to_array(rdev, mddev);
  5214. if (err) {
  5215. export_rdev(rdev);
  5216. return err;
  5217. }
  5218. }
  5219. return 0;
  5220. }
  5221. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5222. {
  5223. char b[BDEVNAME_SIZE];
  5224. struct md_rdev *rdev;
  5225. rdev = find_rdev(mddev, dev);
  5226. if (!rdev)
  5227. return -ENXIO;
  5228. clear_bit(Blocked, &rdev->flags);
  5229. remove_and_add_spares(mddev, rdev);
  5230. if (rdev->raid_disk >= 0)
  5231. goto busy;
  5232. kick_rdev_from_array(rdev);
  5233. md_update_sb(mddev, 1);
  5234. md_new_event(mddev);
  5235. return 0;
  5236. busy:
  5237. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5238. bdevname(rdev->bdev,b), mdname(mddev));
  5239. return -EBUSY;
  5240. }
  5241. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5242. {
  5243. char b[BDEVNAME_SIZE];
  5244. int err;
  5245. struct md_rdev *rdev;
  5246. if (!mddev->pers)
  5247. return -ENODEV;
  5248. if (mddev->major_version != 0) {
  5249. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5250. " version-0 superblocks.\n",
  5251. mdname(mddev));
  5252. return -EINVAL;
  5253. }
  5254. if (!mddev->pers->hot_add_disk) {
  5255. printk(KERN_WARNING
  5256. "%s: personality does not support diskops!\n",
  5257. mdname(mddev));
  5258. return -EINVAL;
  5259. }
  5260. rdev = md_import_device(dev, -1, 0);
  5261. if (IS_ERR(rdev)) {
  5262. printk(KERN_WARNING
  5263. "md: error, md_import_device() returned %ld\n",
  5264. PTR_ERR(rdev));
  5265. return -EINVAL;
  5266. }
  5267. if (mddev->persistent)
  5268. rdev->sb_start = calc_dev_sboffset(rdev);
  5269. else
  5270. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5271. rdev->sectors = rdev->sb_start;
  5272. if (test_bit(Faulty, &rdev->flags)) {
  5273. printk(KERN_WARNING
  5274. "md: can not hot-add faulty %s disk to %s!\n",
  5275. bdevname(rdev->bdev,b), mdname(mddev));
  5276. err = -EINVAL;
  5277. goto abort_export;
  5278. }
  5279. clear_bit(In_sync, &rdev->flags);
  5280. rdev->desc_nr = -1;
  5281. rdev->saved_raid_disk = -1;
  5282. err = bind_rdev_to_array(rdev, mddev);
  5283. if (err)
  5284. goto abort_export;
  5285. /*
  5286. * The rest should better be atomic, we can have disk failures
  5287. * noticed in interrupt contexts ...
  5288. */
  5289. rdev->raid_disk = -1;
  5290. md_update_sb(mddev, 1);
  5291. /*
  5292. * Kick recovery, maybe this spare has to be added to the
  5293. * array immediately.
  5294. */
  5295. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5296. md_wakeup_thread(mddev->thread);
  5297. md_new_event(mddev);
  5298. return 0;
  5299. abort_export:
  5300. export_rdev(rdev);
  5301. return err;
  5302. }
  5303. static int set_bitmap_file(struct mddev *mddev, int fd)
  5304. {
  5305. int err;
  5306. if (mddev->pers) {
  5307. if (!mddev->pers->quiesce)
  5308. return -EBUSY;
  5309. if (mddev->recovery || mddev->sync_thread)
  5310. return -EBUSY;
  5311. /* we should be able to change the bitmap.. */
  5312. }
  5313. if (fd >= 0) {
  5314. if (mddev->bitmap)
  5315. return -EEXIST; /* cannot add when bitmap is present */
  5316. mddev->bitmap_info.file = fget(fd);
  5317. if (mddev->bitmap_info.file == NULL) {
  5318. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5319. mdname(mddev));
  5320. return -EBADF;
  5321. }
  5322. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5323. if (err) {
  5324. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5325. mdname(mddev));
  5326. fput(mddev->bitmap_info.file);
  5327. mddev->bitmap_info.file = NULL;
  5328. return err;
  5329. }
  5330. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5331. } else if (mddev->bitmap == NULL)
  5332. return -ENOENT; /* cannot remove what isn't there */
  5333. err = 0;
  5334. if (mddev->pers) {
  5335. mddev->pers->quiesce(mddev, 1);
  5336. if (fd >= 0) {
  5337. err = bitmap_create(mddev);
  5338. if (!err)
  5339. err = bitmap_load(mddev);
  5340. }
  5341. if (fd < 0 || err) {
  5342. bitmap_destroy(mddev);
  5343. fd = -1; /* make sure to put the file */
  5344. }
  5345. mddev->pers->quiesce(mddev, 0);
  5346. }
  5347. if (fd < 0) {
  5348. if (mddev->bitmap_info.file) {
  5349. restore_bitmap_write_access(mddev->bitmap_info.file);
  5350. fput(mddev->bitmap_info.file);
  5351. }
  5352. mddev->bitmap_info.file = NULL;
  5353. }
  5354. return err;
  5355. }
  5356. /*
  5357. * set_array_info is used two different ways
  5358. * The original usage is when creating a new array.
  5359. * In this usage, raid_disks is > 0 and it together with
  5360. * level, size, not_persistent,layout,chunksize determine the
  5361. * shape of the array.
  5362. * This will always create an array with a type-0.90.0 superblock.
  5363. * The newer usage is when assembling an array.
  5364. * In this case raid_disks will be 0, and the major_version field is
  5365. * use to determine which style super-blocks are to be found on the devices.
  5366. * The minor and patch _version numbers are also kept incase the
  5367. * super_block handler wishes to interpret them.
  5368. */
  5369. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5370. {
  5371. if (info->raid_disks == 0) {
  5372. /* just setting version number for superblock loading */
  5373. if (info->major_version < 0 ||
  5374. info->major_version >= ARRAY_SIZE(super_types) ||
  5375. super_types[info->major_version].name == NULL) {
  5376. /* maybe try to auto-load a module? */
  5377. printk(KERN_INFO
  5378. "md: superblock version %d not known\n",
  5379. info->major_version);
  5380. return -EINVAL;
  5381. }
  5382. mddev->major_version = info->major_version;
  5383. mddev->minor_version = info->minor_version;
  5384. mddev->patch_version = info->patch_version;
  5385. mddev->persistent = !info->not_persistent;
  5386. /* ensure mddev_put doesn't delete this now that there
  5387. * is some minimal configuration.
  5388. */
  5389. mddev->ctime = get_seconds();
  5390. return 0;
  5391. }
  5392. mddev->major_version = MD_MAJOR_VERSION;
  5393. mddev->minor_version = MD_MINOR_VERSION;
  5394. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5395. mddev->ctime = get_seconds();
  5396. mddev->level = info->level;
  5397. mddev->clevel[0] = 0;
  5398. mddev->dev_sectors = 2 * (sector_t)info->size;
  5399. mddev->raid_disks = info->raid_disks;
  5400. /* don't set md_minor, it is determined by which /dev/md* was
  5401. * openned
  5402. */
  5403. if (info->state & (1<<MD_SB_CLEAN))
  5404. mddev->recovery_cp = MaxSector;
  5405. else
  5406. mddev->recovery_cp = 0;
  5407. mddev->persistent = ! info->not_persistent;
  5408. mddev->external = 0;
  5409. mddev->layout = info->layout;
  5410. mddev->chunk_sectors = info->chunk_size >> 9;
  5411. mddev->max_disks = MD_SB_DISKS;
  5412. if (mddev->persistent)
  5413. mddev->flags = 0;
  5414. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5415. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5416. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5417. mddev->bitmap_info.offset = 0;
  5418. mddev->reshape_position = MaxSector;
  5419. /*
  5420. * Generate a 128 bit UUID
  5421. */
  5422. get_random_bytes(mddev->uuid, 16);
  5423. mddev->new_level = mddev->level;
  5424. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5425. mddev->new_layout = mddev->layout;
  5426. mddev->delta_disks = 0;
  5427. mddev->reshape_backwards = 0;
  5428. return 0;
  5429. }
  5430. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5431. {
  5432. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5433. if (mddev->external_size)
  5434. return;
  5435. mddev->array_sectors = array_sectors;
  5436. }
  5437. EXPORT_SYMBOL(md_set_array_sectors);
  5438. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5439. {
  5440. struct md_rdev *rdev;
  5441. int rv;
  5442. int fit = (num_sectors == 0);
  5443. if (mddev->pers->resize == NULL)
  5444. return -EINVAL;
  5445. /* The "num_sectors" is the number of sectors of each device that
  5446. * is used. This can only make sense for arrays with redundancy.
  5447. * linear and raid0 always use whatever space is available. We can only
  5448. * consider changing this number if no resync or reconstruction is
  5449. * happening, and if the new size is acceptable. It must fit before the
  5450. * sb_start or, if that is <data_offset, it must fit before the size
  5451. * of each device. If num_sectors is zero, we find the largest size
  5452. * that fits.
  5453. */
  5454. if (mddev->sync_thread)
  5455. return -EBUSY;
  5456. rdev_for_each(rdev, mddev) {
  5457. sector_t avail = rdev->sectors;
  5458. if (fit && (num_sectors == 0 || num_sectors > avail))
  5459. num_sectors = avail;
  5460. if (avail < num_sectors)
  5461. return -ENOSPC;
  5462. }
  5463. rv = mddev->pers->resize(mddev, num_sectors);
  5464. if (!rv)
  5465. revalidate_disk(mddev->gendisk);
  5466. return rv;
  5467. }
  5468. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5469. {
  5470. int rv;
  5471. struct md_rdev *rdev;
  5472. /* change the number of raid disks */
  5473. if (mddev->pers->check_reshape == NULL)
  5474. return -EINVAL;
  5475. if (raid_disks <= 0 ||
  5476. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5477. return -EINVAL;
  5478. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5479. return -EBUSY;
  5480. rdev_for_each(rdev, mddev) {
  5481. if (mddev->raid_disks < raid_disks &&
  5482. rdev->data_offset < rdev->new_data_offset)
  5483. return -EINVAL;
  5484. if (mddev->raid_disks > raid_disks &&
  5485. rdev->data_offset > rdev->new_data_offset)
  5486. return -EINVAL;
  5487. }
  5488. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5489. if (mddev->delta_disks < 0)
  5490. mddev->reshape_backwards = 1;
  5491. else if (mddev->delta_disks > 0)
  5492. mddev->reshape_backwards = 0;
  5493. rv = mddev->pers->check_reshape(mddev);
  5494. if (rv < 0) {
  5495. mddev->delta_disks = 0;
  5496. mddev->reshape_backwards = 0;
  5497. }
  5498. return rv;
  5499. }
  5500. /*
  5501. * update_array_info is used to change the configuration of an
  5502. * on-line array.
  5503. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5504. * fields in the info are checked against the array.
  5505. * Any differences that cannot be handled will cause an error.
  5506. * Normally, only one change can be managed at a time.
  5507. */
  5508. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5509. {
  5510. int rv = 0;
  5511. int cnt = 0;
  5512. int state = 0;
  5513. /* calculate expected state,ignoring low bits */
  5514. if (mddev->bitmap && mddev->bitmap_info.offset)
  5515. state |= (1 << MD_SB_BITMAP_PRESENT);
  5516. if (mddev->major_version != info->major_version ||
  5517. mddev->minor_version != info->minor_version ||
  5518. /* mddev->patch_version != info->patch_version || */
  5519. mddev->ctime != info->ctime ||
  5520. mddev->level != info->level ||
  5521. /* mddev->layout != info->layout || */
  5522. !mddev->persistent != info->not_persistent||
  5523. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5524. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5525. ((state^info->state) & 0xfffffe00)
  5526. )
  5527. return -EINVAL;
  5528. /* Check there is only one change */
  5529. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5530. cnt++;
  5531. if (mddev->raid_disks != info->raid_disks)
  5532. cnt++;
  5533. if (mddev->layout != info->layout)
  5534. cnt++;
  5535. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5536. cnt++;
  5537. if (cnt == 0)
  5538. return 0;
  5539. if (cnt > 1)
  5540. return -EINVAL;
  5541. if (mddev->layout != info->layout) {
  5542. /* Change layout
  5543. * we don't need to do anything at the md level, the
  5544. * personality will take care of it all.
  5545. */
  5546. if (mddev->pers->check_reshape == NULL)
  5547. return -EINVAL;
  5548. else {
  5549. mddev->new_layout = info->layout;
  5550. rv = mddev->pers->check_reshape(mddev);
  5551. if (rv)
  5552. mddev->new_layout = mddev->layout;
  5553. return rv;
  5554. }
  5555. }
  5556. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5557. rv = update_size(mddev, (sector_t)info->size * 2);
  5558. if (mddev->raid_disks != info->raid_disks)
  5559. rv = update_raid_disks(mddev, info->raid_disks);
  5560. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5561. if (mddev->pers->quiesce == NULL)
  5562. return -EINVAL;
  5563. if (mddev->recovery || mddev->sync_thread)
  5564. return -EBUSY;
  5565. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5566. /* add the bitmap */
  5567. if (mddev->bitmap)
  5568. return -EEXIST;
  5569. if (mddev->bitmap_info.default_offset == 0)
  5570. return -EINVAL;
  5571. mddev->bitmap_info.offset =
  5572. mddev->bitmap_info.default_offset;
  5573. mddev->bitmap_info.space =
  5574. mddev->bitmap_info.default_space;
  5575. mddev->pers->quiesce(mddev, 1);
  5576. rv = bitmap_create(mddev);
  5577. if (!rv)
  5578. rv = bitmap_load(mddev);
  5579. if (rv)
  5580. bitmap_destroy(mddev);
  5581. mddev->pers->quiesce(mddev, 0);
  5582. } else {
  5583. /* remove the bitmap */
  5584. if (!mddev->bitmap)
  5585. return -ENOENT;
  5586. if (mddev->bitmap->storage.file)
  5587. return -EINVAL;
  5588. mddev->pers->quiesce(mddev, 1);
  5589. bitmap_destroy(mddev);
  5590. mddev->pers->quiesce(mddev, 0);
  5591. mddev->bitmap_info.offset = 0;
  5592. }
  5593. }
  5594. md_update_sb(mddev, 1);
  5595. return rv;
  5596. }
  5597. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5598. {
  5599. struct md_rdev *rdev;
  5600. int err = 0;
  5601. if (mddev->pers == NULL)
  5602. return -ENODEV;
  5603. rcu_read_lock();
  5604. rdev = find_rdev_rcu(mddev, dev);
  5605. if (!rdev)
  5606. err = -ENODEV;
  5607. else {
  5608. md_error(mddev, rdev);
  5609. if (!test_bit(Faulty, &rdev->flags))
  5610. err = -EBUSY;
  5611. }
  5612. rcu_read_unlock();
  5613. return err;
  5614. }
  5615. /*
  5616. * We have a problem here : there is no easy way to give a CHS
  5617. * virtual geometry. We currently pretend that we have a 2 heads
  5618. * 4 sectors (with a BIG number of cylinders...). This drives
  5619. * dosfs just mad... ;-)
  5620. */
  5621. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5622. {
  5623. struct mddev *mddev = bdev->bd_disk->private_data;
  5624. geo->heads = 2;
  5625. geo->sectors = 4;
  5626. geo->cylinders = mddev->array_sectors / 8;
  5627. return 0;
  5628. }
  5629. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5630. unsigned int cmd, unsigned long arg)
  5631. {
  5632. int err = 0;
  5633. void __user *argp = (void __user *)arg;
  5634. struct mddev *mddev = NULL;
  5635. int ro;
  5636. switch (cmd) {
  5637. case RAID_VERSION:
  5638. case GET_ARRAY_INFO:
  5639. case GET_DISK_INFO:
  5640. break;
  5641. default:
  5642. if (!capable(CAP_SYS_ADMIN))
  5643. return -EACCES;
  5644. }
  5645. /*
  5646. * Commands dealing with the RAID driver but not any
  5647. * particular array:
  5648. */
  5649. switch (cmd) {
  5650. case RAID_VERSION:
  5651. err = get_version(argp);
  5652. goto done;
  5653. case PRINT_RAID_DEBUG:
  5654. err = 0;
  5655. md_print_devices();
  5656. goto done;
  5657. #ifndef MODULE
  5658. case RAID_AUTORUN:
  5659. err = 0;
  5660. autostart_arrays(arg);
  5661. goto done;
  5662. #endif
  5663. default:;
  5664. }
  5665. /*
  5666. * Commands creating/starting a new array:
  5667. */
  5668. mddev = bdev->bd_disk->private_data;
  5669. if (!mddev) {
  5670. BUG();
  5671. goto abort;
  5672. }
  5673. /* Some actions do not requires the mutex */
  5674. switch (cmd) {
  5675. case GET_ARRAY_INFO:
  5676. if (!mddev->raid_disks && !mddev->external)
  5677. err = -ENODEV;
  5678. else
  5679. err = get_array_info(mddev, argp);
  5680. goto abort;
  5681. case GET_DISK_INFO:
  5682. if (!mddev->raid_disks && !mddev->external)
  5683. err = -ENODEV;
  5684. else
  5685. err = get_disk_info(mddev, argp);
  5686. goto abort;
  5687. case SET_DISK_FAULTY:
  5688. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5689. goto abort;
  5690. }
  5691. if (cmd == ADD_NEW_DISK)
  5692. /* need to ensure md_delayed_delete() has completed */
  5693. flush_workqueue(md_misc_wq);
  5694. if (cmd == HOT_REMOVE_DISK)
  5695. /* need to ensure recovery thread has run */
  5696. wait_event_interruptible_timeout(mddev->sb_wait,
  5697. !test_bit(MD_RECOVERY_NEEDED,
  5698. &mddev->flags),
  5699. msecs_to_jiffies(5000));
  5700. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5701. /* Need to flush page cache, and ensure no-one else opens
  5702. * and writes
  5703. */
  5704. mutex_lock(&mddev->open_mutex);
  5705. if (atomic_read(&mddev->openers) > 1) {
  5706. mutex_unlock(&mddev->open_mutex);
  5707. err = -EBUSY;
  5708. goto abort;
  5709. }
  5710. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5711. mutex_unlock(&mddev->open_mutex);
  5712. sync_blockdev(bdev);
  5713. }
  5714. err = mddev_lock(mddev);
  5715. if (err) {
  5716. printk(KERN_INFO
  5717. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5718. err, cmd);
  5719. goto abort;
  5720. }
  5721. if (cmd == SET_ARRAY_INFO) {
  5722. mdu_array_info_t info;
  5723. if (!arg)
  5724. memset(&info, 0, sizeof(info));
  5725. else if (copy_from_user(&info, argp, sizeof(info))) {
  5726. err = -EFAULT;
  5727. goto abort_unlock;
  5728. }
  5729. if (mddev->pers) {
  5730. err = update_array_info(mddev, &info);
  5731. if (err) {
  5732. printk(KERN_WARNING "md: couldn't update"
  5733. " array info. %d\n", err);
  5734. goto abort_unlock;
  5735. }
  5736. goto done_unlock;
  5737. }
  5738. if (!list_empty(&mddev->disks)) {
  5739. printk(KERN_WARNING
  5740. "md: array %s already has disks!\n",
  5741. mdname(mddev));
  5742. err = -EBUSY;
  5743. goto abort_unlock;
  5744. }
  5745. if (mddev->raid_disks) {
  5746. printk(KERN_WARNING
  5747. "md: array %s already initialised!\n",
  5748. mdname(mddev));
  5749. err = -EBUSY;
  5750. goto abort_unlock;
  5751. }
  5752. err = set_array_info(mddev, &info);
  5753. if (err) {
  5754. printk(KERN_WARNING "md: couldn't set"
  5755. " array info. %d\n", err);
  5756. goto abort_unlock;
  5757. }
  5758. goto done_unlock;
  5759. }
  5760. /*
  5761. * Commands querying/configuring an existing array:
  5762. */
  5763. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5764. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5765. if ((!mddev->raid_disks && !mddev->external)
  5766. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5767. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5768. && cmd != GET_BITMAP_FILE) {
  5769. err = -ENODEV;
  5770. goto abort_unlock;
  5771. }
  5772. /*
  5773. * Commands even a read-only array can execute:
  5774. */
  5775. switch (cmd) {
  5776. case GET_BITMAP_FILE:
  5777. err = get_bitmap_file(mddev, argp);
  5778. goto done_unlock;
  5779. case RESTART_ARRAY_RW:
  5780. err = restart_array(mddev);
  5781. goto done_unlock;
  5782. case STOP_ARRAY:
  5783. err = do_md_stop(mddev, 0, bdev);
  5784. goto done_unlock;
  5785. case STOP_ARRAY_RO:
  5786. err = md_set_readonly(mddev, bdev);
  5787. goto done_unlock;
  5788. case HOT_REMOVE_DISK:
  5789. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5790. goto done_unlock;
  5791. case ADD_NEW_DISK:
  5792. /* We can support ADD_NEW_DISK on read-only arrays
  5793. * on if we are re-adding a preexisting device.
  5794. * So require mddev->pers and MD_DISK_SYNC.
  5795. */
  5796. if (mddev->pers) {
  5797. mdu_disk_info_t info;
  5798. if (copy_from_user(&info, argp, sizeof(info)))
  5799. err = -EFAULT;
  5800. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5801. /* Need to clear read-only for this */
  5802. break;
  5803. else
  5804. err = add_new_disk(mddev, &info);
  5805. goto done_unlock;
  5806. }
  5807. break;
  5808. case BLKROSET:
  5809. if (get_user(ro, (int __user *)(arg))) {
  5810. err = -EFAULT;
  5811. goto done_unlock;
  5812. }
  5813. err = -EINVAL;
  5814. /* if the bdev is going readonly the value of mddev->ro
  5815. * does not matter, no writes are coming
  5816. */
  5817. if (ro)
  5818. goto done_unlock;
  5819. /* are we are already prepared for writes? */
  5820. if (mddev->ro != 1)
  5821. goto done_unlock;
  5822. /* transitioning to readauto need only happen for
  5823. * arrays that call md_write_start
  5824. */
  5825. if (mddev->pers) {
  5826. err = restart_array(mddev);
  5827. if (err == 0) {
  5828. mddev->ro = 2;
  5829. set_disk_ro(mddev->gendisk, 0);
  5830. }
  5831. }
  5832. goto done_unlock;
  5833. }
  5834. /*
  5835. * The remaining ioctls are changing the state of the
  5836. * superblock, so we do not allow them on read-only arrays.
  5837. * However non-MD ioctls (e.g. get-size) will still come through
  5838. * here and hit the 'default' below, so only disallow
  5839. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5840. */
  5841. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5842. if (mddev->ro == 2) {
  5843. mddev->ro = 0;
  5844. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5845. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5846. /* mddev_unlock will wake thread */
  5847. /* If a device failed while we were read-only, we
  5848. * need to make sure the metadata is updated now.
  5849. */
  5850. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5851. mddev_unlock(mddev);
  5852. wait_event(mddev->sb_wait,
  5853. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5854. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5855. mddev_lock(mddev);
  5856. }
  5857. } else {
  5858. err = -EROFS;
  5859. goto abort_unlock;
  5860. }
  5861. }
  5862. switch (cmd) {
  5863. case ADD_NEW_DISK:
  5864. {
  5865. mdu_disk_info_t info;
  5866. if (copy_from_user(&info, argp, sizeof(info)))
  5867. err = -EFAULT;
  5868. else
  5869. err = add_new_disk(mddev, &info);
  5870. goto done_unlock;
  5871. }
  5872. case HOT_ADD_DISK:
  5873. err = hot_add_disk(mddev, new_decode_dev(arg));
  5874. goto done_unlock;
  5875. case RUN_ARRAY:
  5876. err = do_md_run(mddev);
  5877. goto done_unlock;
  5878. case SET_BITMAP_FILE:
  5879. err = set_bitmap_file(mddev, (int)arg);
  5880. goto done_unlock;
  5881. default:
  5882. err = -EINVAL;
  5883. goto abort_unlock;
  5884. }
  5885. done_unlock:
  5886. abort_unlock:
  5887. if (mddev->hold_active == UNTIL_IOCTL &&
  5888. err != -EINVAL)
  5889. mddev->hold_active = 0;
  5890. mddev_unlock(mddev);
  5891. return err;
  5892. done:
  5893. if (err)
  5894. MD_BUG();
  5895. abort:
  5896. return err;
  5897. }
  5898. #ifdef CONFIG_COMPAT
  5899. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5900. unsigned int cmd, unsigned long arg)
  5901. {
  5902. switch (cmd) {
  5903. case HOT_REMOVE_DISK:
  5904. case HOT_ADD_DISK:
  5905. case SET_DISK_FAULTY:
  5906. case SET_BITMAP_FILE:
  5907. /* These take in integer arg, do not convert */
  5908. break;
  5909. default:
  5910. arg = (unsigned long)compat_ptr(arg);
  5911. break;
  5912. }
  5913. return md_ioctl(bdev, mode, cmd, arg);
  5914. }
  5915. #endif /* CONFIG_COMPAT */
  5916. static int md_open(struct block_device *bdev, fmode_t mode)
  5917. {
  5918. /*
  5919. * Succeed if we can lock the mddev, which confirms that
  5920. * it isn't being stopped right now.
  5921. */
  5922. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5923. int err;
  5924. if (!mddev)
  5925. return -ENODEV;
  5926. if (mddev->gendisk != bdev->bd_disk) {
  5927. /* we are racing with mddev_put which is discarding this
  5928. * bd_disk.
  5929. */
  5930. mddev_put(mddev);
  5931. /* Wait until bdev->bd_disk is definitely gone */
  5932. flush_workqueue(md_misc_wq);
  5933. /* Then retry the open from the top */
  5934. return -ERESTARTSYS;
  5935. }
  5936. BUG_ON(mddev != bdev->bd_disk->private_data);
  5937. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5938. goto out;
  5939. err = 0;
  5940. atomic_inc(&mddev->openers);
  5941. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  5942. mutex_unlock(&mddev->open_mutex);
  5943. check_disk_change(bdev);
  5944. out:
  5945. return err;
  5946. }
  5947. static void md_release(struct gendisk *disk, fmode_t mode)
  5948. {
  5949. struct mddev *mddev = disk->private_data;
  5950. BUG_ON(!mddev);
  5951. atomic_dec(&mddev->openers);
  5952. mddev_put(mddev);
  5953. }
  5954. static int md_media_changed(struct gendisk *disk)
  5955. {
  5956. struct mddev *mddev = disk->private_data;
  5957. return mddev->changed;
  5958. }
  5959. static int md_revalidate(struct gendisk *disk)
  5960. {
  5961. struct mddev *mddev = disk->private_data;
  5962. mddev->changed = 0;
  5963. return 0;
  5964. }
  5965. static const struct block_device_operations md_fops =
  5966. {
  5967. .owner = THIS_MODULE,
  5968. .open = md_open,
  5969. .release = md_release,
  5970. .ioctl = md_ioctl,
  5971. #ifdef CONFIG_COMPAT
  5972. .compat_ioctl = md_compat_ioctl,
  5973. #endif
  5974. .getgeo = md_getgeo,
  5975. .media_changed = md_media_changed,
  5976. .revalidate_disk= md_revalidate,
  5977. };
  5978. static int md_thread(void * arg)
  5979. {
  5980. struct md_thread *thread = arg;
  5981. /*
  5982. * md_thread is a 'system-thread', it's priority should be very
  5983. * high. We avoid resource deadlocks individually in each
  5984. * raid personality. (RAID5 does preallocation) We also use RR and
  5985. * the very same RT priority as kswapd, thus we will never get
  5986. * into a priority inversion deadlock.
  5987. *
  5988. * we definitely have to have equal or higher priority than
  5989. * bdflush, otherwise bdflush will deadlock if there are too
  5990. * many dirty RAID5 blocks.
  5991. */
  5992. allow_signal(SIGKILL);
  5993. while (!kthread_should_stop()) {
  5994. /* We need to wait INTERRUPTIBLE so that
  5995. * we don't add to the load-average.
  5996. * That means we need to be sure no signals are
  5997. * pending
  5998. */
  5999. if (signal_pending(current))
  6000. flush_signals(current);
  6001. wait_event_interruptible_timeout
  6002. (thread->wqueue,
  6003. test_bit(THREAD_WAKEUP, &thread->flags)
  6004. || kthread_should_stop(),
  6005. thread->timeout);
  6006. clear_bit(THREAD_WAKEUP, &thread->flags);
  6007. if (!kthread_should_stop())
  6008. thread->run(thread);
  6009. }
  6010. return 0;
  6011. }
  6012. void md_wakeup_thread(struct md_thread *thread)
  6013. {
  6014. if (thread) {
  6015. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6016. set_bit(THREAD_WAKEUP, &thread->flags);
  6017. wake_up(&thread->wqueue);
  6018. }
  6019. }
  6020. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6021. struct mddev *mddev, const char *name)
  6022. {
  6023. struct md_thread *thread;
  6024. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6025. if (!thread)
  6026. return NULL;
  6027. init_waitqueue_head(&thread->wqueue);
  6028. thread->run = run;
  6029. thread->mddev = mddev;
  6030. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6031. thread->tsk = kthread_run(md_thread, thread,
  6032. "%s_%s",
  6033. mdname(thread->mddev),
  6034. name);
  6035. if (IS_ERR(thread->tsk)) {
  6036. kfree(thread);
  6037. return NULL;
  6038. }
  6039. return thread;
  6040. }
  6041. void md_unregister_thread(struct md_thread **threadp)
  6042. {
  6043. struct md_thread *thread = *threadp;
  6044. if (!thread)
  6045. return;
  6046. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6047. /* Locking ensures that mddev_unlock does not wake_up a
  6048. * non-existent thread
  6049. */
  6050. spin_lock(&pers_lock);
  6051. *threadp = NULL;
  6052. spin_unlock(&pers_lock);
  6053. kthread_stop(thread->tsk);
  6054. kfree(thread);
  6055. }
  6056. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6057. {
  6058. if (!mddev) {
  6059. MD_BUG();
  6060. return;
  6061. }
  6062. if (!rdev || test_bit(Faulty, &rdev->flags))
  6063. return;
  6064. if (!mddev->pers || !mddev->pers->error_handler)
  6065. return;
  6066. mddev->pers->error_handler(mddev,rdev);
  6067. if (mddev->degraded)
  6068. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6069. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6070. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6071. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6072. md_wakeup_thread(mddev->thread);
  6073. if (mddev->event_work.func)
  6074. queue_work(md_misc_wq, &mddev->event_work);
  6075. md_new_event_inintr(mddev);
  6076. }
  6077. /* seq_file implementation /proc/mdstat */
  6078. static void status_unused(struct seq_file *seq)
  6079. {
  6080. int i = 0;
  6081. struct md_rdev *rdev;
  6082. seq_printf(seq, "unused devices: ");
  6083. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6084. char b[BDEVNAME_SIZE];
  6085. i++;
  6086. seq_printf(seq, "%s ",
  6087. bdevname(rdev->bdev,b));
  6088. }
  6089. if (!i)
  6090. seq_printf(seq, "<none>");
  6091. seq_printf(seq, "\n");
  6092. }
  6093. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6094. {
  6095. sector_t max_sectors, resync, res;
  6096. unsigned long dt, db;
  6097. sector_t rt;
  6098. int scale;
  6099. unsigned int per_milli;
  6100. if (mddev->curr_resync <= 3)
  6101. resync = 0;
  6102. else
  6103. resync = mddev->curr_resync
  6104. - atomic_read(&mddev->recovery_active);
  6105. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6106. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6107. max_sectors = mddev->resync_max_sectors;
  6108. else
  6109. max_sectors = mddev->dev_sectors;
  6110. /*
  6111. * Should not happen.
  6112. */
  6113. if (!max_sectors) {
  6114. MD_BUG();
  6115. return;
  6116. }
  6117. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6118. * in a sector_t, and (max_sectors>>scale) will fit in a
  6119. * u32, as those are the requirements for sector_div.
  6120. * Thus 'scale' must be at least 10
  6121. */
  6122. scale = 10;
  6123. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6124. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6125. scale++;
  6126. }
  6127. res = (resync>>scale)*1000;
  6128. sector_div(res, (u32)((max_sectors>>scale)+1));
  6129. per_milli = res;
  6130. {
  6131. int i, x = per_milli/50, y = 20-x;
  6132. seq_printf(seq, "[");
  6133. for (i = 0; i < x; i++)
  6134. seq_printf(seq, "=");
  6135. seq_printf(seq, ">");
  6136. for (i = 0; i < y; i++)
  6137. seq_printf(seq, ".");
  6138. seq_printf(seq, "] ");
  6139. }
  6140. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6141. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6142. "reshape" :
  6143. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6144. "check" :
  6145. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6146. "resync" : "recovery"))),
  6147. per_milli/10, per_milli % 10,
  6148. (unsigned long long) resync/2,
  6149. (unsigned long long) max_sectors/2);
  6150. /*
  6151. * dt: time from mark until now
  6152. * db: blocks written from mark until now
  6153. * rt: remaining time
  6154. *
  6155. * rt is a sector_t, so could be 32bit or 64bit.
  6156. * So we divide before multiply in case it is 32bit and close
  6157. * to the limit.
  6158. * We scale the divisor (db) by 32 to avoid losing precision
  6159. * near the end of resync when the number of remaining sectors
  6160. * is close to 'db'.
  6161. * We then divide rt by 32 after multiplying by db to compensate.
  6162. * The '+1' avoids division by zero if db is very small.
  6163. */
  6164. dt = ((jiffies - mddev->resync_mark) / HZ);
  6165. if (!dt) dt++;
  6166. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6167. - mddev->resync_mark_cnt;
  6168. rt = max_sectors - resync; /* number of remaining sectors */
  6169. sector_div(rt, db/32+1);
  6170. rt *= dt;
  6171. rt >>= 5;
  6172. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6173. ((unsigned long)rt % 60)/6);
  6174. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6175. }
  6176. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6177. {
  6178. struct list_head *tmp;
  6179. loff_t l = *pos;
  6180. struct mddev *mddev;
  6181. if (l >= 0x10000)
  6182. return NULL;
  6183. if (!l--)
  6184. /* header */
  6185. return (void*)1;
  6186. spin_lock(&all_mddevs_lock);
  6187. list_for_each(tmp,&all_mddevs)
  6188. if (!l--) {
  6189. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6190. mddev_get(mddev);
  6191. spin_unlock(&all_mddevs_lock);
  6192. return mddev;
  6193. }
  6194. spin_unlock(&all_mddevs_lock);
  6195. if (!l--)
  6196. return (void*)2;/* tail */
  6197. return NULL;
  6198. }
  6199. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6200. {
  6201. struct list_head *tmp;
  6202. struct mddev *next_mddev, *mddev = v;
  6203. ++*pos;
  6204. if (v == (void*)2)
  6205. return NULL;
  6206. spin_lock(&all_mddevs_lock);
  6207. if (v == (void*)1)
  6208. tmp = all_mddevs.next;
  6209. else
  6210. tmp = mddev->all_mddevs.next;
  6211. if (tmp != &all_mddevs)
  6212. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6213. else {
  6214. next_mddev = (void*)2;
  6215. *pos = 0x10000;
  6216. }
  6217. spin_unlock(&all_mddevs_lock);
  6218. if (v != (void*)1)
  6219. mddev_put(mddev);
  6220. return next_mddev;
  6221. }
  6222. static void md_seq_stop(struct seq_file *seq, void *v)
  6223. {
  6224. struct mddev *mddev = v;
  6225. if (mddev && v != (void*)1 && v != (void*)2)
  6226. mddev_put(mddev);
  6227. }
  6228. static int md_seq_show(struct seq_file *seq, void *v)
  6229. {
  6230. struct mddev *mddev = v;
  6231. sector_t sectors;
  6232. struct md_rdev *rdev;
  6233. if (v == (void*)1) {
  6234. struct md_personality *pers;
  6235. seq_printf(seq, "Personalities : ");
  6236. spin_lock(&pers_lock);
  6237. list_for_each_entry(pers, &pers_list, list)
  6238. seq_printf(seq, "[%s] ", pers->name);
  6239. spin_unlock(&pers_lock);
  6240. seq_printf(seq, "\n");
  6241. seq->poll_event = atomic_read(&md_event_count);
  6242. return 0;
  6243. }
  6244. if (v == (void*)2) {
  6245. status_unused(seq);
  6246. return 0;
  6247. }
  6248. if (mddev_lock(mddev) < 0)
  6249. return -EINTR;
  6250. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6251. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6252. mddev->pers ? "" : "in");
  6253. if (mddev->pers) {
  6254. if (mddev->ro==1)
  6255. seq_printf(seq, " (read-only)");
  6256. if (mddev->ro==2)
  6257. seq_printf(seq, " (auto-read-only)");
  6258. seq_printf(seq, " %s", mddev->pers->name);
  6259. }
  6260. sectors = 0;
  6261. rdev_for_each(rdev, mddev) {
  6262. char b[BDEVNAME_SIZE];
  6263. seq_printf(seq, " %s[%d]",
  6264. bdevname(rdev->bdev,b), rdev->desc_nr);
  6265. if (test_bit(WriteMostly, &rdev->flags))
  6266. seq_printf(seq, "(W)");
  6267. if (test_bit(Faulty, &rdev->flags)) {
  6268. seq_printf(seq, "(F)");
  6269. continue;
  6270. }
  6271. if (rdev->raid_disk < 0)
  6272. seq_printf(seq, "(S)"); /* spare */
  6273. if (test_bit(Replacement, &rdev->flags))
  6274. seq_printf(seq, "(R)");
  6275. sectors += rdev->sectors;
  6276. }
  6277. if (!list_empty(&mddev->disks)) {
  6278. if (mddev->pers)
  6279. seq_printf(seq, "\n %llu blocks",
  6280. (unsigned long long)
  6281. mddev->array_sectors / 2);
  6282. else
  6283. seq_printf(seq, "\n %llu blocks",
  6284. (unsigned long long)sectors / 2);
  6285. }
  6286. if (mddev->persistent) {
  6287. if (mddev->major_version != 0 ||
  6288. mddev->minor_version != 90) {
  6289. seq_printf(seq," super %d.%d",
  6290. mddev->major_version,
  6291. mddev->minor_version);
  6292. }
  6293. } else if (mddev->external)
  6294. seq_printf(seq, " super external:%s",
  6295. mddev->metadata_type);
  6296. else
  6297. seq_printf(seq, " super non-persistent");
  6298. if (mddev->pers) {
  6299. mddev->pers->status(seq, mddev);
  6300. seq_printf(seq, "\n ");
  6301. if (mddev->pers->sync_request) {
  6302. if (mddev->curr_resync > 2) {
  6303. status_resync(seq, mddev);
  6304. seq_printf(seq, "\n ");
  6305. } else if (mddev->curr_resync >= 1)
  6306. seq_printf(seq, "\tresync=DELAYED\n ");
  6307. else if (mddev->recovery_cp < MaxSector)
  6308. seq_printf(seq, "\tresync=PENDING\n ");
  6309. }
  6310. } else
  6311. seq_printf(seq, "\n ");
  6312. bitmap_status(seq, mddev->bitmap);
  6313. seq_printf(seq, "\n");
  6314. }
  6315. mddev_unlock(mddev);
  6316. return 0;
  6317. }
  6318. static const struct seq_operations md_seq_ops = {
  6319. .start = md_seq_start,
  6320. .next = md_seq_next,
  6321. .stop = md_seq_stop,
  6322. .show = md_seq_show,
  6323. };
  6324. static int md_seq_open(struct inode *inode, struct file *file)
  6325. {
  6326. struct seq_file *seq;
  6327. int error;
  6328. error = seq_open(file, &md_seq_ops);
  6329. if (error)
  6330. return error;
  6331. seq = file->private_data;
  6332. seq->poll_event = atomic_read(&md_event_count);
  6333. return error;
  6334. }
  6335. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6336. {
  6337. struct seq_file *seq = filp->private_data;
  6338. int mask;
  6339. poll_wait(filp, &md_event_waiters, wait);
  6340. /* always allow read */
  6341. mask = POLLIN | POLLRDNORM;
  6342. if (seq->poll_event != atomic_read(&md_event_count))
  6343. mask |= POLLERR | POLLPRI;
  6344. return mask;
  6345. }
  6346. static const struct file_operations md_seq_fops = {
  6347. .owner = THIS_MODULE,
  6348. .open = md_seq_open,
  6349. .read = seq_read,
  6350. .llseek = seq_lseek,
  6351. .release = seq_release_private,
  6352. .poll = mdstat_poll,
  6353. };
  6354. int register_md_personality(struct md_personality *p)
  6355. {
  6356. spin_lock(&pers_lock);
  6357. list_add_tail(&p->list, &pers_list);
  6358. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6359. spin_unlock(&pers_lock);
  6360. return 0;
  6361. }
  6362. int unregister_md_personality(struct md_personality *p)
  6363. {
  6364. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6365. spin_lock(&pers_lock);
  6366. list_del_init(&p->list);
  6367. spin_unlock(&pers_lock);
  6368. return 0;
  6369. }
  6370. static int is_mddev_idle(struct mddev *mddev, int init)
  6371. {
  6372. struct md_rdev * rdev;
  6373. int idle;
  6374. int curr_events;
  6375. idle = 1;
  6376. rcu_read_lock();
  6377. rdev_for_each_rcu(rdev, mddev) {
  6378. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6379. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6380. (int)part_stat_read(&disk->part0, sectors[1]) -
  6381. atomic_read(&disk->sync_io);
  6382. /* sync IO will cause sync_io to increase before the disk_stats
  6383. * as sync_io is counted when a request starts, and
  6384. * disk_stats is counted when it completes.
  6385. * So resync activity will cause curr_events to be smaller than
  6386. * when there was no such activity.
  6387. * non-sync IO will cause disk_stat to increase without
  6388. * increasing sync_io so curr_events will (eventually)
  6389. * be larger than it was before. Once it becomes
  6390. * substantially larger, the test below will cause
  6391. * the array to appear non-idle, and resync will slow
  6392. * down.
  6393. * If there is a lot of outstanding resync activity when
  6394. * we set last_event to curr_events, then all that activity
  6395. * completing might cause the array to appear non-idle
  6396. * and resync will be slowed down even though there might
  6397. * not have been non-resync activity. This will only
  6398. * happen once though. 'last_events' will soon reflect
  6399. * the state where there is little or no outstanding
  6400. * resync requests, and further resync activity will
  6401. * always make curr_events less than last_events.
  6402. *
  6403. */
  6404. if (init || curr_events - rdev->last_events > 64) {
  6405. rdev->last_events = curr_events;
  6406. idle = 0;
  6407. }
  6408. }
  6409. rcu_read_unlock();
  6410. return idle;
  6411. }
  6412. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6413. {
  6414. /* another "blocks" (512byte) blocks have been synced */
  6415. atomic_sub(blocks, &mddev->recovery_active);
  6416. wake_up(&mddev->recovery_wait);
  6417. if (!ok) {
  6418. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6419. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6420. md_wakeup_thread(mddev->thread);
  6421. // stop recovery, signal do_sync ....
  6422. }
  6423. }
  6424. /* md_write_start(mddev, bi)
  6425. * If we need to update some array metadata (e.g. 'active' flag
  6426. * in superblock) before writing, schedule a superblock update
  6427. * and wait for it to complete.
  6428. */
  6429. void md_write_start(struct mddev *mddev, struct bio *bi)
  6430. {
  6431. int did_change = 0;
  6432. if (bio_data_dir(bi) != WRITE)
  6433. return;
  6434. BUG_ON(mddev->ro == 1);
  6435. if (mddev->ro == 2) {
  6436. /* need to switch to read/write */
  6437. mddev->ro = 0;
  6438. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6439. md_wakeup_thread(mddev->thread);
  6440. md_wakeup_thread(mddev->sync_thread);
  6441. did_change = 1;
  6442. }
  6443. atomic_inc(&mddev->writes_pending);
  6444. if (mddev->safemode == 1)
  6445. mddev->safemode = 0;
  6446. if (mddev->in_sync) {
  6447. spin_lock_irq(&mddev->write_lock);
  6448. if (mddev->in_sync) {
  6449. mddev->in_sync = 0;
  6450. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6451. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6452. md_wakeup_thread(mddev->thread);
  6453. did_change = 1;
  6454. }
  6455. spin_unlock_irq(&mddev->write_lock);
  6456. }
  6457. if (did_change)
  6458. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6459. wait_event(mddev->sb_wait,
  6460. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6461. }
  6462. void md_write_end(struct mddev *mddev)
  6463. {
  6464. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6465. if (mddev->safemode == 2)
  6466. md_wakeup_thread(mddev->thread);
  6467. else if (mddev->safemode_delay)
  6468. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6469. }
  6470. }
  6471. /* md_allow_write(mddev)
  6472. * Calling this ensures that the array is marked 'active' so that writes
  6473. * may proceed without blocking. It is important to call this before
  6474. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6475. * Must be called with mddev_lock held.
  6476. *
  6477. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6478. * is dropped, so return -EAGAIN after notifying userspace.
  6479. */
  6480. int md_allow_write(struct mddev *mddev)
  6481. {
  6482. if (!mddev->pers)
  6483. return 0;
  6484. if (mddev->ro)
  6485. return 0;
  6486. if (!mddev->pers->sync_request)
  6487. return 0;
  6488. spin_lock_irq(&mddev->write_lock);
  6489. if (mddev->in_sync) {
  6490. mddev->in_sync = 0;
  6491. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6492. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6493. if (mddev->safemode_delay &&
  6494. mddev->safemode == 0)
  6495. mddev->safemode = 1;
  6496. spin_unlock_irq(&mddev->write_lock);
  6497. md_update_sb(mddev, 0);
  6498. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6499. } else
  6500. spin_unlock_irq(&mddev->write_lock);
  6501. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6502. return -EAGAIN;
  6503. else
  6504. return 0;
  6505. }
  6506. EXPORT_SYMBOL_GPL(md_allow_write);
  6507. #define SYNC_MARKS 10
  6508. #define SYNC_MARK_STEP (3*HZ)
  6509. #define UPDATE_FREQUENCY (5*60*HZ)
  6510. void md_do_sync(struct md_thread *thread)
  6511. {
  6512. struct mddev *mddev = thread->mddev;
  6513. struct mddev *mddev2;
  6514. unsigned int currspeed = 0,
  6515. window;
  6516. sector_t max_sectors,j, io_sectors;
  6517. unsigned long mark[SYNC_MARKS];
  6518. unsigned long update_time;
  6519. sector_t mark_cnt[SYNC_MARKS];
  6520. int last_mark,m;
  6521. struct list_head *tmp;
  6522. sector_t last_check;
  6523. int skipped = 0;
  6524. struct md_rdev *rdev;
  6525. char *desc, *action = NULL;
  6526. struct blk_plug plug;
  6527. /* just incase thread restarts... */
  6528. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6529. return;
  6530. if (mddev->ro) /* never try to sync a read-only array */
  6531. return;
  6532. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6533. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6534. desc = "data-check";
  6535. action = "check";
  6536. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6537. desc = "requested-resync";
  6538. action = "repair";
  6539. } else
  6540. desc = "resync";
  6541. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6542. desc = "reshape";
  6543. else
  6544. desc = "recovery";
  6545. mddev->last_sync_action = action ?: desc;
  6546. /* we overload curr_resync somewhat here.
  6547. * 0 == not engaged in resync at all
  6548. * 2 == checking that there is no conflict with another sync
  6549. * 1 == like 2, but have yielded to allow conflicting resync to
  6550. * commense
  6551. * other == active in resync - this many blocks
  6552. *
  6553. * Before starting a resync we must have set curr_resync to
  6554. * 2, and then checked that every "conflicting" array has curr_resync
  6555. * less than ours. When we find one that is the same or higher
  6556. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6557. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6558. * This will mean we have to start checking from the beginning again.
  6559. *
  6560. */
  6561. do {
  6562. mddev->curr_resync = 2;
  6563. try_again:
  6564. if (kthread_should_stop())
  6565. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6566. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6567. goto skip;
  6568. for_each_mddev(mddev2, tmp) {
  6569. if (mddev2 == mddev)
  6570. continue;
  6571. if (!mddev->parallel_resync
  6572. && mddev2->curr_resync
  6573. && match_mddev_units(mddev, mddev2)) {
  6574. DEFINE_WAIT(wq);
  6575. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6576. /* arbitrarily yield */
  6577. mddev->curr_resync = 1;
  6578. wake_up(&resync_wait);
  6579. }
  6580. if (mddev > mddev2 && mddev->curr_resync == 1)
  6581. /* no need to wait here, we can wait the next
  6582. * time 'round when curr_resync == 2
  6583. */
  6584. continue;
  6585. /* We need to wait 'interruptible' so as not to
  6586. * contribute to the load average, and not to
  6587. * be caught by 'softlockup'
  6588. */
  6589. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6590. if (!kthread_should_stop() &&
  6591. mddev2->curr_resync >= mddev->curr_resync) {
  6592. printk(KERN_INFO "md: delaying %s of %s"
  6593. " until %s has finished (they"
  6594. " share one or more physical units)\n",
  6595. desc, mdname(mddev), mdname(mddev2));
  6596. mddev_put(mddev2);
  6597. if (signal_pending(current))
  6598. flush_signals(current);
  6599. schedule();
  6600. finish_wait(&resync_wait, &wq);
  6601. goto try_again;
  6602. }
  6603. finish_wait(&resync_wait, &wq);
  6604. }
  6605. }
  6606. } while (mddev->curr_resync < 2);
  6607. j = 0;
  6608. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6609. /* resync follows the size requested by the personality,
  6610. * which defaults to physical size, but can be virtual size
  6611. */
  6612. max_sectors = mddev->resync_max_sectors;
  6613. atomic64_set(&mddev->resync_mismatches, 0);
  6614. /* we don't use the checkpoint if there's a bitmap */
  6615. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6616. j = mddev->resync_min;
  6617. else if (!mddev->bitmap)
  6618. j = mddev->recovery_cp;
  6619. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6620. max_sectors = mddev->resync_max_sectors;
  6621. else {
  6622. /* recovery follows the physical size of devices */
  6623. max_sectors = mddev->dev_sectors;
  6624. j = MaxSector;
  6625. rcu_read_lock();
  6626. rdev_for_each_rcu(rdev, mddev)
  6627. if (rdev->raid_disk >= 0 &&
  6628. !test_bit(Faulty, &rdev->flags) &&
  6629. !test_bit(In_sync, &rdev->flags) &&
  6630. rdev->recovery_offset < j)
  6631. j = rdev->recovery_offset;
  6632. rcu_read_unlock();
  6633. }
  6634. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6635. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6636. " %d KB/sec/disk.\n", speed_min(mddev));
  6637. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6638. "(but not more than %d KB/sec) for %s.\n",
  6639. speed_max(mddev), desc);
  6640. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6641. io_sectors = 0;
  6642. for (m = 0; m < SYNC_MARKS; m++) {
  6643. mark[m] = jiffies;
  6644. mark_cnt[m] = io_sectors;
  6645. }
  6646. last_mark = 0;
  6647. mddev->resync_mark = mark[last_mark];
  6648. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6649. /*
  6650. * Tune reconstruction:
  6651. */
  6652. window = 32*(PAGE_SIZE/512);
  6653. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6654. window/2, (unsigned long long)max_sectors/2);
  6655. atomic_set(&mddev->recovery_active, 0);
  6656. last_check = 0;
  6657. if (j>2) {
  6658. printk(KERN_INFO
  6659. "md: resuming %s of %s from checkpoint.\n",
  6660. desc, mdname(mddev));
  6661. mddev->curr_resync = j;
  6662. } else
  6663. mddev->curr_resync = 3; /* no longer delayed */
  6664. mddev->curr_resync_completed = j;
  6665. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6666. md_new_event(mddev);
  6667. update_time = jiffies;
  6668. blk_start_plug(&plug);
  6669. while (j < max_sectors) {
  6670. sector_t sectors;
  6671. skipped = 0;
  6672. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6673. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6674. (mddev->curr_resync - mddev->curr_resync_completed)
  6675. > (max_sectors >> 4)) ||
  6676. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6677. (j - mddev->curr_resync_completed)*2
  6678. >= mddev->resync_max - mddev->curr_resync_completed
  6679. )) {
  6680. /* time to update curr_resync_completed */
  6681. wait_event(mddev->recovery_wait,
  6682. atomic_read(&mddev->recovery_active) == 0);
  6683. mddev->curr_resync_completed = j;
  6684. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6685. j > mddev->recovery_cp)
  6686. mddev->recovery_cp = j;
  6687. update_time = jiffies;
  6688. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6689. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6690. }
  6691. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6692. /* As this condition is controlled by user-space,
  6693. * we can block indefinitely, so use '_interruptible'
  6694. * to avoid triggering warnings.
  6695. */
  6696. flush_signals(current); /* just in case */
  6697. wait_event_interruptible(mddev->recovery_wait,
  6698. mddev->resync_max > j
  6699. || kthread_should_stop());
  6700. }
  6701. if (kthread_should_stop())
  6702. goto interrupted;
  6703. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6704. currspeed < speed_min(mddev));
  6705. if (sectors == 0) {
  6706. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6707. goto out;
  6708. }
  6709. if (!skipped) { /* actual IO requested */
  6710. io_sectors += sectors;
  6711. atomic_add(sectors, &mddev->recovery_active);
  6712. }
  6713. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6714. break;
  6715. j += sectors;
  6716. if (j > 2)
  6717. mddev->curr_resync = j;
  6718. mddev->curr_mark_cnt = io_sectors;
  6719. if (last_check == 0)
  6720. /* this is the earliest that rebuild will be
  6721. * visible in /proc/mdstat
  6722. */
  6723. md_new_event(mddev);
  6724. if (last_check + window > io_sectors || j == max_sectors)
  6725. continue;
  6726. last_check = io_sectors;
  6727. repeat:
  6728. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6729. /* step marks */
  6730. int next = (last_mark+1) % SYNC_MARKS;
  6731. mddev->resync_mark = mark[next];
  6732. mddev->resync_mark_cnt = mark_cnt[next];
  6733. mark[next] = jiffies;
  6734. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6735. last_mark = next;
  6736. }
  6737. if (kthread_should_stop())
  6738. goto interrupted;
  6739. /*
  6740. * this loop exits only if either when we are slower than
  6741. * the 'hard' speed limit, or the system was IO-idle for
  6742. * a jiffy.
  6743. * the system might be non-idle CPU-wise, but we only care
  6744. * about not overloading the IO subsystem. (things like an
  6745. * e2fsck being done on the RAID array should execute fast)
  6746. */
  6747. cond_resched();
  6748. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6749. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6750. if (currspeed > speed_min(mddev)) {
  6751. if ((currspeed > speed_max(mddev)) ||
  6752. !is_mddev_idle(mddev, 0)) {
  6753. msleep(500);
  6754. goto repeat;
  6755. }
  6756. }
  6757. }
  6758. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6759. /*
  6760. * this also signals 'finished resyncing' to md_stop
  6761. */
  6762. out:
  6763. blk_finish_plug(&plug);
  6764. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6765. /* tell personality that we are finished */
  6766. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6767. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6768. mddev->curr_resync > 2) {
  6769. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6770. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6771. if (mddev->curr_resync >= mddev->recovery_cp) {
  6772. printk(KERN_INFO
  6773. "md: checkpointing %s of %s.\n",
  6774. desc, mdname(mddev));
  6775. if (test_bit(MD_RECOVERY_ERROR,
  6776. &mddev->recovery))
  6777. mddev->recovery_cp =
  6778. mddev->curr_resync_completed;
  6779. else
  6780. mddev->recovery_cp =
  6781. mddev->curr_resync;
  6782. }
  6783. } else
  6784. mddev->recovery_cp = MaxSector;
  6785. } else {
  6786. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6787. mddev->curr_resync = MaxSector;
  6788. rcu_read_lock();
  6789. rdev_for_each_rcu(rdev, mddev)
  6790. if (rdev->raid_disk >= 0 &&
  6791. mddev->delta_disks >= 0 &&
  6792. !test_bit(Faulty, &rdev->flags) &&
  6793. !test_bit(In_sync, &rdev->flags) &&
  6794. rdev->recovery_offset < mddev->curr_resync)
  6795. rdev->recovery_offset = mddev->curr_resync;
  6796. rcu_read_unlock();
  6797. }
  6798. }
  6799. skip:
  6800. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6801. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6802. /* We completed so min/max setting can be forgotten if used. */
  6803. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6804. mddev->resync_min = 0;
  6805. mddev->resync_max = MaxSector;
  6806. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6807. mddev->resync_min = mddev->curr_resync_completed;
  6808. mddev->curr_resync = 0;
  6809. wake_up(&resync_wait);
  6810. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6811. md_wakeup_thread(mddev->thread);
  6812. return;
  6813. interrupted:
  6814. /*
  6815. * got a signal, exit.
  6816. */
  6817. printk(KERN_INFO
  6818. "md: md_do_sync() got signal ... exiting\n");
  6819. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6820. goto out;
  6821. }
  6822. EXPORT_SYMBOL_GPL(md_do_sync);
  6823. static int remove_and_add_spares(struct mddev *mddev,
  6824. struct md_rdev *this)
  6825. {
  6826. struct md_rdev *rdev;
  6827. int spares = 0;
  6828. int removed = 0;
  6829. rdev_for_each(rdev, mddev)
  6830. if ((this == NULL || rdev == this) &&
  6831. rdev->raid_disk >= 0 &&
  6832. !test_bit(Blocked, &rdev->flags) &&
  6833. (test_bit(Faulty, &rdev->flags) ||
  6834. ! test_bit(In_sync, &rdev->flags)) &&
  6835. atomic_read(&rdev->nr_pending)==0) {
  6836. if (mddev->pers->hot_remove_disk(
  6837. mddev, rdev) == 0) {
  6838. sysfs_unlink_rdev(mddev, rdev);
  6839. rdev->raid_disk = -1;
  6840. removed++;
  6841. }
  6842. }
  6843. if (removed && mddev->kobj.sd)
  6844. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6845. if (this)
  6846. goto no_add;
  6847. rdev_for_each(rdev, mddev) {
  6848. if (rdev->raid_disk >= 0 &&
  6849. !test_bit(In_sync, &rdev->flags) &&
  6850. !test_bit(Faulty, &rdev->flags))
  6851. spares++;
  6852. if (rdev->raid_disk >= 0)
  6853. continue;
  6854. if (test_bit(Faulty, &rdev->flags))
  6855. continue;
  6856. if (mddev->ro &&
  6857. rdev->saved_raid_disk < 0)
  6858. continue;
  6859. rdev->recovery_offset = 0;
  6860. if (mddev->pers->
  6861. hot_add_disk(mddev, rdev) == 0) {
  6862. if (sysfs_link_rdev(mddev, rdev))
  6863. /* failure here is OK */;
  6864. spares++;
  6865. md_new_event(mddev);
  6866. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6867. }
  6868. }
  6869. no_add:
  6870. if (removed)
  6871. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6872. return spares;
  6873. }
  6874. /*
  6875. * This routine is regularly called by all per-raid-array threads to
  6876. * deal with generic issues like resync and super-block update.
  6877. * Raid personalities that don't have a thread (linear/raid0) do not
  6878. * need this as they never do any recovery or update the superblock.
  6879. *
  6880. * It does not do any resync itself, but rather "forks" off other threads
  6881. * to do that as needed.
  6882. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6883. * "->recovery" and create a thread at ->sync_thread.
  6884. * When the thread finishes it sets MD_RECOVERY_DONE
  6885. * and wakeups up this thread which will reap the thread and finish up.
  6886. * This thread also removes any faulty devices (with nr_pending == 0).
  6887. *
  6888. * The overall approach is:
  6889. * 1/ if the superblock needs updating, update it.
  6890. * 2/ If a recovery thread is running, don't do anything else.
  6891. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6892. * 4/ If there are any faulty devices, remove them.
  6893. * 5/ If array is degraded, try to add spares devices
  6894. * 6/ If array has spares or is not in-sync, start a resync thread.
  6895. */
  6896. void md_check_recovery(struct mddev *mddev)
  6897. {
  6898. if (mddev->suspended)
  6899. return;
  6900. if (mddev->bitmap)
  6901. bitmap_daemon_work(mddev);
  6902. if (signal_pending(current)) {
  6903. if (mddev->pers->sync_request && !mddev->external) {
  6904. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6905. mdname(mddev));
  6906. mddev->safemode = 2;
  6907. }
  6908. flush_signals(current);
  6909. }
  6910. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6911. return;
  6912. if ( ! (
  6913. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6914. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6915. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6916. (mddev->external == 0 && mddev->safemode == 1) ||
  6917. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6918. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6919. ))
  6920. return;
  6921. if (mddev_trylock(mddev)) {
  6922. int spares = 0;
  6923. if (mddev->ro) {
  6924. /* On a read-only array we can:
  6925. * - remove failed devices
  6926. * - add already-in_sync devices if the array itself
  6927. * is in-sync.
  6928. * As we only add devices that are already in-sync,
  6929. * we can activate the spares immediately.
  6930. */
  6931. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6932. remove_and_add_spares(mddev, NULL);
  6933. mddev->pers->spare_active(mddev);
  6934. goto unlock;
  6935. }
  6936. if (!mddev->external) {
  6937. int did_change = 0;
  6938. spin_lock_irq(&mddev->write_lock);
  6939. if (mddev->safemode &&
  6940. !atomic_read(&mddev->writes_pending) &&
  6941. !mddev->in_sync &&
  6942. mddev->recovery_cp == MaxSector) {
  6943. mddev->in_sync = 1;
  6944. did_change = 1;
  6945. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6946. }
  6947. if (mddev->safemode == 1)
  6948. mddev->safemode = 0;
  6949. spin_unlock_irq(&mddev->write_lock);
  6950. if (did_change)
  6951. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6952. }
  6953. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  6954. md_update_sb(mddev, 0);
  6955. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6956. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6957. /* resync/recovery still happening */
  6958. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6959. goto unlock;
  6960. }
  6961. if (mddev->sync_thread) {
  6962. md_reap_sync_thread(mddev);
  6963. goto unlock;
  6964. }
  6965. /* Set RUNNING before clearing NEEDED to avoid
  6966. * any transients in the value of "sync_action".
  6967. */
  6968. mddev->curr_resync_completed = 0;
  6969. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6970. /* Clear some bits that don't mean anything, but
  6971. * might be left set
  6972. */
  6973. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6974. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6975. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6976. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6977. goto unlock;
  6978. /* no recovery is running.
  6979. * remove any failed drives, then
  6980. * add spares if possible.
  6981. * Spares are also removed and re-added, to allow
  6982. * the personality to fail the re-add.
  6983. */
  6984. if (mddev->reshape_position != MaxSector) {
  6985. if (mddev->pers->check_reshape == NULL ||
  6986. mddev->pers->check_reshape(mddev) != 0)
  6987. /* Cannot proceed */
  6988. goto unlock;
  6989. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6990. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6991. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  6992. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6993. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6994. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6995. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6996. } else if (mddev->recovery_cp < MaxSector) {
  6997. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6998. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6999. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7000. /* nothing to be done ... */
  7001. goto unlock;
  7002. if (mddev->pers->sync_request) {
  7003. if (spares) {
  7004. /* We are adding a device or devices to an array
  7005. * which has the bitmap stored on all devices.
  7006. * So make sure all bitmap pages get written
  7007. */
  7008. bitmap_write_all(mddev->bitmap);
  7009. }
  7010. mddev->sync_thread = md_register_thread(md_do_sync,
  7011. mddev,
  7012. "resync");
  7013. if (!mddev->sync_thread) {
  7014. printk(KERN_ERR "%s: could not start resync"
  7015. " thread...\n",
  7016. mdname(mddev));
  7017. /* leave the spares where they are, it shouldn't hurt */
  7018. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7019. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7020. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7021. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7022. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7023. } else
  7024. md_wakeup_thread(mddev->sync_thread);
  7025. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7026. md_new_event(mddev);
  7027. }
  7028. unlock:
  7029. wake_up(&mddev->sb_wait);
  7030. if (!mddev->sync_thread) {
  7031. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7032. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7033. &mddev->recovery))
  7034. if (mddev->sysfs_action)
  7035. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7036. }
  7037. mddev_unlock(mddev);
  7038. }
  7039. }
  7040. void md_reap_sync_thread(struct mddev *mddev)
  7041. {
  7042. struct md_rdev *rdev;
  7043. /* resync has finished, collect result */
  7044. md_unregister_thread(&mddev->sync_thread);
  7045. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7046. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7047. /* success...*/
  7048. /* activate any spares */
  7049. if (mddev->pers->spare_active(mddev)) {
  7050. sysfs_notify(&mddev->kobj, NULL,
  7051. "degraded");
  7052. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7053. }
  7054. }
  7055. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7056. mddev->pers->finish_reshape)
  7057. mddev->pers->finish_reshape(mddev);
  7058. /* If array is no-longer degraded, then any saved_raid_disk
  7059. * information must be scrapped. Also if any device is now
  7060. * In_sync we must scrape the saved_raid_disk for that device
  7061. * do the superblock for an incrementally recovered device
  7062. * written out.
  7063. */
  7064. rdev_for_each(rdev, mddev)
  7065. if (!mddev->degraded ||
  7066. test_bit(In_sync, &rdev->flags))
  7067. rdev->saved_raid_disk = -1;
  7068. md_update_sb(mddev, 1);
  7069. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7070. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7071. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7072. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7073. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7074. /* flag recovery needed just to double check */
  7075. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7076. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7077. md_new_event(mddev);
  7078. if (mddev->event_work.func)
  7079. queue_work(md_misc_wq, &mddev->event_work);
  7080. }
  7081. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7082. {
  7083. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7084. wait_event_timeout(rdev->blocked_wait,
  7085. !test_bit(Blocked, &rdev->flags) &&
  7086. !test_bit(BlockedBadBlocks, &rdev->flags),
  7087. msecs_to_jiffies(5000));
  7088. rdev_dec_pending(rdev, mddev);
  7089. }
  7090. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7091. void md_finish_reshape(struct mddev *mddev)
  7092. {
  7093. /* called be personality module when reshape completes. */
  7094. struct md_rdev *rdev;
  7095. rdev_for_each(rdev, mddev) {
  7096. if (rdev->data_offset > rdev->new_data_offset)
  7097. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7098. else
  7099. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7100. rdev->data_offset = rdev->new_data_offset;
  7101. }
  7102. }
  7103. EXPORT_SYMBOL(md_finish_reshape);
  7104. /* Bad block management.
  7105. * We can record which blocks on each device are 'bad' and so just
  7106. * fail those blocks, or that stripe, rather than the whole device.
  7107. * Entries in the bad-block table are 64bits wide. This comprises:
  7108. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7109. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7110. * A 'shift' can be set so that larger blocks are tracked and
  7111. * consequently larger devices can be covered.
  7112. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7113. *
  7114. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7115. * might need to retry if it is very unlucky.
  7116. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7117. * so we use the write_seqlock_irq variant.
  7118. *
  7119. * When looking for a bad block we specify a range and want to
  7120. * know if any block in the range is bad. So we binary-search
  7121. * to the last range that starts at-or-before the given endpoint,
  7122. * (or "before the sector after the target range")
  7123. * then see if it ends after the given start.
  7124. * We return
  7125. * 0 if there are no known bad blocks in the range
  7126. * 1 if there are known bad block which are all acknowledged
  7127. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7128. * plus the start/length of the first bad section we overlap.
  7129. */
  7130. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7131. sector_t *first_bad, int *bad_sectors)
  7132. {
  7133. int hi;
  7134. int lo;
  7135. u64 *p = bb->page;
  7136. int rv;
  7137. sector_t target = s + sectors;
  7138. unsigned seq;
  7139. if (bb->shift > 0) {
  7140. /* round the start down, and the end up */
  7141. s >>= bb->shift;
  7142. target += (1<<bb->shift) - 1;
  7143. target >>= bb->shift;
  7144. sectors = target - s;
  7145. }
  7146. /* 'target' is now the first block after the bad range */
  7147. retry:
  7148. seq = read_seqbegin(&bb->lock);
  7149. lo = 0;
  7150. rv = 0;
  7151. hi = bb->count;
  7152. /* Binary search between lo and hi for 'target'
  7153. * i.e. for the last range that starts before 'target'
  7154. */
  7155. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7156. * are known not to be the last range before target.
  7157. * VARIANT: hi-lo is the number of possible
  7158. * ranges, and decreases until it reaches 1
  7159. */
  7160. while (hi - lo > 1) {
  7161. int mid = (lo + hi) / 2;
  7162. sector_t a = BB_OFFSET(p[mid]);
  7163. if (a < target)
  7164. /* This could still be the one, earlier ranges
  7165. * could not. */
  7166. lo = mid;
  7167. else
  7168. /* This and later ranges are definitely out. */
  7169. hi = mid;
  7170. }
  7171. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7172. if (hi > lo) {
  7173. /* need to check all range that end after 's' to see if
  7174. * any are unacknowledged.
  7175. */
  7176. while (lo >= 0 &&
  7177. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7178. if (BB_OFFSET(p[lo]) < target) {
  7179. /* starts before the end, and finishes after
  7180. * the start, so they must overlap
  7181. */
  7182. if (rv != -1 && BB_ACK(p[lo]))
  7183. rv = 1;
  7184. else
  7185. rv = -1;
  7186. *first_bad = BB_OFFSET(p[lo]);
  7187. *bad_sectors = BB_LEN(p[lo]);
  7188. }
  7189. lo--;
  7190. }
  7191. }
  7192. if (read_seqretry(&bb->lock, seq))
  7193. goto retry;
  7194. return rv;
  7195. }
  7196. EXPORT_SYMBOL_GPL(md_is_badblock);
  7197. /*
  7198. * Add a range of bad blocks to the table.
  7199. * This might extend the table, or might contract it
  7200. * if two adjacent ranges can be merged.
  7201. * We binary-search to find the 'insertion' point, then
  7202. * decide how best to handle it.
  7203. */
  7204. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7205. int acknowledged)
  7206. {
  7207. u64 *p;
  7208. int lo, hi;
  7209. int rv = 1;
  7210. unsigned long flags;
  7211. if (bb->shift < 0)
  7212. /* badblocks are disabled */
  7213. return 0;
  7214. if (bb->shift) {
  7215. /* round the start down, and the end up */
  7216. sector_t next = s + sectors;
  7217. s >>= bb->shift;
  7218. next += (1<<bb->shift) - 1;
  7219. next >>= bb->shift;
  7220. sectors = next - s;
  7221. }
  7222. write_seqlock_irqsave(&bb->lock, flags);
  7223. p = bb->page;
  7224. lo = 0;
  7225. hi = bb->count;
  7226. /* Find the last range that starts at-or-before 's' */
  7227. while (hi - lo > 1) {
  7228. int mid = (lo + hi) / 2;
  7229. sector_t a = BB_OFFSET(p[mid]);
  7230. if (a <= s)
  7231. lo = mid;
  7232. else
  7233. hi = mid;
  7234. }
  7235. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7236. hi = lo;
  7237. if (hi > lo) {
  7238. /* we found a range that might merge with the start
  7239. * of our new range
  7240. */
  7241. sector_t a = BB_OFFSET(p[lo]);
  7242. sector_t e = a + BB_LEN(p[lo]);
  7243. int ack = BB_ACK(p[lo]);
  7244. if (e >= s) {
  7245. /* Yes, we can merge with a previous range */
  7246. if (s == a && s + sectors >= e)
  7247. /* new range covers old */
  7248. ack = acknowledged;
  7249. else
  7250. ack = ack && acknowledged;
  7251. if (e < s + sectors)
  7252. e = s + sectors;
  7253. if (e - a <= BB_MAX_LEN) {
  7254. p[lo] = BB_MAKE(a, e-a, ack);
  7255. s = e;
  7256. } else {
  7257. /* does not all fit in one range,
  7258. * make p[lo] maximal
  7259. */
  7260. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7261. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7262. s = a + BB_MAX_LEN;
  7263. }
  7264. sectors = e - s;
  7265. }
  7266. }
  7267. if (sectors && hi < bb->count) {
  7268. /* 'hi' points to the first range that starts after 's'.
  7269. * Maybe we can merge with the start of that range */
  7270. sector_t a = BB_OFFSET(p[hi]);
  7271. sector_t e = a + BB_LEN(p[hi]);
  7272. int ack = BB_ACK(p[hi]);
  7273. if (a <= s + sectors) {
  7274. /* merging is possible */
  7275. if (e <= s + sectors) {
  7276. /* full overlap */
  7277. e = s + sectors;
  7278. ack = acknowledged;
  7279. } else
  7280. ack = ack && acknowledged;
  7281. a = s;
  7282. if (e - a <= BB_MAX_LEN) {
  7283. p[hi] = BB_MAKE(a, e-a, ack);
  7284. s = e;
  7285. } else {
  7286. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7287. s = a + BB_MAX_LEN;
  7288. }
  7289. sectors = e - s;
  7290. lo = hi;
  7291. hi++;
  7292. }
  7293. }
  7294. if (sectors == 0 && hi < bb->count) {
  7295. /* we might be able to combine lo and hi */
  7296. /* Note: 's' is at the end of 'lo' */
  7297. sector_t a = BB_OFFSET(p[hi]);
  7298. int lolen = BB_LEN(p[lo]);
  7299. int hilen = BB_LEN(p[hi]);
  7300. int newlen = lolen + hilen - (s - a);
  7301. if (s >= a && newlen < BB_MAX_LEN) {
  7302. /* yes, we can combine them */
  7303. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7304. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7305. memmove(p + hi, p + hi + 1,
  7306. (bb->count - hi - 1) * 8);
  7307. bb->count--;
  7308. }
  7309. }
  7310. while (sectors) {
  7311. /* didn't merge (it all).
  7312. * Need to add a range just before 'hi' */
  7313. if (bb->count >= MD_MAX_BADBLOCKS) {
  7314. /* No room for more */
  7315. rv = 0;
  7316. break;
  7317. } else {
  7318. int this_sectors = sectors;
  7319. memmove(p + hi + 1, p + hi,
  7320. (bb->count - hi) * 8);
  7321. bb->count++;
  7322. if (this_sectors > BB_MAX_LEN)
  7323. this_sectors = BB_MAX_LEN;
  7324. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7325. sectors -= this_sectors;
  7326. s += this_sectors;
  7327. }
  7328. }
  7329. bb->changed = 1;
  7330. if (!acknowledged)
  7331. bb->unacked_exist = 1;
  7332. write_sequnlock_irqrestore(&bb->lock, flags);
  7333. return rv;
  7334. }
  7335. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7336. int is_new)
  7337. {
  7338. int rv;
  7339. if (is_new)
  7340. s += rdev->new_data_offset;
  7341. else
  7342. s += rdev->data_offset;
  7343. rv = md_set_badblocks(&rdev->badblocks,
  7344. s, sectors, 0);
  7345. if (rv) {
  7346. /* Make sure they get written out promptly */
  7347. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7348. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7349. md_wakeup_thread(rdev->mddev->thread);
  7350. }
  7351. return rv;
  7352. }
  7353. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7354. /*
  7355. * Remove a range of bad blocks from the table.
  7356. * This may involve extending the table if we spilt a region,
  7357. * but it must not fail. So if the table becomes full, we just
  7358. * drop the remove request.
  7359. */
  7360. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7361. {
  7362. u64 *p;
  7363. int lo, hi;
  7364. sector_t target = s + sectors;
  7365. int rv = 0;
  7366. if (bb->shift > 0) {
  7367. /* When clearing we round the start up and the end down.
  7368. * This should not matter as the shift should align with
  7369. * the block size and no rounding should ever be needed.
  7370. * However it is better the think a block is bad when it
  7371. * isn't than to think a block is not bad when it is.
  7372. */
  7373. s += (1<<bb->shift) - 1;
  7374. s >>= bb->shift;
  7375. target >>= bb->shift;
  7376. sectors = target - s;
  7377. }
  7378. write_seqlock_irq(&bb->lock);
  7379. p = bb->page;
  7380. lo = 0;
  7381. hi = bb->count;
  7382. /* Find the last range that starts before 'target' */
  7383. while (hi - lo > 1) {
  7384. int mid = (lo + hi) / 2;
  7385. sector_t a = BB_OFFSET(p[mid]);
  7386. if (a < target)
  7387. lo = mid;
  7388. else
  7389. hi = mid;
  7390. }
  7391. if (hi > lo) {
  7392. /* p[lo] is the last range that could overlap the
  7393. * current range. Earlier ranges could also overlap,
  7394. * but only this one can overlap the end of the range.
  7395. */
  7396. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7397. /* Partial overlap, leave the tail of this range */
  7398. int ack = BB_ACK(p[lo]);
  7399. sector_t a = BB_OFFSET(p[lo]);
  7400. sector_t end = a + BB_LEN(p[lo]);
  7401. if (a < s) {
  7402. /* we need to split this range */
  7403. if (bb->count >= MD_MAX_BADBLOCKS) {
  7404. rv = 0;
  7405. goto out;
  7406. }
  7407. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7408. bb->count++;
  7409. p[lo] = BB_MAKE(a, s-a, ack);
  7410. lo++;
  7411. }
  7412. p[lo] = BB_MAKE(target, end - target, ack);
  7413. /* there is no longer an overlap */
  7414. hi = lo;
  7415. lo--;
  7416. }
  7417. while (lo >= 0 &&
  7418. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7419. /* This range does overlap */
  7420. if (BB_OFFSET(p[lo]) < s) {
  7421. /* Keep the early parts of this range. */
  7422. int ack = BB_ACK(p[lo]);
  7423. sector_t start = BB_OFFSET(p[lo]);
  7424. p[lo] = BB_MAKE(start, s - start, ack);
  7425. /* now low doesn't overlap, so.. */
  7426. break;
  7427. }
  7428. lo--;
  7429. }
  7430. /* 'lo' is strictly before, 'hi' is strictly after,
  7431. * anything between needs to be discarded
  7432. */
  7433. if (hi - lo > 1) {
  7434. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7435. bb->count -= (hi - lo - 1);
  7436. }
  7437. }
  7438. bb->changed = 1;
  7439. out:
  7440. write_sequnlock_irq(&bb->lock);
  7441. return rv;
  7442. }
  7443. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7444. int is_new)
  7445. {
  7446. if (is_new)
  7447. s += rdev->new_data_offset;
  7448. else
  7449. s += rdev->data_offset;
  7450. return md_clear_badblocks(&rdev->badblocks,
  7451. s, sectors);
  7452. }
  7453. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7454. /*
  7455. * Acknowledge all bad blocks in a list.
  7456. * This only succeeds if ->changed is clear. It is used by
  7457. * in-kernel metadata updates
  7458. */
  7459. void md_ack_all_badblocks(struct badblocks *bb)
  7460. {
  7461. if (bb->page == NULL || bb->changed)
  7462. /* no point even trying */
  7463. return;
  7464. write_seqlock_irq(&bb->lock);
  7465. if (bb->changed == 0 && bb->unacked_exist) {
  7466. u64 *p = bb->page;
  7467. int i;
  7468. for (i = 0; i < bb->count ; i++) {
  7469. if (!BB_ACK(p[i])) {
  7470. sector_t start = BB_OFFSET(p[i]);
  7471. int len = BB_LEN(p[i]);
  7472. p[i] = BB_MAKE(start, len, 1);
  7473. }
  7474. }
  7475. bb->unacked_exist = 0;
  7476. }
  7477. write_sequnlock_irq(&bb->lock);
  7478. }
  7479. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7480. /* sysfs access to bad-blocks list.
  7481. * We present two files.
  7482. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7483. * are recorded as bad. The list is truncated to fit within
  7484. * the one-page limit of sysfs.
  7485. * Writing "sector length" to this file adds an acknowledged
  7486. * bad block list.
  7487. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7488. * been acknowledged. Writing to this file adds bad blocks
  7489. * without acknowledging them. This is largely for testing.
  7490. */
  7491. static ssize_t
  7492. badblocks_show(struct badblocks *bb, char *page, int unack)
  7493. {
  7494. size_t len;
  7495. int i;
  7496. u64 *p = bb->page;
  7497. unsigned seq;
  7498. if (bb->shift < 0)
  7499. return 0;
  7500. retry:
  7501. seq = read_seqbegin(&bb->lock);
  7502. len = 0;
  7503. i = 0;
  7504. while (len < PAGE_SIZE && i < bb->count) {
  7505. sector_t s = BB_OFFSET(p[i]);
  7506. unsigned int length = BB_LEN(p[i]);
  7507. int ack = BB_ACK(p[i]);
  7508. i++;
  7509. if (unack && ack)
  7510. continue;
  7511. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7512. (unsigned long long)s << bb->shift,
  7513. length << bb->shift);
  7514. }
  7515. if (unack && len == 0)
  7516. bb->unacked_exist = 0;
  7517. if (read_seqretry(&bb->lock, seq))
  7518. goto retry;
  7519. return len;
  7520. }
  7521. #define DO_DEBUG 1
  7522. static ssize_t
  7523. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7524. {
  7525. unsigned long long sector;
  7526. int length;
  7527. char newline;
  7528. #ifdef DO_DEBUG
  7529. /* Allow clearing via sysfs *only* for testing/debugging.
  7530. * Normally only a successful write may clear a badblock
  7531. */
  7532. int clear = 0;
  7533. if (page[0] == '-') {
  7534. clear = 1;
  7535. page++;
  7536. }
  7537. #endif /* DO_DEBUG */
  7538. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7539. case 3:
  7540. if (newline != '\n')
  7541. return -EINVAL;
  7542. case 2:
  7543. if (length <= 0)
  7544. return -EINVAL;
  7545. break;
  7546. default:
  7547. return -EINVAL;
  7548. }
  7549. #ifdef DO_DEBUG
  7550. if (clear) {
  7551. md_clear_badblocks(bb, sector, length);
  7552. return len;
  7553. }
  7554. #endif /* DO_DEBUG */
  7555. if (md_set_badblocks(bb, sector, length, !unack))
  7556. return len;
  7557. else
  7558. return -ENOSPC;
  7559. }
  7560. static int md_notify_reboot(struct notifier_block *this,
  7561. unsigned long code, void *x)
  7562. {
  7563. struct list_head *tmp;
  7564. struct mddev *mddev;
  7565. int need_delay = 0;
  7566. for_each_mddev(mddev, tmp) {
  7567. if (mddev_trylock(mddev)) {
  7568. if (mddev->pers)
  7569. __md_stop_writes(mddev);
  7570. mddev->safemode = 2;
  7571. mddev_unlock(mddev);
  7572. }
  7573. need_delay = 1;
  7574. }
  7575. /*
  7576. * certain more exotic SCSI devices are known to be
  7577. * volatile wrt too early system reboots. While the
  7578. * right place to handle this issue is the given
  7579. * driver, we do want to have a safe RAID driver ...
  7580. */
  7581. if (need_delay)
  7582. mdelay(1000*1);
  7583. return NOTIFY_DONE;
  7584. }
  7585. static struct notifier_block md_notifier = {
  7586. .notifier_call = md_notify_reboot,
  7587. .next = NULL,
  7588. .priority = INT_MAX, /* before any real devices */
  7589. };
  7590. static void md_geninit(void)
  7591. {
  7592. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7593. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7594. }
  7595. static int __init md_init(void)
  7596. {
  7597. int ret = -ENOMEM;
  7598. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7599. if (!md_wq)
  7600. goto err_wq;
  7601. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7602. if (!md_misc_wq)
  7603. goto err_misc_wq;
  7604. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7605. goto err_md;
  7606. if ((ret = register_blkdev(0, "mdp")) < 0)
  7607. goto err_mdp;
  7608. mdp_major = ret;
  7609. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7610. md_probe, NULL, NULL);
  7611. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7612. md_probe, NULL, NULL);
  7613. register_reboot_notifier(&md_notifier);
  7614. raid_table_header = register_sysctl_table(raid_root_table);
  7615. md_geninit();
  7616. return 0;
  7617. err_mdp:
  7618. unregister_blkdev(MD_MAJOR, "md");
  7619. err_md:
  7620. destroy_workqueue(md_misc_wq);
  7621. err_misc_wq:
  7622. destroy_workqueue(md_wq);
  7623. err_wq:
  7624. return ret;
  7625. }
  7626. #ifndef MODULE
  7627. /*
  7628. * Searches all registered partitions for autorun RAID arrays
  7629. * at boot time.
  7630. */
  7631. static LIST_HEAD(all_detected_devices);
  7632. struct detected_devices_node {
  7633. struct list_head list;
  7634. dev_t dev;
  7635. };
  7636. void md_autodetect_dev(dev_t dev)
  7637. {
  7638. struct detected_devices_node *node_detected_dev;
  7639. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7640. if (node_detected_dev) {
  7641. node_detected_dev->dev = dev;
  7642. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7643. } else {
  7644. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7645. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7646. }
  7647. }
  7648. static void autostart_arrays(int part)
  7649. {
  7650. struct md_rdev *rdev;
  7651. struct detected_devices_node *node_detected_dev;
  7652. dev_t dev;
  7653. int i_scanned, i_passed;
  7654. i_scanned = 0;
  7655. i_passed = 0;
  7656. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7657. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7658. i_scanned++;
  7659. node_detected_dev = list_entry(all_detected_devices.next,
  7660. struct detected_devices_node, list);
  7661. list_del(&node_detected_dev->list);
  7662. dev = node_detected_dev->dev;
  7663. kfree(node_detected_dev);
  7664. rdev = md_import_device(dev,0, 90);
  7665. if (IS_ERR(rdev))
  7666. continue;
  7667. if (test_bit(Faulty, &rdev->flags)) {
  7668. MD_BUG();
  7669. continue;
  7670. }
  7671. set_bit(AutoDetected, &rdev->flags);
  7672. list_add(&rdev->same_set, &pending_raid_disks);
  7673. i_passed++;
  7674. }
  7675. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7676. i_scanned, i_passed);
  7677. autorun_devices(part);
  7678. }
  7679. #endif /* !MODULE */
  7680. static __exit void md_exit(void)
  7681. {
  7682. struct mddev *mddev;
  7683. struct list_head *tmp;
  7684. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7685. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7686. unregister_blkdev(MD_MAJOR,"md");
  7687. unregister_blkdev(mdp_major, "mdp");
  7688. unregister_reboot_notifier(&md_notifier);
  7689. unregister_sysctl_table(raid_table_header);
  7690. remove_proc_entry("mdstat", NULL);
  7691. for_each_mddev(mddev, tmp) {
  7692. export_array(mddev);
  7693. mddev->hold_active = 0;
  7694. }
  7695. destroy_workqueue(md_misc_wq);
  7696. destroy_workqueue(md_wq);
  7697. }
  7698. subsys_initcall(md_init);
  7699. module_exit(md_exit)
  7700. static int get_ro(char *buffer, struct kernel_param *kp)
  7701. {
  7702. return sprintf(buffer, "%d", start_readonly);
  7703. }
  7704. static int set_ro(const char *val, struct kernel_param *kp)
  7705. {
  7706. char *e;
  7707. int num = simple_strtoul(val, &e, 10);
  7708. if (*val && (*e == '\0' || *e == '\n')) {
  7709. start_readonly = num;
  7710. return 0;
  7711. }
  7712. return -EINVAL;
  7713. }
  7714. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7715. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7716. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7717. EXPORT_SYMBOL(register_md_personality);
  7718. EXPORT_SYMBOL(unregister_md_personality);
  7719. EXPORT_SYMBOL(md_error);
  7720. EXPORT_SYMBOL(md_done_sync);
  7721. EXPORT_SYMBOL(md_write_start);
  7722. EXPORT_SYMBOL(md_write_end);
  7723. EXPORT_SYMBOL(md_register_thread);
  7724. EXPORT_SYMBOL(md_unregister_thread);
  7725. EXPORT_SYMBOL(md_wakeup_thread);
  7726. EXPORT_SYMBOL(md_check_recovery);
  7727. EXPORT_SYMBOL(md_reap_sync_thread);
  7728. MODULE_LICENSE("GPL");
  7729. MODULE_DESCRIPTION("MD RAID framework");
  7730. MODULE_ALIAS("md");
  7731. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);