dmi_scan.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. #include <linux/types.h>
  2. #include <linux/string.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/ctype.h>
  6. #include <linux/dmi.h>
  7. #include <linux/efi.h>
  8. #include <linux/bootmem.h>
  9. #include <linux/random.h>
  10. #include <asm/dmi.h>
  11. /*
  12. * DMI stands for "Desktop Management Interface". It is part
  13. * of and an antecedent to, SMBIOS, which stands for System
  14. * Management BIOS. See further: http://www.dmtf.org/standards
  15. */
  16. static char dmi_empty_string[] = " ";
  17. static u16 __initdata dmi_ver;
  18. /*
  19. * Catch too early calls to dmi_check_system():
  20. */
  21. static int dmi_initialized;
  22. /* DMI system identification string used during boot */
  23. static char dmi_ids_string[128] __initdata;
  24. static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  25. {
  26. const u8 *bp = ((u8 *) dm) + dm->length;
  27. if (s) {
  28. s--;
  29. while (s > 0 && *bp) {
  30. bp += strlen(bp) + 1;
  31. s--;
  32. }
  33. if (*bp != 0) {
  34. size_t len = strlen(bp)+1;
  35. size_t cmp_len = len > 8 ? 8 : len;
  36. if (!memcmp(bp, dmi_empty_string, cmp_len))
  37. return dmi_empty_string;
  38. return bp;
  39. }
  40. }
  41. return "";
  42. }
  43. static char * __init dmi_string(const struct dmi_header *dm, u8 s)
  44. {
  45. const char *bp = dmi_string_nosave(dm, s);
  46. char *str;
  47. size_t len;
  48. if (bp == dmi_empty_string)
  49. return dmi_empty_string;
  50. len = strlen(bp) + 1;
  51. str = dmi_alloc(len);
  52. if (str != NULL)
  53. strcpy(str, bp);
  54. else
  55. pr_err("dmi_string: cannot allocate %Zu bytes.\n", len);
  56. return str;
  57. }
  58. /*
  59. * We have to be cautious here. We have seen BIOSes with DMI pointers
  60. * pointing to completely the wrong place for example
  61. */
  62. static void dmi_table(u8 *buf, int len, int num,
  63. void (*decode)(const struct dmi_header *, void *),
  64. void *private_data)
  65. {
  66. u8 *data = buf;
  67. int i = 0;
  68. /*
  69. * Stop when we see all the items the table claimed to have
  70. * OR we run off the end of the table (also happens)
  71. */
  72. while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
  73. const struct dmi_header *dm = (const struct dmi_header *)data;
  74. /*
  75. * We want to know the total length (formatted area and
  76. * strings) before decoding to make sure we won't run off the
  77. * table in dmi_decode or dmi_string
  78. */
  79. data += dm->length;
  80. while ((data - buf < len - 1) && (data[0] || data[1]))
  81. data++;
  82. if (data - buf < len - 1)
  83. decode(dm, private_data);
  84. data += 2;
  85. i++;
  86. }
  87. }
  88. static u32 dmi_base;
  89. static u16 dmi_len;
  90. static u16 dmi_num;
  91. static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
  92. void *))
  93. {
  94. u8 *buf;
  95. buf = dmi_ioremap(dmi_base, dmi_len);
  96. if (buf == NULL)
  97. return -1;
  98. dmi_table(buf, dmi_len, dmi_num, decode, NULL);
  99. add_device_randomness(buf, dmi_len);
  100. dmi_iounmap(buf, dmi_len);
  101. return 0;
  102. }
  103. static int __init dmi_checksum(const u8 *buf, u8 len)
  104. {
  105. u8 sum = 0;
  106. int a;
  107. for (a = 0; a < len; a++)
  108. sum += buf[a];
  109. return sum == 0;
  110. }
  111. static char *dmi_ident[DMI_STRING_MAX];
  112. static LIST_HEAD(dmi_devices);
  113. int dmi_available;
  114. /*
  115. * Save a DMI string
  116. */
  117. static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
  118. int string)
  119. {
  120. const char *d = (const char *) dm;
  121. char *p;
  122. if (dmi_ident[slot])
  123. return;
  124. p = dmi_string(dm, d[string]);
  125. if (p == NULL)
  126. return;
  127. dmi_ident[slot] = p;
  128. }
  129. static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
  130. int index)
  131. {
  132. const u8 *d = (u8 *) dm + index;
  133. char *s;
  134. int is_ff = 1, is_00 = 1, i;
  135. if (dmi_ident[slot])
  136. return;
  137. for (i = 0; i < 16 && (is_ff || is_00); i++) {
  138. if (d[i] != 0x00)
  139. is_00 = 0;
  140. if (d[i] != 0xFF)
  141. is_ff = 0;
  142. }
  143. if (is_ff || is_00)
  144. return;
  145. s = dmi_alloc(16*2+4+1);
  146. if (!s)
  147. return;
  148. /*
  149. * As of version 2.6 of the SMBIOS specification, the first 3 fields of
  150. * the UUID are supposed to be little-endian encoded. The specification
  151. * says that this is the defacto standard.
  152. */
  153. if (dmi_ver >= 0x0206)
  154. sprintf(s, "%pUL", d);
  155. else
  156. sprintf(s, "%pUB", d);
  157. dmi_ident[slot] = s;
  158. }
  159. static void __init dmi_save_type(const struct dmi_header *dm, int slot,
  160. int index)
  161. {
  162. const u8 *d = (u8 *) dm + index;
  163. char *s;
  164. if (dmi_ident[slot])
  165. return;
  166. s = dmi_alloc(4);
  167. if (!s)
  168. return;
  169. sprintf(s, "%u", *d & 0x7F);
  170. dmi_ident[slot] = s;
  171. }
  172. static void __init dmi_save_one_device(int type, const char *name)
  173. {
  174. struct dmi_device *dev;
  175. /* No duplicate device */
  176. if (dmi_find_device(type, name, NULL))
  177. return;
  178. dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
  179. if (!dev) {
  180. pr_err("dmi_save_one_device: out of memory.\n");
  181. return;
  182. }
  183. dev->type = type;
  184. strcpy((char *)(dev + 1), name);
  185. dev->name = (char *)(dev + 1);
  186. dev->device_data = NULL;
  187. list_add(&dev->list, &dmi_devices);
  188. }
  189. static void __init dmi_save_devices(const struct dmi_header *dm)
  190. {
  191. int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
  192. for (i = 0; i < count; i++) {
  193. const char *d = (char *)(dm + 1) + (i * 2);
  194. /* Skip disabled device */
  195. if ((*d & 0x80) == 0)
  196. continue;
  197. dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
  198. }
  199. }
  200. static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
  201. {
  202. int i, count = *(u8 *)(dm + 1);
  203. struct dmi_device *dev;
  204. for (i = 1; i <= count; i++) {
  205. char *devname = dmi_string(dm, i);
  206. if (devname == dmi_empty_string)
  207. continue;
  208. dev = dmi_alloc(sizeof(*dev));
  209. if (!dev) {
  210. pr_err("dmi_save_oem_strings_devices: out of memory.\n");
  211. break;
  212. }
  213. dev->type = DMI_DEV_TYPE_OEM_STRING;
  214. dev->name = devname;
  215. dev->device_data = NULL;
  216. list_add(&dev->list, &dmi_devices);
  217. }
  218. }
  219. static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
  220. {
  221. struct dmi_device *dev;
  222. void *data;
  223. data = dmi_alloc(dm->length);
  224. if (data == NULL) {
  225. pr_err("dmi_save_ipmi_device: out of memory.\n");
  226. return;
  227. }
  228. memcpy(data, dm, dm->length);
  229. dev = dmi_alloc(sizeof(*dev));
  230. if (!dev) {
  231. pr_err("dmi_save_ipmi_device: out of memory.\n");
  232. return;
  233. }
  234. dev->type = DMI_DEV_TYPE_IPMI;
  235. dev->name = "IPMI controller";
  236. dev->device_data = data;
  237. list_add_tail(&dev->list, &dmi_devices);
  238. }
  239. static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
  240. int devfn, const char *name)
  241. {
  242. struct dmi_dev_onboard *onboard_dev;
  243. onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
  244. if (!onboard_dev) {
  245. pr_err("dmi_save_dev_onboard: out of memory.\n");
  246. return;
  247. }
  248. onboard_dev->instance = instance;
  249. onboard_dev->segment = segment;
  250. onboard_dev->bus = bus;
  251. onboard_dev->devfn = devfn;
  252. strcpy((char *)&onboard_dev[1], name);
  253. onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
  254. onboard_dev->dev.name = (char *)&onboard_dev[1];
  255. onboard_dev->dev.device_data = onboard_dev;
  256. list_add(&onboard_dev->dev.list, &dmi_devices);
  257. }
  258. static void __init dmi_save_extended_devices(const struct dmi_header *dm)
  259. {
  260. const u8 *d = (u8 *) dm + 5;
  261. /* Skip disabled device */
  262. if ((*d & 0x80) == 0)
  263. return;
  264. dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
  265. dmi_string_nosave(dm, *(d-1)));
  266. dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
  267. }
  268. /*
  269. * Process a DMI table entry. Right now all we care about are the BIOS
  270. * and machine entries. For 2.5 we should pull the smbus controller info
  271. * out of here.
  272. */
  273. static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
  274. {
  275. switch (dm->type) {
  276. case 0: /* BIOS Information */
  277. dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
  278. dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
  279. dmi_save_ident(dm, DMI_BIOS_DATE, 8);
  280. break;
  281. case 1: /* System Information */
  282. dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
  283. dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
  284. dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
  285. dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
  286. dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
  287. break;
  288. case 2: /* Base Board Information */
  289. dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
  290. dmi_save_ident(dm, DMI_BOARD_NAME, 5);
  291. dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
  292. dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
  293. dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
  294. break;
  295. case 3: /* Chassis Information */
  296. dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
  297. dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
  298. dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
  299. dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
  300. dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
  301. break;
  302. case 10: /* Onboard Devices Information */
  303. dmi_save_devices(dm);
  304. break;
  305. case 11: /* OEM Strings */
  306. dmi_save_oem_strings_devices(dm);
  307. break;
  308. case 38: /* IPMI Device Information */
  309. dmi_save_ipmi_device(dm);
  310. break;
  311. case 41: /* Onboard Devices Extended Information */
  312. dmi_save_extended_devices(dm);
  313. }
  314. }
  315. static int __init print_filtered(char *buf, size_t len, const char *info)
  316. {
  317. int c = 0;
  318. const char *p;
  319. if (!info)
  320. return c;
  321. for (p = info; *p; p++)
  322. if (isprint(*p))
  323. c += scnprintf(buf + c, len - c, "%c", *p);
  324. else
  325. c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
  326. return c;
  327. }
  328. static void __init dmi_format_ids(char *buf, size_t len)
  329. {
  330. int c = 0;
  331. const char *board; /* Board Name is optional */
  332. c += print_filtered(buf + c, len - c,
  333. dmi_get_system_info(DMI_SYS_VENDOR));
  334. c += scnprintf(buf + c, len - c, " ");
  335. c += print_filtered(buf + c, len - c,
  336. dmi_get_system_info(DMI_PRODUCT_NAME));
  337. board = dmi_get_system_info(DMI_BOARD_NAME);
  338. if (board) {
  339. c += scnprintf(buf + c, len - c, "/");
  340. c += print_filtered(buf + c, len - c, board);
  341. }
  342. c += scnprintf(buf + c, len - c, ", BIOS ");
  343. c += print_filtered(buf + c, len - c,
  344. dmi_get_system_info(DMI_BIOS_VERSION));
  345. c += scnprintf(buf + c, len - c, " ");
  346. c += print_filtered(buf + c, len - c,
  347. dmi_get_system_info(DMI_BIOS_DATE));
  348. }
  349. /*
  350. * Check for DMI/SMBIOS headers in the system firmware image. Any
  351. * SMBIOS header must start 16 bytes before the DMI header, so take a
  352. * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
  353. * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
  354. * takes precedence) and return 0. Otherwise return 1.
  355. */
  356. static int __init dmi_present(const u8 *buf)
  357. {
  358. int smbios_ver;
  359. if (memcmp(buf, "_SM_", 4) == 0 &&
  360. buf[5] < 32 && dmi_checksum(buf, buf[5])) {
  361. smbios_ver = (buf[6] << 8) + buf[7];
  362. /* Some BIOS report weird SMBIOS version, fix that up */
  363. switch (smbios_ver) {
  364. case 0x021F:
  365. case 0x0221:
  366. pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
  367. smbios_ver & 0xFF, 3);
  368. smbios_ver = 0x0203;
  369. break;
  370. case 0x0233:
  371. pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
  372. smbios_ver = 0x0206;
  373. break;
  374. }
  375. } else {
  376. smbios_ver = 0;
  377. }
  378. buf += 16;
  379. if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
  380. dmi_num = (buf[13] << 8) | buf[12];
  381. dmi_len = (buf[7] << 8) | buf[6];
  382. dmi_base = (buf[11] << 24) | (buf[10] << 16) |
  383. (buf[9] << 8) | buf[8];
  384. if (dmi_walk_early(dmi_decode) == 0) {
  385. if (smbios_ver) {
  386. dmi_ver = smbios_ver;
  387. pr_info("SMBIOS %d.%d present.\n",
  388. dmi_ver >> 8, dmi_ver & 0xFF);
  389. } else {
  390. dmi_ver = (buf[14] & 0xF0) << 4 |
  391. (buf[14] & 0x0F);
  392. pr_info("Legacy DMI %d.%d present.\n",
  393. dmi_ver >> 8, dmi_ver & 0xFF);
  394. }
  395. dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
  396. printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
  397. return 0;
  398. }
  399. }
  400. return 1;
  401. }
  402. void __init dmi_scan_machine(void)
  403. {
  404. char __iomem *p, *q;
  405. char buf[32];
  406. if (efi_enabled(EFI_CONFIG_TABLES)) {
  407. if (efi.smbios == EFI_INVALID_TABLE_ADDR)
  408. goto error;
  409. /* This is called as a core_initcall() because it isn't
  410. * needed during early boot. This also means we can
  411. * iounmap the space when we're done with it.
  412. */
  413. p = dmi_ioremap(efi.smbios, 32);
  414. if (p == NULL)
  415. goto error;
  416. memcpy_fromio(buf, p, 32);
  417. dmi_iounmap(p, 32);
  418. if (!dmi_present(buf)) {
  419. dmi_available = 1;
  420. goto out;
  421. }
  422. } else {
  423. p = dmi_ioremap(0xF0000, 0x10000);
  424. if (p == NULL)
  425. goto error;
  426. /*
  427. * Iterate over all possible DMI header addresses q.
  428. * Maintain the 32 bytes around q in buf. On the
  429. * first iteration, substitute zero for the
  430. * out-of-range bytes so there is no chance of falsely
  431. * detecting an SMBIOS header.
  432. */
  433. memset(buf, 0, 16);
  434. for (q = p; q < p + 0x10000; q += 16) {
  435. memcpy_fromio(buf + 16, q, 16);
  436. if (!dmi_present(buf)) {
  437. dmi_available = 1;
  438. dmi_iounmap(p, 0x10000);
  439. goto out;
  440. }
  441. memcpy(buf, buf + 16, 16);
  442. }
  443. dmi_iounmap(p, 0x10000);
  444. }
  445. error:
  446. pr_info("DMI not present or invalid.\n");
  447. out:
  448. dmi_initialized = 1;
  449. }
  450. /**
  451. * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
  452. *
  453. * Invoke dump_stack_set_arch_desc() with DMI system information so that
  454. * DMI identifiers are printed out on task dumps. Arch boot code should
  455. * call this function after dmi_scan_machine() if it wants to print out DMI
  456. * identifiers on task dumps.
  457. */
  458. void __init dmi_set_dump_stack_arch_desc(void)
  459. {
  460. dump_stack_set_arch_desc("%s", dmi_ids_string);
  461. }
  462. /**
  463. * dmi_matches - check if dmi_system_id structure matches system DMI data
  464. * @dmi: pointer to the dmi_system_id structure to check
  465. */
  466. static bool dmi_matches(const struct dmi_system_id *dmi)
  467. {
  468. int i;
  469. WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
  470. for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
  471. int s = dmi->matches[i].slot;
  472. if (s == DMI_NONE)
  473. break;
  474. if (dmi_ident[s]) {
  475. if (!dmi->matches[i].exact_match &&
  476. strstr(dmi_ident[s], dmi->matches[i].substr))
  477. continue;
  478. else if (dmi->matches[i].exact_match &&
  479. !strcmp(dmi_ident[s], dmi->matches[i].substr))
  480. continue;
  481. }
  482. /* No match */
  483. return false;
  484. }
  485. return true;
  486. }
  487. /**
  488. * dmi_is_end_of_table - check for end-of-table marker
  489. * @dmi: pointer to the dmi_system_id structure to check
  490. */
  491. static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
  492. {
  493. return dmi->matches[0].slot == DMI_NONE;
  494. }
  495. /**
  496. * dmi_check_system - check system DMI data
  497. * @list: array of dmi_system_id structures to match against
  498. * All non-null elements of the list must match
  499. * their slot's (field index's) data (i.e., each
  500. * list string must be a substring of the specified
  501. * DMI slot's string data) to be considered a
  502. * successful match.
  503. *
  504. * Walk the blacklist table running matching functions until someone
  505. * returns non zero or we hit the end. Callback function is called for
  506. * each successful match. Returns the number of matches.
  507. */
  508. int dmi_check_system(const struct dmi_system_id *list)
  509. {
  510. int count = 0;
  511. const struct dmi_system_id *d;
  512. for (d = list; !dmi_is_end_of_table(d); d++)
  513. if (dmi_matches(d)) {
  514. count++;
  515. if (d->callback && d->callback(d))
  516. break;
  517. }
  518. return count;
  519. }
  520. EXPORT_SYMBOL(dmi_check_system);
  521. /**
  522. * dmi_first_match - find dmi_system_id structure matching system DMI data
  523. * @list: array of dmi_system_id structures to match against
  524. * All non-null elements of the list must match
  525. * their slot's (field index's) data (i.e., each
  526. * list string must be a substring of the specified
  527. * DMI slot's string data) to be considered a
  528. * successful match.
  529. *
  530. * Walk the blacklist table until the first match is found. Return the
  531. * pointer to the matching entry or NULL if there's no match.
  532. */
  533. const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
  534. {
  535. const struct dmi_system_id *d;
  536. for (d = list; !dmi_is_end_of_table(d); d++)
  537. if (dmi_matches(d))
  538. return d;
  539. return NULL;
  540. }
  541. EXPORT_SYMBOL(dmi_first_match);
  542. /**
  543. * dmi_get_system_info - return DMI data value
  544. * @field: data index (see enum dmi_field)
  545. *
  546. * Returns one DMI data value, can be used to perform
  547. * complex DMI data checks.
  548. */
  549. const char *dmi_get_system_info(int field)
  550. {
  551. return dmi_ident[field];
  552. }
  553. EXPORT_SYMBOL(dmi_get_system_info);
  554. /**
  555. * dmi_name_in_serial - Check if string is in the DMI product serial information
  556. * @str: string to check for
  557. */
  558. int dmi_name_in_serial(const char *str)
  559. {
  560. int f = DMI_PRODUCT_SERIAL;
  561. if (dmi_ident[f] && strstr(dmi_ident[f], str))
  562. return 1;
  563. return 0;
  564. }
  565. /**
  566. * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
  567. * @str: Case sensitive Name
  568. */
  569. int dmi_name_in_vendors(const char *str)
  570. {
  571. static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
  572. int i;
  573. for (i = 0; fields[i] != DMI_NONE; i++) {
  574. int f = fields[i];
  575. if (dmi_ident[f] && strstr(dmi_ident[f], str))
  576. return 1;
  577. }
  578. return 0;
  579. }
  580. EXPORT_SYMBOL(dmi_name_in_vendors);
  581. /**
  582. * dmi_find_device - find onboard device by type/name
  583. * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
  584. * @name: device name string or %NULL to match all
  585. * @from: previous device found in search, or %NULL for new search.
  586. *
  587. * Iterates through the list of known onboard devices. If a device is
  588. * found with a matching @vendor and @device, a pointer to its device
  589. * structure is returned. Otherwise, %NULL is returned.
  590. * A new search is initiated by passing %NULL as the @from argument.
  591. * If @from is not %NULL, searches continue from next device.
  592. */
  593. const struct dmi_device *dmi_find_device(int type, const char *name,
  594. const struct dmi_device *from)
  595. {
  596. const struct list_head *head = from ? &from->list : &dmi_devices;
  597. struct list_head *d;
  598. for (d = head->next; d != &dmi_devices; d = d->next) {
  599. const struct dmi_device *dev =
  600. list_entry(d, struct dmi_device, list);
  601. if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
  602. ((name == NULL) || (strcmp(dev->name, name) == 0)))
  603. return dev;
  604. }
  605. return NULL;
  606. }
  607. EXPORT_SYMBOL(dmi_find_device);
  608. /**
  609. * dmi_get_date - parse a DMI date
  610. * @field: data index (see enum dmi_field)
  611. * @yearp: optional out parameter for the year
  612. * @monthp: optional out parameter for the month
  613. * @dayp: optional out parameter for the day
  614. *
  615. * The date field is assumed to be in the form resembling
  616. * [mm[/dd]]/yy[yy] and the result is stored in the out
  617. * parameters any or all of which can be omitted.
  618. *
  619. * If the field doesn't exist, all out parameters are set to zero
  620. * and false is returned. Otherwise, true is returned with any
  621. * invalid part of date set to zero.
  622. *
  623. * On return, year, month and day are guaranteed to be in the
  624. * range of [0,9999], [0,12] and [0,31] respectively.
  625. */
  626. bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
  627. {
  628. int year = 0, month = 0, day = 0;
  629. bool exists;
  630. const char *s, *y;
  631. char *e;
  632. s = dmi_get_system_info(field);
  633. exists = s;
  634. if (!exists)
  635. goto out;
  636. /*
  637. * Determine year first. We assume the date string resembles
  638. * mm/dd/yy[yy] but the original code extracted only the year
  639. * from the end. Keep the behavior in the spirit of no
  640. * surprises.
  641. */
  642. y = strrchr(s, '/');
  643. if (!y)
  644. goto out;
  645. y++;
  646. year = simple_strtoul(y, &e, 10);
  647. if (y != e && year < 100) { /* 2-digit year */
  648. year += 1900;
  649. if (year < 1996) /* no dates < spec 1.0 */
  650. year += 100;
  651. }
  652. if (year > 9999) /* year should fit in %04d */
  653. year = 0;
  654. /* parse the mm and dd */
  655. month = simple_strtoul(s, &e, 10);
  656. if (s == e || *e != '/' || !month || month > 12) {
  657. month = 0;
  658. goto out;
  659. }
  660. s = e + 1;
  661. day = simple_strtoul(s, &e, 10);
  662. if (s == y || s == e || *e != '/' || day > 31)
  663. day = 0;
  664. out:
  665. if (yearp)
  666. *yearp = year;
  667. if (monthp)
  668. *monthp = month;
  669. if (dayp)
  670. *dayp = day;
  671. return exists;
  672. }
  673. EXPORT_SYMBOL(dmi_get_date);
  674. /**
  675. * dmi_walk - Walk the DMI table and get called back for every record
  676. * @decode: Callback function
  677. * @private_data: Private data to be passed to the callback function
  678. *
  679. * Returns -1 when the DMI table can't be reached, 0 on success.
  680. */
  681. int dmi_walk(void (*decode)(const struct dmi_header *, void *),
  682. void *private_data)
  683. {
  684. u8 *buf;
  685. if (!dmi_available)
  686. return -1;
  687. buf = ioremap(dmi_base, dmi_len);
  688. if (buf == NULL)
  689. return -1;
  690. dmi_table(buf, dmi_len, dmi_num, decode, private_data);
  691. iounmap(buf);
  692. return 0;
  693. }
  694. EXPORT_SYMBOL_GPL(dmi_walk);
  695. /**
  696. * dmi_match - compare a string to the dmi field (if exists)
  697. * @f: DMI field identifier
  698. * @str: string to compare the DMI field to
  699. *
  700. * Returns true if the requested field equals to the str (including NULL).
  701. */
  702. bool dmi_match(enum dmi_field f, const char *str)
  703. {
  704. const char *info = dmi_get_system_info(f);
  705. if (info == NULL || str == NULL)
  706. return info == str;
  707. return !strcmp(info, str);
  708. }
  709. EXPORT_SYMBOL_GPL(dmi_match);