sched.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. #ifdef CONFIG_FAIR_GROUP_SCHED
  158. struct cfs_rq;
  159. /* task group related information */
  160. struct task_grp {
  161. /* schedulable entities of this group on each cpu */
  162. struct sched_entity **se;
  163. /* runqueue "owned" by this group on each cpu */
  164. struct cfs_rq **cfs_rq;
  165. unsigned long shares;
  166. };
  167. /* Default task group's sched entity on each cpu */
  168. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  169. /* Default task group's cfs_rq on each cpu */
  170. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  171. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  172. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  173. /* Default task group.
  174. * Every task in system belong to this group at bootup.
  175. */
  176. struct task_grp init_task_grp = {
  177. .se = init_sched_entity_p,
  178. .cfs_rq = init_cfs_rq_p,
  179. };
  180. #ifdef CONFIG_FAIR_USER_SCHED
  181. #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  182. #else
  183. #define INIT_TASK_GRP_LOAD NICE_0_LOAD
  184. #endif
  185. static int init_task_grp_load = INIT_TASK_GRP_LOAD;
  186. /* return group to which a task belongs */
  187. static inline struct task_grp *task_grp(struct task_struct *p)
  188. {
  189. struct task_grp *tg;
  190. #ifdef CONFIG_FAIR_USER_SCHED
  191. tg = p->user->tg;
  192. #else
  193. tg = &init_task_grp;
  194. #endif
  195. return tg;
  196. }
  197. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  198. static inline void set_task_cfs_rq(struct task_struct *p)
  199. {
  200. p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
  201. p->se.parent = task_grp(p)->se[task_cpu(p)];
  202. }
  203. #else
  204. static inline void set_task_cfs_rq(struct task_struct *p) { }
  205. #endif /* CONFIG_FAIR_GROUP_SCHED */
  206. /* CFS-related fields in a runqueue */
  207. struct cfs_rq {
  208. struct load_weight load;
  209. unsigned long nr_running;
  210. u64 exec_clock;
  211. u64 min_vruntime;
  212. struct rb_root tasks_timeline;
  213. struct rb_node *rb_leftmost;
  214. struct rb_node *rb_load_balance_curr;
  215. /* 'curr' points to currently running entity on this cfs_rq.
  216. * It is set to NULL otherwise (i.e when none are currently running).
  217. */
  218. struct sched_entity *curr;
  219. unsigned long nr_spread_over;
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  222. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  223. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  224. * (like users, containers etc.)
  225. *
  226. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  227. * list is used during load balance.
  228. */
  229. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  230. struct task_grp *tg; /* group that "owns" this runqueue */
  231. struct rcu_head rcu;
  232. #endif
  233. };
  234. /* Real-Time classes' related field in a runqueue: */
  235. struct rt_rq {
  236. struct rt_prio_array active;
  237. int rt_load_balance_idx;
  238. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  239. };
  240. /*
  241. * This is the main, per-CPU runqueue data structure.
  242. *
  243. * Locking rule: those places that want to lock multiple runqueues
  244. * (such as the load balancing or the thread migration code), lock
  245. * acquire operations must be ordered by ascending &runqueue.
  246. */
  247. struct rq {
  248. spinlock_t lock; /* runqueue lock */
  249. /*
  250. * nr_running and cpu_load should be in the same cacheline because
  251. * remote CPUs use both these fields when doing load calculation.
  252. */
  253. unsigned long nr_running;
  254. #define CPU_LOAD_IDX_MAX 5
  255. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  256. unsigned char idle_at_tick;
  257. #ifdef CONFIG_NO_HZ
  258. unsigned char in_nohz_recently;
  259. #endif
  260. struct load_weight load; /* capture load from *all* tasks on this cpu */
  261. unsigned long nr_load_updates;
  262. u64 nr_switches;
  263. struct cfs_rq cfs;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  266. #endif
  267. struct rt_rq rt;
  268. /*
  269. * This is part of a global counter where only the total sum
  270. * over all CPUs matters. A task can increase this counter on
  271. * one CPU and if it got migrated afterwards it may decrease
  272. * it on another CPU. Always updated under the runqueue lock:
  273. */
  274. unsigned long nr_uninterruptible;
  275. struct task_struct *curr, *idle;
  276. unsigned long next_balance;
  277. struct mm_struct *prev_mm;
  278. u64 clock, prev_clock_raw;
  279. s64 clock_max_delta;
  280. unsigned int clock_warps, clock_overflows;
  281. u64 idle_clock;
  282. unsigned int clock_deep_idle_events;
  283. u64 tick_timestamp;
  284. atomic_t nr_iowait;
  285. #ifdef CONFIG_SMP
  286. struct sched_domain *sd;
  287. /* For active balancing */
  288. int active_balance;
  289. int push_cpu;
  290. int cpu; /* cpu of this runqueue */
  291. struct task_struct *migration_thread;
  292. struct list_head migration_queue;
  293. #endif
  294. #ifdef CONFIG_SCHEDSTATS
  295. /* latency stats */
  296. struct sched_info rq_sched_info;
  297. /* sys_sched_yield() stats */
  298. unsigned long yld_exp_empty;
  299. unsigned long yld_act_empty;
  300. unsigned long yld_both_empty;
  301. unsigned long yld_cnt;
  302. /* schedule() stats */
  303. unsigned long sched_switch;
  304. unsigned long sched_cnt;
  305. unsigned long sched_goidle;
  306. /* try_to_wake_up() stats */
  307. unsigned long ttwu_cnt;
  308. unsigned long ttwu_local;
  309. /* BKL stats */
  310. unsigned long bkl_cnt;
  311. #endif
  312. struct lock_class_key rq_lock_key;
  313. };
  314. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  315. static DEFINE_MUTEX(sched_hotcpu_mutex);
  316. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  317. {
  318. rq->curr->sched_class->check_preempt_curr(rq, p);
  319. }
  320. static inline int cpu_of(struct rq *rq)
  321. {
  322. #ifdef CONFIG_SMP
  323. return rq->cpu;
  324. #else
  325. return 0;
  326. #endif
  327. }
  328. /*
  329. * Update the per-runqueue clock, as finegrained as the platform can give
  330. * us, but without assuming monotonicity, etc.:
  331. */
  332. static void __update_rq_clock(struct rq *rq)
  333. {
  334. u64 prev_raw = rq->prev_clock_raw;
  335. u64 now = sched_clock();
  336. s64 delta = now - prev_raw;
  337. u64 clock = rq->clock;
  338. #ifdef CONFIG_SCHED_DEBUG
  339. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  340. #endif
  341. /*
  342. * Protect against sched_clock() occasionally going backwards:
  343. */
  344. if (unlikely(delta < 0)) {
  345. clock++;
  346. rq->clock_warps++;
  347. } else {
  348. /*
  349. * Catch too large forward jumps too:
  350. */
  351. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  352. if (clock < rq->tick_timestamp + TICK_NSEC)
  353. clock = rq->tick_timestamp + TICK_NSEC;
  354. else
  355. clock++;
  356. rq->clock_overflows++;
  357. } else {
  358. if (unlikely(delta > rq->clock_max_delta))
  359. rq->clock_max_delta = delta;
  360. clock += delta;
  361. }
  362. }
  363. rq->prev_clock_raw = now;
  364. rq->clock = clock;
  365. }
  366. static void update_rq_clock(struct rq *rq)
  367. {
  368. if (likely(smp_processor_id() == cpu_of(rq)))
  369. __update_rq_clock(rq);
  370. }
  371. /*
  372. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  373. * See detach_destroy_domains: synchronize_sched for details.
  374. *
  375. * The domain tree of any CPU may only be accessed from within
  376. * preempt-disabled sections.
  377. */
  378. #define for_each_domain(cpu, __sd) \
  379. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  380. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  381. #define this_rq() (&__get_cpu_var(runqueues))
  382. #define task_rq(p) cpu_rq(task_cpu(p))
  383. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  384. /*
  385. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  386. */
  387. #ifdef CONFIG_SCHED_DEBUG
  388. # define const_debug __read_mostly
  389. #else
  390. # define const_debug static const
  391. #endif
  392. /*
  393. * Debugging: various feature bits
  394. */
  395. enum {
  396. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  397. SCHED_FEAT_START_DEBIT = 2,
  398. SCHED_FEAT_USE_TREE_AVG = 4,
  399. SCHED_FEAT_APPROX_AVG = 8,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  403. SCHED_FEAT_START_DEBIT *1 |
  404. SCHED_FEAT_USE_TREE_AVG *0 |
  405. SCHED_FEAT_APPROX_AVG *0;
  406. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  407. /*
  408. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  409. * clock constructed from sched_clock():
  410. */
  411. unsigned long long cpu_clock(int cpu)
  412. {
  413. unsigned long long now;
  414. unsigned long flags;
  415. struct rq *rq;
  416. local_irq_save(flags);
  417. rq = cpu_rq(cpu);
  418. update_rq_clock(rq);
  419. now = rq->clock;
  420. local_irq_restore(flags);
  421. return now;
  422. }
  423. #ifndef prepare_arch_switch
  424. # define prepare_arch_switch(next) do { } while (0)
  425. #endif
  426. #ifndef finish_arch_switch
  427. # define finish_arch_switch(prev) do { } while (0)
  428. #endif
  429. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  430. static inline int task_running(struct rq *rq, struct task_struct *p)
  431. {
  432. return rq->curr == p;
  433. }
  434. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  435. {
  436. }
  437. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  438. {
  439. #ifdef CONFIG_DEBUG_SPINLOCK
  440. /* this is a valid case when another task releases the spinlock */
  441. rq->lock.owner = current;
  442. #endif
  443. /*
  444. * If we are tracking spinlock dependencies then we have to
  445. * fix up the runqueue lock - which gets 'carried over' from
  446. * prev into current:
  447. */
  448. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  449. spin_unlock_irq(&rq->lock);
  450. }
  451. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  452. static inline int task_running(struct rq *rq, struct task_struct *p)
  453. {
  454. #ifdef CONFIG_SMP
  455. return p->oncpu;
  456. #else
  457. return rq->curr == p;
  458. #endif
  459. }
  460. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  461. {
  462. #ifdef CONFIG_SMP
  463. /*
  464. * We can optimise this out completely for !SMP, because the
  465. * SMP rebalancing from interrupt is the only thing that cares
  466. * here.
  467. */
  468. next->oncpu = 1;
  469. #endif
  470. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  471. spin_unlock_irq(&rq->lock);
  472. #else
  473. spin_unlock(&rq->lock);
  474. #endif
  475. }
  476. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  477. {
  478. #ifdef CONFIG_SMP
  479. /*
  480. * After ->oncpu is cleared, the task can be moved to a different CPU.
  481. * We must ensure this doesn't happen until the switch is completely
  482. * finished.
  483. */
  484. smp_wmb();
  485. prev->oncpu = 0;
  486. #endif
  487. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  488. local_irq_enable();
  489. #endif
  490. }
  491. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  492. /*
  493. * __task_rq_lock - lock the runqueue a given task resides on.
  494. * Must be called interrupts disabled.
  495. */
  496. static inline struct rq *__task_rq_lock(struct task_struct *p)
  497. __acquires(rq->lock)
  498. {
  499. struct rq *rq;
  500. repeat_lock_task:
  501. rq = task_rq(p);
  502. spin_lock(&rq->lock);
  503. if (unlikely(rq != task_rq(p))) {
  504. spin_unlock(&rq->lock);
  505. goto repeat_lock_task;
  506. }
  507. return rq;
  508. }
  509. /*
  510. * task_rq_lock - lock the runqueue a given task resides on and disable
  511. * interrupts. Note the ordering: we can safely lookup the task_rq without
  512. * explicitly disabling preemption.
  513. */
  514. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  515. __acquires(rq->lock)
  516. {
  517. struct rq *rq;
  518. repeat_lock_task:
  519. local_irq_save(*flags);
  520. rq = task_rq(p);
  521. spin_lock(&rq->lock);
  522. if (unlikely(rq != task_rq(p))) {
  523. spin_unlock_irqrestore(&rq->lock, *flags);
  524. goto repeat_lock_task;
  525. }
  526. return rq;
  527. }
  528. static inline void __task_rq_unlock(struct rq *rq)
  529. __releases(rq->lock)
  530. {
  531. spin_unlock(&rq->lock);
  532. }
  533. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  534. __releases(rq->lock)
  535. {
  536. spin_unlock_irqrestore(&rq->lock, *flags);
  537. }
  538. /*
  539. * this_rq_lock - lock this runqueue and disable interrupts.
  540. */
  541. static inline struct rq *this_rq_lock(void)
  542. __acquires(rq->lock)
  543. {
  544. struct rq *rq;
  545. local_irq_disable();
  546. rq = this_rq();
  547. spin_lock(&rq->lock);
  548. return rq;
  549. }
  550. /*
  551. * We are going deep-idle (irqs are disabled):
  552. */
  553. void sched_clock_idle_sleep_event(void)
  554. {
  555. struct rq *rq = cpu_rq(smp_processor_id());
  556. spin_lock(&rq->lock);
  557. __update_rq_clock(rq);
  558. spin_unlock(&rq->lock);
  559. rq->clock_deep_idle_events++;
  560. }
  561. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  562. /*
  563. * We just idled delta nanoseconds (called with irqs disabled):
  564. */
  565. void sched_clock_idle_wakeup_event(u64 delta_ns)
  566. {
  567. struct rq *rq = cpu_rq(smp_processor_id());
  568. u64 now = sched_clock();
  569. rq->idle_clock += delta_ns;
  570. /*
  571. * Override the previous timestamp and ignore all
  572. * sched_clock() deltas that occured while we idled,
  573. * and use the PM-provided delta_ns to advance the
  574. * rq clock:
  575. */
  576. spin_lock(&rq->lock);
  577. rq->prev_clock_raw = now;
  578. rq->clock += delta_ns;
  579. spin_unlock(&rq->lock);
  580. }
  581. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  582. /*
  583. * resched_task - mark a task 'to be rescheduled now'.
  584. *
  585. * On UP this means the setting of the need_resched flag, on SMP it
  586. * might also involve a cross-CPU call to trigger the scheduler on
  587. * the target CPU.
  588. */
  589. #ifdef CONFIG_SMP
  590. #ifndef tsk_is_polling
  591. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  592. #endif
  593. static void resched_task(struct task_struct *p)
  594. {
  595. int cpu;
  596. assert_spin_locked(&task_rq(p)->lock);
  597. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  598. return;
  599. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  600. cpu = task_cpu(p);
  601. if (cpu == smp_processor_id())
  602. return;
  603. /* NEED_RESCHED must be visible before we test polling */
  604. smp_mb();
  605. if (!tsk_is_polling(p))
  606. smp_send_reschedule(cpu);
  607. }
  608. static void resched_cpu(int cpu)
  609. {
  610. struct rq *rq = cpu_rq(cpu);
  611. unsigned long flags;
  612. if (!spin_trylock_irqsave(&rq->lock, flags))
  613. return;
  614. resched_task(cpu_curr(cpu));
  615. spin_unlock_irqrestore(&rq->lock, flags);
  616. }
  617. #else
  618. static inline void resched_task(struct task_struct *p)
  619. {
  620. assert_spin_locked(&task_rq(p)->lock);
  621. set_tsk_need_resched(p);
  622. }
  623. #endif
  624. #if BITS_PER_LONG == 32
  625. # define WMULT_CONST (~0UL)
  626. #else
  627. # define WMULT_CONST (1UL << 32)
  628. #endif
  629. #define WMULT_SHIFT 32
  630. /*
  631. * Shift right and round:
  632. */
  633. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  634. static unsigned long
  635. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  636. struct load_weight *lw)
  637. {
  638. u64 tmp;
  639. if (unlikely(!lw->inv_weight))
  640. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  641. tmp = (u64)delta_exec * weight;
  642. /*
  643. * Check whether we'd overflow the 64-bit multiplication:
  644. */
  645. if (unlikely(tmp > WMULT_CONST))
  646. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  647. WMULT_SHIFT/2);
  648. else
  649. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  650. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  651. }
  652. static inline unsigned long
  653. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  654. {
  655. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  656. }
  657. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  658. {
  659. lw->weight += inc;
  660. }
  661. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  662. {
  663. lw->weight -= dec;
  664. }
  665. /*
  666. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  667. * of tasks with abnormal "nice" values across CPUs the contribution that
  668. * each task makes to its run queue's load is weighted according to its
  669. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  670. * scaled version of the new time slice allocation that they receive on time
  671. * slice expiry etc.
  672. */
  673. #define WEIGHT_IDLEPRIO 2
  674. #define WMULT_IDLEPRIO (1 << 31)
  675. /*
  676. * Nice levels are multiplicative, with a gentle 10% change for every
  677. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  678. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  679. * that remained on nice 0.
  680. *
  681. * The "10% effect" is relative and cumulative: from _any_ nice level,
  682. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  683. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  684. * If a task goes up by ~10% and another task goes down by ~10% then
  685. * the relative distance between them is ~25%.)
  686. */
  687. static const int prio_to_weight[40] = {
  688. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  689. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  690. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  691. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  692. /* 0 */ 1024, 820, 655, 526, 423,
  693. /* 5 */ 335, 272, 215, 172, 137,
  694. /* 10 */ 110, 87, 70, 56, 45,
  695. /* 15 */ 36, 29, 23, 18, 15,
  696. };
  697. /*
  698. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  699. *
  700. * In cases where the weight does not change often, we can use the
  701. * precalculated inverse to speed up arithmetics by turning divisions
  702. * into multiplications:
  703. */
  704. static const u32 prio_to_wmult[40] = {
  705. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  706. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  707. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  708. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  709. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  710. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  711. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  712. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  713. };
  714. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  715. /*
  716. * runqueue iterator, to support SMP load-balancing between different
  717. * scheduling classes, without having to expose their internal data
  718. * structures to the load-balancing proper:
  719. */
  720. struct rq_iterator {
  721. void *arg;
  722. struct task_struct *(*start)(void *);
  723. struct task_struct *(*next)(void *);
  724. };
  725. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  726. unsigned long max_nr_move, unsigned long max_load_move,
  727. struct sched_domain *sd, enum cpu_idle_type idle,
  728. int *all_pinned, unsigned long *load_moved,
  729. int *this_best_prio, struct rq_iterator *iterator);
  730. #include "sched_stats.h"
  731. #include "sched_rt.c"
  732. #include "sched_fair.c"
  733. #include "sched_idletask.c"
  734. #ifdef CONFIG_SCHED_DEBUG
  735. # include "sched_debug.c"
  736. #endif
  737. #define sched_class_highest (&rt_sched_class)
  738. /*
  739. * Update delta_exec, delta_fair fields for rq.
  740. *
  741. * delta_fair clock advances at a rate inversely proportional to
  742. * total load (rq->load.weight) on the runqueue, while
  743. * delta_exec advances at the same rate as wall-clock (provided
  744. * cpu is not idle).
  745. *
  746. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  747. * runqueue over any given interval. This (smoothened) load is used
  748. * during load balance.
  749. *
  750. * This function is called /before/ updating rq->load
  751. * and when switching tasks.
  752. */
  753. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  754. {
  755. update_load_add(&rq->load, p->se.load.weight);
  756. }
  757. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  758. {
  759. update_load_sub(&rq->load, p->se.load.weight);
  760. }
  761. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  762. {
  763. rq->nr_running++;
  764. inc_load(rq, p);
  765. }
  766. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  767. {
  768. rq->nr_running--;
  769. dec_load(rq, p);
  770. }
  771. static void set_load_weight(struct task_struct *p)
  772. {
  773. if (task_has_rt_policy(p)) {
  774. p->se.load.weight = prio_to_weight[0] * 2;
  775. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  776. return;
  777. }
  778. /*
  779. * SCHED_IDLE tasks get minimal weight:
  780. */
  781. if (p->policy == SCHED_IDLE) {
  782. p->se.load.weight = WEIGHT_IDLEPRIO;
  783. p->se.load.inv_weight = WMULT_IDLEPRIO;
  784. return;
  785. }
  786. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  787. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  788. }
  789. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  790. {
  791. sched_info_queued(p);
  792. p->sched_class->enqueue_task(rq, p, wakeup);
  793. p->se.on_rq = 1;
  794. }
  795. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  796. {
  797. p->sched_class->dequeue_task(rq, p, sleep);
  798. p->se.on_rq = 0;
  799. }
  800. /*
  801. * __normal_prio - return the priority that is based on the static prio
  802. */
  803. static inline int __normal_prio(struct task_struct *p)
  804. {
  805. return p->static_prio;
  806. }
  807. /*
  808. * Calculate the expected normal priority: i.e. priority
  809. * without taking RT-inheritance into account. Might be
  810. * boosted by interactivity modifiers. Changes upon fork,
  811. * setprio syscalls, and whenever the interactivity
  812. * estimator recalculates.
  813. */
  814. static inline int normal_prio(struct task_struct *p)
  815. {
  816. int prio;
  817. if (task_has_rt_policy(p))
  818. prio = MAX_RT_PRIO-1 - p->rt_priority;
  819. else
  820. prio = __normal_prio(p);
  821. return prio;
  822. }
  823. /*
  824. * Calculate the current priority, i.e. the priority
  825. * taken into account by the scheduler. This value might
  826. * be boosted by RT tasks, or might be boosted by
  827. * interactivity modifiers. Will be RT if the task got
  828. * RT-boosted. If not then it returns p->normal_prio.
  829. */
  830. static int effective_prio(struct task_struct *p)
  831. {
  832. p->normal_prio = normal_prio(p);
  833. /*
  834. * If we are RT tasks or we were boosted to RT priority,
  835. * keep the priority unchanged. Otherwise, update priority
  836. * to the normal priority:
  837. */
  838. if (!rt_prio(p->prio))
  839. return p->normal_prio;
  840. return p->prio;
  841. }
  842. /*
  843. * activate_task - move a task to the runqueue.
  844. */
  845. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  846. {
  847. if (p->state == TASK_UNINTERRUPTIBLE)
  848. rq->nr_uninterruptible--;
  849. enqueue_task(rq, p, wakeup);
  850. inc_nr_running(p, rq);
  851. }
  852. /*
  853. * activate_idle_task - move idle task to the _front_ of runqueue.
  854. */
  855. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  856. {
  857. update_rq_clock(rq);
  858. if (p->state == TASK_UNINTERRUPTIBLE)
  859. rq->nr_uninterruptible--;
  860. enqueue_task(rq, p, 0);
  861. inc_nr_running(p, rq);
  862. }
  863. /*
  864. * deactivate_task - remove a task from the runqueue.
  865. */
  866. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  867. {
  868. if (p->state == TASK_UNINTERRUPTIBLE)
  869. rq->nr_uninterruptible++;
  870. dequeue_task(rq, p, sleep);
  871. dec_nr_running(p, rq);
  872. }
  873. /**
  874. * task_curr - is this task currently executing on a CPU?
  875. * @p: the task in question.
  876. */
  877. inline int task_curr(const struct task_struct *p)
  878. {
  879. return cpu_curr(task_cpu(p)) == p;
  880. }
  881. /* Used instead of source_load when we know the type == 0 */
  882. unsigned long weighted_cpuload(const int cpu)
  883. {
  884. return cpu_rq(cpu)->load.weight;
  885. }
  886. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  887. {
  888. #ifdef CONFIG_SMP
  889. task_thread_info(p)->cpu = cpu;
  890. #endif
  891. set_task_cfs_rq(p);
  892. }
  893. #ifdef CONFIG_SMP
  894. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  895. {
  896. int old_cpu = task_cpu(p);
  897. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  898. u64 clock_offset;
  899. clock_offset = old_rq->clock - new_rq->clock;
  900. #ifdef CONFIG_SCHEDSTATS
  901. if (p->se.wait_start)
  902. p->se.wait_start -= clock_offset;
  903. if (p->se.sleep_start)
  904. p->se.sleep_start -= clock_offset;
  905. if (p->se.block_start)
  906. p->se.block_start -= clock_offset;
  907. #endif
  908. p->se.vruntime -= old_rq->cfs.min_vruntime - new_rq->cfs.min_vruntime;
  909. __set_task_cpu(p, new_cpu);
  910. }
  911. struct migration_req {
  912. struct list_head list;
  913. struct task_struct *task;
  914. int dest_cpu;
  915. struct completion done;
  916. };
  917. /*
  918. * The task's runqueue lock must be held.
  919. * Returns true if you have to wait for migration thread.
  920. */
  921. static int
  922. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  923. {
  924. struct rq *rq = task_rq(p);
  925. /*
  926. * If the task is not on a runqueue (and not running), then
  927. * it is sufficient to simply update the task's cpu field.
  928. */
  929. if (!p->se.on_rq && !task_running(rq, p)) {
  930. set_task_cpu(p, dest_cpu);
  931. return 0;
  932. }
  933. init_completion(&req->done);
  934. req->task = p;
  935. req->dest_cpu = dest_cpu;
  936. list_add(&req->list, &rq->migration_queue);
  937. return 1;
  938. }
  939. /*
  940. * wait_task_inactive - wait for a thread to unschedule.
  941. *
  942. * The caller must ensure that the task *will* unschedule sometime soon,
  943. * else this function might spin for a *long* time. This function can't
  944. * be called with interrupts off, or it may introduce deadlock with
  945. * smp_call_function() if an IPI is sent by the same process we are
  946. * waiting to become inactive.
  947. */
  948. void wait_task_inactive(struct task_struct *p)
  949. {
  950. unsigned long flags;
  951. int running, on_rq;
  952. struct rq *rq;
  953. repeat:
  954. /*
  955. * We do the initial early heuristics without holding
  956. * any task-queue locks at all. We'll only try to get
  957. * the runqueue lock when things look like they will
  958. * work out!
  959. */
  960. rq = task_rq(p);
  961. /*
  962. * If the task is actively running on another CPU
  963. * still, just relax and busy-wait without holding
  964. * any locks.
  965. *
  966. * NOTE! Since we don't hold any locks, it's not
  967. * even sure that "rq" stays as the right runqueue!
  968. * But we don't care, since "task_running()" will
  969. * return false if the runqueue has changed and p
  970. * is actually now running somewhere else!
  971. */
  972. while (task_running(rq, p))
  973. cpu_relax();
  974. /*
  975. * Ok, time to look more closely! We need the rq
  976. * lock now, to be *sure*. If we're wrong, we'll
  977. * just go back and repeat.
  978. */
  979. rq = task_rq_lock(p, &flags);
  980. running = task_running(rq, p);
  981. on_rq = p->se.on_rq;
  982. task_rq_unlock(rq, &flags);
  983. /*
  984. * Was it really running after all now that we
  985. * checked with the proper locks actually held?
  986. *
  987. * Oops. Go back and try again..
  988. */
  989. if (unlikely(running)) {
  990. cpu_relax();
  991. goto repeat;
  992. }
  993. /*
  994. * It's not enough that it's not actively running,
  995. * it must be off the runqueue _entirely_, and not
  996. * preempted!
  997. *
  998. * So if it wa still runnable (but just not actively
  999. * running right now), it's preempted, and we should
  1000. * yield - it could be a while.
  1001. */
  1002. if (unlikely(on_rq)) {
  1003. yield();
  1004. goto repeat;
  1005. }
  1006. /*
  1007. * Ahh, all good. It wasn't running, and it wasn't
  1008. * runnable, which means that it will never become
  1009. * running in the future either. We're all done!
  1010. */
  1011. }
  1012. /***
  1013. * kick_process - kick a running thread to enter/exit the kernel
  1014. * @p: the to-be-kicked thread
  1015. *
  1016. * Cause a process which is running on another CPU to enter
  1017. * kernel-mode, without any delay. (to get signals handled.)
  1018. *
  1019. * NOTE: this function doesnt have to take the runqueue lock,
  1020. * because all it wants to ensure is that the remote task enters
  1021. * the kernel. If the IPI races and the task has been migrated
  1022. * to another CPU then no harm is done and the purpose has been
  1023. * achieved as well.
  1024. */
  1025. void kick_process(struct task_struct *p)
  1026. {
  1027. int cpu;
  1028. preempt_disable();
  1029. cpu = task_cpu(p);
  1030. if ((cpu != smp_processor_id()) && task_curr(p))
  1031. smp_send_reschedule(cpu);
  1032. preempt_enable();
  1033. }
  1034. /*
  1035. * Return a low guess at the load of a migration-source cpu weighted
  1036. * according to the scheduling class and "nice" value.
  1037. *
  1038. * We want to under-estimate the load of migration sources, to
  1039. * balance conservatively.
  1040. */
  1041. static inline unsigned long source_load(int cpu, int type)
  1042. {
  1043. struct rq *rq = cpu_rq(cpu);
  1044. unsigned long total = weighted_cpuload(cpu);
  1045. if (type == 0)
  1046. return total;
  1047. return min(rq->cpu_load[type-1], total);
  1048. }
  1049. /*
  1050. * Return a high guess at the load of a migration-target cpu weighted
  1051. * according to the scheduling class and "nice" value.
  1052. */
  1053. static inline unsigned long target_load(int cpu, int type)
  1054. {
  1055. struct rq *rq = cpu_rq(cpu);
  1056. unsigned long total = weighted_cpuload(cpu);
  1057. if (type == 0)
  1058. return total;
  1059. return max(rq->cpu_load[type-1], total);
  1060. }
  1061. /*
  1062. * Return the average load per task on the cpu's run queue
  1063. */
  1064. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1065. {
  1066. struct rq *rq = cpu_rq(cpu);
  1067. unsigned long total = weighted_cpuload(cpu);
  1068. unsigned long n = rq->nr_running;
  1069. return n ? total / n : SCHED_LOAD_SCALE;
  1070. }
  1071. /*
  1072. * find_idlest_group finds and returns the least busy CPU group within the
  1073. * domain.
  1074. */
  1075. static struct sched_group *
  1076. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1077. {
  1078. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1079. unsigned long min_load = ULONG_MAX, this_load = 0;
  1080. int load_idx = sd->forkexec_idx;
  1081. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1082. do {
  1083. unsigned long load, avg_load;
  1084. int local_group;
  1085. int i;
  1086. /* Skip over this group if it has no CPUs allowed */
  1087. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1088. goto nextgroup;
  1089. local_group = cpu_isset(this_cpu, group->cpumask);
  1090. /* Tally up the load of all CPUs in the group */
  1091. avg_load = 0;
  1092. for_each_cpu_mask(i, group->cpumask) {
  1093. /* Bias balancing toward cpus of our domain */
  1094. if (local_group)
  1095. load = source_load(i, load_idx);
  1096. else
  1097. load = target_load(i, load_idx);
  1098. avg_load += load;
  1099. }
  1100. /* Adjust by relative CPU power of the group */
  1101. avg_load = sg_div_cpu_power(group,
  1102. avg_load * SCHED_LOAD_SCALE);
  1103. if (local_group) {
  1104. this_load = avg_load;
  1105. this = group;
  1106. } else if (avg_load < min_load) {
  1107. min_load = avg_load;
  1108. idlest = group;
  1109. }
  1110. nextgroup:
  1111. group = group->next;
  1112. } while (group != sd->groups);
  1113. if (!idlest || 100*this_load < imbalance*min_load)
  1114. return NULL;
  1115. return idlest;
  1116. }
  1117. /*
  1118. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1119. */
  1120. static int
  1121. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1122. {
  1123. cpumask_t tmp;
  1124. unsigned long load, min_load = ULONG_MAX;
  1125. int idlest = -1;
  1126. int i;
  1127. /* Traverse only the allowed CPUs */
  1128. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1129. for_each_cpu_mask(i, tmp) {
  1130. load = weighted_cpuload(i);
  1131. if (load < min_load || (load == min_load && i == this_cpu)) {
  1132. min_load = load;
  1133. idlest = i;
  1134. }
  1135. }
  1136. return idlest;
  1137. }
  1138. /*
  1139. * sched_balance_self: balance the current task (running on cpu) in domains
  1140. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1141. * SD_BALANCE_EXEC.
  1142. *
  1143. * Balance, ie. select the least loaded group.
  1144. *
  1145. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1146. *
  1147. * preempt must be disabled.
  1148. */
  1149. static int sched_balance_self(int cpu, int flag)
  1150. {
  1151. struct task_struct *t = current;
  1152. struct sched_domain *tmp, *sd = NULL;
  1153. for_each_domain(cpu, tmp) {
  1154. /*
  1155. * If power savings logic is enabled for a domain, stop there.
  1156. */
  1157. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1158. break;
  1159. if (tmp->flags & flag)
  1160. sd = tmp;
  1161. }
  1162. while (sd) {
  1163. cpumask_t span;
  1164. struct sched_group *group;
  1165. int new_cpu, weight;
  1166. if (!(sd->flags & flag)) {
  1167. sd = sd->child;
  1168. continue;
  1169. }
  1170. span = sd->span;
  1171. group = find_idlest_group(sd, t, cpu);
  1172. if (!group) {
  1173. sd = sd->child;
  1174. continue;
  1175. }
  1176. new_cpu = find_idlest_cpu(group, t, cpu);
  1177. if (new_cpu == -1 || new_cpu == cpu) {
  1178. /* Now try balancing at a lower domain level of cpu */
  1179. sd = sd->child;
  1180. continue;
  1181. }
  1182. /* Now try balancing at a lower domain level of new_cpu */
  1183. cpu = new_cpu;
  1184. sd = NULL;
  1185. weight = cpus_weight(span);
  1186. for_each_domain(cpu, tmp) {
  1187. if (weight <= cpus_weight(tmp->span))
  1188. break;
  1189. if (tmp->flags & flag)
  1190. sd = tmp;
  1191. }
  1192. /* while loop will break here if sd == NULL */
  1193. }
  1194. return cpu;
  1195. }
  1196. #endif /* CONFIG_SMP */
  1197. /*
  1198. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1199. * not idle and an idle cpu is available. The span of cpus to
  1200. * search starts with cpus closest then further out as needed,
  1201. * so we always favor a closer, idle cpu.
  1202. *
  1203. * Returns the CPU we should wake onto.
  1204. */
  1205. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1206. static int wake_idle(int cpu, struct task_struct *p)
  1207. {
  1208. cpumask_t tmp;
  1209. struct sched_domain *sd;
  1210. int i;
  1211. /*
  1212. * If it is idle, then it is the best cpu to run this task.
  1213. *
  1214. * This cpu is also the best, if it has more than one task already.
  1215. * Siblings must be also busy(in most cases) as they didn't already
  1216. * pickup the extra load from this cpu and hence we need not check
  1217. * sibling runqueue info. This will avoid the checks and cache miss
  1218. * penalities associated with that.
  1219. */
  1220. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1221. return cpu;
  1222. for_each_domain(cpu, sd) {
  1223. if (sd->flags & SD_WAKE_IDLE) {
  1224. cpus_and(tmp, sd->span, p->cpus_allowed);
  1225. for_each_cpu_mask(i, tmp) {
  1226. if (idle_cpu(i))
  1227. return i;
  1228. }
  1229. } else {
  1230. break;
  1231. }
  1232. }
  1233. return cpu;
  1234. }
  1235. #else
  1236. static inline int wake_idle(int cpu, struct task_struct *p)
  1237. {
  1238. return cpu;
  1239. }
  1240. #endif
  1241. /***
  1242. * try_to_wake_up - wake up a thread
  1243. * @p: the to-be-woken-up thread
  1244. * @state: the mask of task states that can be woken
  1245. * @sync: do a synchronous wakeup?
  1246. *
  1247. * Put it on the run-queue if it's not already there. The "current"
  1248. * thread is always on the run-queue (except when the actual
  1249. * re-schedule is in progress), and as such you're allowed to do
  1250. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1251. * runnable without the overhead of this.
  1252. *
  1253. * returns failure only if the task is already active.
  1254. */
  1255. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1256. {
  1257. int cpu, this_cpu, success = 0;
  1258. unsigned long flags;
  1259. long old_state;
  1260. struct rq *rq;
  1261. #ifdef CONFIG_SMP
  1262. struct sched_domain *sd, *this_sd = NULL;
  1263. unsigned long load, this_load;
  1264. int new_cpu;
  1265. #endif
  1266. rq = task_rq_lock(p, &flags);
  1267. old_state = p->state;
  1268. if (!(old_state & state))
  1269. goto out;
  1270. if (p->se.on_rq)
  1271. goto out_running;
  1272. cpu = task_cpu(p);
  1273. this_cpu = smp_processor_id();
  1274. #ifdef CONFIG_SMP
  1275. if (unlikely(task_running(rq, p)))
  1276. goto out_activate;
  1277. new_cpu = cpu;
  1278. schedstat_inc(rq, ttwu_cnt);
  1279. if (cpu == this_cpu) {
  1280. schedstat_inc(rq, ttwu_local);
  1281. goto out_set_cpu;
  1282. }
  1283. for_each_domain(this_cpu, sd) {
  1284. if (cpu_isset(cpu, sd->span)) {
  1285. schedstat_inc(sd, ttwu_wake_remote);
  1286. this_sd = sd;
  1287. break;
  1288. }
  1289. }
  1290. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1291. goto out_set_cpu;
  1292. /*
  1293. * Check for affine wakeup and passive balancing possibilities.
  1294. */
  1295. if (this_sd) {
  1296. int idx = this_sd->wake_idx;
  1297. unsigned int imbalance;
  1298. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1299. load = source_load(cpu, idx);
  1300. this_load = target_load(this_cpu, idx);
  1301. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1302. if (this_sd->flags & SD_WAKE_AFFINE) {
  1303. unsigned long tl = this_load;
  1304. unsigned long tl_per_task;
  1305. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1306. /*
  1307. * If sync wakeup then subtract the (maximum possible)
  1308. * effect of the currently running task from the load
  1309. * of the current CPU:
  1310. */
  1311. if (sync)
  1312. tl -= current->se.load.weight;
  1313. if ((tl <= load &&
  1314. tl + target_load(cpu, idx) <= tl_per_task) ||
  1315. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1316. /*
  1317. * This domain has SD_WAKE_AFFINE and
  1318. * p is cache cold in this domain, and
  1319. * there is no bad imbalance.
  1320. */
  1321. schedstat_inc(this_sd, ttwu_move_affine);
  1322. goto out_set_cpu;
  1323. }
  1324. }
  1325. /*
  1326. * Start passive balancing when half the imbalance_pct
  1327. * limit is reached.
  1328. */
  1329. if (this_sd->flags & SD_WAKE_BALANCE) {
  1330. if (imbalance*this_load <= 100*load) {
  1331. schedstat_inc(this_sd, ttwu_move_balance);
  1332. goto out_set_cpu;
  1333. }
  1334. }
  1335. }
  1336. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1337. out_set_cpu:
  1338. new_cpu = wake_idle(new_cpu, p);
  1339. if (new_cpu != cpu) {
  1340. set_task_cpu(p, new_cpu);
  1341. task_rq_unlock(rq, &flags);
  1342. /* might preempt at this point */
  1343. rq = task_rq_lock(p, &flags);
  1344. old_state = p->state;
  1345. if (!(old_state & state))
  1346. goto out;
  1347. if (p->se.on_rq)
  1348. goto out_running;
  1349. this_cpu = smp_processor_id();
  1350. cpu = task_cpu(p);
  1351. }
  1352. out_activate:
  1353. #endif /* CONFIG_SMP */
  1354. update_rq_clock(rq);
  1355. activate_task(rq, p, 1);
  1356. /*
  1357. * Sync wakeups (i.e. those types of wakeups where the waker
  1358. * has indicated that it will leave the CPU in short order)
  1359. * don't trigger a preemption, if the woken up task will run on
  1360. * this cpu. (in this case the 'I will reschedule' promise of
  1361. * the waker guarantees that the freshly woken up task is going
  1362. * to be considered on this CPU.)
  1363. */
  1364. if (!sync || cpu != this_cpu)
  1365. check_preempt_curr(rq, p);
  1366. success = 1;
  1367. out_running:
  1368. p->state = TASK_RUNNING;
  1369. out:
  1370. task_rq_unlock(rq, &flags);
  1371. return success;
  1372. }
  1373. int fastcall wake_up_process(struct task_struct *p)
  1374. {
  1375. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1376. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1377. }
  1378. EXPORT_SYMBOL(wake_up_process);
  1379. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1380. {
  1381. return try_to_wake_up(p, state, 0);
  1382. }
  1383. /*
  1384. * Perform scheduler related setup for a newly forked process p.
  1385. * p is forked by current.
  1386. *
  1387. * __sched_fork() is basic setup used by init_idle() too:
  1388. */
  1389. static void __sched_fork(struct task_struct *p)
  1390. {
  1391. p->se.exec_start = 0;
  1392. p->se.sum_exec_runtime = 0;
  1393. p->se.prev_sum_exec_runtime = 0;
  1394. #ifdef CONFIG_SCHEDSTATS
  1395. p->se.wait_start = 0;
  1396. p->se.sum_sleep_runtime = 0;
  1397. p->se.sleep_start = 0;
  1398. p->se.block_start = 0;
  1399. p->se.sleep_max = 0;
  1400. p->se.block_max = 0;
  1401. p->se.exec_max = 0;
  1402. p->se.slice_max = 0;
  1403. p->se.wait_max = 0;
  1404. #endif
  1405. INIT_LIST_HEAD(&p->run_list);
  1406. p->se.on_rq = 0;
  1407. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1408. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1409. #endif
  1410. /*
  1411. * We mark the process as running here, but have not actually
  1412. * inserted it onto the runqueue yet. This guarantees that
  1413. * nobody will actually run it, and a signal or other external
  1414. * event cannot wake it up and insert it on the runqueue either.
  1415. */
  1416. p->state = TASK_RUNNING;
  1417. }
  1418. /*
  1419. * fork()/clone()-time setup:
  1420. */
  1421. void sched_fork(struct task_struct *p, int clone_flags)
  1422. {
  1423. int cpu = get_cpu();
  1424. __sched_fork(p);
  1425. #ifdef CONFIG_SMP
  1426. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1427. #endif
  1428. set_task_cpu(p, cpu);
  1429. /*
  1430. * Make sure we do not leak PI boosting priority to the child:
  1431. */
  1432. p->prio = current->normal_prio;
  1433. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1434. if (likely(sched_info_on()))
  1435. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1436. #endif
  1437. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1438. p->oncpu = 0;
  1439. #endif
  1440. #ifdef CONFIG_PREEMPT
  1441. /* Want to start with kernel preemption disabled. */
  1442. task_thread_info(p)->preempt_count = 1;
  1443. #endif
  1444. put_cpu();
  1445. }
  1446. /*
  1447. * wake_up_new_task - wake up a newly created task for the first time.
  1448. *
  1449. * This function will do some initial scheduler statistics housekeeping
  1450. * that must be done for every newly created context, then puts the task
  1451. * on the runqueue and wakes it.
  1452. */
  1453. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1454. {
  1455. unsigned long flags;
  1456. struct rq *rq;
  1457. int this_cpu;
  1458. rq = task_rq_lock(p, &flags);
  1459. BUG_ON(p->state != TASK_RUNNING);
  1460. this_cpu = smp_processor_id(); /* parent's CPU */
  1461. update_rq_clock(rq);
  1462. p->prio = effective_prio(p);
  1463. if (rt_prio(p->prio))
  1464. p->sched_class = &rt_sched_class;
  1465. else
  1466. p->sched_class = &fair_sched_class;
  1467. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1468. !current->se.on_rq) {
  1469. activate_task(rq, p, 0);
  1470. } else {
  1471. /*
  1472. * Let the scheduling class do new task startup
  1473. * management (if any):
  1474. */
  1475. p->sched_class->task_new(rq, p);
  1476. inc_nr_running(p, rq);
  1477. }
  1478. check_preempt_curr(rq, p);
  1479. task_rq_unlock(rq, &flags);
  1480. }
  1481. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1482. /**
  1483. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1484. * @notifier: notifier struct to register
  1485. */
  1486. void preempt_notifier_register(struct preempt_notifier *notifier)
  1487. {
  1488. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1489. }
  1490. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1491. /**
  1492. * preempt_notifier_unregister - no longer interested in preemption notifications
  1493. * @notifier: notifier struct to unregister
  1494. *
  1495. * This is safe to call from within a preemption notifier.
  1496. */
  1497. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1498. {
  1499. hlist_del(&notifier->link);
  1500. }
  1501. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1502. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1503. {
  1504. struct preempt_notifier *notifier;
  1505. struct hlist_node *node;
  1506. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1507. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1508. }
  1509. static void
  1510. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1511. struct task_struct *next)
  1512. {
  1513. struct preempt_notifier *notifier;
  1514. struct hlist_node *node;
  1515. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1516. notifier->ops->sched_out(notifier, next);
  1517. }
  1518. #else
  1519. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1520. {
  1521. }
  1522. static void
  1523. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1524. struct task_struct *next)
  1525. {
  1526. }
  1527. #endif
  1528. /**
  1529. * prepare_task_switch - prepare to switch tasks
  1530. * @rq: the runqueue preparing to switch
  1531. * @prev: the current task that is being switched out
  1532. * @next: the task we are going to switch to.
  1533. *
  1534. * This is called with the rq lock held and interrupts off. It must
  1535. * be paired with a subsequent finish_task_switch after the context
  1536. * switch.
  1537. *
  1538. * prepare_task_switch sets up locking and calls architecture specific
  1539. * hooks.
  1540. */
  1541. static inline void
  1542. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1543. struct task_struct *next)
  1544. {
  1545. fire_sched_out_preempt_notifiers(prev, next);
  1546. prepare_lock_switch(rq, next);
  1547. prepare_arch_switch(next);
  1548. }
  1549. /**
  1550. * finish_task_switch - clean up after a task-switch
  1551. * @rq: runqueue associated with task-switch
  1552. * @prev: the thread we just switched away from.
  1553. *
  1554. * finish_task_switch must be called after the context switch, paired
  1555. * with a prepare_task_switch call before the context switch.
  1556. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1557. * and do any other architecture-specific cleanup actions.
  1558. *
  1559. * Note that we may have delayed dropping an mm in context_switch(). If
  1560. * so, we finish that here outside of the runqueue lock. (Doing it
  1561. * with the lock held can cause deadlocks; see schedule() for
  1562. * details.)
  1563. */
  1564. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1565. __releases(rq->lock)
  1566. {
  1567. struct mm_struct *mm = rq->prev_mm;
  1568. long prev_state;
  1569. rq->prev_mm = NULL;
  1570. /*
  1571. * A task struct has one reference for the use as "current".
  1572. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1573. * schedule one last time. The schedule call will never return, and
  1574. * the scheduled task must drop that reference.
  1575. * The test for TASK_DEAD must occur while the runqueue locks are
  1576. * still held, otherwise prev could be scheduled on another cpu, die
  1577. * there before we look at prev->state, and then the reference would
  1578. * be dropped twice.
  1579. * Manfred Spraul <manfred@colorfullife.com>
  1580. */
  1581. prev_state = prev->state;
  1582. finish_arch_switch(prev);
  1583. finish_lock_switch(rq, prev);
  1584. fire_sched_in_preempt_notifiers(current);
  1585. if (mm)
  1586. mmdrop(mm);
  1587. if (unlikely(prev_state == TASK_DEAD)) {
  1588. /*
  1589. * Remove function-return probe instances associated with this
  1590. * task and put them back on the free list.
  1591. */
  1592. kprobe_flush_task(prev);
  1593. put_task_struct(prev);
  1594. }
  1595. }
  1596. /**
  1597. * schedule_tail - first thing a freshly forked thread must call.
  1598. * @prev: the thread we just switched away from.
  1599. */
  1600. asmlinkage void schedule_tail(struct task_struct *prev)
  1601. __releases(rq->lock)
  1602. {
  1603. struct rq *rq = this_rq();
  1604. finish_task_switch(rq, prev);
  1605. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1606. /* In this case, finish_task_switch does not reenable preemption */
  1607. preempt_enable();
  1608. #endif
  1609. if (current->set_child_tid)
  1610. put_user(current->pid, current->set_child_tid);
  1611. }
  1612. /*
  1613. * context_switch - switch to the new MM and the new
  1614. * thread's register state.
  1615. */
  1616. static inline void
  1617. context_switch(struct rq *rq, struct task_struct *prev,
  1618. struct task_struct *next)
  1619. {
  1620. struct mm_struct *mm, *oldmm;
  1621. prepare_task_switch(rq, prev, next);
  1622. mm = next->mm;
  1623. oldmm = prev->active_mm;
  1624. /*
  1625. * For paravirt, this is coupled with an exit in switch_to to
  1626. * combine the page table reload and the switch backend into
  1627. * one hypercall.
  1628. */
  1629. arch_enter_lazy_cpu_mode();
  1630. if (unlikely(!mm)) {
  1631. next->active_mm = oldmm;
  1632. atomic_inc(&oldmm->mm_count);
  1633. enter_lazy_tlb(oldmm, next);
  1634. } else
  1635. switch_mm(oldmm, mm, next);
  1636. if (unlikely(!prev->mm)) {
  1637. prev->active_mm = NULL;
  1638. rq->prev_mm = oldmm;
  1639. }
  1640. /*
  1641. * Since the runqueue lock will be released by the next
  1642. * task (which is an invalid locking op but in the case
  1643. * of the scheduler it's an obvious special-case), so we
  1644. * do an early lockdep release here:
  1645. */
  1646. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1647. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1648. #endif
  1649. /* Here we just switch the register state and the stack. */
  1650. switch_to(prev, next, prev);
  1651. barrier();
  1652. /*
  1653. * this_rq must be evaluated again because prev may have moved
  1654. * CPUs since it called schedule(), thus the 'rq' on its stack
  1655. * frame will be invalid.
  1656. */
  1657. finish_task_switch(this_rq(), prev);
  1658. }
  1659. /*
  1660. * nr_running, nr_uninterruptible and nr_context_switches:
  1661. *
  1662. * externally visible scheduler statistics: current number of runnable
  1663. * threads, current number of uninterruptible-sleeping threads, total
  1664. * number of context switches performed since bootup.
  1665. */
  1666. unsigned long nr_running(void)
  1667. {
  1668. unsigned long i, sum = 0;
  1669. for_each_online_cpu(i)
  1670. sum += cpu_rq(i)->nr_running;
  1671. return sum;
  1672. }
  1673. unsigned long nr_uninterruptible(void)
  1674. {
  1675. unsigned long i, sum = 0;
  1676. for_each_possible_cpu(i)
  1677. sum += cpu_rq(i)->nr_uninterruptible;
  1678. /*
  1679. * Since we read the counters lockless, it might be slightly
  1680. * inaccurate. Do not allow it to go below zero though:
  1681. */
  1682. if (unlikely((long)sum < 0))
  1683. sum = 0;
  1684. return sum;
  1685. }
  1686. unsigned long long nr_context_switches(void)
  1687. {
  1688. int i;
  1689. unsigned long long sum = 0;
  1690. for_each_possible_cpu(i)
  1691. sum += cpu_rq(i)->nr_switches;
  1692. return sum;
  1693. }
  1694. unsigned long nr_iowait(void)
  1695. {
  1696. unsigned long i, sum = 0;
  1697. for_each_possible_cpu(i)
  1698. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1699. return sum;
  1700. }
  1701. unsigned long nr_active(void)
  1702. {
  1703. unsigned long i, running = 0, uninterruptible = 0;
  1704. for_each_online_cpu(i) {
  1705. running += cpu_rq(i)->nr_running;
  1706. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1707. }
  1708. if (unlikely((long)uninterruptible < 0))
  1709. uninterruptible = 0;
  1710. return running + uninterruptible;
  1711. }
  1712. /*
  1713. * Update rq->cpu_load[] statistics. This function is usually called every
  1714. * scheduler tick (TICK_NSEC).
  1715. */
  1716. static void update_cpu_load(struct rq *this_rq)
  1717. {
  1718. unsigned long this_load = this_rq->load.weight;
  1719. int i, scale;
  1720. this_rq->nr_load_updates++;
  1721. /* Update our load: */
  1722. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1723. unsigned long old_load, new_load;
  1724. /* scale is effectively 1 << i now, and >> i divides by scale */
  1725. old_load = this_rq->cpu_load[i];
  1726. new_load = this_load;
  1727. /*
  1728. * Round up the averaging division if load is increasing. This
  1729. * prevents us from getting stuck on 9 if the load is 10, for
  1730. * example.
  1731. */
  1732. if (new_load > old_load)
  1733. new_load += scale-1;
  1734. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1735. }
  1736. }
  1737. #ifdef CONFIG_SMP
  1738. /*
  1739. * double_rq_lock - safely lock two runqueues
  1740. *
  1741. * Note this does not disable interrupts like task_rq_lock,
  1742. * you need to do so manually before calling.
  1743. */
  1744. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1745. __acquires(rq1->lock)
  1746. __acquires(rq2->lock)
  1747. {
  1748. BUG_ON(!irqs_disabled());
  1749. if (rq1 == rq2) {
  1750. spin_lock(&rq1->lock);
  1751. __acquire(rq2->lock); /* Fake it out ;) */
  1752. } else {
  1753. if (rq1 < rq2) {
  1754. spin_lock(&rq1->lock);
  1755. spin_lock(&rq2->lock);
  1756. } else {
  1757. spin_lock(&rq2->lock);
  1758. spin_lock(&rq1->lock);
  1759. }
  1760. }
  1761. update_rq_clock(rq1);
  1762. update_rq_clock(rq2);
  1763. }
  1764. /*
  1765. * double_rq_unlock - safely unlock two runqueues
  1766. *
  1767. * Note this does not restore interrupts like task_rq_unlock,
  1768. * you need to do so manually after calling.
  1769. */
  1770. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1771. __releases(rq1->lock)
  1772. __releases(rq2->lock)
  1773. {
  1774. spin_unlock(&rq1->lock);
  1775. if (rq1 != rq2)
  1776. spin_unlock(&rq2->lock);
  1777. else
  1778. __release(rq2->lock);
  1779. }
  1780. /*
  1781. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1782. */
  1783. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1784. __releases(this_rq->lock)
  1785. __acquires(busiest->lock)
  1786. __acquires(this_rq->lock)
  1787. {
  1788. if (unlikely(!irqs_disabled())) {
  1789. /* printk() doesn't work good under rq->lock */
  1790. spin_unlock(&this_rq->lock);
  1791. BUG_ON(1);
  1792. }
  1793. if (unlikely(!spin_trylock(&busiest->lock))) {
  1794. if (busiest < this_rq) {
  1795. spin_unlock(&this_rq->lock);
  1796. spin_lock(&busiest->lock);
  1797. spin_lock(&this_rq->lock);
  1798. } else
  1799. spin_lock(&busiest->lock);
  1800. }
  1801. }
  1802. /*
  1803. * If dest_cpu is allowed for this process, migrate the task to it.
  1804. * This is accomplished by forcing the cpu_allowed mask to only
  1805. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1806. * the cpu_allowed mask is restored.
  1807. */
  1808. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1809. {
  1810. struct migration_req req;
  1811. unsigned long flags;
  1812. struct rq *rq;
  1813. rq = task_rq_lock(p, &flags);
  1814. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1815. || unlikely(cpu_is_offline(dest_cpu)))
  1816. goto out;
  1817. /* force the process onto the specified CPU */
  1818. if (migrate_task(p, dest_cpu, &req)) {
  1819. /* Need to wait for migration thread (might exit: take ref). */
  1820. struct task_struct *mt = rq->migration_thread;
  1821. get_task_struct(mt);
  1822. task_rq_unlock(rq, &flags);
  1823. wake_up_process(mt);
  1824. put_task_struct(mt);
  1825. wait_for_completion(&req.done);
  1826. return;
  1827. }
  1828. out:
  1829. task_rq_unlock(rq, &flags);
  1830. }
  1831. /*
  1832. * sched_exec - execve() is a valuable balancing opportunity, because at
  1833. * this point the task has the smallest effective memory and cache footprint.
  1834. */
  1835. void sched_exec(void)
  1836. {
  1837. int new_cpu, this_cpu = get_cpu();
  1838. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1839. put_cpu();
  1840. if (new_cpu != this_cpu)
  1841. sched_migrate_task(current, new_cpu);
  1842. }
  1843. /*
  1844. * pull_task - move a task from a remote runqueue to the local runqueue.
  1845. * Both runqueues must be locked.
  1846. */
  1847. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1848. struct rq *this_rq, int this_cpu)
  1849. {
  1850. deactivate_task(src_rq, p, 0);
  1851. set_task_cpu(p, this_cpu);
  1852. activate_task(this_rq, p, 0);
  1853. /*
  1854. * Note that idle threads have a prio of MAX_PRIO, for this test
  1855. * to be always true for them.
  1856. */
  1857. check_preempt_curr(this_rq, p);
  1858. }
  1859. /*
  1860. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1861. */
  1862. static
  1863. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1864. struct sched_domain *sd, enum cpu_idle_type idle,
  1865. int *all_pinned)
  1866. {
  1867. /*
  1868. * We do not migrate tasks that are:
  1869. * 1) running (obviously), or
  1870. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1871. * 3) are cache-hot on their current CPU.
  1872. */
  1873. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1874. return 0;
  1875. *all_pinned = 0;
  1876. if (task_running(rq, p))
  1877. return 0;
  1878. return 1;
  1879. }
  1880. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1881. unsigned long max_nr_move, unsigned long max_load_move,
  1882. struct sched_domain *sd, enum cpu_idle_type idle,
  1883. int *all_pinned, unsigned long *load_moved,
  1884. int *this_best_prio, struct rq_iterator *iterator)
  1885. {
  1886. int pulled = 0, pinned = 0, skip_for_load;
  1887. struct task_struct *p;
  1888. long rem_load_move = max_load_move;
  1889. if (max_nr_move == 0 || max_load_move == 0)
  1890. goto out;
  1891. pinned = 1;
  1892. /*
  1893. * Start the load-balancing iterator:
  1894. */
  1895. p = iterator->start(iterator->arg);
  1896. next:
  1897. if (!p)
  1898. goto out;
  1899. /*
  1900. * To help distribute high priority tasks accross CPUs we don't
  1901. * skip a task if it will be the highest priority task (i.e. smallest
  1902. * prio value) on its new queue regardless of its load weight
  1903. */
  1904. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1905. SCHED_LOAD_SCALE_FUZZ;
  1906. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1907. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1908. p = iterator->next(iterator->arg);
  1909. goto next;
  1910. }
  1911. pull_task(busiest, p, this_rq, this_cpu);
  1912. pulled++;
  1913. rem_load_move -= p->se.load.weight;
  1914. /*
  1915. * We only want to steal up to the prescribed number of tasks
  1916. * and the prescribed amount of weighted load.
  1917. */
  1918. if (pulled < max_nr_move && rem_load_move > 0) {
  1919. if (p->prio < *this_best_prio)
  1920. *this_best_prio = p->prio;
  1921. p = iterator->next(iterator->arg);
  1922. goto next;
  1923. }
  1924. out:
  1925. /*
  1926. * Right now, this is the only place pull_task() is called,
  1927. * so we can safely collect pull_task() stats here rather than
  1928. * inside pull_task().
  1929. */
  1930. schedstat_add(sd, lb_gained[idle], pulled);
  1931. if (all_pinned)
  1932. *all_pinned = pinned;
  1933. *load_moved = max_load_move - rem_load_move;
  1934. return pulled;
  1935. }
  1936. /*
  1937. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1938. * this_rq, as part of a balancing operation within domain "sd".
  1939. * Returns 1 if successful and 0 otherwise.
  1940. *
  1941. * Called with both runqueues locked.
  1942. */
  1943. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1944. unsigned long max_load_move,
  1945. struct sched_domain *sd, enum cpu_idle_type idle,
  1946. int *all_pinned)
  1947. {
  1948. struct sched_class *class = sched_class_highest;
  1949. unsigned long total_load_moved = 0;
  1950. int this_best_prio = this_rq->curr->prio;
  1951. do {
  1952. total_load_moved +=
  1953. class->load_balance(this_rq, this_cpu, busiest,
  1954. ULONG_MAX, max_load_move - total_load_moved,
  1955. sd, idle, all_pinned, &this_best_prio);
  1956. class = class->next;
  1957. } while (class && max_load_move > total_load_moved);
  1958. return total_load_moved > 0;
  1959. }
  1960. /*
  1961. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1962. * part of active balancing operations within "domain".
  1963. * Returns 1 if successful and 0 otherwise.
  1964. *
  1965. * Called with both runqueues locked.
  1966. */
  1967. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1968. struct sched_domain *sd, enum cpu_idle_type idle)
  1969. {
  1970. struct sched_class *class;
  1971. int this_best_prio = MAX_PRIO;
  1972. for (class = sched_class_highest; class; class = class->next)
  1973. if (class->load_balance(this_rq, this_cpu, busiest,
  1974. 1, ULONG_MAX, sd, idle, NULL,
  1975. &this_best_prio))
  1976. return 1;
  1977. return 0;
  1978. }
  1979. /*
  1980. * find_busiest_group finds and returns the busiest CPU group within the
  1981. * domain. It calculates and returns the amount of weighted load which
  1982. * should be moved to restore balance via the imbalance parameter.
  1983. */
  1984. static struct sched_group *
  1985. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1986. unsigned long *imbalance, enum cpu_idle_type idle,
  1987. int *sd_idle, cpumask_t *cpus, int *balance)
  1988. {
  1989. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1990. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1991. unsigned long max_pull;
  1992. unsigned long busiest_load_per_task, busiest_nr_running;
  1993. unsigned long this_load_per_task, this_nr_running;
  1994. int load_idx;
  1995. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1996. int power_savings_balance = 1;
  1997. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1998. unsigned long min_nr_running = ULONG_MAX;
  1999. struct sched_group *group_min = NULL, *group_leader = NULL;
  2000. #endif
  2001. max_load = this_load = total_load = total_pwr = 0;
  2002. busiest_load_per_task = busiest_nr_running = 0;
  2003. this_load_per_task = this_nr_running = 0;
  2004. if (idle == CPU_NOT_IDLE)
  2005. load_idx = sd->busy_idx;
  2006. else if (idle == CPU_NEWLY_IDLE)
  2007. load_idx = sd->newidle_idx;
  2008. else
  2009. load_idx = sd->idle_idx;
  2010. do {
  2011. unsigned long load, group_capacity;
  2012. int local_group;
  2013. int i;
  2014. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2015. unsigned long sum_nr_running, sum_weighted_load;
  2016. local_group = cpu_isset(this_cpu, group->cpumask);
  2017. if (local_group)
  2018. balance_cpu = first_cpu(group->cpumask);
  2019. /* Tally up the load of all CPUs in the group */
  2020. sum_weighted_load = sum_nr_running = avg_load = 0;
  2021. for_each_cpu_mask(i, group->cpumask) {
  2022. struct rq *rq;
  2023. if (!cpu_isset(i, *cpus))
  2024. continue;
  2025. rq = cpu_rq(i);
  2026. if (*sd_idle && rq->nr_running)
  2027. *sd_idle = 0;
  2028. /* Bias balancing toward cpus of our domain */
  2029. if (local_group) {
  2030. if (idle_cpu(i) && !first_idle_cpu) {
  2031. first_idle_cpu = 1;
  2032. balance_cpu = i;
  2033. }
  2034. load = target_load(i, load_idx);
  2035. } else
  2036. load = source_load(i, load_idx);
  2037. avg_load += load;
  2038. sum_nr_running += rq->nr_running;
  2039. sum_weighted_load += weighted_cpuload(i);
  2040. }
  2041. /*
  2042. * First idle cpu or the first cpu(busiest) in this sched group
  2043. * is eligible for doing load balancing at this and above
  2044. * domains. In the newly idle case, we will allow all the cpu's
  2045. * to do the newly idle load balance.
  2046. */
  2047. if (idle != CPU_NEWLY_IDLE && local_group &&
  2048. balance_cpu != this_cpu && balance) {
  2049. *balance = 0;
  2050. goto ret;
  2051. }
  2052. total_load += avg_load;
  2053. total_pwr += group->__cpu_power;
  2054. /* Adjust by relative CPU power of the group */
  2055. avg_load = sg_div_cpu_power(group,
  2056. avg_load * SCHED_LOAD_SCALE);
  2057. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2058. if (local_group) {
  2059. this_load = avg_load;
  2060. this = group;
  2061. this_nr_running = sum_nr_running;
  2062. this_load_per_task = sum_weighted_load;
  2063. } else if (avg_load > max_load &&
  2064. sum_nr_running > group_capacity) {
  2065. max_load = avg_load;
  2066. busiest = group;
  2067. busiest_nr_running = sum_nr_running;
  2068. busiest_load_per_task = sum_weighted_load;
  2069. }
  2070. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2071. /*
  2072. * Busy processors will not participate in power savings
  2073. * balance.
  2074. */
  2075. if (idle == CPU_NOT_IDLE ||
  2076. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2077. goto group_next;
  2078. /*
  2079. * If the local group is idle or completely loaded
  2080. * no need to do power savings balance at this domain
  2081. */
  2082. if (local_group && (this_nr_running >= group_capacity ||
  2083. !this_nr_running))
  2084. power_savings_balance = 0;
  2085. /*
  2086. * If a group is already running at full capacity or idle,
  2087. * don't include that group in power savings calculations
  2088. */
  2089. if (!power_savings_balance || sum_nr_running >= group_capacity
  2090. || !sum_nr_running)
  2091. goto group_next;
  2092. /*
  2093. * Calculate the group which has the least non-idle load.
  2094. * This is the group from where we need to pick up the load
  2095. * for saving power
  2096. */
  2097. if ((sum_nr_running < min_nr_running) ||
  2098. (sum_nr_running == min_nr_running &&
  2099. first_cpu(group->cpumask) <
  2100. first_cpu(group_min->cpumask))) {
  2101. group_min = group;
  2102. min_nr_running = sum_nr_running;
  2103. min_load_per_task = sum_weighted_load /
  2104. sum_nr_running;
  2105. }
  2106. /*
  2107. * Calculate the group which is almost near its
  2108. * capacity but still has some space to pick up some load
  2109. * from other group and save more power
  2110. */
  2111. if (sum_nr_running <= group_capacity - 1) {
  2112. if (sum_nr_running > leader_nr_running ||
  2113. (sum_nr_running == leader_nr_running &&
  2114. first_cpu(group->cpumask) >
  2115. first_cpu(group_leader->cpumask))) {
  2116. group_leader = group;
  2117. leader_nr_running = sum_nr_running;
  2118. }
  2119. }
  2120. group_next:
  2121. #endif
  2122. group = group->next;
  2123. } while (group != sd->groups);
  2124. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2125. goto out_balanced;
  2126. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2127. if (this_load >= avg_load ||
  2128. 100*max_load <= sd->imbalance_pct*this_load)
  2129. goto out_balanced;
  2130. busiest_load_per_task /= busiest_nr_running;
  2131. /*
  2132. * We're trying to get all the cpus to the average_load, so we don't
  2133. * want to push ourselves above the average load, nor do we wish to
  2134. * reduce the max loaded cpu below the average load, as either of these
  2135. * actions would just result in more rebalancing later, and ping-pong
  2136. * tasks around. Thus we look for the minimum possible imbalance.
  2137. * Negative imbalances (*we* are more loaded than anyone else) will
  2138. * be counted as no imbalance for these purposes -- we can't fix that
  2139. * by pulling tasks to us. Be careful of negative numbers as they'll
  2140. * appear as very large values with unsigned longs.
  2141. */
  2142. if (max_load <= busiest_load_per_task)
  2143. goto out_balanced;
  2144. /*
  2145. * In the presence of smp nice balancing, certain scenarios can have
  2146. * max load less than avg load(as we skip the groups at or below
  2147. * its cpu_power, while calculating max_load..)
  2148. */
  2149. if (max_load < avg_load) {
  2150. *imbalance = 0;
  2151. goto small_imbalance;
  2152. }
  2153. /* Don't want to pull so many tasks that a group would go idle */
  2154. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2155. /* How much load to actually move to equalise the imbalance */
  2156. *imbalance = min(max_pull * busiest->__cpu_power,
  2157. (avg_load - this_load) * this->__cpu_power)
  2158. / SCHED_LOAD_SCALE;
  2159. /*
  2160. * if *imbalance is less than the average load per runnable task
  2161. * there is no gaurantee that any tasks will be moved so we'll have
  2162. * a think about bumping its value to force at least one task to be
  2163. * moved
  2164. */
  2165. if (*imbalance < busiest_load_per_task) {
  2166. unsigned long tmp, pwr_now, pwr_move;
  2167. unsigned int imbn;
  2168. small_imbalance:
  2169. pwr_move = pwr_now = 0;
  2170. imbn = 2;
  2171. if (this_nr_running) {
  2172. this_load_per_task /= this_nr_running;
  2173. if (busiest_load_per_task > this_load_per_task)
  2174. imbn = 1;
  2175. } else
  2176. this_load_per_task = SCHED_LOAD_SCALE;
  2177. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2178. busiest_load_per_task * imbn) {
  2179. *imbalance = busiest_load_per_task;
  2180. return busiest;
  2181. }
  2182. /*
  2183. * OK, we don't have enough imbalance to justify moving tasks,
  2184. * however we may be able to increase total CPU power used by
  2185. * moving them.
  2186. */
  2187. pwr_now += busiest->__cpu_power *
  2188. min(busiest_load_per_task, max_load);
  2189. pwr_now += this->__cpu_power *
  2190. min(this_load_per_task, this_load);
  2191. pwr_now /= SCHED_LOAD_SCALE;
  2192. /* Amount of load we'd subtract */
  2193. tmp = sg_div_cpu_power(busiest,
  2194. busiest_load_per_task * SCHED_LOAD_SCALE);
  2195. if (max_load > tmp)
  2196. pwr_move += busiest->__cpu_power *
  2197. min(busiest_load_per_task, max_load - tmp);
  2198. /* Amount of load we'd add */
  2199. if (max_load * busiest->__cpu_power <
  2200. busiest_load_per_task * SCHED_LOAD_SCALE)
  2201. tmp = sg_div_cpu_power(this,
  2202. max_load * busiest->__cpu_power);
  2203. else
  2204. tmp = sg_div_cpu_power(this,
  2205. busiest_load_per_task * SCHED_LOAD_SCALE);
  2206. pwr_move += this->__cpu_power *
  2207. min(this_load_per_task, this_load + tmp);
  2208. pwr_move /= SCHED_LOAD_SCALE;
  2209. /* Move if we gain throughput */
  2210. if (pwr_move > pwr_now)
  2211. *imbalance = busiest_load_per_task;
  2212. }
  2213. return busiest;
  2214. out_balanced:
  2215. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2216. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2217. goto ret;
  2218. if (this == group_leader && group_leader != group_min) {
  2219. *imbalance = min_load_per_task;
  2220. return group_min;
  2221. }
  2222. #endif
  2223. ret:
  2224. *imbalance = 0;
  2225. return NULL;
  2226. }
  2227. /*
  2228. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2229. */
  2230. static struct rq *
  2231. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2232. unsigned long imbalance, cpumask_t *cpus)
  2233. {
  2234. struct rq *busiest = NULL, *rq;
  2235. unsigned long max_load = 0;
  2236. int i;
  2237. for_each_cpu_mask(i, group->cpumask) {
  2238. unsigned long wl;
  2239. if (!cpu_isset(i, *cpus))
  2240. continue;
  2241. rq = cpu_rq(i);
  2242. wl = weighted_cpuload(i);
  2243. if (rq->nr_running == 1 && wl > imbalance)
  2244. continue;
  2245. if (wl > max_load) {
  2246. max_load = wl;
  2247. busiest = rq;
  2248. }
  2249. }
  2250. return busiest;
  2251. }
  2252. /*
  2253. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2254. * so long as it is large enough.
  2255. */
  2256. #define MAX_PINNED_INTERVAL 512
  2257. /*
  2258. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2259. * tasks if there is an imbalance.
  2260. */
  2261. static int load_balance(int this_cpu, struct rq *this_rq,
  2262. struct sched_domain *sd, enum cpu_idle_type idle,
  2263. int *balance)
  2264. {
  2265. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2266. struct sched_group *group;
  2267. unsigned long imbalance;
  2268. struct rq *busiest;
  2269. cpumask_t cpus = CPU_MASK_ALL;
  2270. unsigned long flags;
  2271. /*
  2272. * When power savings policy is enabled for the parent domain, idle
  2273. * sibling can pick up load irrespective of busy siblings. In this case,
  2274. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2275. * portraying it as CPU_NOT_IDLE.
  2276. */
  2277. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2278. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2279. sd_idle = 1;
  2280. schedstat_inc(sd, lb_cnt[idle]);
  2281. redo:
  2282. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2283. &cpus, balance);
  2284. if (*balance == 0)
  2285. goto out_balanced;
  2286. if (!group) {
  2287. schedstat_inc(sd, lb_nobusyg[idle]);
  2288. goto out_balanced;
  2289. }
  2290. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2291. if (!busiest) {
  2292. schedstat_inc(sd, lb_nobusyq[idle]);
  2293. goto out_balanced;
  2294. }
  2295. BUG_ON(busiest == this_rq);
  2296. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2297. ld_moved = 0;
  2298. if (busiest->nr_running > 1) {
  2299. /*
  2300. * Attempt to move tasks. If find_busiest_group has found
  2301. * an imbalance but busiest->nr_running <= 1, the group is
  2302. * still unbalanced. ld_moved simply stays zero, so it is
  2303. * correctly treated as an imbalance.
  2304. */
  2305. local_irq_save(flags);
  2306. double_rq_lock(this_rq, busiest);
  2307. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2308. imbalance, sd, idle, &all_pinned);
  2309. double_rq_unlock(this_rq, busiest);
  2310. local_irq_restore(flags);
  2311. /*
  2312. * some other cpu did the load balance for us.
  2313. */
  2314. if (ld_moved && this_cpu != smp_processor_id())
  2315. resched_cpu(this_cpu);
  2316. /* All tasks on this runqueue were pinned by CPU affinity */
  2317. if (unlikely(all_pinned)) {
  2318. cpu_clear(cpu_of(busiest), cpus);
  2319. if (!cpus_empty(cpus))
  2320. goto redo;
  2321. goto out_balanced;
  2322. }
  2323. }
  2324. if (!ld_moved) {
  2325. schedstat_inc(sd, lb_failed[idle]);
  2326. sd->nr_balance_failed++;
  2327. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2328. spin_lock_irqsave(&busiest->lock, flags);
  2329. /* don't kick the migration_thread, if the curr
  2330. * task on busiest cpu can't be moved to this_cpu
  2331. */
  2332. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2333. spin_unlock_irqrestore(&busiest->lock, flags);
  2334. all_pinned = 1;
  2335. goto out_one_pinned;
  2336. }
  2337. if (!busiest->active_balance) {
  2338. busiest->active_balance = 1;
  2339. busiest->push_cpu = this_cpu;
  2340. active_balance = 1;
  2341. }
  2342. spin_unlock_irqrestore(&busiest->lock, flags);
  2343. if (active_balance)
  2344. wake_up_process(busiest->migration_thread);
  2345. /*
  2346. * We've kicked active balancing, reset the failure
  2347. * counter.
  2348. */
  2349. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2350. }
  2351. } else
  2352. sd->nr_balance_failed = 0;
  2353. if (likely(!active_balance)) {
  2354. /* We were unbalanced, so reset the balancing interval */
  2355. sd->balance_interval = sd->min_interval;
  2356. } else {
  2357. /*
  2358. * If we've begun active balancing, start to back off. This
  2359. * case may not be covered by the all_pinned logic if there
  2360. * is only 1 task on the busy runqueue (because we don't call
  2361. * move_tasks).
  2362. */
  2363. if (sd->balance_interval < sd->max_interval)
  2364. sd->balance_interval *= 2;
  2365. }
  2366. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2367. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2368. return -1;
  2369. return ld_moved;
  2370. out_balanced:
  2371. schedstat_inc(sd, lb_balanced[idle]);
  2372. sd->nr_balance_failed = 0;
  2373. out_one_pinned:
  2374. /* tune up the balancing interval */
  2375. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2376. (sd->balance_interval < sd->max_interval))
  2377. sd->balance_interval *= 2;
  2378. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2379. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2380. return -1;
  2381. return 0;
  2382. }
  2383. /*
  2384. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2385. * tasks if there is an imbalance.
  2386. *
  2387. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2388. * this_rq is locked.
  2389. */
  2390. static int
  2391. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2392. {
  2393. struct sched_group *group;
  2394. struct rq *busiest = NULL;
  2395. unsigned long imbalance;
  2396. int ld_moved = 0;
  2397. int sd_idle = 0;
  2398. int all_pinned = 0;
  2399. cpumask_t cpus = CPU_MASK_ALL;
  2400. /*
  2401. * When power savings policy is enabled for the parent domain, idle
  2402. * sibling can pick up load irrespective of busy siblings. In this case,
  2403. * let the state of idle sibling percolate up as IDLE, instead of
  2404. * portraying it as CPU_NOT_IDLE.
  2405. */
  2406. if (sd->flags & SD_SHARE_CPUPOWER &&
  2407. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2408. sd_idle = 1;
  2409. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2410. redo:
  2411. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2412. &sd_idle, &cpus, NULL);
  2413. if (!group) {
  2414. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2415. goto out_balanced;
  2416. }
  2417. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2418. &cpus);
  2419. if (!busiest) {
  2420. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2421. goto out_balanced;
  2422. }
  2423. BUG_ON(busiest == this_rq);
  2424. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2425. ld_moved = 0;
  2426. if (busiest->nr_running > 1) {
  2427. /* Attempt to move tasks */
  2428. double_lock_balance(this_rq, busiest);
  2429. /* this_rq->clock is already updated */
  2430. update_rq_clock(busiest);
  2431. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2432. imbalance, sd, CPU_NEWLY_IDLE,
  2433. &all_pinned);
  2434. spin_unlock(&busiest->lock);
  2435. if (unlikely(all_pinned)) {
  2436. cpu_clear(cpu_of(busiest), cpus);
  2437. if (!cpus_empty(cpus))
  2438. goto redo;
  2439. }
  2440. }
  2441. if (!ld_moved) {
  2442. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2443. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2444. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2445. return -1;
  2446. } else
  2447. sd->nr_balance_failed = 0;
  2448. return ld_moved;
  2449. out_balanced:
  2450. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2451. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2452. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2453. return -1;
  2454. sd->nr_balance_failed = 0;
  2455. return 0;
  2456. }
  2457. /*
  2458. * idle_balance is called by schedule() if this_cpu is about to become
  2459. * idle. Attempts to pull tasks from other CPUs.
  2460. */
  2461. static void idle_balance(int this_cpu, struct rq *this_rq)
  2462. {
  2463. struct sched_domain *sd;
  2464. int pulled_task = -1;
  2465. unsigned long next_balance = jiffies + HZ;
  2466. for_each_domain(this_cpu, sd) {
  2467. unsigned long interval;
  2468. if (!(sd->flags & SD_LOAD_BALANCE))
  2469. continue;
  2470. if (sd->flags & SD_BALANCE_NEWIDLE)
  2471. /* If we've pulled tasks over stop searching: */
  2472. pulled_task = load_balance_newidle(this_cpu,
  2473. this_rq, sd);
  2474. interval = msecs_to_jiffies(sd->balance_interval);
  2475. if (time_after(next_balance, sd->last_balance + interval))
  2476. next_balance = sd->last_balance + interval;
  2477. if (pulled_task)
  2478. break;
  2479. }
  2480. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2481. /*
  2482. * We are going idle. next_balance may be set based on
  2483. * a busy processor. So reset next_balance.
  2484. */
  2485. this_rq->next_balance = next_balance;
  2486. }
  2487. }
  2488. /*
  2489. * active_load_balance is run by migration threads. It pushes running tasks
  2490. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2491. * running on each physical CPU where possible, and avoids physical /
  2492. * logical imbalances.
  2493. *
  2494. * Called with busiest_rq locked.
  2495. */
  2496. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2497. {
  2498. int target_cpu = busiest_rq->push_cpu;
  2499. struct sched_domain *sd;
  2500. struct rq *target_rq;
  2501. /* Is there any task to move? */
  2502. if (busiest_rq->nr_running <= 1)
  2503. return;
  2504. target_rq = cpu_rq(target_cpu);
  2505. /*
  2506. * This condition is "impossible", if it occurs
  2507. * we need to fix it. Originally reported by
  2508. * Bjorn Helgaas on a 128-cpu setup.
  2509. */
  2510. BUG_ON(busiest_rq == target_rq);
  2511. /* move a task from busiest_rq to target_rq */
  2512. double_lock_balance(busiest_rq, target_rq);
  2513. update_rq_clock(busiest_rq);
  2514. update_rq_clock(target_rq);
  2515. /* Search for an sd spanning us and the target CPU. */
  2516. for_each_domain(target_cpu, sd) {
  2517. if ((sd->flags & SD_LOAD_BALANCE) &&
  2518. cpu_isset(busiest_cpu, sd->span))
  2519. break;
  2520. }
  2521. if (likely(sd)) {
  2522. schedstat_inc(sd, alb_cnt);
  2523. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2524. sd, CPU_IDLE))
  2525. schedstat_inc(sd, alb_pushed);
  2526. else
  2527. schedstat_inc(sd, alb_failed);
  2528. }
  2529. spin_unlock(&target_rq->lock);
  2530. }
  2531. #ifdef CONFIG_NO_HZ
  2532. static struct {
  2533. atomic_t load_balancer;
  2534. cpumask_t cpu_mask;
  2535. } nohz ____cacheline_aligned = {
  2536. .load_balancer = ATOMIC_INIT(-1),
  2537. .cpu_mask = CPU_MASK_NONE,
  2538. };
  2539. /*
  2540. * This routine will try to nominate the ilb (idle load balancing)
  2541. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2542. * load balancing on behalf of all those cpus. If all the cpus in the system
  2543. * go into this tickless mode, then there will be no ilb owner (as there is
  2544. * no need for one) and all the cpus will sleep till the next wakeup event
  2545. * arrives...
  2546. *
  2547. * For the ilb owner, tick is not stopped. And this tick will be used
  2548. * for idle load balancing. ilb owner will still be part of
  2549. * nohz.cpu_mask..
  2550. *
  2551. * While stopping the tick, this cpu will become the ilb owner if there
  2552. * is no other owner. And will be the owner till that cpu becomes busy
  2553. * or if all cpus in the system stop their ticks at which point
  2554. * there is no need for ilb owner.
  2555. *
  2556. * When the ilb owner becomes busy, it nominates another owner, during the
  2557. * next busy scheduler_tick()
  2558. */
  2559. int select_nohz_load_balancer(int stop_tick)
  2560. {
  2561. int cpu = smp_processor_id();
  2562. if (stop_tick) {
  2563. cpu_set(cpu, nohz.cpu_mask);
  2564. cpu_rq(cpu)->in_nohz_recently = 1;
  2565. /*
  2566. * If we are going offline and still the leader, give up!
  2567. */
  2568. if (cpu_is_offline(cpu) &&
  2569. atomic_read(&nohz.load_balancer) == cpu) {
  2570. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2571. BUG();
  2572. return 0;
  2573. }
  2574. /* time for ilb owner also to sleep */
  2575. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2576. if (atomic_read(&nohz.load_balancer) == cpu)
  2577. atomic_set(&nohz.load_balancer, -1);
  2578. return 0;
  2579. }
  2580. if (atomic_read(&nohz.load_balancer) == -1) {
  2581. /* make me the ilb owner */
  2582. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2583. return 1;
  2584. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2585. return 1;
  2586. } else {
  2587. if (!cpu_isset(cpu, nohz.cpu_mask))
  2588. return 0;
  2589. cpu_clear(cpu, nohz.cpu_mask);
  2590. if (atomic_read(&nohz.load_balancer) == cpu)
  2591. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2592. BUG();
  2593. }
  2594. return 0;
  2595. }
  2596. #endif
  2597. static DEFINE_SPINLOCK(balancing);
  2598. /*
  2599. * It checks each scheduling domain to see if it is due to be balanced,
  2600. * and initiates a balancing operation if so.
  2601. *
  2602. * Balancing parameters are set up in arch_init_sched_domains.
  2603. */
  2604. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2605. {
  2606. int balance = 1;
  2607. struct rq *rq = cpu_rq(cpu);
  2608. unsigned long interval;
  2609. struct sched_domain *sd;
  2610. /* Earliest time when we have to do rebalance again */
  2611. unsigned long next_balance = jiffies + 60*HZ;
  2612. int update_next_balance = 0;
  2613. for_each_domain(cpu, sd) {
  2614. if (!(sd->flags & SD_LOAD_BALANCE))
  2615. continue;
  2616. interval = sd->balance_interval;
  2617. if (idle != CPU_IDLE)
  2618. interval *= sd->busy_factor;
  2619. /* scale ms to jiffies */
  2620. interval = msecs_to_jiffies(interval);
  2621. if (unlikely(!interval))
  2622. interval = 1;
  2623. if (interval > HZ*NR_CPUS/10)
  2624. interval = HZ*NR_CPUS/10;
  2625. if (sd->flags & SD_SERIALIZE) {
  2626. if (!spin_trylock(&balancing))
  2627. goto out;
  2628. }
  2629. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2630. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2631. /*
  2632. * We've pulled tasks over so either we're no
  2633. * longer idle, or one of our SMT siblings is
  2634. * not idle.
  2635. */
  2636. idle = CPU_NOT_IDLE;
  2637. }
  2638. sd->last_balance = jiffies;
  2639. }
  2640. if (sd->flags & SD_SERIALIZE)
  2641. spin_unlock(&balancing);
  2642. out:
  2643. if (time_after(next_balance, sd->last_balance + interval)) {
  2644. next_balance = sd->last_balance + interval;
  2645. update_next_balance = 1;
  2646. }
  2647. /*
  2648. * Stop the load balance at this level. There is another
  2649. * CPU in our sched group which is doing load balancing more
  2650. * actively.
  2651. */
  2652. if (!balance)
  2653. break;
  2654. }
  2655. /*
  2656. * next_balance will be updated only when there is a need.
  2657. * When the cpu is attached to null domain for ex, it will not be
  2658. * updated.
  2659. */
  2660. if (likely(update_next_balance))
  2661. rq->next_balance = next_balance;
  2662. }
  2663. /*
  2664. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2665. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2666. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2667. */
  2668. static void run_rebalance_domains(struct softirq_action *h)
  2669. {
  2670. int this_cpu = smp_processor_id();
  2671. struct rq *this_rq = cpu_rq(this_cpu);
  2672. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2673. CPU_IDLE : CPU_NOT_IDLE;
  2674. rebalance_domains(this_cpu, idle);
  2675. #ifdef CONFIG_NO_HZ
  2676. /*
  2677. * If this cpu is the owner for idle load balancing, then do the
  2678. * balancing on behalf of the other idle cpus whose ticks are
  2679. * stopped.
  2680. */
  2681. if (this_rq->idle_at_tick &&
  2682. atomic_read(&nohz.load_balancer) == this_cpu) {
  2683. cpumask_t cpus = nohz.cpu_mask;
  2684. struct rq *rq;
  2685. int balance_cpu;
  2686. cpu_clear(this_cpu, cpus);
  2687. for_each_cpu_mask(balance_cpu, cpus) {
  2688. /*
  2689. * If this cpu gets work to do, stop the load balancing
  2690. * work being done for other cpus. Next load
  2691. * balancing owner will pick it up.
  2692. */
  2693. if (need_resched())
  2694. break;
  2695. rebalance_domains(balance_cpu, CPU_IDLE);
  2696. rq = cpu_rq(balance_cpu);
  2697. if (time_after(this_rq->next_balance, rq->next_balance))
  2698. this_rq->next_balance = rq->next_balance;
  2699. }
  2700. }
  2701. #endif
  2702. }
  2703. /*
  2704. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2705. *
  2706. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2707. * idle load balancing owner or decide to stop the periodic load balancing,
  2708. * if the whole system is idle.
  2709. */
  2710. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2711. {
  2712. #ifdef CONFIG_NO_HZ
  2713. /*
  2714. * If we were in the nohz mode recently and busy at the current
  2715. * scheduler tick, then check if we need to nominate new idle
  2716. * load balancer.
  2717. */
  2718. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2719. rq->in_nohz_recently = 0;
  2720. if (atomic_read(&nohz.load_balancer) == cpu) {
  2721. cpu_clear(cpu, nohz.cpu_mask);
  2722. atomic_set(&nohz.load_balancer, -1);
  2723. }
  2724. if (atomic_read(&nohz.load_balancer) == -1) {
  2725. /*
  2726. * simple selection for now: Nominate the
  2727. * first cpu in the nohz list to be the next
  2728. * ilb owner.
  2729. *
  2730. * TBD: Traverse the sched domains and nominate
  2731. * the nearest cpu in the nohz.cpu_mask.
  2732. */
  2733. int ilb = first_cpu(nohz.cpu_mask);
  2734. if (ilb != NR_CPUS)
  2735. resched_cpu(ilb);
  2736. }
  2737. }
  2738. /*
  2739. * If this cpu is idle and doing idle load balancing for all the
  2740. * cpus with ticks stopped, is it time for that to stop?
  2741. */
  2742. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2743. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2744. resched_cpu(cpu);
  2745. return;
  2746. }
  2747. /*
  2748. * If this cpu is idle and the idle load balancing is done by
  2749. * someone else, then no need raise the SCHED_SOFTIRQ
  2750. */
  2751. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2752. cpu_isset(cpu, nohz.cpu_mask))
  2753. return;
  2754. #endif
  2755. if (time_after_eq(jiffies, rq->next_balance))
  2756. raise_softirq(SCHED_SOFTIRQ);
  2757. }
  2758. #else /* CONFIG_SMP */
  2759. /*
  2760. * on UP we do not need to balance between CPUs:
  2761. */
  2762. static inline void idle_balance(int cpu, struct rq *rq)
  2763. {
  2764. }
  2765. /* Avoid "used but not defined" warning on UP */
  2766. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2767. unsigned long max_nr_move, unsigned long max_load_move,
  2768. struct sched_domain *sd, enum cpu_idle_type idle,
  2769. int *all_pinned, unsigned long *load_moved,
  2770. int *this_best_prio, struct rq_iterator *iterator)
  2771. {
  2772. *load_moved = 0;
  2773. return 0;
  2774. }
  2775. #endif
  2776. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2777. EXPORT_PER_CPU_SYMBOL(kstat);
  2778. /*
  2779. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2780. * that have not yet been banked in case the task is currently running.
  2781. */
  2782. unsigned long long task_sched_runtime(struct task_struct *p)
  2783. {
  2784. unsigned long flags;
  2785. u64 ns, delta_exec;
  2786. struct rq *rq;
  2787. rq = task_rq_lock(p, &flags);
  2788. ns = p->se.sum_exec_runtime;
  2789. if (rq->curr == p) {
  2790. update_rq_clock(rq);
  2791. delta_exec = rq->clock - p->se.exec_start;
  2792. if ((s64)delta_exec > 0)
  2793. ns += delta_exec;
  2794. }
  2795. task_rq_unlock(rq, &flags);
  2796. return ns;
  2797. }
  2798. /*
  2799. * Account user cpu time to a process.
  2800. * @p: the process that the cpu time gets accounted to
  2801. * @hardirq_offset: the offset to subtract from hardirq_count()
  2802. * @cputime: the cpu time spent in user space since the last update
  2803. */
  2804. void account_user_time(struct task_struct *p, cputime_t cputime)
  2805. {
  2806. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2807. cputime64_t tmp;
  2808. p->utime = cputime_add(p->utime, cputime);
  2809. /* Add user time to cpustat. */
  2810. tmp = cputime_to_cputime64(cputime);
  2811. if (TASK_NICE(p) > 0)
  2812. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2813. else
  2814. cpustat->user = cputime64_add(cpustat->user, tmp);
  2815. }
  2816. /*
  2817. * Account system cpu time to a process.
  2818. * @p: the process that the cpu time gets accounted to
  2819. * @hardirq_offset: the offset to subtract from hardirq_count()
  2820. * @cputime: the cpu time spent in kernel space since the last update
  2821. */
  2822. void account_system_time(struct task_struct *p, int hardirq_offset,
  2823. cputime_t cputime)
  2824. {
  2825. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2826. struct rq *rq = this_rq();
  2827. cputime64_t tmp;
  2828. p->stime = cputime_add(p->stime, cputime);
  2829. /* Add system time to cpustat. */
  2830. tmp = cputime_to_cputime64(cputime);
  2831. if (hardirq_count() - hardirq_offset)
  2832. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2833. else if (softirq_count())
  2834. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2835. else if (p != rq->idle)
  2836. cpustat->system = cputime64_add(cpustat->system, tmp);
  2837. else if (atomic_read(&rq->nr_iowait) > 0)
  2838. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2839. else
  2840. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2841. /* Account for system time used */
  2842. acct_update_integrals(p);
  2843. }
  2844. /*
  2845. * Account for involuntary wait time.
  2846. * @p: the process from which the cpu time has been stolen
  2847. * @steal: the cpu time spent in involuntary wait
  2848. */
  2849. void account_steal_time(struct task_struct *p, cputime_t steal)
  2850. {
  2851. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2852. cputime64_t tmp = cputime_to_cputime64(steal);
  2853. struct rq *rq = this_rq();
  2854. if (p == rq->idle) {
  2855. p->stime = cputime_add(p->stime, steal);
  2856. if (atomic_read(&rq->nr_iowait) > 0)
  2857. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2858. else
  2859. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2860. } else
  2861. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2862. }
  2863. /*
  2864. * This function gets called by the timer code, with HZ frequency.
  2865. * We call it with interrupts disabled.
  2866. *
  2867. * It also gets called by the fork code, when changing the parent's
  2868. * timeslices.
  2869. */
  2870. void scheduler_tick(void)
  2871. {
  2872. int cpu = smp_processor_id();
  2873. struct rq *rq = cpu_rq(cpu);
  2874. struct task_struct *curr = rq->curr;
  2875. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2876. spin_lock(&rq->lock);
  2877. __update_rq_clock(rq);
  2878. /*
  2879. * Let rq->clock advance by at least TICK_NSEC:
  2880. */
  2881. if (unlikely(rq->clock < next_tick))
  2882. rq->clock = next_tick;
  2883. rq->tick_timestamp = rq->clock;
  2884. update_cpu_load(rq);
  2885. if (curr != rq->idle) /* FIXME: needed? */
  2886. curr->sched_class->task_tick(rq, curr);
  2887. spin_unlock(&rq->lock);
  2888. #ifdef CONFIG_SMP
  2889. rq->idle_at_tick = idle_cpu(cpu);
  2890. trigger_load_balance(rq, cpu);
  2891. #endif
  2892. }
  2893. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2894. void fastcall add_preempt_count(int val)
  2895. {
  2896. /*
  2897. * Underflow?
  2898. */
  2899. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2900. return;
  2901. preempt_count() += val;
  2902. /*
  2903. * Spinlock count overflowing soon?
  2904. */
  2905. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2906. PREEMPT_MASK - 10);
  2907. }
  2908. EXPORT_SYMBOL(add_preempt_count);
  2909. void fastcall sub_preempt_count(int val)
  2910. {
  2911. /*
  2912. * Underflow?
  2913. */
  2914. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2915. return;
  2916. /*
  2917. * Is the spinlock portion underflowing?
  2918. */
  2919. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2920. !(preempt_count() & PREEMPT_MASK)))
  2921. return;
  2922. preempt_count() -= val;
  2923. }
  2924. EXPORT_SYMBOL(sub_preempt_count);
  2925. #endif
  2926. /*
  2927. * Print scheduling while atomic bug:
  2928. */
  2929. static noinline void __schedule_bug(struct task_struct *prev)
  2930. {
  2931. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2932. prev->comm, preempt_count(), prev->pid);
  2933. debug_show_held_locks(prev);
  2934. if (irqs_disabled())
  2935. print_irqtrace_events(prev);
  2936. dump_stack();
  2937. }
  2938. /*
  2939. * Various schedule()-time debugging checks and statistics:
  2940. */
  2941. static inline void schedule_debug(struct task_struct *prev)
  2942. {
  2943. /*
  2944. * Test if we are atomic. Since do_exit() needs to call into
  2945. * schedule() atomically, we ignore that path for now.
  2946. * Otherwise, whine if we are scheduling when we should not be.
  2947. */
  2948. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2949. __schedule_bug(prev);
  2950. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2951. schedstat_inc(this_rq(), sched_cnt);
  2952. #ifdef CONFIG_SCHEDSTATS
  2953. if (unlikely(prev->lock_depth >= 0)) {
  2954. schedstat_inc(this_rq(), bkl_cnt);
  2955. schedstat_inc(prev, sched_info.bkl_cnt);
  2956. }
  2957. #endif
  2958. }
  2959. /*
  2960. * Pick up the highest-prio task:
  2961. */
  2962. static inline struct task_struct *
  2963. pick_next_task(struct rq *rq, struct task_struct *prev)
  2964. {
  2965. struct sched_class *class;
  2966. struct task_struct *p;
  2967. /*
  2968. * Optimization: we know that if all tasks are in
  2969. * the fair class we can call that function directly:
  2970. */
  2971. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2972. p = fair_sched_class.pick_next_task(rq);
  2973. if (likely(p))
  2974. return p;
  2975. }
  2976. class = sched_class_highest;
  2977. for ( ; ; ) {
  2978. p = class->pick_next_task(rq);
  2979. if (p)
  2980. return p;
  2981. /*
  2982. * Will never be NULL as the idle class always
  2983. * returns a non-NULL p:
  2984. */
  2985. class = class->next;
  2986. }
  2987. }
  2988. /*
  2989. * schedule() is the main scheduler function.
  2990. */
  2991. asmlinkage void __sched schedule(void)
  2992. {
  2993. struct task_struct *prev, *next;
  2994. long *switch_count;
  2995. struct rq *rq;
  2996. int cpu;
  2997. need_resched:
  2998. preempt_disable();
  2999. cpu = smp_processor_id();
  3000. rq = cpu_rq(cpu);
  3001. rcu_qsctr_inc(cpu);
  3002. prev = rq->curr;
  3003. switch_count = &prev->nivcsw;
  3004. release_kernel_lock(prev);
  3005. need_resched_nonpreemptible:
  3006. schedule_debug(prev);
  3007. spin_lock_irq(&rq->lock);
  3008. clear_tsk_need_resched(prev);
  3009. __update_rq_clock(rq);
  3010. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3011. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3012. unlikely(signal_pending(prev)))) {
  3013. prev->state = TASK_RUNNING;
  3014. } else {
  3015. deactivate_task(rq, prev, 1);
  3016. }
  3017. switch_count = &prev->nvcsw;
  3018. }
  3019. if (unlikely(!rq->nr_running))
  3020. idle_balance(cpu, rq);
  3021. prev->sched_class->put_prev_task(rq, prev);
  3022. next = pick_next_task(rq, prev);
  3023. sched_info_switch(prev, next);
  3024. if (likely(prev != next)) {
  3025. rq->nr_switches++;
  3026. rq->curr = next;
  3027. ++*switch_count;
  3028. context_switch(rq, prev, next); /* unlocks the rq */
  3029. } else
  3030. spin_unlock_irq(&rq->lock);
  3031. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3032. cpu = smp_processor_id();
  3033. rq = cpu_rq(cpu);
  3034. goto need_resched_nonpreemptible;
  3035. }
  3036. preempt_enable_no_resched();
  3037. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3038. goto need_resched;
  3039. }
  3040. EXPORT_SYMBOL(schedule);
  3041. #ifdef CONFIG_PREEMPT
  3042. /*
  3043. * this is the entry point to schedule() from in-kernel preemption
  3044. * off of preempt_enable. Kernel preemptions off return from interrupt
  3045. * occur there and call schedule directly.
  3046. */
  3047. asmlinkage void __sched preempt_schedule(void)
  3048. {
  3049. struct thread_info *ti = current_thread_info();
  3050. #ifdef CONFIG_PREEMPT_BKL
  3051. struct task_struct *task = current;
  3052. int saved_lock_depth;
  3053. #endif
  3054. /*
  3055. * If there is a non-zero preempt_count or interrupts are disabled,
  3056. * we do not want to preempt the current task. Just return..
  3057. */
  3058. if (likely(ti->preempt_count || irqs_disabled()))
  3059. return;
  3060. need_resched:
  3061. add_preempt_count(PREEMPT_ACTIVE);
  3062. /*
  3063. * We keep the big kernel semaphore locked, but we
  3064. * clear ->lock_depth so that schedule() doesnt
  3065. * auto-release the semaphore:
  3066. */
  3067. #ifdef CONFIG_PREEMPT_BKL
  3068. saved_lock_depth = task->lock_depth;
  3069. task->lock_depth = -1;
  3070. #endif
  3071. schedule();
  3072. #ifdef CONFIG_PREEMPT_BKL
  3073. task->lock_depth = saved_lock_depth;
  3074. #endif
  3075. sub_preempt_count(PREEMPT_ACTIVE);
  3076. /* we could miss a preemption opportunity between schedule and now */
  3077. barrier();
  3078. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3079. goto need_resched;
  3080. }
  3081. EXPORT_SYMBOL(preempt_schedule);
  3082. /*
  3083. * this is the entry point to schedule() from kernel preemption
  3084. * off of irq context.
  3085. * Note, that this is called and return with irqs disabled. This will
  3086. * protect us against recursive calling from irq.
  3087. */
  3088. asmlinkage void __sched preempt_schedule_irq(void)
  3089. {
  3090. struct thread_info *ti = current_thread_info();
  3091. #ifdef CONFIG_PREEMPT_BKL
  3092. struct task_struct *task = current;
  3093. int saved_lock_depth;
  3094. #endif
  3095. /* Catch callers which need to be fixed */
  3096. BUG_ON(ti->preempt_count || !irqs_disabled());
  3097. need_resched:
  3098. add_preempt_count(PREEMPT_ACTIVE);
  3099. /*
  3100. * We keep the big kernel semaphore locked, but we
  3101. * clear ->lock_depth so that schedule() doesnt
  3102. * auto-release the semaphore:
  3103. */
  3104. #ifdef CONFIG_PREEMPT_BKL
  3105. saved_lock_depth = task->lock_depth;
  3106. task->lock_depth = -1;
  3107. #endif
  3108. local_irq_enable();
  3109. schedule();
  3110. local_irq_disable();
  3111. #ifdef CONFIG_PREEMPT_BKL
  3112. task->lock_depth = saved_lock_depth;
  3113. #endif
  3114. sub_preempt_count(PREEMPT_ACTIVE);
  3115. /* we could miss a preemption opportunity between schedule and now */
  3116. barrier();
  3117. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3118. goto need_resched;
  3119. }
  3120. #endif /* CONFIG_PREEMPT */
  3121. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3122. void *key)
  3123. {
  3124. return try_to_wake_up(curr->private, mode, sync);
  3125. }
  3126. EXPORT_SYMBOL(default_wake_function);
  3127. /*
  3128. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3129. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3130. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3131. *
  3132. * There are circumstances in which we can try to wake a task which has already
  3133. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3134. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3135. */
  3136. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3137. int nr_exclusive, int sync, void *key)
  3138. {
  3139. wait_queue_t *curr, *next;
  3140. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3141. unsigned flags = curr->flags;
  3142. if (curr->func(curr, mode, sync, key) &&
  3143. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3144. break;
  3145. }
  3146. }
  3147. /**
  3148. * __wake_up - wake up threads blocked on a waitqueue.
  3149. * @q: the waitqueue
  3150. * @mode: which threads
  3151. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3152. * @key: is directly passed to the wakeup function
  3153. */
  3154. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3155. int nr_exclusive, void *key)
  3156. {
  3157. unsigned long flags;
  3158. spin_lock_irqsave(&q->lock, flags);
  3159. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3160. spin_unlock_irqrestore(&q->lock, flags);
  3161. }
  3162. EXPORT_SYMBOL(__wake_up);
  3163. /*
  3164. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3165. */
  3166. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3167. {
  3168. __wake_up_common(q, mode, 1, 0, NULL);
  3169. }
  3170. /**
  3171. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3172. * @q: the waitqueue
  3173. * @mode: which threads
  3174. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3175. *
  3176. * The sync wakeup differs that the waker knows that it will schedule
  3177. * away soon, so while the target thread will be woken up, it will not
  3178. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3179. * with each other. This can prevent needless bouncing between CPUs.
  3180. *
  3181. * On UP it can prevent extra preemption.
  3182. */
  3183. void fastcall
  3184. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3185. {
  3186. unsigned long flags;
  3187. int sync = 1;
  3188. if (unlikely(!q))
  3189. return;
  3190. if (unlikely(!nr_exclusive))
  3191. sync = 0;
  3192. spin_lock_irqsave(&q->lock, flags);
  3193. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3194. spin_unlock_irqrestore(&q->lock, flags);
  3195. }
  3196. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3197. void fastcall complete(struct completion *x)
  3198. {
  3199. unsigned long flags;
  3200. spin_lock_irqsave(&x->wait.lock, flags);
  3201. x->done++;
  3202. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3203. 1, 0, NULL);
  3204. spin_unlock_irqrestore(&x->wait.lock, flags);
  3205. }
  3206. EXPORT_SYMBOL(complete);
  3207. void fastcall complete_all(struct completion *x)
  3208. {
  3209. unsigned long flags;
  3210. spin_lock_irqsave(&x->wait.lock, flags);
  3211. x->done += UINT_MAX/2;
  3212. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3213. 0, 0, NULL);
  3214. spin_unlock_irqrestore(&x->wait.lock, flags);
  3215. }
  3216. EXPORT_SYMBOL(complete_all);
  3217. void fastcall __sched wait_for_completion(struct completion *x)
  3218. {
  3219. might_sleep();
  3220. spin_lock_irq(&x->wait.lock);
  3221. if (!x->done) {
  3222. DECLARE_WAITQUEUE(wait, current);
  3223. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3224. __add_wait_queue_tail(&x->wait, &wait);
  3225. do {
  3226. __set_current_state(TASK_UNINTERRUPTIBLE);
  3227. spin_unlock_irq(&x->wait.lock);
  3228. schedule();
  3229. spin_lock_irq(&x->wait.lock);
  3230. } while (!x->done);
  3231. __remove_wait_queue(&x->wait, &wait);
  3232. }
  3233. x->done--;
  3234. spin_unlock_irq(&x->wait.lock);
  3235. }
  3236. EXPORT_SYMBOL(wait_for_completion);
  3237. unsigned long fastcall __sched
  3238. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3239. {
  3240. might_sleep();
  3241. spin_lock_irq(&x->wait.lock);
  3242. if (!x->done) {
  3243. DECLARE_WAITQUEUE(wait, current);
  3244. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3245. __add_wait_queue_tail(&x->wait, &wait);
  3246. do {
  3247. __set_current_state(TASK_UNINTERRUPTIBLE);
  3248. spin_unlock_irq(&x->wait.lock);
  3249. timeout = schedule_timeout(timeout);
  3250. spin_lock_irq(&x->wait.lock);
  3251. if (!timeout) {
  3252. __remove_wait_queue(&x->wait, &wait);
  3253. goto out;
  3254. }
  3255. } while (!x->done);
  3256. __remove_wait_queue(&x->wait, &wait);
  3257. }
  3258. x->done--;
  3259. out:
  3260. spin_unlock_irq(&x->wait.lock);
  3261. return timeout;
  3262. }
  3263. EXPORT_SYMBOL(wait_for_completion_timeout);
  3264. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3265. {
  3266. int ret = 0;
  3267. might_sleep();
  3268. spin_lock_irq(&x->wait.lock);
  3269. if (!x->done) {
  3270. DECLARE_WAITQUEUE(wait, current);
  3271. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3272. __add_wait_queue_tail(&x->wait, &wait);
  3273. do {
  3274. if (signal_pending(current)) {
  3275. ret = -ERESTARTSYS;
  3276. __remove_wait_queue(&x->wait, &wait);
  3277. goto out;
  3278. }
  3279. __set_current_state(TASK_INTERRUPTIBLE);
  3280. spin_unlock_irq(&x->wait.lock);
  3281. schedule();
  3282. spin_lock_irq(&x->wait.lock);
  3283. } while (!x->done);
  3284. __remove_wait_queue(&x->wait, &wait);
  3285. }
  3286. x->done--;
  3287. out:
  3288. spin_unlock_irq(&x->wait.lock);
  3289. return ret;
  3290. }
  3291. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3292. unsigned long fastcall __sched
  3293. wait_for_completion_interruptible_timeout(struct completion *x,
  3294. unsigned long timeout)
  3295. {
  3296. might_sleep();
  3297. spin_lock_irq(&x->wait.lock);
  3298. if (!x->done) {
  3299. DECLARE_WAITQUEUE(wait, current);
  3300. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3301. __add_wait_queue_tail(&x->wait, &wait);
  3302. do {
  3303. if (signal_pending(current)) {
  3304. timeout = -ERESTARTSYS;
  3305. __remove_wait_queue(&x->wait, &wait);
  3306. goto out;
  3307. }
  3308. __set_current_state(TASK_INTERRUPTIBLE);
  3309. spin_unlock_irq(&x->wait.lock);
  3310. timeout = schedule_timeout(timeout);
  3311. spin_lock_irq(&x->wait.lock);
  3312. if (!timeout) {
  3313. __remove_wait_queue(&x->wait, &wait);
  3314. goto out;
  3315. }
  3316. } while (!x->done);
  3317. __remove_wait_queue(&x->wait, &wait);
  3318. }
  3319. x->done--;
  3320. out:
  3321. spin_unlock_irq(&x->wait.lock);
  3322. return timeout;
  3323. }
  3324. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3325. static inline void
  3326. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3327. {
  3328. spin_lock_irqsave(&q->lock, *flags);
  3329. __add_wait_queue(q, wait);
  3330. spin_unlock(&q->lock);
  3331. }
  3332. static inline void
  3333. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3334. {
  3335. spin_lock_irq(&q->lock);
  3336. __remove_wait_queue(q, wait);
  3337. spin_unlock_irqrestore(&q->lock, *flags);
  3338. }
  3339. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3340. {
  3341. unsigned long flags;
  3342. wait_queue_t wait;
  3343. init_waitqueue_entry(&wait, current);
  3344. current->state = TASK_INTERRUPTIBLE;
  3345. sleep_on_head(q, &wait, &flags);
  3346. schedule();
  3347. sleep_on_tail(q, &wait, &flags);
  3348. }
  3349. EXPORT_SYMBOL(interruptible_sleep_on);
  3350. long __sched
  3351. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3352. {
  3353. unsigned long flags;
  3354. wait_queue_t wait;
  3355. init_waitqueue_entry(&wait, current);
  3356. current->state = TASK_INTERRUPTIBLE;
  3357. sleep_on_head(q, &wait, &flags);
  3358. timeout = schedule_timeout(timeout);
  3359. sleep_on_tail(q, &wait, &flags);
  3360. return timeout;
  3361. }
  3362. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3363. void __sched sleep_on(wait_queue_head_t *q)
  3364. {
  3365. unsigned long flags;
  3366. wait_queue_t wait;
  3367. init_waitqueue_entry(&wait, current);
  3368. current->state = TASK_UNINTERRUPTIBLE;
  3369. sleep_on_head(q, &wait, &flags);
  3370. schedule();
  3371. sleep_on_tail(q, &wait, &flags);
  3372. }
  3373. EXPORT_SYMBOL(sleep_on);
  3374. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3375. {
  3376. unsigned long flags;
  3377. wait_queue_t wait;
  3378. init_waitqueue_entry(&wait, current);
  3379. current->state = TASK_UNINTERRUPTIBLE;
  3380. sleep_on_head(q, &wait, &flags);
  3381. timeout = schedule_timeout(timeout);
  3382. sleep_on_tail(q, &wait, &flags);
  3383. return timeout;
  3384. }
  3385. EXPORT_SYMBOL(sleep_on_timeout);
  3386. #ifdef CONFIG_RT_MUTEXES
  3387. /*
  3388. * rt_mutex_setprio - set the current priority of a task
  3389. * @p: task
  3390. * @prio: prio value (kernel-internal form)
  3391. *
  3392. * This function changes the 'effective' priority of a task. It does
  3393. * not touch ->normal_prio like __setscheduler().
  3394. *
  3395. * Used by the rt_mutex code to implement priority inheritance logic.
  3396. */
  3397. void rt_mutex_setprio(struct task_struct *p, int prio)
  3398. {
  3399. unsigned long flags;
  3400. int oldprio, on_rq, running;
  3401. struct rq *rq;
  3402. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3403. rq = task_rq_lock(p, &flags);
  3404. update_rq_clock(rq);
  3405. oldprio = p->prio;
  3406. on_rq = p->se.on_rq;
  3407. running = task_running(rq, p);
  3408. if (on_rq) {
  3409. dequeue_task(rq, p, 0);
  3410. if (running)
  3411. p->sched_class->put_prev_task(rq, p);
  3412. }
  3413. if (rt_prio(prio))
  3414. p->sched_class = &rt_sched_class;
  3415. else
  3416. p->sched_class = &fair_sched_class;
  3417. p->prio = prio;
  3418. if (on_rq) {
  3419. if (running)
  3420. p->sched_class->set_curr_task(rq);
  3421. enqueue_task(rq, p, 0);
  3422. /*
  3423. * Reschedule if we are currently running on this runqueue and
  3424. * our priority decreased, or if we are not currently running on
  3425. * this runqueue and our priority is higher than the current's
  3426. */
  3427. if (running) {
  3428. if (p->prio > oldprio)
  3429. resched_task(rq->curr);
  3430. } else {
  3431. check_preempt_curr(rq, p);
  3432. }
  3433. }
  3434. task_rq_unlock(rq, &flags);
  3435. }
  3436. #endif
  3437. void set_user_nice(struct task_struct *p, long nice)
  3438. {
  3439. int old_prio, delta, on_rq;
  3440. unsigned long flags;
  3441. struct rq *rq;
  3442. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3443. return;
  3444. /*
  3445. * We have to be careful, if called from sys_setpriority(),
  3446. * the task might be in the middle of scheduling on another CPU.
  3447. */
  3448. rq = task_rq_lock(p, &flags);
  3449. update_rq_clock(rq);
  3450. /*
  3451. * The RT priorities are set via sched_setscheduler(), but we still
  3452. * allow the 'normal' nice value to be set - but as expected
  3453. * it wont have any effect on scheduling until the task is
  3454. * SCHED_FIFO/SCHED_RR:
  3455. */
  3456. if (task_has_rt_policy(p)) {
  3457. p->static_prio = NICE_TO_PRIO(nice);
  3458. goto out_unlock;
  3459. }
  3460. on_rq = p->se.on_rq;
  3461. if (on_rq) {
  3462. dequeue_task(rq, p, 0);
  3463. dec_load(rq, p);
  3464. }
  3465. p->static_prio = NICE_TO_PRIO(nice);
  3466. set_load_weight(p);
  3467. old_prio = p->prio;
  3468. p->prio = effective_prio(p);
  3469. delta = p->prio - old_prio;
  3470. if (on_rq) {
  3471. enqueue_task(rq, p, 0);
  3472. inc_load(rq, p);
  3473. /*
  3474. * If the task increased its priority or is running and
  3475. * lowered its priority, then reschedule its CPU:
  3476. */
  3477. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3478. resched_task(rq->curr);
  3479. }
  3480. out_unlock:
  3481. task_rq_unlock(rq, &flags);
  3482. }
  3483. EXPORT_SYMBOL(set_user_nice);
  3484. /*
  3485. * can_nice - check if a task can reduce its nice value
  3486. * @p: task
  3487. * @nice: nice value
  3488. */
  3489. int can_nice(const struct task_struct *p, const int nice)
  3490. {
  3491. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3492. int nice_rlim = 20 - nice;
  3493. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3494. capable(CAP_SYS_NICE));
  3495. }
  3496. #ifdef __ARCH_WANT_SYS_NICE
  3497. /*
  3498. * sys_nice - change the priority of the current process.
  3499. * @increment: priority increment
  3500. *
  3501. * sys_setpriority is a more generic, but much slower function that
  3502. * does similar things.
  3503. */
  3504. asmlinkage long sys_nice(int increment)
  3505. {
  3506. long nice, retval;
  3507. /*
  3508. * Setpriority might change our priority at the same moment.
  3509. * We don't have to worry. Conceptually one call occurs first
  3510. * and we have a single winner.
  3511. */
  3512. if (increment < -40)
  3513. increment = -40;
  3514. if (increment > 40)
  3515. increment = 40;
  3516. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3517. if (nice < -20)
  3518. nice = -20;
  3519. if (nice > 19)
  3520. nice = 19;
  3521. if (increment < 0 && !can_nice(current, nice))
  3522. return -EPERM;
  3523. retval = security_task_setnice(current, nice);
  3524. if (retval)
  3525. return retval;
  3526. set_user_nice(current, nice);
  3527. return 0;
  3528. }
  3529. #endif
  3530. /**
  3531. * task_prio - return the priority value of a given task.
  3532. * @p: the task in question.
  3533. *
  3534. * This is the priority value as seen by users in /proc.
  3535. * RT tasks are offset by -200. Normal tasks are centered
  3536. * around 0, value goes from -16 to +15.
  3537. */
  3538. int task_prio(const struct task_struct *p)
  3539. {
  3540. return p->prio - MAX_RT_PRIO;
  3541. }
  3542. /**
  3543. * task_nice - return the nice value of a given task.
  3544. * @p: the task in question.
  3545. */
  3546. int task_nice(const struct task_struct *p)
  3547. {
  3548. return TASK_NICE(p);
  3549. }
  3550. EXPORT_SYMBOL_GPL(task_nice);
  3551. /**
  3552. * idle_cpu - is a given cpu idle currently?
  3553. * @cpu: the processor in question.
  3554. */
  3555. int idle_cpu(int cpu)
  3556. {
  3557. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3558. }
  3559. /**
  3560. * idle_task - return the idle task for a given cpu.
  3561. * @cpu: the processor in question.
  3562. */
  3563. struct task_struct *idle_task(int cpu)
  3564. {
  3565. return cpu_rq(cpu)->idle;
  3566. }
  3567. /**
  3568. * find_process_by_pid - find a process with a matching PID value.
  3569. * @pid: the pid in question.
  3570. */
  3571. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3572. {
  3573. return pid ? find_task_by_pid(pid) : current;
  3574. }
  3575. /* Actually do priority change: must hold rq lock. */
  3576. static void
  3577. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3578. {
  3579. BUG_ON(p->se.on_rq);
  3580. p->policy = policy;
  3581. switch (p->policy) {
  3582. case SCHED_NORMAL:
  3583. case SCHED_BATCH:
  3584. case SCHED_IDLE:
  3585. p->sched_class = &fair_sched_class;
  3586. break;
  3587. case SCHED_FIFO:
  3588. case SCHED_RR:
  3589. p->sched_class = &rt_sched_class;
  3590. break;
  3591. }
  3592. p->rt_priority = prio;
  3593. p->normal_prio = normal_prio(p);
  3594. /* we are holding p->pi_lock already */
  3595. p->prio = rt_mutex_getprio(p);
  3596. set_load_weight(p);
  3597. }
  3598. /**
  3599. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3600. * @p: the task in question.
  3601. * @policy: new policy.
  3602. * @param: structure containing the new RT priority.
  3603. *
  3604. * NOTE that the task may be already dead.
  3605. */
  3606. int sched_setscheduler(struct task_struct *p, int policy,
  3607. struct sched_param *param)
  3608. {
  3609. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3610. unsigned long flags;
  3611. struct rq *rq;
  3612. /* may grab non-irq protected spin_locks */
  3613. BUG_ON(in_interrupt());
  3614. recheck:
  3615. /* double check policy once rq lock held */
  3616. if (policy < 0)
  3617. policy = oldpolicy = p->policy;
  3618. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3619. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3620. policy != SCHED_IDLE)
  3621. return -EINVAL;
  3622. /*
  3623. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3624. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3625. * SCHED_BATCH and SCHED_IDLE is 0.
  3626. */
  3627. if (param->sched_priority < 0 ||
  3628. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3629. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3630. return -EINVAL;
  3631. if (rt_policy(policy) != (param->sched_priority != 0))
  3632. return -EINVAL;
  3633. /*
  3634. * Allow unprivileged RT tasks to decrease priority:
  3635. */
  3636. if (!capable(CAP_SYS_NICE)) {
  3637. if (rt_policy(policy)) {
  3638. unsigned long rlim_rtprio;
  3639. if (!lock_task_sighand(p, &flags))
  3640. return -ESRCH;
  3641. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3642. unlock_task_sighand(p, &flags);
  3643. /* can't set/change the rt policy */
  3644. if (policy != p->policy && !rlim_rtprio)
  3645. return -EPERM;
  3646. /* can't increase priority */
  3647. if (param->sched_priority > p->rt_priority &&
  3648. param->sched_priority > rlim_rtprio)
  3649. return -EPERM;
  3650. }
  3651. /*
  3652. * Like positive nice levels, dont allow tasks to
  3653. * move out of SCHED_IDLE either:
  3654. */
  3655. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3656. return -EPERM;
  3657. /* can't change other user's priorities */
  3658. if ((current->euid != p->euid) &&
  3659. (current->euid != p->uid))
  3660. return -EPERM;
  3661. }
  3662. retval = security_task_setscheduler(p, policy, param);
  3663. if (retval)
  3664. return retval;
  3665. /*
  3666. * make sure no PI-waiters arrive (or leave) while we are
  3667. * changing the priority of the task:
  3668. */
  3669. spin_lock_irqsave(&p->pi_lock, flags);
  3670. /*
  3671. * To be able to change p->policy safely, the apropriate
  3672. * runqueue lock must be held.
  3673. */
  3674. rq = __task_rq_lock(p);
  3675. /* recheck policy now with rq lock held */
  3676. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3677. policy = oldpolicy = -1;
  3678. __task_rq_unlock(rq);
  3679. spin_unlock_irqrestore(&p->pi_lock, flags);
  3680. goto recheck;
  3681. }
  3682. update_rq_clock(rq);
  3683. on_rq = p->se.on_rq;
  3684. running = task_running(rq, p);
  3685. if (on_rq) {
  3686. deactivate_task(rq, p, 0);
  3687. if (running)
  3688. p->sched_class->put_prev_task(rq, p);
  3689. }
  3690. oldprio = p->prio;
  3691. __setscheduler(rq, p, policy, param->sched_priority);
  3692. if (on_rq) {
  3693. if (running)
  3694. p->sched_class->set_curr_task(rq);
  3695. activate_task(rq, p, 0);
  3696. /*
  3697. * Reschedule if we are currently running on this runqueue and
  3698. * our priority decreased, or if we are not currently running on
  3699. * this runqueue and our priority is higher than the current's
  3700. */
  3701. if (running) {
  3702. if (p->prio > oldprio)
  3703. resched_task(rq->curr);
  3704. } else {
  3705. check_preempt_curr(rq, p);
  3706. }
  3707. }
  3708. __task_rq_unlock(rq);
  3709. spin_unlock_irqrestore(&p->pi_lock, flags);
  3710. rt_mutex_adjust_pi(p);
  3711. return 0;
  3712. }
  3713. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3714. static int
  3715. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3716. {
  3717. struct sched_param lparam;
  3718. struct task_struct *p;
  3719. int retval;
  3720. if (!param || pid < 0)
  3721. return -EINVAL;
  3722. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3723. return -EFAULT;
  3724. rcu_read_lock();
  3725. retval = -ESRCH;
  3726. p = find_process_by_pid(pid);
  3727. if (p != NULL)
  3728. retval = sched_setscheduler(p, policy, &lparam);
  3729. rcu_read_unlock();
  3730. return retval;
  3731. }
  3732. /**
  3733. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3734. * @pid: the pid in question.
  3735. * @policy: new policy.
  3736. * @param: structure containing the new RT priority.
  3737. */
  3738. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3739. struct sched_param __user *param)
  3740. {
  3741. /* negative values for policy are not valid */
  3742. if (policy < 0)
  3743. return -EINVAL;
  3744. return do_sched_setscheduler(pid, policy, param);
  3745. }
  3746. /**
  3747. * sys_sched_setparam - set/change the RT priority of a thread
  3748. * @pid: the pid in question.
  3749. * @param: structure containing the new RT priority.
  3750. */
  3751. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3752. {
  3753. return do_sched_setscheduler(pid, -1, param);
  3754. }
  3755. /**
  3756. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3757. * @pid: the pid in question.
  3758. */
  3759. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3760. {
  3761. struct task_struct *p;
  3762. int retval = -EINVAL;
  3763. if (pid < 0)
  3764. goto out_nounlock;
  3765. retval = -ESRCH;
  3766. read_lock(&tasklist_lock);
  3767. p = find_process_by_pid(pid);
  3768. if (p) {
  3769. retval = security_task_getscheduler(p);
  3770. if (!retval)
  3771. retval = p->policy;
  3772. }
  3773. read_unlock(&tasklist_lock);
  3774. out_nounlock:
  3775. return retval;
  3776. }
  3777. /**
  3778. * sys_sched_getscheduler - get the RT priority of a thread
  3779. * @pid: the pid in question.
  3780. * @param: structure containing the RT priority.
  3781. */
  3782. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3783. {
  3784. struct sched_param lp;
  3785. struct task_struct *p;
  3786. int retval = -EINVAL;
  3787. if (!param || pid < 0)
  3788. goto out_nounlock;
  3789. read_lock(&tasklist_lock);
  3790. p = find_process_by_pid(pid);
  3791. retval = -ESRCH;
  3792. if (!p)
  3793. goto out_unlock;
  3794. retval = security_task_getscheduler(p);
  3795. if (retval)
  3796. goto out_unlock;
  3797. lp.sched_priority = p->rt_priority;
  3798. read_unlock(&tasklist_lock);
  3799. /*
  3800. * This one might sleep, we cannot do it with a spinlock held ...
  3801. */
  3802. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3803. out_nounlock:
  3804. return retval;
  3805. out_unlock:
  3806. read_unlock(&tasklist_lock);
  3807. return retval;
  3808. }
  3809. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3810. {
  3811. cpumask_t cpus_allowed;
  3812. struct task_struct *p;
  3813. int retval;
  3814. mutex_lock(&sched_hotcpu_mutex);
  3815. read_lock(&tasklist_lock);
  3816. p = find_process_by_pid(pid);
  3817. if (!p) {
  3818. read_unlock(&tasklist_lock);
  3819. mutex_unlock(&sched_hotcpu_mutex);
  3820. return -ESRCH;
  3821. }
  3822. /*
  3823. * It is not safe to call set_cpus_allowed with the
  3824. * tasklist_lock held. We will bump the task_struct's
  3825. * usage count and then drop tasklist_lock.
  3826. */
  3827. get_task_struct(p);
  3828. read_unlock(&tasklist_lock);
  3829. retval = -EPERM;
  3830. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3831. !capable(CAP_SYS_NICE))
  3832. goto out_unlock;
  3833. retval = security_task_setscheduler(p, 0, NULL);
  3834. if (retval)
  3835. goto out_unlock;
  3836. cpus_allowed = cpuset_cpus_allowed(p);
  3837. cpus_and(new_mask, new_mask, cpus_allowed);
  3838. retval = set_cpus_allowed(p, new_mask);
  3839. out_unlock:
  3840. put_task_struct(p);
  3841. mutex_unlock(&sched_hotcpu_mutex);
  3842. return retval;
  3843. }
  3844. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3845. cpumask_t *new_mask)
  3846. {
  3847. if (len < sizeof(cpumask_t)) {
  3848. memset(new_mask, 0, sizeof(cpumask_t));
  3849. } else if (len > sizeof(cpumask_t)) {
  3850. len = sizeof(cpumask_t);
  3851. }
  3852. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3853. }
  3854. /**
  3855. * sys_sched_setaffinity - set the cpu affinity of a process
  3856. * @pid: pid of the process
  3857. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3858. * @user_mask_ptr: user-space pointer to the new cpu mask
  3859. */
  3860. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3861. unsigned long __user *user_mask_ptr)
  3862. {
  3863. cpumask_t new_mask;
  3864. int retval;
  3865. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3866. if (retval)
  3867. return retval;
  3868. return sched_setaffinity(pid, new_mask);
  3869. }
  3870. /*
  3871. * Represents all cpu's present in the system
  3872. * In systems capable of hotplug, this map could dynamically grow
  3873. * as new cpu's are detected in the system via any platform specific
  3874. * method, such as ACPI for e.g.
  3875. */
  3876. cpumask_t cpu_present_map __read_mostly;
  3877. EXPORT_SYMBOL(cpu_present_map);
  3878. #ifndef CONFIG_SMP
  3879. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3880. EXPORT_SYMBOL(cpu_online_map);
  3881. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3882. EXPORT_SYMBOL(cpu_possible_map);
  3883. #endif
  3884. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3885. {
  3886. struct task_struct *p;
  3887. int retval;
  3888. mutex_lock(&sched_hotcpu_mutex);
  3889. read_lock(&tasklist_lock);
  3890. retval = -ESRCH;
  3891. p = find_process_by_pid(pid);
  3892. if (!p)
  3893. goto out_unlock;
  3894. retval = security_task_getscheduler(p);
  3895. if (retval)
  3896. goto out_unlock;
  3897. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3898. out_unlock:
  3899. read_unlock(&tasklist_lock);
  3900. mutex_unlock(&sched_hotcpu_mutex);
  3901. return retval;
  3902. }
  3903. /**
  3904. * sys_sched_getaffinity - get the cpu affinity of a process
  3905. * @pid: pid of the process
  3906. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3907. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3908. */
  3909. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3910. unsigned long __user *user_mask_ptr)
  3911. {
  3912. int ret;
  3913. cpumask_t mask;
  3914. if (len < sizeof(cpumask_t))
  3915. return -EINVAL;
  3916. ret = sched_getaffinity(pid, &mask);
  3917. if (ret < 0)
  3918. return ret;
  3919. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3920. return -EFAULT;
  3921. return sizeof(cpumask_t);
  3922. }
  3923. /**
  3924. * sys_sched_yield - yield the current processor to other threads.
  3925. *
  3926. * This function yields the current CPU to other tasks. If there are no
  3927. * other threads running on this CPU then this function will return.
  3928. */
  3929. asmlinkage long sys_sched_yield(void)
  3930. {
  3931. struct rq *rq = this_rq_lock();
  3932. schedstat_inc(rq, yld_cnt);
  3933. current->sched_class->yield_task(rq);
  3934. /*
  3935. * Since we are going to call schedule() anyway, there's
  3936. * no need to preempt or enable interrupts:
  3937. */
  3938. __release(rq->lock);
  3939. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3940. _raw_spin_unlock(&rq->lock);
  3941. preempt_enable_no_resched();
  3942. schedule();
  3943. return 0;
  3944. }
  3945. static void __cond_resched(void)
  3946. {
  3947. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3948. __might_sleep(__FILE__, __LINE__);
  3949. #endif
  3950. /*
  3951. * The BKS might be reacquired before we have dropped
  3952. * PREEMPT_ACTIVE, which could trigger a second
  3953. * cond_resched() call.
  3954. */
  3955. do {
  3956. add_preempt_count(PREEMPT_ACTIVE);
  3957. schedule();
  3958. sub_preempt_count(PREEMPT_ACTIVE);
  3959. } while (need_resched());
  3960. }
  3961. int __sched cond_resched(void)
  3962. {
  3963. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3964. system_state == SYSTEM_RUNNING) {
  3965. __cond_resched();
  3966. return 1;
  3967. }
  3968. return 0;
  3969. }
  3970. EXPORT_SYMBOL(cond_resched);
  3971. /*
  3972. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3973. * call schedule, and on return reacquire the lock.
  3974. *
  3975. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3976. * operations here to prevent schedule() from being called twice (once via
  3977. * spin_unlock(), once by hand).
  3978. */
  3979. int cond_resched_lock(spinlock_t *lock)
  3980. {
  3981. int ret = 0;
  3982. if (need_lockbreak(lock)) {
  3983. spin_unlock(lock);
  3984. cpu_relax();
  3985. ret = 1;
  3986. spin_lock(lock);
  3987. }
  3988. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3989. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3990. _raw_spin_unlock(lock);
  3991. preempt_enable_no_resched();
  3992. __cond_resched();
  3993. ret = 1;
  3994. spin_lock(lock);
  3995. }
  3996. return ret;
  3997. }
  3998. EXPORT_SYMBOL(cond_resched_lock);
  3999. int __sched cond_resched_softirq(void)
  4000. {
  4001. BUG_ON(!in_softirq());
  4002. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4003. local_bh_enable();
  4004. __cond_resched();
  4005. local_bh_disable();
  4006. return 1;
  4007. }
  4008. return 0;
  4009. }
  4010. EXPORT_SYMBOL(cond_resched_softirq);
  4011. /**
  4012. * yield - yield the current processor to other threads.
  4013. *
  4014. * This is a shortcut for kernel-space yielding - it marks the
  4015. * thread runnable and calls sys_sched_yield().
  4016. */
  4017. void __sched yield(void)
  4018. {
  4019. set_current_state(TASK_RUNNING);
  4020. sys_sched_yield();
  4021. }
  4022. EXPORT_SYMBOL(yield);
  4023. /*
  4024. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4025. * that process accounting knows that this is a task in IO wait state.
  4026. *
  4027. * But don't do that if it is a deliberate, throttling IO wait (this task
  4028. * has set its backing_dev_info: the queue against which it should throttle)
  4029. */
  4030. void __sched io_schedule(void)
  4031. {
  4032. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4033. delayacct_blkio_start();
  4034. atomic_inc(&rq->nr_iowait);
  4035. schedule();
  4036. atomic_dec(&rq->nr_iowait);
  4037. delayacct_blkio_end();
  4038. }
  4039. EXPORT_SYMBOL(io_schedule);
  4040. long __sched io_schedule_timeout(long timeout)
  4041. {
  4042. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4043. long ret;
  4044. delayacct_blkio_start();
  4045. atomic_inc(&rq->nr_iowait);
  4046. ret = schedule_timeout(timeout);
  4047. atomic_dec(&rq->nr_iowait);
  4048. delayacct_blkio_end();
  4049. return ret;
  4050. }
  4051. /**
  4052. * sys_sched_get_priority_max - return maximum RT priority.
  4053. * @policy: scheduling class.
  4054. *
  4055. * this syscall returns the maximum rt_priority that can be used
  4056. * by a given scheduling class.
  4057. */
  4058. asmlinkage long sys_sched_get_priority_max(int policy)
  4059. {
  4060. int ret = -EINVAL;
  4061. switch (policy) {
  4062. case SCHED_FIFO:
  4063. case SCHED_RR:
  4064. ret = MAX_USER_RT_PRIO-1;
  4065. break;
  4066. case SCHED_NORMAL:
  4067. case SCHED_BATCH:
  4068. case SCHED_IDLE:
  4069. ret = 0;
  4070. break;
  4071. }
  4072. return ret;
  4073. }
  4074. /**
  4075. * sys_sched_get_priority_min - return minimum RT priority.
  4076. * @policy: scheduling class.
  4077. *
  4078. * this syscall returns the minimum rt_priority that can be used
  4079. * by a given scheduling class.
  4080. */
  4081. asmlinkage long sys_sched_get_priority_min(int policy)
  4082. {
  4083. int ret = -EINVAL;
  4084. switch (policy) {
  4085. case SCHED_FIFO:
  4086. case SCHED_RR:
  4087. ret = 1;
  4088. break;
  4089. case SCHED_NORMAL:
  4090. case SCHED_BATCH:
  4091. case SCHED_IDLE:
  4092. ret = 0;
  4093. }
  4094. return ret;
  4095. }
  4096. /**
  4097. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4098. * @pid: pid of the process.
  4099. * @interval: userspace pointer to the timeslice value.
  4100. *
  4101. * this syscall writes the default timeslice value of a given process
  4102. * into the user-space timespec buffer. A value of '0' means infinity.
  4103. */
  4104. asmlinkage
  4105. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4106. {
  4107. struct task_struct *p;
  4108. int retval = -EINVAL;
  4109. struct timespec t;
  4110. if (pid < 0)
  4111. goto out_nounlock;
  4112. retval = -ESRCH;
  4113. read_lock(&tasklist_lock);
  4114. p = find_process_by_pid(pid);
  4115. if (!p)
  4116. goto out_unlock;
  4117. retval = security_task_getscheduler(p);
  4118. if (retval)
  4119. goto out_unlock;
  4120. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4121. 0 : static_prio_timeslice(p->static_prio), &t);
  4122. read_unlock(&tasklist_lock);
  4123. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4124. out_nounlock:
  4125. return retval;
  4126. out_unlock:
  4127. read_unlock(&tasklist_lock);
  4128. return retval;
  4129. }
  4130. static const char stat_nam[] = "RSDTtZX";
  4131. static void show_task(struct task_struct *p)
  4132. {
  4133. unsigned long free = 0;
  4134. unsigned state;
  4135. state = p->state ? __ffs(p->state) + 1 : 0;
  4136. printk("%-13.13s %c", p->comm,
  4137. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4138. #if BITS_PER_LONG == 32
  4139. if (state == TASK_RUNNING)
  4140. printk(" running ");
  4141. else
  4142. printk(" %08lx ", thread_saved_pc(p));
  4143. #else
  4144. if (state == TASK_RUNNING)
  4145. printk(" running task ");
  4146. else
  4147. printk(" %016lx ", thread_saved_pc(p));
  4148. #endif
  4149. #ifdef CONFIG_DEBUG_STACK_USAGE
  4150. {
  4151. unsigned long *n = end_of_stack(p);
  4152. while (!*n)
  4153. n++;
  4154. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4155. }
  4156. #endif
  4157. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4158. if (state != TASK_RUNNING)
  4159. show_stack(p, NULL);
  4160. }
  4161. void show_state_filter(unsigned long state_filter)
  4162. {
  4163. struct task_struct *g, *p;
  4164. #if BITS_PER_LONG == 32
  4165. printk(KERN_INFO
  4166. " task PC stack pid father\n");
  4167. #else
  4168. printk(KERN_INFO
  4169. " task PC stack pid father\n");
  4170. #endif
  4171. read_lock(&tasklist_lock);
  4172. do_each_thread(g, p) {
  4173. /*
  4174. * reset the NMI-timeout, listing all files on a slow
  4175. * console might take alot of time:
  4176. */
  4177. touch_nmi_watchdog();
  4178. if (!state_filter || (p->state & state_filter))
  4179. show_task(p);
  4180. } while_each_thread(g, p);
  4181. touch_all_softlockup_watchdogs();
  4182. #ifdef CONFIG_SCHED_DEBUG
  4183. sysrq_sched_debug_show();
  4184. #endif
  4185. read_unlock(&tasklist_lock);
  4186. /*
  4187. * Only show locks if all tasks are dumped:
  4188. */
  4189. if (state_filter == -1)
  4190. debug_show_all_locks();
  4191. }
  4192. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4193. {
  4194. idle->sched_class = &idle_sched_class;
  4195. }
  4196. /**
  4197. * init_idle - set up an idle thread for a given CPU
  4198. * @idle: task in question
  4199. * @cpu: cpu the idle task belongs to
  4200. *
  4201. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4202. * flag, to make booting more robust.
  4203. */
  4204. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4205. {
  4206. struct rq *rq = cpu_rq(cpu);
  4207. unsigned long flags;
  4208. __sched_fork(idle);
  4209. idle->se.exec_start = sched_clock();
  4210. idle->prio = idle->normal_prio = MAX_PRIO;
  4211. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4212. __set_task_cpu(idle, cpu);
  4213. spin_lock_irqsave(&rq->lock, flags);
  4214. rq->curr = rq->idle = idle;
  4215. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4216. idle->oncpu = 1;
  4217. #endif
  4218. spin_unlock_irqrestore(&rq->lock, flags);
  4219. /* Set the preempt count _outside_ the spinlocks! */
  4220. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4221. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4222. #else
  4223. task_thread_info(idle)->preempt_count = 0;
  4224. #endif
  4225. /*
  4226. * The idle tasks have their own, simple scheduling class:
  4227. */
  4228. idle->sched_class = &idle_sched_class;
  4229. }
  4230. /*
  4231. * In a system that switches off the HZ timer nohz_cpu_mask
  4232. * indicates which cpus entered this state. This is used
  4233. * in the rcu update to wait only for active cpus. For system
  4234. * which do not switch off the HZ timer nohz_cpu_mask should
  4235. * always be CPU_MASK_NONE.
  4236. */
  4237. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4238. #ifdef CONFIG_SMP
  4239. /*
  4240. * This is how migration works:
  4241. *
  4242. * 1) we queue a struct migration_req structure in the source CPU's
  4243. * runqueue and wake up that CPU's migration thread.
  4244. * 2) we down() the locked semaphore => thread blocks.
  4245. * 3) migration thread wakes up (implicitly it forces the migrated
  4246. * thread off the CPU)
  4247. * 4) it gets the migration request and checks whether the migrated
  4248. * task is still in the wrong runqueue.
  4249. * 5) if it's in the wrong runqueue then the migration thread removes
  4250. * it and puts it into the right queue.
  4251. * 6) migration thread up()s the semaphore.
  4252. * 7) we wake up and the migration is done.
  4253. */
  4254. /*
  4255. * Change a given task's CPU affinity. Migrate the thread to a
  4256. * proper CPU and schedule it away if the CPU it's executing on
  4257. * is removed from the allowed bitmask.
  4258. *
  4259. * NOTE: the caller must have a valid reference to the task, the
  4260. * task must not exit() & deallocate itself prematurely. The
  4261. * call is not atomic; no spinlocks may be held.
  4262. */
  4263. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4264. {
  4265. struct migration_req req;
  4266. unsigned long flags;
  4267. struct rq *rq;
  4268. int ret = 0;
  4269. rq = task_rq_lock(p, &flags);
  4270. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4271. ret = -EINVAL;
  4272. goto out;
  4273. }
  4274. p->cpus_allowed = new_mask;
  4275. /* Can the task run on the task's current CPU? If so, we're done */
  4276. if (cpu_isset(task_cpu(p), new_mask))
  4277. goto out;
  4278. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4279. /* Need help from migration thread: drop lock and wait. */
  4280. task_rq_unlock(rq, &flags);
  4281. wake_up_process(rq->migration_thread);
  4282. wait_for_completion(&req.done);
  4283. tlb_migrate_finish(p->mm);
  4284. return 0;
  4285. }
  4286. out:
  4287. task_rq_unlock(rq, &flags);
  4288. return ret;
  4289. }
  4290. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4291. /*
  4292. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4293. * this because either it can't run here any more (set_cpus_allowed()
  4294. * away from this CPU, or CPU going down), or because we're
  4295. * attempting to rebalance this task on exec (sched_exec).
  4296. *
  4297. * So we race with normal scheduler movements, but that's OK, as long
  4298. * as the task is no longer on this CPU.
  4299. *
  4300. * Returns non-zero if task was successfully migrated.
  4301. */
  4302. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4303. {
  4304. struct rq *rq_dest, *rq_src;
  4305. int ret = 0, on_rq;
  4306. if (unlikely(cpu_is_offline(dest_cpu)))
  4307. return ret;
  4308. rq_src = cpu_rq(src_cpu);
  4309. rq_dest = cpu_rq(dest_cpu);
  4310. double_rq_lock(rq_src, rq_dest);
  4311. /* Already moved. */
  4312. if (task_cpu(p) != src_cpu)
  4313. goto out;
  4314. /* Affinity changed (again). */
  4315. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4316. goto out;
  4317. on_rq = p->se.on_rq;
  4318. if (on_rq)
  4319. deactivate_task(rq_src, p, 0);
  4320. set_task_cpu(p, dest_cpu);
  4321. if (on_rq) {
  4322. activate_task(rq_dest, p, 0);
  4323. check_preempt_curr(rq_dest, p);
  4324. }
  4325. ret = 1;
  4326. out:
  4327. double_rq_unlock(rq_src, rq_dest);
  4328. return ret;
  4329. }
  4330. /*
  4331. * migration_thread - this is a highprio system thread that performs
  4332. * thread migration by bumping thread off CPU then 'pushing' onto
  4333. * another runqueue.
  4334. */
  4335. static int migration_thread(void *data)
  4336. {
  4337. int cpu = (long)data;
  4338. struct rq *rq;
  4339. rq = cpu_rq(cpu);
  4340. BUG_ON(rq->migration_thread != current);
  4341. set_current_state(TASK_INTERRUPTIBLE);
  4342. while (!kthread_should_stop()) {
  4343. struct migration_req *req;
  4344. struct list_head *head;
  4345. spin_lock_irq(&rq->lock);
  4346. if (cpu_is_offline(cpu)) {
  4347. spin_unlock_irq(&rq->lock);
  4348. goto wait_to_die;
  4349. }
  4350. if (rq->active_balance) {
  4351. active_load_balance(rq, cpu);
  4352. rq->active_balance = 0;
  4353. }
  4354. head = &rq->migration_queue;
  4355. if (list_empty(head)) {
  4356. spin_unlock_irq(&rq->lock);
  4357. schedule();
  4358. set_current_state(TASK_INTERRUPTIBLE);
  4359. continue;
  4360. }
  4361. req = list_entry(head->next, struct migration_req, list);
  4362. list_del_init(head->next);
  4363. spin_unlock(&rq->lock);
  4364. __migrate_task(req->task, cpu, req->dest_cpu);
  4365. local_irq_enable();
  4366. complete(&req->done);
  4367. }
  4368. __set_current_state(TASK_RUNNING);
  4369. return 0;
  4370. wait_to_die:
  4371. /* Wait for kthread_stop */
  4372. set_current_state(TASK_INTERRUPTIBLE);
  4373. while (!kthread_should_stop()) {
  4374. schedule();
  4375. set_current_state(TASK_INTERRUPTIBLE);
  4376. }
  4377. __set_current_state(TASK_RUNNING);
  4378. return 0;
  4379. }
  4380. #ifdef CONFIG_HOTPLUG_CPU
  4381. /*
  4382. * Figure out where task on dead CPU should go, use force if neccessary.
  4383. * NOTE: interrupts should be disabled by the caller
  4384. */
  4385. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4386. {
  4387. unsigned long flags;
  4388. cpumask_t mask;
  4389. struct rq *rq;
  4390. int dest_cpu;
  4391. restart:
  4392. /* On same node? */
  4393. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4394. cpus_and(mask, mask, p->cpus_allowed);
  4395. dest_cpu = any_online_cpu(mask);
  4396. /* On any allowed CPU? */
  4397. if (dest_cpu == NR_CPUS)
  4398. dest_cpu = any_online_cpu(p->cpus_allowed);
  4399. /* No more Mr. Nice Guy. */
  4400. if (dest_cpu == NR_CPUS) {
  4401. rq = task_rq_lock(p, &flags);
  4402. cpus_setall(p->cpus_allowed);
  4403. dest_cpu = any_online_cpu(p->cpus_allowed);
  4404. task_rq_unlock(rq, &flags);
  4405. /*
  4406. * Don't tell them about moving exiting tasks or
  4407. * kernel threads (both mm NULL), since they never
  4408. * leave kernel.
  4409. */
  4410. if (p->mm && printk_ratelimit())
  4411. printk(KERN_INFO "process %d (%s) no "
  4412. "longer affine to cpu%d\n",
  4413. p->pid, p->comm, dead_cpu);
  4414. }
  4415. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4416. goto restart;
  4417. }
  4418. /*
  4419. * While a dead CPU has no uninterruptible tasks queued at this point,
  4420. * it might still have a nonzero ->nr_uninterruptible counter, because
  4421. * for performance reasons the counter is not stricly tracking tasks to
  4422. * their home CPUs. So we just add the counter to another CPU's counter,
  4423. * to keep the global sum constant after CPU-down:
  4424. */
  4425. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4426. {
  4427. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4428. unsigned long flags;
  4429. local_irq_save(flags);
  4430. double_rq_lock(rq_src, rq_dest);
  4431. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4432. rq_src->nr_uninterruptible = 0;
  4433. double_rq_unlock(rq_src, rq_dest);
  4434. local_irq_restore(flags);
  4435. }
  4436. /* Run through task list and migrate tasks from the dead cpu. */
  4437. static void migrate_live_tasks(int src_cpu)
  4438. {
  4439. struct task_struct *p, *t;
  4440. write_lock_irq(&tasklist_lock);
  4441. do_each_thread(t, p) {
  4442. if (p == current)
  4443. continue;
  4444. if (task_cpu(p) == src_cpu)
  4445. move_task_off_dead_cpu(src_cpu, p);
  4446. } while_each_thread(t, p);
  4447. write_unlock_irq(&tasklist_lock);
  4448. }
  4449. /*
  4450. * Schedules idle task to be the next runnable task on current CPU.
  4451. * It does so by boosting its priority to highest possible and adding it to
  4452. * the _front_ of the runqueue. Used by CPU offline code.
  4453. */
  4454. void sched_idle_next(void)
  4455. {
  4456. int this_cpu = smp_processor_id();
  4457. struct rq *rq = cpu_rq(this_cpu);
  4458. struct task_struct *p = rq->idle;
  4459. unsigned long flags;
  4460. /* cpu has to be offline */
  4461. BUG_ON(cpu_online(this_cpu));
  4462. /*
  4463. * Strictly not necessary since rest of the CPUs are stopped by now
  4464. * and interrupts disabled on the current cpu.
  4465. */
  4466. spin_lock_irqsave(&rq->lock, flags);
  4467. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4468. /* Add idle task to the _front_ of its priority queue: */
  4469. activate_idle_task(p, rq);
  4470. spin_unlock_irqrestore(&rq->lock, flags);
  4471. }
  4472. /*
  4473. * Ensures that the idle task is using init_mm right before its cpu goes
  4474. * offline.
  4475. */
  4476. void idle_task_exit(void)
  4477. {
  4478. struct mm_struct *mm = current->active_mm;
  4479. BUG_ON(cpu_online(smp_processor_id()));
  4480. if (mm != &init_mm)
  4481. switch_mm(mm, &init_mm, current);
  4482. mmdrop(mm);
  4483. }
  4484. /* called under rq->lock with disabled interrupts */
  4485. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4486. {
  4487. struct rq *rq = cpu_rq(dead_cpu);
  4488. /* Must be exiting, otherwise would be on tasklist. */
  4489. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4490. /* Cannot have done final schedule yet: would have vanished. */
  4491. BUG_ON(p->state == TASK_DEAD);
  4492. get_task_struct(p);
  4493. /*
  4494. * Drop lock around migration; if someone else moves it,
  4495. * that's OK. No task can be added to this CPU, so iteration is
  4496. * fine.
  4497. * NOTE: interrupts should be left disabled --dev@
  4498. */
  4499. spin_unlock(&rq->lock);
  4500. move_task_off_dead_cpu(dead_cpu, p);
  4501. spin_lock(&rq->lock);
  4502. put_task_struct(p);
  4503. }
  4504. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4505. static void migrate_dead_tasks(unsigned int dead_cpu)
  4506. {
  4507. struct rq *rq = cpu_rq(dead_cpu);
  4508. struct task_struct *next;
  4509. for ( ; ; ) {
  4510. if (!rq->nr_running)
  4511. break;
  4512. update_rq_clock(rq);
  4513. next = pick_next_task(rq, rq->curr);
  4514. if (!next)
  4515. break;
  4516. migrate_dead(dead_cpu, next);
  4517. }
  4518. }
  4519. #endif /* CONFIG_HOTPLUG_CPU */
  4520. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4521. static struct ctl_table sd_ctl_dir[] = {
  4522. {
  4523. .procname = "sched_domain",
  4524. .mode = 0555,
  4525. },
  4526. {0,},
  4527. };
  4528. static struct ctl_table sd_ctl_root[] = {
  4529. {
  4530. .ctl_name = CTL_KERN,
  4531. .procname = "kernel",
  4532. .mode = 0555,
  4533. .child = sd_ctl_dir,
  4534. },
  4535. {0,},
  4536. };
  4537. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4538. {
  4539. struct ctl_table *entry =
  4540. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4541. BUG_ON(!entry);
  4542. memset(entry, 0, n * sizeof(struct ctl_table));
  4543. return entry;
  4544. }
  4545. static void
  4546. set_table_entry(struct ctl_table *entry,
  4547. const char *procname, void *data, int maxlen,
  4548. mode_t mode, proc_handler *proc_handler)
  4549. {
  4550. entry->procname = procname;
  4551. entry->data = data;
  4552. entry->maxlen = maxlen;
  4553. entry->mode = mode;
  4554. entry->proc_handler = proc_handler;
  4555. }
  4556. static struct ctl_table *
  4557. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4558. {
  4559. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4560. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4561. sizeof(long), 0644, proc_doulongvec_minmax);
  4562. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4563. sizeof(long), 0644, proc_doulongvec_minmax);
  4564. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4565. sizeof(int), 0644, proc_dointvec_minmax);
  4566. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4567. sizeof(int), 0644, proc_dointvec_minmax);
  4568. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4569. sizeof(int), 0644, proc_dointvec_minmax);
  4570. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4571. sizeof(int), 0644, proc_dointvec_minmax);
  4572. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4573. sizeof(int), 0644, proc_dointvec_minmax);
  4574. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4575. sizeof(int), 0644, proc_dointvec_minmax);
  4576. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4577. sizeof(int), 0644, proc_dointvec_minmax);
  4578. set_table_entry(&table[10], "cache_nice_tries",
  4579. &sd->cache_nice_tries,
  4580. sizeof(int), 0644, proc_dointvec_minmax);
  4581. set_table_entry(&table[12], "flags", &sd->flags,
  4582. sizeof(int), 0644, proc_dointvec_minmax);
  4583. return table;
  4584. }
  4585. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4586. {
  4587. struct ctl_table *entry, *table;
  4588. struct sched_domain *sd;
  4589. int domain_num = 0, i;
  4590. char buf[32];
  4591. for_each_domain(cpu, sd)
  4592. domain_num++;
  4593. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4594. i = 0;
  4595. for_each_domain(cpu, sd) {
  4596. snprintf(buf, 32, "domain%d", i);
  4597. entry->procname = kstrdup(buf, GFP_KERNEL);
  4598. entry->mode = 0555;
  4599. entry->child = sd_alloc_ctl_domain_table(sd);
  4600. entry++;
  4601. i++;
  4602. }
  4603. return table;
  4604. }
  4605. static struct ctl_table_header *sd_sysctl_header;
  4606. static void init_sched_domain_sysctl(void)
  4607. {
  4608. int i, cpu_num = num_online_cpus();
  4609. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4610. char buf[32];
  4611. sd_ctl_dir[0].child = entry;
  4612. for (i = 0; i < cpu_num; i++, entry++) {
  4613. snprintf(buf, 32, "cpu%d", i);
  4614. entry->procname = kstrdup(buf, GFP_KERNEL);
  4615. entry->mode = 0555;
  4616. entry->child = sd_alloc_ctl_cpu_table(i);
  4617. }
  4618. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4619. }
  4620. #else
  4621. static void init_sched_domain_sysctl(void)
  4622. {
  4623. }
  4624. #endif
  4625. /*
  4626. * migration_call - callback that gets triggered when a CPU is added.
  4627. * Here we can start up the necessary migration thread for the new CPU.
  4628. */
  4629. static int __cpuinit
  4630. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4631. {
  4632. struct task_struct *p;
  4633. int cpu = (long)hcpu;
  4634. unsigned long flags;
  4635. struct rq *rq;
  4636. switch (action) {
  4637. case CPU_LOCK_ACQUIRE:
  4638. mutex_lock(&sched_hotcpu_mutex);
  4639. break;
  4640. case CPU_UP_PREPARE:
  4641. case CPU_UP_PREPARE_FROZEN:
  4642. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4643. if (IS_ERR(p))
  4644. return NOTIFY_BAD;
  4645. kthread_bind(p, cpu);
  4646. /* Must be high prio: stop_machine expects to yield to it. */
  4647. rq = task_rq_lock(p, &flags);
  4648. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4649. task_rq_unlock(rq, &flags);
  4650. cpu_rq(cpu)->migration_thread = p;
  4651. break;
  4652. case CPU_ONLINE:
  4653. case CPU_ONLINE_FROZEN:
  4654. /* Strictly unneccessary, as first user will wake it. */
  4655. wake_up_process(cpu_rq(cpu)->migration_thread);
  4656. break;
  4657. #ifdef CONFIG_HOTPLUG_CPU
  4658. case CPU_UP_CANCELED:
  4659. case CPU_UP_CANCELED_FROZEN:
  4660. if (!cpu_rq(cpu)->migration_thread)
  4661. break;
  4662. /* Unbind it from offline cpu so it can run. Fall thru. */
  4663. kthread_bind(cpu_rq(cpu)->migration_thread,
  4664. any_online_cpu(cpu_online_map));
  4665. kthread_stop(cpu_rq(cpu)->migration_thread);
  4666. cpu_rq(cpu)->migration_thread = NULL;
  4667. break;
  4668. case CPU_DEAD:
  4669. case CPU_DEAD_FROZEN:
  4670. migrate_live_tasks(cpu);
  4671. rq = cpu_rq(cpu);
  4672. kthread_stop(rq->migration_thread);
  4673. rq->migration_thread = NULL;
  4674. /* Idle task back to normal (off runqueue, low prio) */
  4675. rq = task_rq_lock(rq->idle, &flags);
  4676. update_rq_clock(rq);
  4677. deactivate_task(rq, rq->idle, 0);
  4678. rq->idle->static_prio = MAX_PRIO;
  4679. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4680. rq->idle->sched_class = &idle_sched_class;
  4681. migrate_dead_tasks(cpu);
  4682. task_rq_unlock(rq, &flags);
  4683. migrate_nr_uninterruptible(rq);
  4684. BUG_ON(rq->nr_running != 0);
  4685. /* No need to migrate the tasks: it was best-effort if
  4686. * they didn't take sched_hotcpu_mutex. Just wake up
  4687. * the requestors. */
  4688. spin_lock_irq(&rq->lock);
  4689. while (!list_empty(&rq->migration_queue)) {
  4690. struct migration_req *req;
  4691. req = list_entry(rq->migration_queue.next,
  4692. struct migration_req, list);
  4693. list_del_init(&req->list);
  4694. complete(&req->done);
  4695. }
  4696. spin_unlock_irq(&rq->lock);
  4697. break;
  4698. #endif
  4699. case CPU_LOCK_RELEASE:
  4700. mutex_unlock(&sched_hotcpu_mutex);
  4701. break;
  4702. }
  4703. return NOTIFY_OK;
  4704. }
  4705. /* Register at highest priority so that task migration (migrate_all_tasks)
  4706. * happens before everything else.
  4707. */
  4708. static struct notifier_block __cpuinitdata migration_notifier = {
  4709. .notifier_call = migration_call,
  4710. .priority = 10
  4711. };
  4712. int __init migration_init(void)
  4713. {
  4714. void *cpu = (void *)(long)smp_processor_id();
  4715. int err;
  4716. /* Start one for the boot CPU: */
  4717. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4718. BUG_ON(err == NOTIFY_BAD);
  4719. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4720. register_cpu_notifier(&migration_notifier);
  4721. return 0;
  4722. }
  4723. #endif
  4724. #ifdef CONFIG_SMP
  4725. /* Number of possible processor ids */
  4726. int nr_cpu_ids __read_mostly = NR_CPUS;
  4727. EXPORT_SYMBOL(nr_cpu_ids);
  4728. #undef SCHED_DOMAIN_DEBUG
  4729. #ifdef SCHED_DOMAIN_DEBUG
  4730. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4731. {
  4732. int level = 0;
  4733. if (!sd) {
  4734. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4735. return;
  4736. }
  4737. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4738. do {
  4739. int i;
  4740. char str[NR_CPUS];
  4741. struct sched_group *group = sd->groups;
  4742. cpumask_t groupmask;
  4743. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4744. cpus_clear(groupmask);
  4745. printk(KERN_DEBUG);
  4746. for (i = 0; i < level + 1; i++)
  4747. printk(" ");
  4748. printk("domain %d: ", level);
  4749. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4750. printk("does not load-balance\n");
  4751. if (sd->parent)
  4752. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4753. " has parent");
  4754. break;
  4755. }
  4756. printk("span %s\n", str);
  4757. if (!cpu_isset(cpu, sd->span))
  4758. printk(KERN_ERR "ERROR: domain->span does not contain "
  4759. "CPU%d\n", cpu);
  4760. if (!cpu_isset(cpu, group->cpumask))
  4761. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4762. " CPU%d\n", cpu);
  4763. printk(KERN_DEBUG);
  4764. for (i = 0; i < level + 2; i++)
  4765. printk(" ");
  4766. printk("groups:");
  4767. do {
  4768. if (!group) {
  4769. printk("\n");
  4770. printk(KERN_ERR "ERROR: group is NULL\n");
  4771. break;
  4772. }
  4773. if (!group->__cpu_power) {
  4774. printk("\n");
  4775. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4776. "set\n");
  4777. }
  4778. if (!cpus_weight(group->cpumask)) {
  4779. printk("\n");
  4780. printk(KERN_ERR "ERROR: empty group\n");
  4781. }
  4782. if (cpus_intersects(groupmask, group->cpumask)) {
  4783. printk("\n");
  4784. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4785. }
  4786. cpus_or(groupmask, groupmask, group->cpumask);
  4787. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4788. printk(" %s", str);
  4789. group = group->next;
  4790. } while (group != sd->groups);
  4791. printk("\n");
  4792. if (!cpus_equal(sd->span, groupmask))
  4793. printk(KERN_ERR "ERROR: groups don't span "
  4794. "domain->span\n");
  4795. level++;
  4796. sd = sd->parent;
  4797. if (!sd)
  4798. continue;
  4799. if (!cpus_subset(groupmask, sd->span))
  4800. printk(KERN_ERR "ERROR: parent span is not a superset "
  4801. "of domain->span\n");
  4802. } while (sd);
  4803. }
  4804. #else
  4805. # define sched_domain_debug(sd, cpu) do { } while (0)
  4806. #endif
  4807. static int sd_degenerate(struct sched_domain *sd)
  4808. {
  4809. if (cpus_weight(sd->span) == 1)
  4810. return 1;
  4811. /* Following flags need at least 2 groups */
  4812. if (sd->flags & (SD_LOAD_BALANCE |
  4813. SD_BALANCE_NEWIDLE |
  4814. SD_BALANCE_FORK |
  4815. SD_BALANCE_EXEC |
  4816. SD_SHARE_CPUPOWER |
  4817. SD_SHARE_PKG_RESOURCES)) {
  4818. if (sd->groups != sd->groups->next)
  4819. return 0;
  4820. }
  4821. /* Following flags don't use groups */
  4822. if (sd->flags & (SD_WAKE_IDLE |
  4823. SD_WAKE_AFFINE |
  4824. SD_WAKE_BALANCE))
  4825. return 0;
  4826. return 1;
  4827. }
  4828. static int
  4829. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4830. {
  4831. unsigned long cflags = sd->flags, pflags = parent->flags;
  4832. if (sd_degenerate(parent))
  4833. return 1;
  4834. if (!cpus_equal(sd->span, parent->span))
  4835. return 0;
  4836. /* Does parent contain flags not in child? */
  4837. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4838. if (cflags & SD_WAKE_AFFINE)
  4839. pflags &= ~SD_WAKE_BALANCE;
  4840. /* Flags needing groups don't count if only 1 group in parent */
  4841. if (parent->groups == parent->groups->next) {
  4842. pflags &= ~(SD_LOAD_BALANCE |
  4843. SD_BALANCE_NEWIDLE |
  4844. SD_BALANCE_FORK |
  4845. SD_BALANCE_EXEC |
  4846. SD_SHARE_CPUPOWER |
  4847. SD_SHARE_PKG_RESOURCES);
  4848. }
  4849. if (~cflags & pflags)
  4850. return 0;
  4851. return 1;
  4852. }
  4853. /*
  4854. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4855. * hold the hotplug lock.
  4856. */
  4857. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4858. {
  4859. struct rq *rq = cpu_rq(cpu);
  4860. struct sched_domain *tmp;
  4861. /* Remove the sched domains which do not contribute to scheduling. */
  4862. for (tmp = sd; tmp; tmp = tmp->parent) {
  4863. struct sched_domain *parent = tmp->parent;
  4864. if (!parent)
  4865. break;
  4866. if (sd_parent_degenerate(tmp, parent)) {
  4867. tmp->parent = parent->parent;
  4868. if (parent->parent)
  4869. parent->parent->child = tmp;
  4870. }
  4871. }
  4872. if (sd && sd_degenerate(sd)) {
  4873. sd = sd->parent;
  4874. if (sd)
  4875. sd->child = NULL;
  4876. }
  4877. sched_domain_debug(sd, cpu);
  4878. rcu_assign_pointer(rq->sd, sd);
  4879. }
  4880. /* cpus with isolated domains */
  4881. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4882. /* Setup the mask of cpus configured for isolated domains */
  4883. static int __init isolated_cpu_setup(char *str)
  4884. {
  4885. int ints[NR_CPUS], i;
  4886. str = get_options(str, ARRAY_SIZE(ints), ints);
  4887. cpus_clear(cpu_isolated_map);
  4888. for (i = 1; i <= ints[0]; i++)
  4889. if (ints[i] < NR_CPUS)
  4890. cpu_set(ints[i], cpu_isolated_map);
  4891. return 1;
  4892. }
  4893. __setup ("isolcpus=", isolated_cpu_setup);
  4894. /*
  4895. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4896. * to a function which identifies what group(along with sched group) a CPU
  4897. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4898. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4899. *
  4900. * init_sched_build_groups will build a circular linked list of the groups
  4901. * covered by the given span, and will set each group's ->cpumask correctly,
  4902. * and ->cpu_power to 0.
  4903. */
  4904. static void
  4905. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4906. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4907. struct sched_group **sg))
  4908. {
  4909. struct sched_group *first = NULL, *last = NULL;
  4910. cpumask_t covered = CPU_MASK_NONE;
  4911. int i;
  4912. for_each_cpu_mask(i, span) {
  4913. struct sched_group *sg;
  4914. int group = group_fn(i, cpu_map, &sg);
  4915. int j;
  4916. if (cpu_isset(i, covered))
  4917. continue;
  4918. sg->cpumask = CPU_MASK_NONE;
  4919. sg->__cpu_power = 0;
  4920. for_each_cpu_mask(j, span) {
  4921. if (group_fn(j, cpu_map, NULL) != group)
  4922. continue;
  4923. cpu_set(j, covered);
  4924. cpu_set(j, sg->cpumask);
  4925. }
  4926. if (!first)
  4927. first = sg;
  4928. if (last)
  4929. last->next = sg;
  4930. last = sg;
  4931. }
  4932. last->next = first;
  4933. }
  4934. #define SD_NODES_PER_DOMAIN 16
  4935. #ifdef CONFIG_NUMA
  4936. /**
  4937. * find_next_best_node - find the next node to include in a sched_domain
  4938. * @node: node whose sched_domain we're building
  4939. * @used_nodes: nodes already in the sched_domain
  4940. *
  4941. * Find the next node to include in a given scheduling domain. Simply
  4942. * finds the closest node not already in the @used_nodes map.
  4943. *
  4944. * Should use nodemask_t.
  4945. */
  4946. static int find_next_best_node(int node, unsigned long *used_nodes)
  4947. {
  4948. int i, n, val, min_val, best_node = 0;
  4949. min_val = INT_MAX;
  4950. for (i = 0; i < MAX_NUMNODES; i++) {
  4951. /* Start at @node */
  4952. n = (node + i) % MAX_NUMNODES;
  4953. if (!nr_cpus_node(n))
  4954. continue;
  4955. /* Skip already used nodes */
  4956. if (test_bit(n, used_nodes))
  4957. continue;
  4958. /* Simple min distance search */
  4959. val = node_distance(node, n);
  4960. if (val < min_val) {
  4961. min_val = val;
  4962. best_node = n;
  4963. }
  4964. }
  4965. set_bit(best_node, used_nodes);
  4966. return best_node;
  4967. }
  4968. /**
  4969. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4970. * @node: node whose cpumask we're constructing
  4971. * @size: number of nodes to include in this span
  4972. *
  4973. * Given a node, construct a good cpumask for its sched_domain to span. It
  4974. * should be one that prevents unnecessary balancing, but also spreads tasks
  4975. * out optimally.
  4976. */
  4977. static cpumask_t sched_domain_node_span(int node)
  4978. {
  4979. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4980. cpumask_t span, nodemask;
  4981. int i;
  4982. cpus_clear(span);
  4983. bitmap_zero(used_nodes, MAX_NUMNODES);
  4984. nodemask = node_to_cpumask(node);
  4985. cpus_or(span, span, nodemask);
  4986. set_bit(node, used_nodes);
  4987. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4988. int next_node = find_next_best_node(node, used_nodes);
  4989. nodemask = node_to_cpumask(next_node);
  4990. cpus_or(span, span, nodemask);
  4991. }
  4992. return span;
  4993. }
  4994. #endif
  4995. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4996. /*
  4997. * SMT sched-domains:
  4998. */
  4999. #ifdef CONFIG_SCHED_SMT
  5000. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5001. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5002. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5003. struct sched_group **sg)
  5004. {
  5005. if (sg)
  5006. *sg = &per_cpu(sched_group_cpus, cpu);
  5007. return cpu;
  5008. }
  5009. #endif
  5010. /*
  5011. * multi-core sched-domains:
  5012. */
  5013. #ifdef CONFIG_SCHED_MC
  5014. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5015. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5016. #endif
  5017. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5018. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5019. struct sched_group **sg)
  5020. {
  5021. int group;
  5022. cpumask_t mask = cpu_sibling_map[cpu];
  5023. cpus_and(mask, mask, *cpu_map);
  5024. group = first_cpu(mask);
  5025. if (sg)
  5026. *sg = &per_cpu(sched_group_core, group);
  5027. return group;
  5028. }
  5029. #elif defined(CONFIG_SCHED_MC)
  5030. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5031. struct sched_group **sg)
  5032. {
  5033. if (sg)
  5034. *sg = &per_cpu(sched_group_core, cpu);
  5035. return cpu;
  5036. }
  5037. #endif
  5038. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5039. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5040. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5041. struct sched_group **sg)
  5042. {
  5043. int group;
  5044. #ifdef CONFIG_SCHED_MC
  5045. cpumask_t mask = cpu_coregroup_map(cpu);
  5046. cpus_and(mask, mask, *cpu_map);
  5047. group = first_cpu(mask);
  5048. #elif defined(CONFIG_SCHED_SMT)
  5049. cpumask_t mask = cpu_sibling_map[cpu];
  5050. cpus_and(mask, mask, *cpu_map);
  5051. group = first_cpu(mask);
  5052. #else
  5053. group = cpu;
  5054. #endif
  5055. if (sg)
  5056. *sg = &per_cpu(sched_group_phys, group);
  5057. return group;
  5058. }
  5059. #ifdef CONFIG_NUMA
  5060. /*
  5061. * The init_sched_build_groups can't handle what we want to do with node
  5062. * groups, so roll our own. Now each node has its own list of groups which
  5063. * gets dynamically allocated.
  5064. */
  5065. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5066. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5067. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5068. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5069. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5070. struct sched_group **sg)
  5071. {
  5072. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5073. int group;
  5074. cpus_and(nodemask, nodemask, *cpu_map);
  5075. group = first_cpu(nodemask);
  5076. if (sg)
  5077. *sg = &per_cpu(sched_group_allnodes, group);
  5078. return group;
  5079. }
  5080. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5081. {
  5082. struct sched_group *sg = group_head;
  5083. int j;
  5084. if (!sg)
  5085. return;
  5086. next_sg:
  5087. for_each_cpu_mask(j, sg->cpumask) {
  5088. struct sched_domain *sd;
  5089. sd = &per_cpu(phys_domains, j);
  5090. if (j != first_cpu(sd->groups->cpumask)) {
  5091. /*
  5092. * Only add "power" once for each
  5093. * physical package.
  5094. */
  5095. continue;
  5096. }
  5097. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5098. }
  5099. sg = sg->next;
  5100. if (sg != group_head)
  5101. goto next_sg;
  5102. }
  5103. #endif
  5104. #ifdef CONFIG_NUMA
  5105. /* Free memory allocated for various sched_group structures */
  5106. static void free_sched_groups(const cpumask_t *cpu_map)
  5107. {
  5108. int cpu, i;
  5109. for_each_cpu_mask(cpu, *cpu_map) {
  5110. struct sched_group **sched_group_nodes
  5111. = sched_group_nodes_bycpu[cpu];
  5112. if (!sched_group_nodes)
  5113. continue;
  5114. for (i = 0; i < MAX_NUMNODES; i++) {
  5115. cpumask_t nodemask = node_to_cpumask(i);
  5116. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5117. cpus_and(nodemask, nodemask, *cpu_map);
  5118. if (cpus_empty(nodemask))
  5119. continue;
  5120. if (sg == NULL)
  5121. continue;
  5122. sg = sg->next;
  5123. next_sg:
  5124. oldsg = sg;
  5125. sg = sg->next;
  5126. kfree(oldsg);
  5127. if (oldsg != sched_group_nodes[i])
  5128. goto next_sg;
  5129. }
  5130. kfree(sched_group_nodes);
  5131. sched_group_nodes_bycpu[cpu] = NULL;
  5132. }
  5133. }
  5134. #else
  5135. static void free_sched_groups(const cpumask_t *cpu_map)
  5136. {
  5137. }
  5138. #endif
  5139. /*
  5140. * Initialize sched groups cpu_power.
  5141. *
  5142. * cpu_power indicates the capacity of sched group, which is used while
  5143. * distributing the load between different sched groups in a sched domain.
  5144. * Typically cpu_power for all the groups in a sched domain will be same unless
  5145. * there are asymmetries in the topology. If there are asymmetries, group
  5146. * having more cpu_power will pickup more load compared to the group having
  5147. * less cpu_power.
  5148. *
  5149. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5150. * the maximum number of tasks a group can handle in the presence of other idle
  5151. * or lightly loaded groups in the same sched domain.
  5152. */
  5153. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5154. {
  5155. struct sched_domain *child;
  5156. struct sched_group *group;
  5157. WARN_ON(!sd || !sd->groups);
  5158. if (cpu != first_cpu(sd->groups->cpumask))
  5159. return;
  5160. child = sd->child;
  5161. sd->groups->__cpu_power = 0;
  5162. /*
  5163. * For perf policy, if the groups in child domain share resources
  5164. * (for example cores sharing some portions of the cache hierarchy
  5165. * or SMT), then set this domain groups cpu_power such that each group
  5166. * can handle only one task, when there are other idle groups in the
  5167. * same sched domain.
  5168. */
  5169. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5170. (child->flags &
  5171. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5172. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5173. return;
  5174. }
  5175. /*
  5176. * add cpu_power of each child group to this groups cpu_power
  5177. */
  5178. group = child->groups;
  5179. do {
  5180. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5181. group = group->next;
  5182. } while (group != child->groups);
  5183. }
  5184. /*
  5185. * Build sched domains for a given set of cpus and attach the sched domains
  5186. * to the individual cpus
  5187. */
  5188. static int build_sched_domains(const cpumask_t *cpu_map)
  5189. {
  5190. int i;
  5191. #ifdef CONFIG_NUMA
  5192. struct sched_group **sched_group_nodes = NULL;
  5193. int sd_allnodes = 0;
  5194. /*
  5195. * Allocate the per-node list of sched groups
  5196. */
  5197. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5198. GFP_KERNEL);
  5199. if (!sched_group_nodes) {
  5200. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5201. return -ENOMEM;
  5202. }
  5203. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5204. #endif
  5205. /*
  5206. * Set up domains for cpus specified by the cpu_map.
  5207. */
  5208. for_each_cpu_mask(i, *cpu_map) {
  5209. struct sched_domain *sd = NULL, *p;
  5210. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5211. cpus_and(nodemask, nodemask, *cpu_map);
  5212. #ifdef CONFIG_NUMA
  5213. if (cpus_weight(*cpu_map) >
  5214. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5215. sd = &per_cpu(allnodes_domains, i);
  5216. *sd = SD_ALLNODES_INIT;
  5217. sd->span = *cpu_map;
  5218. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5219. p = sd;
  5220. sd_allnodes = 1;
  5221. } else
  5222. p = NULL;
  5223. sd = &per_cpu(node_domains, i);
  5224. *sd = SD_NODE_INIT;
  5225. sd->span = sched_domain_node_span(cpu_to_node(i));
  5226. sd->parent = p;
  5227. if (p)
  5228. p->child = sd;
  5229. cpus_and(sd->span, sd->span, *cpu_map);
  5230. #endif
  5231. p = sd;
  5232. sd = &per_cpu(phys_domains, i);
  5233. *sd = SD_CPU_INIT;
  5234. sd->span = nodemask;
  5235. sd->parent = p;
  5236. if (p)
  5237. p->child = sd;
  5238. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5239. #ifdef CONFIG_SCHED_MC
  5240. p = sd;
  5241. sd = &per_cpu(core_domains, i);
  5242. *sd = SD_MC_INIT;
  5243. sd->span = cpu_coregroup_map(i);
  5244. cpus_and(sd->span, sd->span, *cpu_map);
  5245. sd->parent = p;
  5246. p->child = sd;
  5247. cpu_to_core_group(i, cpu_map, &sd->groups);
  5248. #endif
  5249. #ifdef CONFIG_SCHED_SMT
  5250. p = sd;
  5251. sd = &per_cpu(cpu_domains, i);
  5252. *sd = SD_SIBLING_INIT;
  5253. sd->span = cpu_sibling_map[i];
  5254. cpus_and(sd->span, sd->span, *cpu_map);
  5255. sd->parent = p;
  5256. p->child = sd;
  5257. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5258. #endif
  5259. }
  5260. #ifdef CONFIG_SCHED_SMT
  5261. /* Set up CPU (sibling) groups */
  5262. for_each_cpu_mask(i, *cpu_map) {
  5263. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5264. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5265. if (i != first_cpu(this_sibling_map))
  5266. continue;
  5267. init_sched_build_groups(this_sibling_map, cpu_map,
  5268. &cpu_to_cpu_group);
  5269. }
  5270. #endif
  5271. #ifdef CONFIG_SCHED_MC
  5272. /* Set up multi-core groups */
  5273. for_each_cpu_mask(i, *cpu_map) {
  5274. cpumask_t this_core_map = cpu_coregroup_map(i);
  5275. cpus_and(this_core_map, this_core_map, *cpu_map);
  5276. if (i != first_cpu(this_core_map))
  5277. continue;
  5278. init_sched_build_groups(this_core_map, cpu_map,
  5279. &cpu_to_core_group);
  5280. }
  5281. #endif
  5282. /* Set up physical groups */
  5283. for (i = 0; i < MAX_NUMNODES; i++) {
  5284. cpumask_t nodemask = node_to_cpumask(i);
  5285. cpus_and(nodemask, nodemask, *cpu_map);
  5286. if (cpus_empty(nodemask))
  5287. continue;
  5288. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5289. }
  5290. #ifdef CONFIG_NUMA
  5291. /* Set up node groups */
  5292. if (sd_allnodes)
  5293. init_sched_build_groups(*cpu_map, cpu_map,
  5294. &cpu_to_allnodes_group);
  5295. for (i = 0; i < MAX_NUMNODES; i++) {
  5296. /* Set up node groups */
  5297. struct sched_group *sg, *prev;
  5298. cpumask_t nodemask = node_to_cpumask(i);
  5299. cpumask_t domainspan;
  5300. cpumask_t covered = CPU_MASK_NONE;
  5301. int j;
  5302. cpus_and(nodemask, nodemask, *cpu_map);
  5303. if (cpus_empty(nodemask)) {
  5304. sched_group_nodes[i] = NULL;
  5305. continue;
  5306. }
  5307. domainspan = sched_domain_node_span(i);
  5308. cpus_and(domainspan, domainspan, *cpu_map);
  5309. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5310. if (!sg) {
  5311. printk(KERN_WARNING "Can not alloc domain group for "
  5312. "node %d\n", i);
  5313. goto error;
  5314. }
  5315. sched_group_nodes[i] = sg;
  5316. for_each_cpu_mask(j, nodemask) {
  5317. struct sched_domain *sd;
  5318. sd = &per_cpu(node_domains, j);
  5319. sd->groups = sg;
  5320. }
  5321. sg->__cpu_power = 0;
  5322. sg->cpumask = nodemask;
  5323. sg->next = sg;
  5324. cpus_or(covered, covered, nodemask);
  5325. prev = sg;
  5326. for (j = 0; j < MAX_NUMNODES; j++) {
  5327. cpumask_t tmp, notcovered;
  5328. int n = (i + j) % MAX_NUMNODES;
  5329. cpus_complement(notcovered, covered);
  5330. cpus_and(tmp, notcovered, *cpu_map);
  5331. cpus_and(tmp, tmp, domainspan);
  5332. if (cpus_empty(tmp))
  5333. break;
  5334. nodemask = node_to_cpumask(n);
  5335. cpus_and(tmp, tmp, nodemask);
  5336. if (cpus_empty(tmp))
  5337. continue;
  5338. sg = kmalloc_node(sizeof(struct sched_group),
  5339. GFP_KERNEL, i);
  5340. if (!sg) {
  5341. printk(KERN_WARNING
  5342. "Can not alloc domain group for node %d\n", j);
  5343. goto error;
  5344. }
  5345. sg->__cpu_power = 0;
  5346. sg->cpumask = tmp;
  5347. sg->next = prev->next;
  5348. cpus_or(covered, covered, tmp);
  5349. prev->next = sg;
  5350. prev = sg;
  5351. }
  5352. }
  5353. #endif
  5354. /* Calculate CPU power for physical packages and nodes */
  5355. #ifdef CONFIG_SCHED_SMT
  5356. for_each_cpu_mask(i, *cpu_map) {
  5357. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5358. init_sched_groups_power(i, sd);
  5359. }
  5360. #endif
  5361. #ifdef CONFIG_SCHED_MC
  5362. for_each_cpu_mask(i, *cpu_map) {
  5363. struct sched_domain *sd = &per_cpu(core_domains, i);
  5364. init_sched_groups_power(i, sd);
  5365. }
  5366. #endif
  5367. for_each_cpu_mask(i, *cpu_map) {
  5368. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5369. init_sched_groups_power(i, sd);
  5370. }
  5371. #ifdef CONFIG_NUMA
  5372. for (i = 0; i < MAX_NUMNODES; i++)
  5373. init_numa_sched_groups_power(sched_group_nodes[i]);
  5374. if (sd_allnodes) {
  5375. struct sched_group *sg;
  5376. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5377. init_numa_sched_groups_power(sg);
  5378. }
  5379. #endif
  5380. /* Attach the domains */
  5381. for_each_cpu_mask(i, *cpu_map) {
  5382. struct sched_domain *sd;
  5383. #ifdef CONFIG_SCHED_SMT
  5384. sd = &per_cpu(cpu_domains, i);
  5385. #elif defined(CONFIG_SCHED_MC)
  5386. sd = &per_cpu(core_domains, i);
  5387. #else
  5388. sd = &per_cpu(phys_domains, i);
  5389. #endif
  5390. cpu_attach_domain(sd, i);
  5391. }
  5392. return 0;
  5393. #ifdef CONFIG_NUMA
  5394. error:
  5395. free_sched_groups(cpu_map);
  5396. return -ENOMEM;
  5397. #endif
  5398. }
  5399. /*
  5400. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5401. */
  5402. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5403. {
  5404. cpumask_t cpu_default_map;
  5405. int err;
  5406. /*
  5407. * Setup mask for cpus without special case scheduling requirements.
  5408. * For now this just excludes isolated cpus, but could be used to
  5409. * exclude other special cases in the future.
  5410. */
  5411. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5412. err = build_sched_domains(&cpu_default_map);
  5413. return err;
  5414. }
  5415. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5416. {
  5417. free_sched_groups(cpu_map);
  5418. }
  5419. /*
  5420. * Detach sched domains from a group of cpus specified in cpu_map
  5421. * These cpus will now be attached to the NULL domain
  5422. */
  5423. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5424. {
  5425. int i;
  5426. for_each_cpu_mask(i, *cpu_map)
  5427. cpu_attach_domain(NULL, i);
  5428. synchronize_sched();
  5429. arch_destroy_sched_domains(cpu_map);
  5430. }
  5431. /*
  5432. * Partition sched domains as specified by the cpumasks below.
  5433. * This attaches all cpus from the cpumasks to the NULL domain,
  5434. * waits for a RCU quiescent period, recalculates sched
  5435. * domain information and then attaches them back to the
  5436. * correct sched domains
  5437. * Call with hotplug lock held
  5438. */
  5439. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5440. {
  5441. cpumask_t change_map;
  5442. int err = 0;
  5443. cpus_and(*partition1, *partition1, cpu_online_map);
  5444. cpus_and(*partition2, *partition2, cpu_online_map);
  5445. cpus_or(change_map, *partition1, *partition2);
  5446. /* Detach sched domains from all of the affected cpus */
  5447. detach_destroy_domains(&change_map);
  5448. if (!cpus_empty(*partition1))
  5449. err = build_sched_domains(partition1);
  5450. if (!err && !cpus_empty(*partition2))
  5451. err = build_sched_domains(partition2);
  5452. return err;
  5453. }
  5454. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5455. static int arch_reinit_sched_domains(void)
  5456. {
  5457. int err;
  5458. mutex_lock(&sched_hotcpu_mutex);
  5459. detach_destroy_domains(&cpu_online_map);
  5460. err = arch_init_sched_domains(&cpu_online_map);
  5461. mutex_unlock(&sched_hotcpu_mutex);
  5462. return err;
  5463. }
  5464. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5465. {
  5466. int ret;
  5467. if (buf[0] != '0' && buf[0] != '1')
  5468. return -EINVAL;
  5469. if (smt)
  5470. sched_smt_power_savings = (buf[0] == '1');
  5471. else
  5472. sched_mc_power_savings = (buf[0] == '1');
  5473. ret = arch_reinit_sched_domains();
  5474. return ret ? ret : count;
  5475. }
  5476. #ifdef CONFIG_SCHED_MC
  5477. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5478. {
  5479. return sprintf(page, "%u\n", sched_mc_power_savings);
  5480. }
  5481. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5482. const char *buf, size_t count)
  5483. {
  5484. return sched_power_savings_store(buf, count, 0);
  5485. }
  5486. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5487. sched_mc_power_savings_store);
  5488. #endif
  5489. #ifdef CONFIG_SCHED_SMT
  5490. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5491. {
  5492. return sprintf(page, "%u\n", sched_smt_power_savings);
  5493. }
  5494. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5495. const char *buf, size_t count)
  5496. {
  5497. return sched_power_savings_store(buf, count, 1);
  5498. }
  5499. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5500. sched_smt_power_savings_store);
  5501. #endif
  5502. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5503. {
  5504. int err = 0;
  5505. #ifdef CONFIG_SCHED_SMT
  5506. if (smt_capable())
  5507. err = sysfs_create_file(&cls->kset.kobj,
  5508. &attr_sched_smt_power_savings.attr);
  5509. #endif
  5510. #ifdef CONFIG_SCHED_MC
  5511. if (!err && mc_capable())
  5512. err = sysfs_create_file(&cls->kset.kobj,
  5513. &attr_sched_mc_power_savings.attr);
  5514. #endif
  5515. return err;
  5516. }
  5517. #endif
  5518. /*
  5519. * Force a reinitialization of the sched domains hierarchy. The domains
  5520. * and groups cannot be updated in place without racing with the balancing
  5521. * code, so we temporarily attach all running cpus to the NULL domain
  5522. * which will prevent rebalancing while the sched domains are recalculated.
  5523. */
  5524. static int update_sched_domains(struct notifier_block *nfb,
  5525. unsigned long action, void *hcpu)
  5526. {
  5527. switch (action) {
  5528. case CPU_UP_PREPARE:
  5529. case CPU_UP_PREPARE_FROZEN:
  5530. case CPU_DOWN_PREPARE:
  5531. case CPU_DOWN_PREPARE_FROZEN:
  5532. detach_destroy_domains(&cpu_online_map);
  5533. return NOTIFY_OK;
  5534. case CPU_UP_CANCELED:
  5535. case CPU_UP_CANCELED_FROZEN:
  5536. case CPU_DOWN_FAILED:
  5537. case CPU_DOWN_FAILED_FROZEN:
  5538. case CPU_ONLINE:
  5539. case CPU_ONLINE_FROZEN:
  5540. case CPU_DEAD:
  5541. case CPU_DEAD_FROZEN:
  5542. /*
  5543. * Fall through and re-initialise the domains.
  5544. */
  5545. break;
  5546. default:
  5547. return NOTIFY_DONE;
  5548. }
  5549. /* The hotplug lock is already held by cpu_up/cpu_down */
  5550. arch_init_sched_domains(&cpu_online_map);
  5551. return NOTIFY_OK;
  5552. }
  5553. void __init sched_init_smp(void)
  5554. {
  5555. cpumask_t non_isolated_cpus;
  5556. mutex_lock(&sched_hotcpu_mutex);
  5557. arch_init_sched_domains(&cpu_online_map);
  5558. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5559. if (cpus_empty(non_isolated_cpus))
  5560. cpu_set(smp_processor_id(), non_isolated_cpus);
  5561. mutex_unlock(&sched_hotcpu_mutex);
  5562. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5563. hotcpu_notifier(update_sched_domains, 0);
  5564. init_sched_domain_sysctl();
  5565. /* Move init over to a non-isolated CPU */
  5566. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5567. BUG();
  5568. }
  5569. #else
  5570. void __init sched_init_smp(void)
  5571. {
  5572. }
  5573. #endif /* CONFIG_SMP */
  5574. int in_sched_functions(unsigned long addr)
  5575. {
  5576. /* Linker adds these: start and end of __sched functions */
  5577. extern char __sched_text_start[], __sched_text_end[];
  5578. return in_lock_functions(addr) ||
  5579. (addr >= (unsigned long)__sched_text_start
  5580. && addr < (unsigned long)__sched_text_end);
  5581. }
  5582. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5583. {
  5584. cfs_rq->tasks_timeline = RB_ROOT;
  5585. #ifdef CONFIG_FAIR_GROUP_SCHED
  5586. cfs_rq->rq = rq;
  5587. #endif
  5588. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5589. }
  5590. void __init sched_init(void)
  5591. {
  5592. int highest_cpu = 0;
  5593. int i, j;
  5594. /*
  5595. * Link up the scheduling class hierarchy:
  5596. */
  5597. rt_sched_class.next = &fair_sched_class;
  5598. fair_sched_class.next = &idle_sched_class;
  5599. idle_sched_class.next = NULL;
  5600. for_each_possible_cpu(i) {
  5601. struct rt_prio_array *array;
  5602. struct rq *rq;
  5603. rq = cpu_rq(i);
  5604. spin_lock_init(&rq->lock);
  5605. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5606. rq->nr_running = 0;
  5607. rq->clock = 1;
  5608. init_cfs_rq(&rq->cfs, rq);
  5609. #ifdef CONFIG_FAIR_GROUP_SCHED
  5610. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5611. {
  5612. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5613. struct sched_entity *se =
  5614. &per_cpu(init_sched_entity, i);
  5615. init_cfs_rq_p[i] = cfs_rq;
  5616. init_cfs_rq(cfs_rq, rq);
  5617. cfs_rq->tg = &init_task_grp;
  5618. list_add(&cfs_rq->leaf_cfs_rq_list,
  5619. &rq->leaf_cfs_rq_list);
  5620. init_sched_entity_p[i] = se;
  5621. se->cfs_rq = &rq->cfs;
  5622. se->my_q = cfs_rq;
  5623. se->load.weight = init_task_grp_load;
  5624. se->load.inv_weight =
  5625. div64_64(1ULL<<32, init_task_grp_load);
  5626. se->parent = NULL;
  5627. }
  5628. init_task_grp.shares = init_task_grp_load;
  5629. #endif
  5630. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5631. rq->cpu_load[j] = 0;
  5632. #ifdef CONFIG_SMP
  5633. rq->sd = NULL;
  5634. rq->active_balance = 0;
  5635. rq->next_balance = jiffies;
  5636. rq->push_cpu = 0;
  5637. rq->cpu = i;
  5638. rq->migration_thread = NULL;
  5639. INIT_LIST_HEAD(&rq->migration_queue);
  5640. #endif
  5641. atomic_set(&rq->nr_iowait, 0);
  5642. array = &rq->rt.active;
  5643. for (j = 0; j < MAX_RT_PRIO; j++) {
  5644. INIT_LIST_HEAD(array->queue + j);
  5645. __clear_bit(j, array->bitmap);
  5646. }
  5647. highest_cpu = i;
  5648. /* delimiter for bitsearch: */
  5649. __set_bit(MAX_RT_PRIO, array->bitmap);
  5650. }
  5651. set_load_weight(&init_task);
  5652. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5653. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5654. #endif
  5655. #ifdef CONFIG_SMP
  5656. nr_cpu_ids = highest_cpu + 1;
  5657. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5658. #endif
  5659. #ifdef CONFIG_RT_MUTEXES
  5660. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5661. #endif
  5662. /*
  5663. * The boot idle thread does lazy MMU switching as well:
  5664. */
  5665. atomic_inc(&init_mm.mm_count);
  5666. enter_lazy_tlb(&init_mm, current);
  5667. /*
  5668. * Make us the idle thread. Technically, schedule() should not be
  5669. * called from this thread, however somewhere below it might be,
  5670. * but because we are the idle thread, we just pick up running again
  5671. * when this runqueue becomes "idle".
  5672. */
  5673. init_idle(current, smp_processor_id());
  5674. /*
  5675. * During early bootup we pretend to be a normal task:
  5676. */
  5677. current->sched_class = &fair_sched_class;
  5678. }
  5679. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5680. void __might_sleep(char *file, int line)
  5681. {
  5682. #ifdef in_atomic
  5683. static unsigned long prev_jiffy; /* ratelimiting */
  5684. if ((in_atomic() || irqs_disabled()) &&
  5685. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5686. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5687. return;
  5688. prev_jiffy = jiffies;
  5689. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5690. " context at %s:%d\n", file, line);
  5691. printk("in_atomic():%d, irqs_disabled():%d\n",
  5692. in_atomic(), irqs_disabled());
  5693. debug_show_held_locks(current);
  5694. if (irqs_disabled())
  5695. print_irqtrace_events(current);
  5696. dump_stack();
  5697. }
  5698. #endif
  5699. }
  5700. EXPORT_SYMBOL(__might_sleep);
  5701. #endif
  5702. #ifdef CONFIG_MAGIC_SYSRQ
  5703. void normalize_rt_tasks(void)
  5704. {
  5705. struct task_struct *g, *p;
  5706. unsigned long flags;
  5707. struct rq *rq;
  5708. int on_rq;
  5709. read_lock_irq(&tasklist_lock);
  5710. do_each_thread(g, p) {
  5711. p->se.exec_start = 0;
  5712. #ifdef CONFIG_SCHEDSTATS
  5713. p->se.wait_start = 0;
  5714. p->se.sleep_start = 0;
  5715. p->se.block_start = 0;
  5716. #endif
  5717. task_rq(p)->clock = 0;
  5718. if (!rt_task(p)) {
  5719. /*
  5720. * Renice negative nice level userspace
  5721. * tasks back to 0:
  5722. */
  5723. if (TASK_NICE(p) < 0 && p->mm)
  5724. set_user_nice(p, 0);
  5725. continue;
  5726. }
  5727. spin_lock_irqsave(&p->pi_lock, flags);
  5728. rq = __task_rq_lock(p);
  5729. #ifdef CONFIG_SMP
  5730. /*
  5731. * Do not touch the migration thread:
  5732. */
  5733. if (p == rq->migration_thread)
  5734. goto out_unlock;
  5735. #endif
  5736. update_rq_clock(rq);
  5737. on_rq = p->se.on_rq;
  5738. if (on_rq)
  5739. deactivate_task(rq, p, 0);
  5740. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5741. if (on_rq) {
  5742. activate_task(rq, p, 0);
  5743. resched_task(rq->curr);
  5744. }
  5745. #ifdef CONFIG_SMP
  5746. out_unlock:
  5747. #endif
  5748. __task_rq_unlock(rq);
  5749. spin_unlock_irqrestore(&p->pi_lock, flags);
  5750. } while_each_thread(g, p);
  5751. read_unlock_irq(&tasklist_lock);
  5752. }
  5753. #endif /* CONFIG_MAGIC_SYSRQ */
  5754. #ifdef CONFIG_IA64
  5755. /*
  5756. * These functions are only useful for the IA64 MCA handling.
  5757. *
  5758. * They can only be called when the whole system has been
  5759. * stopped - every CPU needs to be quiescent, and no scheduling
  5760. * activity can take place. Using them for anything else would
  5761. * be a serious bug, and as a result, they aren't even visible
  5762. * under any other configuration.
  5763. */
  5764. /**
  5765. * curr_task - return the current task for a given cpu.
  5766. * @cpu: the processor in question.
  5767. *
  5768. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5769. */
  5770. struct task_struct *curr_task(int cpu)
  5771. {
  5772. return cpu_curr(cpu);
  5773. }
  5774. /**
  5775. * set_curr_task - set the current task for a given cpu.
  5776. * @cpu: the processor in question.
  5777. * @p: the task pointer to set.
  5778. *
  5779. * Description: This function must only be used when non-maskable interrupts
  5780. * are serviced on a separate stack. It allows the architecture to switch the
  5781. * notion of the current task on a cpu in a non-blocking manner. This function
  5782. * must be called with all CPU's synchronized, and interrupts disabled, the
  5783. * and caller must save the original value of the current task (see
  5784. * curr_task() above) and restore that value before reenabling interrupts and
  5785. * re-starting the system.
  5786. *
  5787. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5788. */
  5789. void set_curr_task(int cpu, struct task_struct *p)
  5790. {
  5791. cpu_curr(cpu) = p;
  5792. }
  5793. #endif
  5794. #ifdef CONFIG_FAIR_GROUP_SCHED
  5795. /* allocate runqueue etc for a new task group */
  5796. struct task_grp *sched_create_group(void)
  5797. {
  5798. struct task_grp *tg;
  5799. struct cfs_rq *cfs_rq;
  5800. struct sched_entity *se;
  5801. struct rq *rq;
  5802. int i;
  5803. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5804. if (!tg)
  5805. return ERR_PTR(-ENOMEM);
  5806. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5807. if (!tg->cfs_rq)
  5808. goto err;
  5809. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5810. if (!tg->se)
  5811. goto err;
  5812. for_each_possible_cpu(i) {
  5813. rq = cpu_rq(i);
  5814. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5815. cpu_to_node(i));
  5816. if (!cfs_rq)
  5817. goto err;
  5818. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5819. cpu_to_node(i));
  5820. if (!se)
  5821. goto err;
  5822. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5823. memset(se, 0, sizeof(struct sched_entity));
  5824. tg->cfs_rq[i] = cfs_rq;
  5825. init_cfs_rq(cfs_rq, rq);
  5826. cfs_rq->tg = tg;
  5827. tg->se[i] = se;
  5828. se->cfs_rq = &rq->cfs;
  5829. se->my_q = cfs_rq;
  5830. se->load.weight = NICE_0_LOAD;
  5831. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5832. se->parent = NULL;
  5833. }
  5834. for_each_possible_cpu(i) {
  5835. rq = cpu_rq(i);
  5836. cfs_rq = tg->cfs_rq[i];
  5837. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5838. }
  5839. tg->shares = NICE_0_LOAD;
  5840. return tg;
  5841. err:
  5842. for_each_possible_cpu(i) {
  5843. if (tg->cfs_rq && tg->cfs_rq[i])
  5844. kfree(tg->cfs_rq[i]);
  5845. if (tg->se && tg->se[i])
  5846. kfree(tg->se[i]);
  5847. }
  5848. if (tg->cfs_rq)
  5849. kfree(tg->cfs_rq);
  5850. if (tg->se)
  5851. kfree(tg->se);
  5852. if (tg)
  5853. kfree(tg);
  5854. return ERR_PTR(-ENOMEM);
  5855. }
  5856. /* rcu callback to free various structures associated with a task group */
  5857. static void free_sched_group(struct rcu_head *rhp)
  5858. {
  5859. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  5860. struct task_grp *tg = cfs_rq->tg;
  5861. struct sched_entity *se;
  5862. int i;
  5863. /* now it should be safe to free those cfs_rqs */
  5864. for_each_possible_cpu(i) {
  5865. cfs_rq = tg->cfs_rq[i];
  5866. kfree(cfs_rq);
  5867. se = tg->se[i];
  5868. kfree(se);
  5869. }
  5870. kfree(tg->cfs_rq);
  5871. kfree(tg->se);
  5872. kfree(tg);
  5873. }
  5874. /* Destroy runqueue etc associated with a task group */
  5875. void sched_destroy_group(struct task_grp *tg)
  5876. {
  5877. struct cfs_rq *cfs_rq;
  5878. int i;
  5879. for_each_possible_cpu(i) {
  5880. cfs_rq = tg->cfs_rq[i];
  5881. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  5882. }
  5883. cfs_rq = tg->cfs_rq[0];
  5884. /* wait for possible concurrent references to cfs_rqs complete */
  5885. call_rcu(&cfs_rq->rcu, free_sched_group);
  5886. }
  5887. /* change task's runqueue when it moves between groups.
  5888. * The caller of this function should have put the task in its new group
  5889. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5890. * reflect its new group.
  5891. */
  5892. void sched_move_task(struct task_struct *tsk)
  5893. {
  5894. int on_rq, running;
  5895. unsigned long flags;
  5896. struct rq *rq;
  5897. rq = task_rq_lock(tsk, &flags);
  5898. if (tsk->sched_class != &fair_sched_class)
  5899. goto done;
  5900. update_rq_clock(rq);
  5901. running = task_running(rq, tsk);
  5902. on_rq = tsk->se.on_rq;
  5903. if (on_rq) {
  5904. dequeue_task(rq, tsk, 0);
  5905. if (unlikely(running))
  5906. tsk->sched_class->put_prev_task(rq, tsk);
  5907. }
  5908. set_task_cfs_rq(tsk);
  5909. if (on_rq) {
  5910. if (unlikely(running))
  5911. tsk->sched_class->set_curr_task(rq);
  5912. enqueue_task(rq, tsk, 0);
  5913. }
  5914. done:
  5915. task_rq_unlock(rq, &flags);
  5916. }
  5917. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  5918. {
  5919. struct cfs_rq *cfs_rq = se->cfs_rq;
  5920. struct rq *rq = cfs_rq->rq;
  5921. int on_rq;
  5922. spin_lock_irq(&rq->lock);
  5923. on_rq = se->on_rq;
  5924. if (on_rq)
  5925. dequeue_entity(cfs_rq, se, 0);
  5926. se->load.weight = shares;
  5927. se->load.inv_weight = div64_64((1ULL<<32), shares);
  5928. if (on_rq)
  5929. enqueue_entity(cfs_rq, se, 0);
  5930. spin_unlock_irq(&rq->lock);
  5931. }
  5932. int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
  5933. {
  5934. int i;
  5935. if (tg->shares == shares)
  5936. return 0;
  5937. /* return -EINVAL if the new value is not sane */
  5938. tg->shares = shares;
  5939. for_each_possible_cpu(i)
  5940. set_se_shares(tg->se[i], shares);
  5941. return 0;
  5942. }
  5943. #endif /* CONFIG_FAIR_GROUP_SCHED */