af_key.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/netns/generic.h>
  30. #include <net/xfrm.h>
  31. #include <net/sock.h>
  32. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  33. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  34. static int pfkey_net_id __read_mostly;
  35. struct netns_pfkey {
  36. /* List of all pfkey sockets. */
  37. struct hlist_head table;
  38. atomic_t socks_nr;
  39. };
  40. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  41. static DEFINE_RWLOCK(pfkey_table_lock);
  42. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  43. struct pfkey_sock {
  44. /* struct sock must be the first member of struct pfkey_sock */
  45. struct sock sk;
  46. int registered;
  47. int promisc;
  48. struct {
  49. uint8_t msg_version;
  50. uint32_t msg_pid;
  51. int (*dump)(struct pfkey_sock *sk);
  52. void (*done)(struct pfkey_sock *sk);
  53. union {
  54. struct xfrm_policy_walk policy;
  55. struct xfrm_state_walk state;
  56. } u;
  57. struct sk_buff *skb;
  58. } dump;
  59. };
  60. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  61. {
  62. return (struct pfkey_sock *)sk;
  63. }
  64. static int pfkey_can_dump(struct sock *sk)
  65. {
  66. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  67. return 1;
  68. return 0;
  69. }
  70. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  71. {
  72. if (pfk->dump.dump) {
  73. if (pfk->dump.skb) {
  74. kfree_skb(pfk->dump.skb);
  75. pfk->dump.skb = NULL;
  76. }
  77. pfk->dump.done(pfk);
  78. pfk->dump.dump = NULL;
  79. pfk->dump.done = NULL;
  80. }
  81. }
  82. static void pfkey_sock_destruct(struct sock *sk)
  83. {
  84. struct net *net = sock_net(sk);
  85. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  86. pfkey_terminate_dump(pfkey_sk(sk));
  87. skb_queue_purge(&sk->sk_receive_queue);
  88. if (!sock_flag(sk, SOCK_DEAD)) {
  89. printk("Attempt to release alive pfkey socket: %p\n", sk);
  90. return;
  91. }
  92. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  93. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  94. atomic_dec(&net_pfkey->socks_nr);
  95. }
  96. static void pfkey_table_grab(void)
  97. {
  98. write_lock_bh(&pfkey_table_lock);
  99. if (atomic_read(&pfkey_table_users)) {
  100. DECLARE_WAITQUEUE(wait, current);
  101. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  102. for(;;) {
  103. set_current_state(TASK_UNINTERRUPTIBLE);
  104. if (atomic_read(&pfkey_table_users) == 0)
  105. break;
  106. write_unlock_bh(&pfkey_table_lock);
  107. schedule();
  108. write_lock_bh(&pfkey_table_lock);
  109. }
  110. __set_current_state(TASK_RUNNING);
  111. remove_wait_queue(&pfkey_table_wait, &wait);
  112. }
  113. }
  114. static __inline__ void pfkey_table_ungrab(void)
  115. {
  116. write_unlock_bh(&pfkey_table_lock);
  117. wake_up(&pfkey_table_wait);
  118. }
  119. static __inline__ void pfkey_lock_table(void)
  120. {
  121. /* read_lock() synchronizes us to pfkey_table_grab */
  122. read_lock(&pfkey_table_lock);
  123. atomic_inc(&pfkey_table_users);
  124. read_unlock(&pfkey_table_lock);
  125. }
  126. static __inline__ void pfkey_unlock_table(void)
  127. {
  128. if (atomic_dec_and_test(&pfkey_table_users))
  129. wake_up(&pfkey_table_wait);
  130. }
  131. static const struct proto_ops pfkey_ops;
  132. static void pfkey_insert(struct sock *sk)
  133. {
  134. struct net *net = sock_net(sk);
  135. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  136. pfkey_table_grab();
  137. sk_add_node(sk, &net_pfkey->table);
  138. pfkey_table_ungrab();
  139. }
  140. static void pfkey_remove(struct sock *sk)
  141. {
  142. pfkey_table_grab();
  143. sk_del_node_init(sk);
  144. pfkey_table_ungrab();
  145. }
  146. static struct proto key_proto = {
  147. .name = "KEY",
  148. .owner = THIS_MODULE,
  149. .obj_size = sizeof(struct pfkey_sock),
  150. };
  151. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  152. int kern)
  153. {
  154. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  155. struct sock *sk;
  156. int err;
  157. if (!capable(CAP_NET_ADMIN))
  158. return -EPERM;
  159. if (sock->type != SOCK_RAW)
  160. return -ESOCKTNOSUPPORT;
  161. if (protocol != PF_KEY_V2)
  162. return -EPROTONOSUPPORT;
  163. err = -ENOMEM;
  164. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  165. if (sk == NULL)
  166. goto out;
  167. sock->ops = &pfkey_ops;
  168. sock_init_data(sock, sk);
  169. sk->sk_family = PF_KEY;
  170. sk->sk_destruct = pfkey_sock_destruct;
  171. atomic_inc(&net_pfkey->socks_nr);
  172. pfkey_insert(sk);
  173. return 0;
  174. out:
  175. return err;
  176. }
  177. static int pfkey_release(struct socket *sock)
  178. {
  179. struct sock *sk = sock->sk;
  180. if (!sk)
  181. return 0;
  182. pfkey_remove(sk);
  183. sock_orphan(sk);
  184. sock->sk = NULL;
  185. skb_queue_purge(&sk->sk_write_queue);
  186. sock_put(sk);
  187. return 0;
  188. }
  189. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  190. gfp_t allocation, struct sock *sk)
  191. {
  192. int err = -ENOBUFS;
  193. sock_hold(sk);
  194. if (*skb2 == NULL) {
  195. if (atomic_read(&skb->users) != 1) {
  196. *skb2 = skb_clone(skb, allocation);
  197. } else {
  198. *skb2 = skb;
  199. atomic_inc(&skb->users);
  200. }
  201. }
  202. if (*skb2 != NULL) {
  203. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  204. skb_orphan(*skb2);
  205. skb_set_owner_r(*skb2, sk);
  206. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  207. sk->sk_data_ready(sk, (*skb2)->len);
  208. *skb2 = NULL;
  209. err = 0;
  210. }
  211. }
  212. sock_put(sk);
  213. return err;
  214. }
  215. /* Send SKB to all pfkey sockets matching selected criteria. */
  216. #define BROADCAST_ALL 0
  217. #define BROADCAST_ONE 1
  218. #define BROADCAST_REGISTERED 2
  219. #define BROADCAST_PROMISC_ONLY 4
  220. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  221. int broadcast_flags, struct sock *one_sk,
  222. struct net *net)
  223. {
  224. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  225. struct sock *sk;
  226. struct hlist_node *node;
  227. struct sk_buff *skb2 = NULL;
  228. int err = -ESRCH;
  229. /* XXX Do we need something like netlink_overrun? I think
  230. * XXX PF_KEY socket apps will not mind current behavior.
  231. */
  232. if (!skb)
  233. return -ENOMEM;
  234. pfkey_lock_table();
  235. sk_for_each(sk, node, &net_pfkey->table) {
  236. struct pfkey_sock *pfk = pfkey_sk(sk);
  237. int err2;
  238. /* Yes, it means that if you are meant to receive this
  239. * pfkey message you receive it twice as promiscuous
  240. * socket.
  241. */
  242. if (pfk->promisc)
  243. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* the exact target will be processed later */
  245. if (sk == one_sk)
  246. continue;
  247. if (broadcast_flags != BROADCAST_ALL) {
  248. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  249. continue;
  250. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  251. !pfk->registered)
  252. continue;
  253. if (broadcast_flags & BROADCAST_ONE)
  254. continue;
  255. }
  256. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  257. /* Error is cleare after succecful sending to at least one
  258. * registered KM */
  259. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  260. err = err2;
  261. }
  262. pfkey_unlock_table();
  263. if (one_sk != NULL)
  264. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  265. kfree_skb(skb2);
  266. kfree_skb(skb);
  267. return err;
  268. }
  269. static int pfkey_do_dump(struct pfkey_sock *pfk)
  270. {
  271. struct sadb_msg *hdr;
  272. int rc;
  273. rc = pfk->dump.dump(pfk);
  274. if (rc == -ENOBUFS)
  275. return 0;
  276. if (pfk->dump.skb) {
  277. if (!pfkey_can_dump(&pfk->sk))
  278. return 0;
  279. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  280. hdr->sadb_msg_seq = 0;
  281. hdr->sadb_msg_errno = rc;
  282. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  283. &pfk->sk, sock_net(&pfk->sk));
  284. pfk->dump.skb = NULL;
  285. }
  286. pfkey_terminate_dump(pfk);
  287. return rc;
  288. }
  289. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  290. {
  291. *new = *orig;
  292. }
  293. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  294. {
  295. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  296. struct sadb_msg *hdr;
  297. if (!skb)
  298. return -ENOBUFS;
  299. /* Woe be to the platform trying to support PFKEY yet
  300. * having normal errnos outside the 1-255 range, inclusive.
  301. */
  302. err = -err;
  303. if (err == ERESTARTSYS ||
  304. err == ERESTARTNOHAND ||
  305. err == ERESTARTNOINTR)
  306. err = EINTR;
  307. if (err >= 512)
  308. err = EINVAL;
  309. BUG_ON(err <= 0 || err >= 256);
  310. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  311. pfkey_hdr_dup(hdr, orig);
  312. hdr->sadb_msg_errno = (uint8_t) err;
  313. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  314. sizeof(uint64_t));
  315. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  316. return 0;
  317. }
  318. static u8 sadb_ext_min_len[] = {
  319. [SADB_EXT_RESERVED] = (u8) 0,
  320. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  321. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  322. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  323. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  324. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  325. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  326. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  327. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  328. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  329. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  330. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  331. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  332. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  333. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  334. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  335. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  336. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  337. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  338. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  339. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  340. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  341. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  342. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  343. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  344. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  345. };
  346. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  347. static int verify_address_len(void *p)
  348. {
  349. struct sadb_address *sp = p;
  350. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  351. struct sockaddr_in *sin;
  352. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  353. struct sockaddr_in6 *sin6;
  354. #endif
  355. int len;
  356. switch (addr->sa_family) {
  357. case AF_INET:
  358. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  359. if (sp->sadb_address_len != len ||
  360. sp->sadb_address_prefixlen > 32)
  361. return -EINVAL;
  362. break;
  363. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  364. case AF_INET6:
  365. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  366. if (sp->sadb_address_len != len ||
  367. sp->sadb_address_prefixlen > 128)
  368. return -EINVAL;
  369. break;
  370. #endif
  371. default:
  372. /* It is user using kernel to keep track of security
  373. * associations for another protocol, such as
  374. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  375. * lengths.
  376. *
  377. * XXX Actually, association/policy database is not yet
  378. * XXX able to cope with arbitrary sockaddr families.
  379. * XXX When it can, remove this -EINVAL. -DaveM
  380. */
  381. return -EINVAL;
  382. break;
  383. }
  384. return 0;
  385. }
  386. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  387. {
  388. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  389. sec_ctx->sadb_x_ctx_len,
  390. sizeof(uint64_t));
  391. }
  392. static inline int verify_sec_ctx_len(void *p)
  393. {
  394. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  395. int len = sec_ctx->sadb_x_ctx_len;
  396. if (len > PAGE_SIZE)
  397. return -EINVAL;
  398. len = pfkey_sec_ctx_len(sec_ctx);
  399. if (sec_ctx->sadb_x_sec_len != len)
  400. return -EINVAL;
  401. return 0;
  402. }
  403. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  404. {
  405. struct xfrm_user_sec_ctx *uctx = NULL;
  406. int ctx_size = sec_ctx->sadb_x_ctx_len;
  407. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  408. if (!uctx)
  409. return NULL;
  410. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  411. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  412. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  413. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  414. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  415. memcpy(uctx + 1, sec_ctx + 1,
  416. uctx->ctx_len);
  417. return uctx;
  418. }
  419. static int present_and_same_family(struct sadb_address *src,
  420. struct sadb_address *dst)
  421. {
  422. struct sockaddr *s_addr, *d_addr;
  423. if (!src || !dst)
  424. return 0;
  425. s_addr = (struct sockaddr *)(src + 1);
  426. d_addr = (struct sockaddr *)(dst + 1);
  427. if (s_addr->sa_family != d_addr->sa_family)
  428. return 0;
  429. if (s_addr->sa_family != AF_INET
  430. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  431. && s_addr->sa_family != AF_INET6
  432. #endif
  433. )
  434. return 0;
  435. return 1;
  436. }
  437. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  438. {
  439. char *p = (char *) hdr;
  440. int len = skb->len;
  441. len -= sizeof(*hdr);
  442. p += sizeof(*hdr);
  443. while (len > 0) {
  444. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  445. uint16_t ext_type;
  446. int ext_len;
  447. ext_len = ehdr->sadb_ext_len;
  448. ext_len *= sizeof(uint64_t);
  449. ext_type = ehdr->sadb_ext_type;
  450. if (ext_len < sizeof(uint64_t) ||
  451. ext_len > len ||
  452. ext_type == SADB_EXT_RESERVED)
  453. return -EINVAL;
  454. if (ext_type <= SADB_EXT_MAX) {
  455. int min = (int) sadb_ext_min_len[ext_type];
  456. if (ext_len < min)
  457. return -EINVAL;
  458. if (ext_hdrs[ext_type-1] != NULL)
  459. return -EINVAL;
  460. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  461. ext_type == SADB_EXT_ADDRESS_DST ||
  462. ext_type == SADB_EXT_ADDRESS_PROXY ||
  463. ext_type == SADB_X_EXT_NAT_T_OA) {
  464. if (verify_address_len(p))
  465. return -EINVAL;
  466. }
  467. if (ext_type == SADB_X_EXT_SEC_CTX) {
  468. if (verify_sec_ctx_len(p))
  469. return -EINVAL;
  470. }
  471. ext_hdrs[ext_type-1] = p;
  472. }
  473. p += ext_len;
  474. len -= ext_len;
  475. }
  476. return 0;
  477. }
  478. static uint16_t
  479. pfkey_satype2proto(uint8_t satype)
  480. {
  481. switch (satype) {
  482. case SADB_SATYPE_UNSPEC:
  483. return IPSEC_PROTO_ANY;
  484. case SADB_SATYPE_AH:
  485. return IPPROTO_AH;
  486. case SADB_SATYPE_ESP:
  487. return IPPROTO_ESP;
  488. case SADB_X_SATYPE_IPCOMP:
  489. return IPPROTO_COMP;
  490. break;
  491. default:
  492. return 0;
  493. }
  494. /* NOTREACHED */
  495. }
  496. static uint8_t
  497. pfkey_proto2satype(uint16_t proto)
  498. {
  499. switch (proto) {
  500. case IPPROTO_AH:
  501. return SADB_SATYPE_AH;
  502. case IPPROTO_ESP:
  503. return SADB_SATYPE_ESP;
  504. case IPPROTO_COMP:
  505. return SADB_X_SATYPE_IPCOMP;
  506. break;
  507. default:
  508. return 0;
  509. }
  510. /* NOTREACHED */
  511. }
  512. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  513. * say specifically 'just raw sockets' as we encode them as 255.
  514. */
  515. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  516. {
  517. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  518. }
  519. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  520. {
  521. return (proto ? proto : IPSEC_PROTO_ANY);
  522. }
  523. static inline int pfkey_sockaddr_len(sa_family_t family)
  524. {
  525. switch (family) {
  526. case AF_INET:
  527. return sizeof(struct sockaddr_in);
  528. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  529. case AF_INET6:
  530. return sizeof(struct sockaddr_in6);
  531. #endif
  532. }
  533. return 0;
  534. }
  535. static
  536. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  537. {
  538. switch (sa->sa_family) {
  539. case AF_INET:
  540. xaddr->a4 =
  541. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  542. return AF_INET;
  543. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  544. case AF_INET6:
  545. memcpy(xaddr->a6,
  546. &((struct sockaddr_in6 *)sa)->sin6_addr,
  547. sizeof(struct in6_addr));
  548. return AF_INET6;
  549. #endif
  550. }
  551. return 0;
  552. }
  553. static
  554. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  555. {
  556. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  557. xaddr);
  558. }
  559. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  560. {
  561. struct sadb_sa *sa;
  562. struct sadb_address *addr;
  563. uint16_t proto;
  564. unsigned short family;
  565. xfrm_address_t *xaddr;
  566. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  567. if (sa == NULL)
  568. return NULL;
  569. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  570. if (proto == 0)
  571. return NULL;
  572. /* sadb_address_len should be checked by caller */
  573. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  574. if (addr == NULL)
  575. return NULL;
  576. family = ((struct sockaddr *)(addr + 1))->sa_family;
  577. switch (family) {
  578. case AF_INET:
  579. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  580. break;
  581. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  582. case AF_INET6:
  583. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  584. break;
  585. #endif
  586. default:
  587. xaddr = NULL;
  588. }
  589. if (!xaddr)
  590. return NULL;
  591. return xfrm_state_lookup(net, xaddr, sa->sadb_sa_spi, proto, family);
  592. }
  593. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  594. static int
  595. pfkey_sockaddr_size(sa_family_t family)
  596. {
  597. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  598. }
  599. static inline int pfkey_mode_from_xfrm(int mode)
  600. {
  601. switch(mode) {
  602. case XFRM_MODE_TRANSPORT:
  603. return IPSEC_MODE_TRANSPORT;
  604. case XFRM_MODE_TUNNEL:
  605. return IPSEC_MODE_TUNNEL;
  606. case XFRM_MODE_BEET:
  607. return IPSEC_MODE_BEET;
  608. default:
  609. return -1;
  610. }
  611. }
  612. static inline int pfkey_mode_to_xfrm(int mode)
  613. {
  614. switch(mode) {
  615. case IPSEC_MODE_ANY: /*XXX*/
  616. case IPSEC_MODE_TRANSPORT:
  617. return XFRM_MODE_TRANSPORT;
  618. case IPSEC_MODE_TUNNEL:
  619. return XFRM_MODE_TUNNEL;
  620. case IPSEC_MODE_BEET:
  621. return XFRM_MODE_BEET;
  622. default:
  623. return -1;
  624. }
  625. }
  626. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  627. struct sockaddr *sa,
  628. unsigned short family)
  629. {
  630. switch (family) {
  631. case AF_INET:
  632. {
  633. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  634. sin->sin_family = AF_INET;
  635. sin->sin_port = port;
  636. sin->sin_addr.s_addr = xaddr->a4;
  637. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  638. return 32;
  639. }
  640. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  641. case AF_INET6:
  642. {
  643. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  644. sin6->sin6_family = AF_INET6;
  645. sin6->sin6_port = port;
  646. sin6->sin6_flowinfo = 0;
  647. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  648. sin6->sin6_scope_id = 0;
  649. return 128;
  650. }
  651. #endif
  652. }
  653. return 0;
  654. }
  655. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  656. int add_keys, int hsc)
  657. {
  658. struct sk_buff *skb;
  659. struct sadb_msg *hdr;
  660. struct sadb_sa *sa;
  661. struct sadb_lifetime *lifetime;
  662. struct sadb_address *addr;
  663. struct sadb_key *key;
  664. struct sadb_x_sa2 *sa2;
  665. struct sadb_x_sec_ctx *sec_ctx;
  666. struct xfrm_sec_ctx *xfrm_ctx;
  667. int ctx_size = 0;
  668. int size;
  669. int auth_key_size = 0;
  670. int encrypt_key_size = 0;
  671. int sockaddr_size;
  672. struct xfrm_encap_tmpl *natt = NULL;
  673. int mode;
  674. /* address family check */
  675. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  676. if (!sockaddr_size)
  677. return ERR_PTR(-EINVAL);
  678. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  679. key(AE), (identity(SD),) (sensitivity)> */
  680. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  681. sizeof(struct sadb_lifetime) +
  682. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  683. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  684. sizeof(struct sadb_address)*2 +
  685. sockaddr_size*2 +
  686. sizeof(struct sadb_x_sa2);
  687. if ((xfrm_ctx = x->security)) {
  688. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  689. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  690. }
  691. /* identity & sensitivity */
  692. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  693. size += sizeof(struct sadb_address) + sockaddr_size;
  694. if (add_keys) {
  695. if (x->aalg && x->aalg->alg_key_len) {
  696. auth_key_size =
  697. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  698. size += sizeof(struct sadb_key) + auth_key_size;
  699. }
  700. if (x->ealg && x->ealg->alg_key_len) {
  701. encrypt_key_size =
  702. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  703. size += sizeof(struct sadb_key) + encrypt_key_size;
  704. }
  705. }
  706. if (x->encap)
  707. natt = x->encap;
  708. if (natt && natt->encap_type) {
  709. size += sizeof(struct sadb_x_nat_t_type);
  710. size += sizeof(struct sadb_x_nat_t_port);
  711. size += sizeof(struct sadb_x_nat_t_port);
  712. }
  713. skb = alloc_skb(size + 16, GFP_ATOMIC);
  714. if (skb == NULL)
  715. return ERR_PTR(-ENOBUFS);
  716. /* call should fill header later */
  717. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  718. memset(hdr, 0, size); /* XXX do we need this ? */
  719. hdr->sadb_msg_len = size / sizeof(uint64_t);
  720. /* sa */
  721. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  722. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  723. sa->sadb_sa_exttype = SADB_EXT_SA;
  724. sa->sadb_sa_spi = x->id.spi;
  725. sa->sadb_sa_replay = x->props.replay_window;
  726. switch (x->km.state) {
  727. case XFRM_STATE_VALID:
  728. sa->sadb_sa_state = x->km.dying ?
  729. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  730. break;
  731. case XFRM_STATE_ACQ:
  732. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  733. break;
  734. default:
  735. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  736. break;
  737. }
  738. sa->sadb_sa_auth = 0;
  739. if (x->aalg) {
  740. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  741. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  742. }
  743. sa->sadb_sa_encrypt = 0;
  744. BUG_ON(x->ealg && x->calg);
  745. if (x->ealg) {
  746. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  747. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  748. }
  749. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  750. if (x->calg) {
  751. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  752. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  753. }
  754. sa->sadb_sa_flags = 0;
  755. if (x->props.flags & XFRM_STATE_NOECN)
  756. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  757. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  758. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  759. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  760. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  761. /* hard time */
  762. if (hsc & 2) {
  763. lifetime = (struct sadb_lifetime *) skb_put(skb,
  764. sizeof(struct sadb_lifetime));
  765. lifetime->sadb_lifetime_len =
  766. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  767. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  768. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  769. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  770. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  771. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  772. }
  773. /* soft time */
  774. if (hsc & 1) {
  775. lifetime = (struct sadb_lifetime *) skb_put(skb,
  776. sizeof(struct sadb_lifetime));
  777. lifetime->sadb_lifetime_len =
  778. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  779. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  780. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  781. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  782. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  783. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  784. }
  785. /* current time */
  786. lifetime = (struct sadb_lifetime *) skb_put(skb,
  787. sizeof(struct sadb_lifetime));
  788. lifetime->sadb_lifetime_len =
  789. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  790. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  791. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  792. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  793. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  794. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  795. /* src address */
  796. addr = (struct sadb_address*) skb_put(skb,
  797. sizeof(struct sadb_address)+sockaddr_size);
  798. addr->sadb_address_len =
  799. (sizeof(struct sadb_address)+sockaddr_size)/
  800. sizeof(uint64_t);
  801. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  802. /* "if the ports are non-zero, then the sadb_address_proto field,
  803. normally zero, MUST be filled in with the transport
  804. protocol's number." - RFC2367 */
  805. addr->sadb_address_proto = 0;
  806. addr->sadb_address_reserved = 0;
  807. addr->sadb_address_prefixlen =
  808. pfkey_sockaddr_fill(&x->props.saddr, 0,
  809. (struct sockaddr *) (addr + 1),
  810. x->props.family);
  811. if (!addr->sadb_address_prefixlen)
  812. BUG();
  813. /* dst address */
  814. addr = (struct sadb_address*) skb_put(skb,
  815. sizeof(struct sadb_address)+sockaddr_size);
  816. addr->sadb_address_len =
  817. (sizeof(struct sadb_address)+sockaddr_size)/
  818. sizeof(uint64_t);
  819. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  820. addr->sadb_address_proto = 0;
  821. addr->sadb_address_reserved = 0;
  822. addr->sadb_address_prefixlen =
  823. pfkey_sockaddr_fill(&x->id.daddr, 0,
  824. (struct sockaddr *) (addr + 1),
  825. x->props.family);
  826. if (!addr->sadb_address_prefixlen)
  827. BUG();
  828. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  829. x->props.family)) {
  830. addr = (struct sadb_address*) skb_put(skb,
  831. sizeof(struct sadb_address)+sockaddr_size);
  832. addr->sadb_address_len =
  833. (sizeof(struct sadb_address)+sockaddr_size)/
  834. sizeof(uint64_t);
  835. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  836. addr->sadb_address_proto =
  837. pfkey_proto_from_xfrm(x->sel.proto);
  838. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  839. addr->sadb_address_reserved = 0;
  840. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  841. (struct sockaddr *) (addr + 1),
  842. x->props.family);
  843. }
  844. /* auth key */
  845. if (add_keys && auth_key_size) {
  846. key = (struct sadb_key *) skb_put(skb,
  847. sizeof(struct sadb_key)+auth_key_size);
  848. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  849. sizeof(uint64_t);
  850. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  851. key->sadb_key_bits = x->aalg->alg_key_len;
  852. key->sadb_key_reserved = 0;
  853. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  854. }
  855. /* encrypt key */
  856. if (add_keys && encrypt_key_size) {
  857. key = (struct sadb_key *) skb_put(skb,
  858. sizeof(struct sadb_key)+encrypt_key_size);
  859. key->sadb_key_len = (sizeof(struct sadb_key) +
  860. encrypt_key_size) / sizeof(uint64_t);
  861. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  862. key->sadb_key_bits = x->ealg->alg_key_len;
  863. key->sadb_key_reserved = 0;
  864. memcpy(key + 1, x->ealg->alg_key,
  865. (x->ealg->alg_key_len+7)/8);
  866. }
  867. /* sa */
  868. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  869. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  870. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  871. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  872. kfree_skb(skb);
  873. return ERR_PTR(-EINVAL);
  874. }
  875. sa2->sadb_x_sa2_mode = mode;
  876. sa2->sadb_x_sa2_reserved1 = 0;
  877. sa2->sadb_x_sa2_reserved2 = 0;
  878. sa2->sadb_x_sa2_sequence = 0;
  879. sa2->sadb_x_sa2_reqid = x->props.reqid;
  880. if (natt && natt->encap_type) {
  881. struct sadb_x_nat_t_type *n_type;
  882. struct sadb_x_nat_t_port *n_port;
  883. /* type */
  884. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  885. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  886. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  887. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  888. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  889. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  890. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  891. /* source port */
  892. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  893. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  894. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  895. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  896. n_port->sadb_x_nat_t_port_reserved = 0;
  897. /* dest port */
  898. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  899. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  900. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  901. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  902. n_port->sadb_x_nat_t_port_reserved = 0;
  903. }
  904. /* security context */
  905. if (xfrm_ctx) {
  906. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  907. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  908. sec_ctx->sadb_x_sec_len =
  909. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  910. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  911. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  912. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  913. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  914. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  915. xfrm_ctx->ctx_len);
  916. }
  917. return skb;
  918. }
  919. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  920. {
  921. struct sk_buff *skb;
  922. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  923. return skb;
  924. }
  925. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  926. int hsc)
  927. {
  928. return __pfkey_xfrm_state2msg(x, 0, hsc);
  929. }
  930. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  931. struct sadb_msg *hdr,
  932. void **ext_hdrs)
  933. {
  934. struct xfrm_state *x;
  935. struct sadb_lifetime *lifetime;
  936. struct sadb_sa *sa;
  937. struct sadb_key *key;
  938. struct sadb_x_sec_ctx *sec_ctx;
  939. uint16_t proto;
  940. int err;
  941. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  942. if (!sa ||
  943. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  944. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  945. return ERR_PTR(-EINVAL);
  946. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  947. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  948. return ERR_PTR(-EINVAL);
  949. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  950. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  951. return ERR_PTR(-EINVAL);
  952. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  953. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  954. return ERR_PTR(-EINVAL);
  955. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  956. if (proto == 0)
  957. return ERR_PTR(-EINVAL);
  958. /* default error is no buffer space */
  959. err = -ENOBUFS;
  960. /* RFC2367:
  961. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  962. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  963. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  964. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  965. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  966. not true.
  967. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  968. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  969. */
  970. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  971. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  972. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  973. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  974. return ERR_PTR(-EINVAL);
  975. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  976. if (key != NULL &&
  977. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  978. ((key->sadb_key_bits+7) / 8 == 0 ||
  979. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  980. return ERR_PTR(-EINVAL);
  981. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  982. if (key != NULL &&
  983. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  984. ((key->sadb_key_bits+7) / 8 == 0 ||
  985. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  986. return ERR_PTR(-EINVAL);
  987. x = xfrm_state_alloc(net);
  988. if (x == NULL)
  989. return ERR_PTR(-ENOBUFS);
  990. x->id.proto = proto;
  991. x->id.spi = sa->sadb_sa_spi;
  992. x->props.replay_window = sa->sadb_sa_replay;
  993. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  994. x->props.flags |= XFRM_STATE_NOECN;
  995. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  996. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  997. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  998. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  999. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  1000. if (lifetime != NULL) {
  1001. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1002. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1003. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1004. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1005. }
  1006. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1007. if (lifetime != NULL) {
  1008. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1009. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1010. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1011. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1012. }
  1013. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1014. if (sec_ctx != NULL) {
  1015. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1016. if (!uctx)
  1017. goto out;
  1018. err = security_xfrm_state_alloc(x, uctx);
  1019. kfree(uctx);
  1020. if (err)
  1021. goto out;
  1022. }
  1023. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1024. if (sa->sadb_sa_auth) {
  1025. int keysize = 0;
  1026. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1027. if (!a) {
  1028. err = -ENOSYS;
  1029. goto out;
  1030. }
  1031. if (key)
  1032. keysize = (key->sadb_key_bits + 7) / 8;
  1033. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1034. if (!x->aalg)
  1035. goto out;
  1036. strcpy(x->aalg->alg_name, a->name);
  1037. x->aalg->alg_key_len = 0;
  1038. if (key) {
  1039. x->aalg->alg_key_len = key->sadb_key_bits;
  1040. memcpy(x->aalg->alg_key, key+1, keysize);
  1041. }
  1042. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1043. x->props.aalgo = sa->sadb_sa_auth;
  1044. /* x->algo.flags = sa->sadb_sa_flags; */
  1045. }
  1046. if (sa->sadb_sa_encrypt) {
  1047. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1048. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1049. if (!a) {
  1050. err = -ENOSYS;
  1051. goto out;
  1052. }
  1053. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1054. if (!x->calg)
  1055. goto out;
  1056. strcpy(x->calg->alg_name, a->name);
  1057. x->props.calgo = sa->sadb_sa_encrypt;
  1058. } else {
  1059. int keysize = 0;
  1060. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1061. if (!a) {
  1062. err = -ENOSYS;
  1063. goto out;
  1064. }
  1065. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1066. if (key)
  1067. keysize = (key->sadb_key_bits + 7) / 8;
  1068. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1069. if (!x->ealg)
  1070. goto out;
  1071. strcpy(x->ealg->alg_name, a->name);
  1072. x->ealg->alg_key_len = 0;
  1073. if (key) {
  1074. x->ealg->alg_key_len = key->sadb_key_bits;
  1075. memcpy(x->ealg->alg_key, key+1, keysize);
  1076. }
  1077. x->props.ealgo = sa->sadb_sa_encrypt;
  1078. }
  1079. }
  1080. /* x->algo.flags = sa->sadb_sa_flags; */
  1081. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1082. &x->props.saddr);
  1083. if (!x->props.family) {
  1084. err = -EAFNOSUPPORT;
  1085. goto out;
  1086. }
  1087. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1088. &x->id.daddr);
  1089. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1090. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1091. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1092. if (mode < 0) {
  1093. err = -EINVAL;
  1094. goto out;
  1095. }
  1096. x->props.mode = mode;
  1097. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1098. }
  1099. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1100. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1101. /* Nobody uses this, but we try. */
  1102. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1103. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1104. }
  1105. if (!x->sel.family)
  1106. x->sel.family = x->props.family;
  1107. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1108. struct sadb_x_nat_t_type* n_type;
  1109. struct xfrm_encap_tmpl *natt;
  1110. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1111. if (!x->encap)
  1112. goto out;
  1113. natt = x->encap;
  1114. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1115. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1116. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1117. struct sadb_x_nat_t_port* n_port =
  1118. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1119. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1120. }
  1121. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1122. struct sadb_x_nat_t_port* n_port =
  1123. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1124. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1125. }
  1126. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1127. }
  1128. err = xfrm_init_state(x);
  1129. if (err)
  1130. goto out;
  1131. x->km.seq = hdr->sadb_msg_seq;
  1132. return x;
  1133. out:
  1134. x->km.state = XFRM_STATE_DEAD;
  1135. xfrm_state_put(x);
  1136. return ERR_PTR(err);
  1137. }
  1138. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1139. {
  1140. return -EOPNOTSUPP;
  1141. }
  1142. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1143. {
  1144. struct net *net = sock_net(sk);
  1145. struct sk_buff *resp_skb;
  1146. struct sadb_x_sa2 *sa2;
  1147. struct sadb_address *saddr, *daddr;
  1148. struct sadb_msg *out_hdr;
  1149. struct sadb_spirange *range;
  1150. struct xfrm_state *x = NULL;
  1151. int mode;
  1152. int err;
  1153. u32 min_spi, max_spi;
  1154. u32 reqid;
  1155. u8 proto;
  1156. unsigned short family;
  1157. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1158. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1159. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1160. return -EINVAL;
  1161. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1162. if (proto == 0)
  1163. return -EINVAL;
  1164. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1165. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1166. if (mode < 0)
  1167. return -EINVAL;
  1168. reqid = sa2->sadb_x_sa2_reqid;
  1169. } else {
  1170. mode = 0;
  1171. reqid = 0;
  1172. }
  1173. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1174. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1175. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1176. switch (family) {
  1177. case AF_INET:
  1178. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1179. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1180. break;
  1181. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1182. case AF_INET6:
  1183. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1184. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1185. break;
  1186. #endif
  1187. }
  1188. if (hdr->sadb_msg_seq) {
  1189. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1190. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1191. xfrm_state_put(x);
  1192. x = NULL;
  1193. }
  1194. }
  1195. if (!x)
  1196. x = xfrm_find_acq(net, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1197. if (x == NULL)
  1198. return -ENOENT;
  1199. min_spi = 0x100;
  1200. max_spi = 0x0fffffff;
  1201. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1202. if (range) {
  1203. min_spi = range->sadb_spirange_min;
  1204. max_spi = range->sadb_spirange_max;
  1205. }
  1206. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1207. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1208. if (IS_ERR(resp_skb)) {
  1209. xfrm_state_put(x);
  1210. return PTR_ERR(resp_skb);
  1211. }
  1212. out_hdr = (struct sadb_msg *) resp_skb->data;
  1213. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1214. out_hdr->sadb_msg_type = SADB_GETSPI;
  1215. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1216. out_hdr->sadb_msg_errno = 0;
  1217. out_hdr->sadb_msg_reserved = 0;
  1218. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1219. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1220. xfrm_state_put(x);
  1221. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1222. return 0;
  1223. }
  1224. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1225. {
  1226. struct net *net = sock_net(sk);
  1227. struct xfrm_state *x;
  1228. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1229. return -EOPNOTSUPP;
  1230. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1231. return 0;
  1232. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1233. if (x == NULL)
  1234. return 0;
  1235. spin_lock_bh(&x->lock);
  1236. if (x->km.state == XFRM_STATE_ACQ) {
  1237. x->km.state = XFRM_STATE_ERROR;
  1238. wake_up(&net->xfrm.km_waitq);
  1239. }
  1240. spin_unlock_bh(&x->lock);
  1241. xfrm_state_put(x);
  1242. return 0;
  1243. }
  1244. static inline int event2poltype(int event)
  1245. {
  1246. switch (event) {
  1247. case XFRM_MSG_DELPOLICY:
  1248. return SADB_X_SPDDELETE;
  1249. case XFRM_MSG_NEWPOLICY:
  1250. return SADB_X_SPDADD;
  1251. case XFRM_MSG_UPDPOLICY:
  1252. return SADB_X_SPDUPDATE;
  1253. case XFRM_MSG_POLEXPIRE:
  1254. // return SADB_X_SPDEXPIRE;
  1255. default:
  1256. printk("pfkey: Unknown policy event %d\n", event);
  1257. break;
  1258. }
  1259. return 0;
  1260. }
  1261. static inline int event2keytype(int event)
  1262. {
  1263. switch (event) {
  1264. case XFRM_MSG_DELSA:
  1265. return SADB_DELETE;
  1266. case XFRM_MSG_NEWSA:
  1267. return SADB_ADD;
  1268. case XFRM_MSG_UPDSA:
  1269. return SADB_UPDATE;
  1270. case XFRM_MSG_EXPIRE:
  1271. return SADB_EXPIRE;
  1272. default:
  1273. printk("pfkey: Unknown SA event %d\n", event);
  1274. break;
  1275. }
  1276. return 0;
  1277. }
  1278. /* ADD/UPD/DEL */
  1279. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1280. {
  1281. struct sk_buff *skb;
  1282. struct sadb_msg *hdr;
  1283. skb = pfkey_xfrm_state2msg(x);
  1284. if (IS_ERR(skb))
  1285. return PTR_ERR(skb);
  1286. hdr = (struct sadb_msg *) skb->data;
  1287. hdr->sadb_msg_version = PF_KEY_V2;
  1288. hdr->sadb_msg_type = event2keytype(c->event);
  1289. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1290. hdr->sadb_msg_errno = 0;
  1291. hdr->sadb_msg_reserved = 0;
  1292. hdr->sadb_msg_seq = c->seq;
  1293. hdr->sadb_msg_pid = c->pid;
  1294. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1295. return 0;
  1296. }
  1297. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1298. {
  1299. struct net *net = sock_net(sk);
  1300. struct xfrm_state *x;
  1301. int err;
  1302. struct km_event c;
  1303. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1304. if (IS_ERR(x))
  1305. return PTR_ERR(x);
  1306. xfrm_state_hold(x);
  1307. if (hdr->sadb_msg_type == SADB_ADD)
  1308. err = xfrm_state_add(x);
  1309. else
  1310. err = xfrm_state_update(x);
  1311. xfrm_audit_state_add(x, err ? 0 : 1,
  1312. audit_get_loginuid(current),
  1313. audit_get_sessionid(current), 0);
  1314. if (err < 0) {
  1315. x->km.state = XFRM_STATE_DEAD;
  1316. __xfrm_state_put(x);
  1317. goto out;
  1318. }
  1319. if (hdr->sadb_msg_type == SADB_ADD)
  1320. c.event = XFRM_MSG_NEWSA;
  1321. else
  1322. c.event = XFRM_MSG_UPDSA;
  1323. c.seq = hdr->sadb_msg_seq;
  1324. c.pid = hdr->sadb_msg_pid;
  1325. km_state_notify(x, &c);
  1326. out:
  1327. xfrm_state_put(x);
  1328. return err;
  1329. }
  1330. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1331. {
  1332. struct net *net = sock_net(sk);
  1333. struct xfrm_state *x;
  1334. struct km_event c;
  1335. int err;
  1336. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1337. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1338. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1339. return -EINVAL;
  1340. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1341. if (x == NULL)
  1342. return -ESRCH;
  1343. if ((err = security_xfrm_state_delete(x)))
  1344. goto out;
  1345. if (xfrm_state_kern(x)) {
  1346. err = -EPERM;
  1347. goto out;
  1348. }
  1349. err = xfrm_state_delete(x);
  1350. if (err < 0)
  1351. goto out;
  1352. c.seq = hdr->sadb_msg_seq;
  1353. c.pid = hdr->sadb_msg_pid;
  1354. c.event = XFRM_MSG_DELSA;
  1355. km_state_notify(x, &c);
  1356. out:
  1357. xfrm_audit_state_delete(x, err ? 0 : 1,
  1358. audit_get_loginuid(current),
  1359. audit_get_sessionid(current), 0);
  1360. xfrm_state_put(x);
  1361. return err;
  1362. }
  1363. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1364. {
  1365. struct net *net = sock_net(sk);
  1366. __u8 proto;
  1367. struct sk_buff *out_skb;
  1368. struct sadb_msg *out_hdr;
  1369. struct xfrm_state *x;
  1370. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1371. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1372. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1373. return -EINVAL;
  1374. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1375. if (x == NULL)
  1376. return -ESRCH;
  1377. out_skb = pfkey_xfrm_state2msg(x);
  1378. proto = x->id.proto;
  1379. xfrm_state_put(x);
  1380. if (IS_ERR(out_skb))
  1381. return PTR_ERR(out_skb);
  1382. out_hdr = (struct sadb_msg *) out_skb->data;
  1383. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1384. out_hdr->sadb_msg_type = SADB_GET;
  1385. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1386. out_hdr->sadb_msg_errno = 0;
  1387. out_hdr->sadb_msg_reserved = 0;
  1388. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1389. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1390. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1391. return 0;
  1392. }
  1393. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1394. gfp_t allocation)
  1395. {
  1396. struct sk_buff *skb;
  1397. struct sadb_msg *hdr;
  1398. int len, auth_len, enc_len, i;
  1399. auth_len = xfrm_count_auth_supported();
  1400. if (auth_len) {
  1401. auth_len *= sizeof(struct sadb_alg);
  1402. auth_len += sizeof(struct sadb_supported);
  1403. }
  1404. enc_len = xfrm_count_enc_supported();
  1405. if (enc_len) {
  1406. enc_len *= sizeof(struct sadb_alg);
  1407. enc_len += sizeof(struct sadb_supported);
  1408. }
  1409. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1410. skb = alloc_skb(len + 16, allocation);
  1411. if (!skb)
  1412. goto out_put_algs;
  1413. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1414. pfkey_hdr_dup(hdr, orig);
  1415. hdr->sadb_msg_errno = 0;
  1416. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1417. if (auth_len) {
  1418. struct sadb_supported *sp;
  1419. struct sadb_alg *ap;
  1420. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1421. ap = (struct sadb_alg *) (sp + 1);
  1422. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1423. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1424. for (i = 0; ; i++) {
  1425. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1426. if (!aalg)
  1427. break;
  1428. if (aalg->available)
  1429. *ap++ = aalg->desc;
  1430. }
  1431. }
  1432. if (enc_len) {
  1433. struct sadb_supported *sp;
  1434. struct sadb_alg *ap;
  1435. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1436. ap = (struct sadb_alg *) (sp + 1);
  1437. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1438. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1439. for (i = 0; ; i++) {
  1440. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1441. if (!ealg)
  1442. break;
  1443. if (ealg->available)
  1444. *ap++ = ealg->desc;
  1445. }
  1446. }
  1447. out_put_algs:
  1448. return skb;
  1449. }
  1450. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1451. {
  1452. struct pfkey_sock *pfk = pfkey_sk(sk);
  1453. struct sk_buff *supp_skb;
  1454. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1455. return -EINVAL;
  1456. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1457. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1458. return -EEXIST;
  1459. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1460. }
  1461. xfrm_probe_algs();
  1462. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1463. if (!supp_skb) {
  1464. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1465. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1466. return -ENOBUFS;
  1467. }
  1468. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1469. return 0;
  1470. }
  1471. static int key_notify_sa_flush(struct km_event *c)
  1472. {
  1473. struct sk_buff *skb;
  1474. struct sadb_msg *hdr;
  1475. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1476. if (!skb)
  1477. return -ENOBUFS;
  1478. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1479. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1480. hdr->sadb_msg_type = SADB_FLUSH;
  1481. hdr->sadb_msg_seq = c->seq;
  1482. hdr->sadb_msg_pid = c->pid;
  1483. hdr->sadb_msg_version = PF_KEY_V2;
  1484. hdr->sadb_msg_errno = (uint8_t) 0;
  1485. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1486. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1487. return 0;
  1488. }
  1489. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1490. {
  1491. struct net *net = sock_net(sk);
  1492. unsigned proto;
  1493. struct km_event c;
  1494. struct xfrm_audit audit_info;
  1495. int err;
  1496. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1497. if (proto == 0)
  1498. return -EINVAL;
  1499. audit_info.loginuid = audit_get_loginuid(current);
  1500. audit_info.sessionid = audit_get_sessionid(current);
  1501. audit_info.secid = 0;
  1502. err = xfrm_state_flush(net, proto, &audit_info);
  1503. if (err)
  1504. return err;
  1505. c.data.proto = proto;
  1506. c.seq = hdr->sadb_msg_seq;
  1507. c.pid = hdr->sadb_msg_pid;
  1508. c.event = XFRM_MSG_FLUSHSA;
  1509. c.net = net;
  1510. km_state_notify(NULL, &c);
  1511. return 0;
  1512. }
  1513. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1514. {
  1515. struct pfkey_sock *pfk = ptr;
  1516. struct sk_buff *out_skb;
  1517. struct sadb_msg *out_hdr;
  1518. if (!pfkey_can_dump(&pfk->sk))
  1519. return -ENOBUFS;
  1520. out_skb = pfkey_xfrm_state2msg(x);
  1521. if (IS_ERR(out_skb))
  1522. return PTR_ERR(out_skb);
  1523. out_hdr = (struct sadb_msg *) out_skb->data;
  1524. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1525. out_hdr->sadb_msg_type = SADB_DUMP;
  1526. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1527. out_hdr->sadb_msg_errno = 0;
  1528. out_hdr->sadb_msg_reserved = 0;
  1529. out_hdr->sadb_msg_seq = count + 1;
  1530. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1531. if (pfk->dump.skb)
  1532. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1533. &pfk->sk, sock_net(&pfk->sk));
  1534. pfk->dump.skb = out_skb;
  1535. return 0;
  1536. }
  1537. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1538. {
  1539. struct net *net = sock_net(&pfk->sk);
  1540. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1541. }
  1542. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1543. {
  1544. xfrm_state_walk_done(&pfk->dump.u.state);
  1545. }
  1546. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1547. {
  1548. u8 proto;
  1549. struct pfkey_sock *pfk = pfkey_sk(sk);
  1550. if (pfk->dump.dump != NULL)
  1551. return -EBUSY;
  1552. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1553. if (proto == 0)
  1554. return -EINVAL;
  1555. pfk->dump.msg_version = hdr->sadb_msg_version;
  1556. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1557. pfk->dump.dump = pfkey_dump_sa;
  1558. pfk->dump.done = pfkey_dump_sa_done;
  1559. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1560. return pfkey_do_dump(pfk);
  1561. }
  1562. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1563. {
  1564. struct pfkey_sock *pfk = pfkey_sk(sk);
  1565. int satype = hdr->sadb_msg_satype;
  1566. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1567. /* XXX we mangle packet... */
  1568. hdr->sadb_msg_errno = 0;
  1569. if (satype != 0 && satype != 1)
  1570. return -EINVAL;
  1571. pfk->promisc = satype;
  1572. }
  1573. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1574. return 0;
  1575. }
  1576. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1577. {
  1578. int i;
  1579. u32 reqid = *(u32*)ptr;
  1580. for (i=0; i<xp->xfrm_nr; i++) {
  1581. if (xp->xfrm_vec[i].reqid == reqid)
  1582. return -EEXIST;
  1583. }
  1584. return 0;
  1585. }
  1586. static u32 gen_reqid(struct net *net)
  1587. {
  1588. struct xfrm_policy_walk walk;
  1589. u32 start;
  1590. int rc;
  1591. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1592. start = reqid;
  1593. do {
  1594. ++reqid;
  1595. if (reqid == 0)
  1596. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1597. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1598. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1599. xfrm_policy_walk_done(&walk);
  1600. if (rc != -EEXIST)
  1601. return reqid;
  1602. } while (reqid != start);
  1603. return 0;
  1604. }
  1605. static int
  1606. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1607. {
  1608. struct net *net = xp_net(xp);
  1609. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1610. int mode;
  1611. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1612. return -ELOOP;
  1613. if (rq->sadb_x_ipsecrequest_mode == 0)
  1614. return -EINVAL;
  1615. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1616. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1617. return -EINVAL;
  1618. t->mode = mode;
  1619. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1620. t->optional = 1;
  1621. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1622. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1623. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1624. t->reqid = 0;
  1625. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1626. return -ENOBUFS;
  1627. }
  1628. /* addresses present only in tunnel mode */
  1629. if (t->mode == XFRM_MODE_TUNNEL) {
  1630. u8 *sa = (u8 *) (rq + 1);
  1631. int family, socklen;
  1632. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1633. &t->saddr);
  1634. if (!family)
  1635. return -EINVAL;
  1636. socklen = pfkey_sockaddr_len(family);
  1637. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1638. &t->id.daddr) != family)
  1639. return -EINVAL;
  1640. t->encap_family = family;
  1641. } else
  1642. t->encap_family = xp->family;
  1643. /* No way to set this via kame pfkey */
  1644. t->allalgs = 1;
  1645. xp->xfrm_nr++;
  1646. return 0;
  1647. }
  1648. static int
  1649. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1650. {
  1651. int err;
  1652. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1653. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1654. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1655. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1656. return err;
  1657. len -= rq->sadb_x_ipsecrequest_len;
  1658. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1659. }
  1660. return 0;
  1661. }
  1662. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1663. {
  1664. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1665. if (xfrm_ctx) {
  1666. int len = sizeof(struct sadb_x_sec_ctx);
  1667. len += xfrm_ctx->ctx_len;
  1668. return PFKEY_ALIGN8(len);
  1669. }
  1670. return 0;
  1671. }
  1672. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1673. {
  1674. struct xfrm_tmpl *t;
  1675. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1676. int socklen = 0;
  1677. int i;
  1678. for (i=0; i<xp->xfrm_nr; i++) {
  1679. t = xp->xfrm_vec + i;
  1680. socklen += pfkey_sockaddr_len(t->encap_family);
  1681. }
  1682. return sizeof(struct sadb_msg) +
  1683. (sizeof(struct sadb_lifetime) * 3) +
  1684. (sizeof(struct sadb_address) * 2) +
  1685. (sockaddr_size * 2) +
  1686. sizeof(struct sadb_x_policy) +
  1687. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1688. (socklen * 2) +
  1689. pfkey_xfrm_policy2sec_ctx_size(xp);
  1690. }
  1691. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1692. {
  1693. struct sk_buff *skb;
  1694. int size;
  1695. size = pfkey_xfrm_policy2msg_size(xp);
  1696. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1697. if (skb == NULL)
  1698. return ERR_PTR(-ENOBUFS);
  1699. return skb;
  1700. }
  1701. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1702. {
  1703. struct sadb_msg *hdr;
  1704. struct sadb_address *addr;
  1705. struct sadb_lifetime *lifetime;
  1706. struct sadb_x_policy *pol;
  1707. struct sadb_x_sec_ctx *sec_ctx;
  1708. struct xfrm_sec_ctx *xfrm_ctx;
  1709. int i;
  1710. int size;
  1711. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1712. int socklen = pfkey_sockaddr_len(xp->family);
  1713. size = pfkey_xfrm_policy2msg_size(xp);
  1714. /* call should fill header later */
  1715. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1716. memset(hdr, 0, size); /* XXX do we need this ? */
  1717. /* src address */
  1718. addr = (struct sadb_address*) skb_put(skb,
  1719. sizeof(struct sadb_address)+sockaddr_size);
  1720. addr->sadb_address_len =
  1721. (sizeof(struct sadb_address)+sockaddr_size)/
  1722. sizeof(uint64_t);
  1723. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1724. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1725. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1726. addr->sadb_address_reserved = 0;
  1727. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1728. xp->selector.sport,
  1729. (struct sockaddr *) (addr + 1),
  1730. xp->family))
  1731. BUG();
  1732. /* dst address */
  1733. addr = (struct sadb_address*) skb_put(skb,
  1734. sizeof(struct sadb_address)+sockaddr_size);
  1735. addr->sadb_address_len =
  1736. (sizeof(struct sadb_address)+sockaddr_size)/
  1737. sizeof(uint64_t);
  1738. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1739. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1740. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1741. addr->sadb_address_reserved = 0;
  1742. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1743. (struct sockaddr *) (addr + 1),
  1744. xp->family);
  1745. /* hard time */
  1746. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1747. sizeof(struct sadb_lifetime));
  1748. lifetime->sadb_lifetime_len =
  1749. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1750. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1751. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1752. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1753. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1754. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1755. /* soft time */
  1756. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1757. sizeof(struct sadb_lifetime));
  1758. lifetime->sadb_lifetime_len =
  1759. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1760. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1761. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1762. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1763. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1764. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1765. /* current time */
  1766. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1767. sizeof(struct sadb_lifetime));
  1768. lifetime->sadb_lifetime_len =
  1769. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1770. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1771. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1772. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1773. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1774. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1775. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1776. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1777. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1778. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1779. if (xp->action == XFRM_POLICY_ALLOW) {
  1780. if (xp->xfrm_nr)
  1781. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1782. else
  1783. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1784. }
  1785. pol->sadb_x_policy_dir = dir+1;
  1786. pol->sadb_x_policy_id = xp->index;
  1787. pol->sadb_x_policy_priority = xp->priority;
  1788. for (i=0; i<xp->xfrm_nr; i++) {
  1789. struct sadb_x_ipsecrequest *rq;
  1790. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1791. int req_size;
  1792. int mode;
  1793. req_size = sizeof(struct sadb_x_ipsecrequest);
  1794. if (t->mode == XFRM_MODE_TUNNEL) {
  1795. socklen = pfkey_sockaddr_len(t->encap_family);
  1796. req_size += socklen * 2;
  1797. } else {
  1798. size -= 2*socklen;
  1799. }
  1800. rq = (void*)skb_put(skb, req_size);
  1801. pol->sadb_x_policy_len += req_size/8;
  1802. memset(rq, 0, sizeof(*rq));
  1803. rq->sadb_x_ipsecrequest_len = req_size;
  1804. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1805. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1806. return -EINVAL;
  1807. rq->sadb_x_ipsecrequest_mode = mode;
  1808. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1809. if (t->reqid)
  1810. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1811. if (t->optional)
  1812. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1813. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1814. if (t->mode == XFRM_MODE_TUNNEL) {
  1815. u8 *sa = (void *)(rq + 1);
  1816. pfkey_sockaddr_fill(&t->saddr, 0,
  1817. (struct sockaddr *)sa,
  1818. t->encap_family);
  1819. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1820. (struct sockaddr *) (sa + socklen),
  1821. t->encap_family);
  1822. }
  1823. }
  1824. /* security context */
  1825. if ((xfrm_ctx = xp->security)) {
  1826. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1827. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1828. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1829. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1830. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1831. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1832. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1833. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1834. xfrm_ctx->ctx_len);
  1835. }
  1836. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1837. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1838. return 0;
  1839. }
  1840. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1841. {
  1842. struct sk_buff *out_skb;
  1843. struct sadb_msg *out_hdr;
  1844. int err;
  1845. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1846. if (IS_ERR(out_skb)) {
  1847. err = PTR_ERR(out_skb);
  1848. goto out;
  1849. }
  1850. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1851. if (err < 0)
  1852. return err;
  1853. out_hdr = (struct sadb_msg *) out_skb->data;
  1854. out_hdr->sadb_msg_version = PF_KEY_V2;
  1855. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1856. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1857. else
  1858. out_hdr->sadb_msg_type = event2poltype(c->event);
  1859. out_hdr->sadb_msg_errno = 0;
  1860. out_hdr->sadb_msg_seq = c->seq;
  1861. out_hdr->sadb_msg_pid = c->pid;
  1862. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1863. out:
  1864. return 0;
  1865. }
  1866. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1867. {
  1868. struct net *net = sock_net(sk);
  1869. int err = 0;
  1870. struct sadb_lifetime *lifetime;
  1871. struct sadb_address *sa;
  1872. struct sadb_x_policy *pol;
  1873. struct xfrm_policy *xp;
  1874. struct km_event c;
  1875. struct sadb_x_sec_ctx *sec_ctx;
  1876. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1877. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1878. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1879. return -EINVAL;
  1880. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1881. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1882. return -EINVAL;
  1883. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1884. return -EINVAL;
  1885. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1886. if (xp == NULL)
  1887. return -ENOBUFS;
  1888. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1889. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1890. xp->priority = pol->sadb_x_policy_priority;
  1891. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1892. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1893. if (!xp->family) {
  1894. err = -EINVAL;
  1895. goto out;
  1896. }
  1897. xp->selector.family = xp->family;
  1898. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1899. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1900. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1901. if (xp->selector.sport)
  1902. xp->selector.sport_mask = htons(0xffff);
  1903. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1904. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1905. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1906. /* Amusing, we set this twice. KAME apps appear to set same value
  1907. * in both addresses.
  1908. */
  1909. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1910. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1911. if (xp->selector.dport)
  1912. xp->selector.dport_mask = htons(0xffff);
  1913. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1914. if (sec_ctx != NULL) {
  1915. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1916. if (!uctx) {
  1917. err = -ENOBUFS;
  1918. goto out;
  1919. }
  1920. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1921. kfree(uctx);
  1922. if (err)
  1923. goto out;
  1924. }
  1925. xp->lft.soft_byte_limit = XFRM_INF;
  1926. xp->lft.hard_byte_limit = XFRM_INF;
  1927. xp->lft.soft_packet_limit = XFRM_INF;
  1928. xp->lft.hard_packet_limit = XFRM_INF;
  1929. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1930. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1931. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1932. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1933. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1934. }
  1935. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1936. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1937. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1938. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1939. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1940. }
  1941. xp->xfrm_nr = 0;
  1942. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1943. (err = parse_ipsecrequests(xp, pol)) < 0)
  1944. goto out;
  1945. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1946. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1947. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1948. audit_get_loginuid(current),
  1949. audit_get_sessionid(current), 0);
  1950. if (err)
  1951. goto out;
  1952. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1953. c.event = XFRM_MSG_UPDPOLICY;
  1954. else
  1955. c.event = XFRM_MSG_NEWPOLICY;
  1956. c.seq = hdr->sadb_msg_seq;
  1957. c.pid = hdr->sadb_msg_pid;
  1958. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1959. xfrm_pol_put(xp);
  1960. return 0;
  1961. out:
  1962. xp->walk.dead = 1;
  1963. xfrm_policy_destroy(xp);
  1964. return err;
  1965. }
  1966. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1967. {
  1968. struct net *net = sock_net(sk);
  1969. int err;
  1970. struct sadb_address *sa;
  1971. struct sadb_x_policy *pol;
  1972. struct xfrm_policy *xp;
  1973. struct xfrm_selector sel;
  1974. struct km_event c;
  1975. struct sadb_x_sec_ctx *sec_ctx;
  1976. struct xfrm_sec_ctx *pol_ctx = NULL;
  1977. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1978. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1979. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1980. return -EINVAL;
  1981. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1982. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1983. return -EINVAL;
  1984. memset(&sel, 0, sizeof(sel));
  1985. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1986. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1987. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1988. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1989. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1990. if (sel.sport)
  1991. sel.sport_mask = htons(0xffff);
  1992. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1993. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1994. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1995. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1996. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1997. if (sel.dport)
  1998. sel.dport_mask = htons(0xffff);
  1999. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2000. if (sec_ctx != NULL) {
  2001. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2002. if (!uctx)
  2003. return -ENOMEM;
  2004. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  2005. kfree(uctx);
  2006. if (err)
  2007. return err;
  2008. }
  2009. xp = xfrm_policy_bysel_ctx(net, XFRM_POLICY_TYPE_MAIN,
  2010. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2011. 1, &err);
  2012. security_xfrm_policy_free(pol_ctx);
  2013. if (xp == NULL)
  2014. return -ENOENT;
  2015. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2016. audit_get_loginuid(current),
  2017. audit_get_sessionid(current), 0);
  2018. if (err)
  2019. goto out;
  2020. c.seq = hdr->sadb_msg_seq;
  2021. c.pid = hdr->sadb_msg_pid;
  2022. c.data.byid = 0;
  2023. c.event = XFRM_MSG_DELPOLICY;
  2024. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2025. out:
  2026. xfrm_pol_put(xp);
  2027. return err;
  2028. }
  2029. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2030. {
  2031. int err;
  2032. struct sk_buff *out_skb;
  2033. struct sadb_msg *out_hdr;
  2034. err = 0;
  2035. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2036. if (IS_ERR(out_skb)) {
  2037. err = PTR_ERR(out_skb);
  2038. goto out;
  2039. }
  2040. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2041. if (err < 0)
  2042. goto out;
  2043. out_hdr = (struct sadb_msg *) out_skb->data;
  2044. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2045. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2046. out_hdr->sadb_msg_satype = 0;
  2047. out_hdr->sadb_msg_errno = 0;
  2048. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2049. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2050. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2051. err = 0;
  2052. out:
  2053. return err;
  2054. }
  2055. #ifdef CONFIG_NET_KEY_MIGRATE
  2056. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2057. {
  2058. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2059. }
  2060. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2061. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2062. u16 *family)
  2063. {
  2064. int af, socklen;
  2065. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2066. return -EINVAL;
  2067. af = pfkey_sockaddr_extract(sa, saddr);
  2068. if (!af)
  2069. return -EINVAL;
  2070. socklen = pfkey_sockaddr_len(af);
  2071. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2072. daddr) != af)
  2073. return -EINVAL;
  2074. *family = af;
  2075. return 0;
  2076. }
  2077. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2078. struct xfrm_migrate *m)
  2079. {
  2080. int err;
  2081. struct sadb_x_ipsecrequest *rq2;
  2082. int mode;
  2083. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2084. len < rq1->sadb_x_ipsecrequest_len)
  2085. return -EINVAL;
  2086. /* old endoints */
  2087. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2088. rq1->sadb_x_ipsecrequest_len,
  2089. &m->old_saddr, &m->old_daddr,
  2090. &m->old_family);
  2091. if (err)
  2092. return err;
  2093. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2094. len -= rq1->sadb_x_ipsecrequest_len;
  2095. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2096. len < rq2->sadb_x_ipsecrequest_len)
  2097. return -EINVAL;
  2098. /* new endpoints */
  2099. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2100. rq2->sadb_x_ipsecrequest_len,
  2101. &m->new_saddr, &m->new_daddr,
  2102. &m->new_family);
  2103. if (err)
  2104. return err;
  2105. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2106. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2107. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2108. return -EINVAL;
  2109. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2110. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2111. return -EINVAL;
  2112. m->mode = mode;
  2113. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2114. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2115. rq2->sadb_x_ipsecrequest_len));
  2116. }
  2117. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2118. struct sadb_msg *hdr, void **ext_hdrs)
  2119. {
  2120. int i, len, ret, err = -EINVAL;
  2121. u8 dir;
  2122. struct sadb_address *sa;
  2123. struct sadb_x_kmaddress *kma;
  2124. struct sadb_x_policy *pol;
  2125. struct sadb_x_ipsecrequest *rq;
  2126. struct xfrm_selector sel;
  2127. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2128. struct xfrm_kmaddress k;
  2129. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2130. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2131. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2132. err = -EINVAL;
  2133. goto out;
  2134. }
  2135. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2136. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2137. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2138. err = -EINVAL;
  2139. goto out;
  2140. }
  2141. if (kma) {
  2142. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2143. k.reserved = kma->sadb_x_kmaddress_reserved;
  2144. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2145. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2146. &k.local, &k.remote, &k.family);
  2147. if (ret < 0) {
  2148. err = ret;
  2149. goto out;
  2150. }
  2151. }
  2152. dir = pol->sadb_x_policy_dir - 1;
  2153. memset(&sel, 0, sizeof(sel));
  2154. /* set source address info of selector */
  2155. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2156. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2157. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2158. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2159. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2160. if (sel.sport)
  2161. sel.sport_mask = htons(0xffff);
  2162. /* set destination address info of selector */
  2163. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2164. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2165. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2166. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2167. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2168. if (sel.dport)
  2169. sel.dport_mask = htons(0xffff);
  2170. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2171. /* extract ipsecrequests */
  2172. i = 0;
  2173. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2174. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2175. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2176. if (ret < 0) {
  2177. err = ret;
  2178. goto out;
  2179. } else {
  2180. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2181. len -= ret;
  2182. i++;
  2183. }
  2184. }
  2185. if (!i || len > 0) {
  2186. err = -EINVAL;
  2187. goto out;
  2188. }
  2189. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2190. kma ? &k : NULL);
  2191. out:
  2192. return err;
  2193. }
  2194. #else
  2195. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2196. struct sadb_msg *hdr, void **ext_hdrs)
  2197. {
  2198. return -ENOPROTOOPT;
  2199. }
  2200. #endif
  2201. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2202. {
  2203. struct net *net = sock_net(sk);
  2204. unsigned int dir;
  2205. int err = 0, delete;
  2206. struct sadb_x_policy *pol;
  2207. struct xfrm_policy *xp;
  2208. struct km_event c;
  2209. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2210. return -EINVAL;
  2211. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2212. if (dir >= XFRM_POLICY_MAX)
  2213. return -EINVAL;
  2214. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2215. xp = xfrm_policy_byid(net, XFRM_POLICY_TYPE_MAIN, dir,
  2216. pol->sadb_x_policy_id, delete, &err);
  2217. if (xp == NULL)
  2218. return -ENOENT;
  2219. if (delete) {
  2220. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2221. audit_get_loginuid(current),
  2222. audit_get_sessionid(current), 0);
  2223. if (err)
  2224. goto out;
  2225. c.seq = hdr->sadb_msg_seq;
  2226. c.pid = hdr->sadb_msg_pid;
  2227. c.data.byid = 1;
  2228. c.event = XFRM_MSG_DELPOLICY;
  2229. km_policy_notify(xp, dir, &c);
  2230. } else {
  2231. err = key_pol_get_resp(sk, xp, hdr, dir);
  2232. }
  2233. out:
  2234. xfrm_pol_put(xp);
  2235. return err;
  2236. }
  2237. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2238. {
  2239. struct pfkey_sock *pfk = ptr;
  2240. struct sk_buff *out_skb;
  2241. struct sadb_msg *out_hdr;
  2242. int err;
  2243. if (!pfkey_can_dump(&pfk->sk))
  2244. return -ENOBUFS;
  2245. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2246. if (IS_ERR(out_skb))
  2247. return PTR_ERR(out_skb);
  2248. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2249. if (err < 0)
  2250. return err;
  2251. out_hdr = (struct sadb_msg *) out_skb->data;
  2252. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2253. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2254. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2255. out_hdr->sadb_msg_errno = 0;
  2256. out_hdr->sadb_msg_seq = count + 1;
  2257. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2258. if (pfk->dump.skb)
  2259. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2260. &pfk->sk, sock_net(&pfk->sk));
  2261. pfk->dump.skb = out_skb;
  2262. return 0;
  2263. }
  2264. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2265. {
  2266. struct net *net = sock_net(&pfk->sk);
  2267. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2268. }
  2269. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2270. {
  2271. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2272. }
  2273. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2274. {
  2275. struct pfkey_sock *pfk = pfkey_sk(sk);
  2276. if (pfk->dump.dump != NULL)
  2277. return -EBUSY;
  2278. pfk->dump.msg_version = hdr->sadb_msg_version;
  2279. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2280. pfk->dump.dump = pfkey_dump_sp;
  2281. pfk->dump.done = pfkey_dump_sp_done;
  2282. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2283. return pfkey_do_dump(pfk);
  2284. }
  2285. static int key_notify_policy_flush(struct km_event *c)
  2286. {
  2287. struct sk_buff *skb_out;
  2288. struct sadb_msg *hdr;
  2289. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2290. if (!skb_out)
  2291. return -ENOBUFS;
  2292. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2293. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2294. hdr->sadb_msg_seq = c->seq;
  2295. hdr->sadb_msg_pid = c->pid;
  2296. hdr->sadb_msg_version = PF_KEY_V2;
  2297. hdr->sadb_msg_errno = (uint8_t) 0;
  2298. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2299. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2300. return 0;
  2301. }
  2302. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2303. {
  2304. struct net *net = sock_net(sk);
  2305. struct km_event c;
  2306. struct xfrm_audit audit_info;
  2307. int err;
  2308. audit_info.loginuid = audit_get_loginuid(current);
  2309. audit_info.sessionid = audit_get_sessionid(current);
  2310. audit_info.secid = 0;
  2311. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2312. if (err)
  2313. return err;
  2314. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2315. c.event = XFRM_MSG_FLUSHPOLICY;
  2316. c.pid = hdr->sadb_msg_pid;
  2317. c.seq = hdr->sadb_msg_seq;
  2318. c.net = net;
  2319. km_policy_notify(NULL, 0, &c);
  2320. return 0;
  2321. }
  2322. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2323. struct sadb_msg *hdr, void **ext_hdrs);
  2324. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2325. [SADB_RESERVED] = pfkey_reserved,
  2326. [SADB_GETSPI] = pfkey_getspi,
  2327. [SADB_UPDATE] = pfkey_add,
  2328. [SADB_ADD] = pfkey_add,
  2329. [SADB_DELETE] = pfkey_delete,
  2330. [SADB_GET] = pfkey_get,
  2331. [SADB_ACQUIRE] = pfkey_acquire,
  2332. [SADB_REGISTER] = pfkey_register,
  2333. [SADB_EXPIRE] = NULL,
  2334. [SADB_FLUSH] = pfkey_flush,
  2335. [SADB_DUMP] = pfkey_dump,
  2336. [SADB_X_PROMISC] = pfkey_promisc,
  2337. [SADB_X_PCHANGE] = NULL,
  2338. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2339. [SADB_X_SPDADD] = pfkey_spdadd,
  2340. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2341. [SADB_X_SPDGET] = pfkey_spdget,
  2342. [SADB_X_SPDACQUIRE] = NULL,
  2343. [SADB_X_SPDDUMP] = pfkey_spddump,
  2344. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2345. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2346. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2347. [SADB_X_MIGRATE] = pfkey_migrate,
  2348. };
  2349. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2350. {
  2351. void *ext_hdrs[SADB_EXT_MAX];
  2352. int err;
  2353. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2354. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2355. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2356. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2357. if (!err) {
  2358. err = -EOPNOTSUPP;
  2359. if (pfkey_funcs[hdr->sadb_msg_type])
  2360. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2361. }
  2362. return err;
  2363. }
  2364. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2365. {
  2366. struct sadb_msg *hdr = NULL;
  2367. if (skb->len < sizeof(*hdr)) {
  2368. *errp = -EMSGSIZE;
  2369. } else {
  2370. hdr = (struct sadb_msg *) skb->data;
  2371. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2372. hdr->sadb_msg_reserved != 0 ||
  2373. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2374. hdr->sadb_msg_type > SADB_MAX)) {
  2375. hdr = NULL;
  2376. *errp = -EINVAL;
  2377. } else if (hdr->sadb_msg_len != (skb->len /
  2378. sizeof(uint64_t)) ||
  2379. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2380. sizeof(uint64_t))) {
  2381. hdr = NULL;
  2382. *errp = -EMSGSIZE;
  2383. } else {
  2384. *errp = 0;
  2385. }
  2386. }
  2387. return hdr;
  2388. }
  2389. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2390. {
  2391. unsigned int id = d->desc.sadb_alg_id;
  2392. if (id >= sizeof(t->aalgos) * 8)
  2393. return 0;
  2394. return (t->aalgos >> id) & 1;
  2395. }
  2396. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2397. {
  2398. unsigned int id = d->desc.sadb_alg_id;
  2399. if (id >= sizeof(t->ealgos) * 8)
  2400. return 0;
  2401. return (t->ealgos >> id) & 1;
  2402. }
  2403. static int count_ah_combs(struct xfrm_tmpl *t)
  2404. {
  2405. int i, sz = 0;
  2406. for (i = 0; ; i++) {
  2407. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2408. if (!aalg)
  2409. break;
  2410. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2411. sz += sizeof(struct sadb_comb);
  2412. }
  2413. return sz + sizeof(struct sadb_prop);
  2414. }
  2415. static int count_esp_combs(struct xfrm_tmpl *t)
  2416. {
  2417. int i, k, sz = 0;
  2418. for (i = 0; ; i++) {
  2419. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2420. if (!ealg)
  2421. break;
  2422. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2423. continue;
  2424. for (k = 1; ; k++) {
  2425. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2426. if (!aalg)
  2427. break;
  2428. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2429. sz += sizeof(struct sadb_comb);
  2430. }
  2431. }
  2432. return sz + sizeof(struct sadb_prop);
  2433. }
  2434. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2435. {
  2436. struct sadb_prop *p;
  2437. int i;
  2438. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2439. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2440. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2441. p->sadb_prop_replay = 32;
  2442. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2443. for (i = 0; ; i++) {
  2444. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2445. if (!aalg)
  2446. break;
  2447. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2448. struct sadb_comb *c;
  2449. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2450. memset(c, 0, sizeof(*c));
  2451. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2452. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2453. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2454. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2455. c->sadb_comb_hard_addtime = 24*60*60;
  2456. c->sadb_comb_soft_addtime = 20*60*60;
  2457. c->sadb_comb_hard_usetime = 8*60*60;
  2458. c->sadb_comb_soft_usetime = 7*60*60;
  2459. }
  2460. }
  2461. }
  2462. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2463. {
  2464. struct sadb_prop *p;
  2465. int i, k;
  2466. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2467. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2468. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2469. p->sadb_prop_replay = 32;
  2470. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2471. for (i=0; ; i++) {
  2472. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2473. if (!ealg)
  2474. break;
  2475. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2476. continue;
  2477. for (k = 1; ; k++) {
  2478. struct sadb_comb *c;
  2479. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2480. if (!aalg)
  2481. break;
  2482. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2483. continue;
  2484. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2485. memset(c, 0, sizeof(*c));
  2486. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2487. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2488. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2489. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2490. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2491. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2492. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2493. c->sadb_comb_hard_addtime = 24*60*60;
  2494. c->sadb_comb_soft_addtime = 20*60*60;
  2495. c->sadb_comb_hard_usetime = 8*60*60;
  2496. c->sadb_comb_soft_usetime = 7*60*60;
  2497. }
  2498. }
  2499. }
  2500. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2501. {
  2502. return 0;
  2503. }
  2504. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2505. {
  2506. struct sk_buff *out_skb;
  2507. struct sadb_msg *out_hdr;
  2508. int hard;
  2509. int hsc;
  2510. hard = c->data.hard;
  2511. if (hard)
  2512. hsc = 2;
  2513. else
  2514. hsc = 1;
  2515. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2516. if (IS_ERR(out_skb))
  2517. return PTR_ERR(out_skb);
  2518. out_hdr = (struct sadb_msg *) out_skb->data;
  2519. out_hdr->sadb_msg_version = PF_KEY_V2;
  2520. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2521. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2522. out_hdr->sadb_msg_errno = 0;
  2523. out_hdr->sadb_msg_reserved = 0;
  2524. out_hdr->sadb_msg_seq = 0;
  2525. out_hdr->sadb_msg_pid = 0;
  2526. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2527. return 0;
  2528. }
  2529. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2530. {
  2531. struct net *net = x ? xs_net(x) : c->net;
  2532. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2533. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2534. return 0;
  2535. switch (c->event) {
  2536. case XFRM_MSG_EXPIRE:
  2537. return key_notify_sa_expire(x, c);
  2538. case XFRM_MSG_DELSA:
  2539. case XFRM_MSG_NEWSA:
  2540. case XFRM_MSG_UPDSA:
  2541. return key_notify_sa(x, c);
  2542. case XFRM_MSG_FLUSHSA:
  2543. return key_notify_sa_flush(c);
  2544. case XFRM_MSG_NEWAE: /* not yet supported */
  2545. break;
  2546. default:
  2547. printk("pfkey: Unknown SA event %d\n", c->event);
  2548. break;
  2549. }
  2550. return 0;
  2551. }
  2552. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2553. {
  2554. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2555. return 0;
  2556. switch (c->event) {
  2557. case XFRM_MSG_POLEXPIRE:
  2558. return key_notify_policy_expire(xp, c);
  2559. case XFRM_MSG_DELPOLICY:
  2560. case XFRM_MSG_NEWPOLICY:
  2561. case XFRM_MSG_UPDPOLICY:
  2562. return key_notify_policy(xp, dir, c);
  2563. case XFRM_MSG_FLUSHPOLICY:
  2564. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2565. break;
  2566. return key_notify_policy_flush(c);
  2567. default:
  2568. printk("pfkey: Unknown policy event %d\n", c->event);
  2569. break;
  2570. }
  2571. return 0;
  2572. }
  2573. static u32 get_acqseq(void)
  2574. {
  2575. u32 res;
  2576. static u32 acqseq;
  2577. static DEFINE_SPINLOCK(acqseq_lock);
  2578. spin_lock_bh(&acqseq_lock);
  2579. res = (++acqseq ? : ++acqseq);
  2580. spin_unlock_bh(&acqseq_lock);
  2581. return res;
  2582. }
  2583. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2584. {
  2585. struct sk_buff *skb;
  2586. struct sadb_msg *hdr;
  2587. struct sadb_address *addr;
  2588. struct sadb_x_policy *pol;
  2589. int sockaddr_size;
  2590. int size;
  2591. struct sadb_x_sec_ctx *sec_ctx;
  2592. struct xfrm_sec_ctx *xfrm_ctx;
  2593. int ctx_size = 0;
  2594. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2595. if (!sockaddr_size)
  2596. return -EINVAL;
  2597. size = sizeof(struct sadb_msg) +
  2598. (sizeof(struct sadb_address) * 2) +
  2599. (sockaddr_size * 2) +
  2600. sizeof(struct sadb_x_policy);
  2601. if (x->id.proto == IPPROTO_AH)
  2602. size += count_ah_combs(t);
  2603. else if (x->id.proto == IPPROTO_ESP)
  2604. size += count_esp_combs(t);
  2605. if ((xfrm_ctx = x->security)) {
  2606. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2607. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2608. }
  2609. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2610. if (skb == NULL)
  2611. return -ENOMEM;
  2612. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2613. hdr->sadb_msg_version = PF_KEY_V2;
  2614. hdr->sadb_msg_type = SADB_ACQUIRE;
  2615. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2616. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2617. hdr->sadb_msg_errno = 0;
  2618. hdr->sadb_msg_reserved = 0;
  2619. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2620. hdr->sadb_msg_pid = 0;
  2621. /* src address */
  2622. addr = (struct sadb_address*) skb_put(skb,
  2623. sizeof(struct sadb_address)+sockaddr_size);
  2624. addr->sadb_address_len =
  2625. (sizeof(struct sadb_address)+sockaddr_size)/
  2626. sizeof(uint64_t);
  2627. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2628. addr->sadb_address_proto = 0;
  2629. addr->sadb_address_reserved = 0;
  2630. addr->sadb_address_prefixlen =
  2631. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2632. (struct sockaddr *) (addr + 1),
  2633. x->props.family);
  2634. if (!addr->sadb_address_prefixlen)
  2635. BUG();
  2636. /* dst address */
  2637. addr = (struct sadb_address*) skb_put(skb,
  2638. sizeof(struct sadb_address)+sockaddr_size);
  2639. addr->sadb_address_len =
  2640. (sizeof(struct sadb_address)+sockaddr_size)/
  2641. sizeof(uint64_t);
  2642. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2643. addr->sadb_address_proto = 0;
  2644. addr->sadb_address_reserved = 0;
  2645. addr->sadb_address_prefixlen =
  2646. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2647. (struct sockaddr *) (addr + 1),
  2648. x->props.family);
  2649. if (!addr->sadb_address_prefixlen)
  2650. BUG();
  2651. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2652. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2653. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2654. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2655. pol->sadb_x_policy_dir = dir+1;
  2656. pol->sadb_x_policy_id = xp->index;
  2657. /* Set sadb_comb's. */
  2658. if (x->id.proto == IPPROTO_AH)
  2659. dump_ah_combs(skb, t);
  2660. else if (x->id.proto == IPPROTO_ESP)
  2661. dump_esp_combs(skb, t);
  2662. /* security context */
  2663. if (xfrm_ctx) {
  2664. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2665. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2666. sec_ctx->sadb_x_sec_len =
  2667. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2668. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2669. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2670. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2671. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2672. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2673. xfrm_ctx->ctx_len);
  2674. }
  2675. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2676. }
  2677. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2678. u8 *data, int len, int *dir)
  2679. {
  2680. struct net *net = sock_net(sk);
  2681. struct xfrm_policy *xp;
  2682. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2683. struct sadb_x_sec_ctx *sec_ctx;
  2684. switch (sk->sk_family) {
  2685. case AF_INET:
  2686. if (opt != IP_IPSEC_POLICY) {
  2687. *dir = -EOPNOTSUPP;
  2688. return NULL;
  2689. }
  2690. break;
  2691. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2692. case AF_INET6:
  2693. if (opt != IPV6_IPSEC_POLICY) {
  2694. *dir = -EOPNOTSUPP;
  2695. return NULL;
  2696. }
  2697. break;
  2698. #endif
  2699. default:
  2700. *dir = -EINVAL;
  2701. return NULL;
  2702. }
  2703. *dir = -EINVAL;
  2704. if (len < sizeof(struct sadb_x_policy) ||
  2705. pol->sadb_x_policy_len*8 > len ||
  2706. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2707. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2708. return NULL;
  2709. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2710. if (xp == NULL) {
  2711. *dir = -ENOBUFS;
  2712. return NULL;
  2713. }
  2714. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2715. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2716. xp->lft.soft_byte_limit = XFRM_INF;
  2717. xp->lft.hard_byte_limit = XFRM_INF;
  2718. xp->lft.soft_packet_limit = XFRM_INF;
  2719. xp->lft.hard_packet_limit = XFRM_INF;
  2720. xp->family = sk->sk_family;
  2721. xp->xfrm_nr = 0;
  2722. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2723. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2724. goto out;
  2725. /* security context too */
  2726. if (len >= (pol->sadb_x_policy_len*8 +
  2727. sizeof(struct sadb_x_sec_ctx))) {
  2728. char *p = (char *)pol;
  2729. struct xfrm_user_sec_ctx *uctx;
  2730. p += pol->sadb_x_policy_len*8;
  2731. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2732. if (len < pol->sadb_x_policy_len*8 +
  2733. sec_ctx->sadb_x_sec_len) {
  2734. *dir = -EINVAL;
  2735. goto out;
  2736. }
  2737. if ((*dir = verify_sec_ctx_len(p)))
  2738. goto out;
  2739. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2740. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2741. kfree(uctx);
  2742. if (*dir)
  2743. goto out;
  2744. }
  2745. *dir = pol->sadb_x_policy_dir-1;
  2746. return xp;
  2747. out:
  2748. xp->walk.dead = 1;
  2749. xfrm_policy_destroy(xp);
  2750. return NULL;
  2751. }
  2752. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2753. {
  2754. struct sk_buff *skb;
  2755. struct sadb_msg *hdr;
  2756. struct sadb_sa *sa;
  2757. struct sadb_address *addr;
  2758. struct sadb_x_nat_t_port *n_port;
  2759. int sockaddr_size;
  2760. int size;
  2761. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2762. struct xfrm_encap_tmpl *natt = NULL;
  2763. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2764. if (!sockaddr_size)
  2765. return -EINVAL;
  2766. if (!satype)
  2767. return -EINVAL;
  2768. if (!x->encap)
  2769. return -EINVAL;
  2770. natt = x->encap;
  2771. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2772. *
  2773. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2774. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2775. */
  2776. size = sizeof(struct sadb_msg) +
  2777. sizeof(struct sadb_sa) +
  2778. (sizeof(struct sadb_address) * 2) +
  2779. (sockaddr_size * 2) +
  2780. (sizeof(struct sadb_x_nat_t_port) * 2);
  2781. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2782. if (skb == NULL)
  2783. return -ENOMEM;
  2784. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2785. hdr->sadb_msg_version = PF_KEY_V2;
  2786. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2787. hdr->sadb_msg_satype = satype;
  2788. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2789. hdr->sadb_msg_errno = 0;
  2790. hdr->sadb_msg_reserved = 0;
  2791. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2792. hdr->sadb_msg_pid = 0;
  2793. /* SA */
  2794. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2795. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2796. sa->sadb_sa_exttype = SADB_EXT_SA;
  2797. sa->sadb_sa_spi = x->id.spi;
  2798. sa->sadb_sa_replay = 0;
  2799. sa->sadb_sa_state = 0;
  2800. sa->sadb_sa_auth = 0;
  2801. sa->sadb_sa_encrypt = 0;
  2802. sa->sadb_sa_flags = 0;
  2803. /* ADDRESS_SRC (old addr) */
  2804. addr = (struct sadb_address*)
  2805. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2806. addr->sadb_address_len =
  2807. (sizeof(struct sadb_address)+sockaddr_size)/
  2808. sizeof(uint64_t);
  2809. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2810. addr->sadb_address_proto = 0;
  2811. addr->sadb_address_reserved = 0;
  2812. addr->sadb_address_prefixlen =
  2813. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2814. (struct sockaddr *) (addr + 1),
  2815. x->props.family);
  2816. if (!addr->sadb_address_prefixlen)
  2817. BUG();
  2818. /* NAT_T_SPORT (old port) */
  2819. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2820. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2821. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2822. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2823. n_port->sadb_x_nat_t_port_reserved = 0;
  2824. /* ADDRESS_DST (new addr) */
  2825. addr = (struct sadb_address*)
  2826. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2827. addr->sadb_address_len =
  2828. (sizeof(struct sadb_address)+sockaddr_size)/
  2829. sizeof(uint64_t);
  2830. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2831. addr->sadb_address_proto = 0;
  2832. addr->sadb_address_reserved = 0;
  2833. addr->sadb_address_prefixlen =
  2834. pfkey_sockaddr_fill(ipaddr, 0,
  2835. (struct sockaddr *) (addr + 1),
  2836. x->props.family);
  2837. if (!addr->sadb_address_prefixlen)
  2838. BUG();
  2839. /* NAT_T_DPORT (new port) */
  2840. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2841. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2842. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2843. n_port->sadb_x_nat_t_port_port = sport;
  2844. n_port->sadb_x_nat_t_port_reserved = 0;
  2845. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2846. }
  2847. #ifdef CONFIG_NET_KEY_MIGRATE
  2848. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2849. struct xfrm_selector *sel)
  2850. {
  2851. struct sadb_address *addr;
  2852. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2853. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2854. addr->sadb_address_exttype = type;
  2855. addr->sadb_address_proto = sel->proto;
  2856. addr->sadb_address_reserved = 0;
  2857. switch (type) {
  2858. case SADB_EXT_ADDRESS_SRC:
  2859. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2860. pfkey_sockaddr_fill(&sel->saddr, 0,
  2861. (struct sockaddr *)(addr + 1),
  2862. sel->family);
  2863. break;
  2864. case SADB_EXT_ADDRESS_DST:
  2865. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2866. pfkey_sockaddr_fill(&sel->daddr, 0,
  2867. (struct sockaddr *)(addr + 1),
  2868. sel->family);
  2869. break;
  2870. default:
  2871. return -EINVAL;
  2872. }
  2873. return 0;
  2874. }
  2875. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2876. {
  2877. struct sadb_x_kmaddress *kma;
  2878. u8 *sa;
  2879. int family = k->family;
  2880. int socklen = pfkey_sockaddr_len(family);
  2881. int size_req;
  2882. size_req = (sizeof(struct sadb_x_kmaddress) +
  2883. pfkey_sockaddr_pair_size(family));
  2884. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2885. memset(kma, 0, size_req);
  2886. kma->sadb_x_kmaddress_len = size_req / 8;
  2887. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2888. kma->sadb_x_kmaddress_reserved = k->reserved;
  2889. sa = (u8 *)(kma + 1);
  2890. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2891. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2892. return -EINVAL;
  2893. return 0;
  2894. }
  2895. static int set_ipsecrequest(struct sk_buff *skb,
  2896. uint8_t proto, uint8_t mode, int level,
  2897. uint32_t reqid, uint8_t family,
  2898. xfrm_address_t *src, xfrm_address_t *dst)
  2899. {
  2900. struct sadb_x_ipsecrequest *rq;
  2901. u8 *sa;
  2902. int socklen = pfkey_sockaddr_len(family);
  2903. int size_req;
  2904. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2905. pfkey_sockaddr_pair_size(family);
  2906. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2907. memset(rq, 0, size_req);
  2908. rq->sadb_x_ipsecrequest_len = size_req;
  2909. rq->sadb_x_ipsecrequest_proto = proto;
  2910. rq->sadb_x_ipsecrequest_mode = mode;
  2911. rq->sadb_x_ipsecrequest_level = level;
  2912. rq->sadb_x_ipsecrequest_reqid = reqid;
  2913. sa = (u8 *) (rq + 1);
  2914. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2915. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2916. return -EINVAL;
  2917. return 0;
  2918. }
  2919. #endif
  2920. #ifdef CONFIG_NET_KEY_MIGRATE
  2921. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2922. struct xfrm_migrate *m, int num_bundles,
  2923. struct xfrm_kmaddress *k)
  2924. {
  2925. int i;
  2926. int sasize_sel;
  2927. int size = 0;
  2928. int size_pol = 0;
  2929. struct sk_buff *skb;
  2930. struct sadb_msg *hdr;
  2931. struct sadb_x_policy *pol;
  2932. struct xfrm_migrate *mp;
  2933. if (type != XFRM_POLICY_TYPE_MAIN)
  2934. return 0;
  2935. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2936. return -EINVAL;
  2937. if (k != NULL) {
  2938. /* addresses for KM */
  2939. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2940. pfkey_sockaddr_pair_size(k->family));
  2941. }
  2942. /* selector */
  2943. sasize_sel = pfkey_sockaddr_size(sel->family);
  2944. if (!sasize_sel)
  2945. return -EINVAL;
  2946. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2947. /* policy info */
  2948. size_pol += sizeof(struct sadb_x_policy);
  2949. /* ipsecrequests */
  2950. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2951. /* old locator pair */
  2952. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2953. pfkey_sockaddr_pair_size(mp->old_family);
  2954. /* new locator pair */
  2955. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2956. pfkey_sockaddr_pair_size(mp->new_family);
  2957. }
  2958. size += sizeof(struct sadb_msg) + size_pol;
  2959. /* alloc buffer */
  2960. skb = alloc_skb(size, GFP_ATOMIC);
  2961. if (skb == NULL)
  2962. return -ENOMEM;
  2963. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2964. hdr->sadb_msg_version = PF_KEY_V2;
  2965. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2966. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2967. hdr->sadb_msg_len = size / 8;
  2968. hdr->sadb_msg_errno = 0;
  2969. hdr->sadb_msg_reserved = 0;
  2970. hdr->sadb_msg_seq = 0;
  2971. hdr->sadb_msg_pid = 0;
  2972. /* Addresses to be used by KM for negotiation, if ext is available */
  2973. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2974. return -EINVAL;
  2975. /* selector src */
  2976. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2977. /* selector dst */
  2978. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2979. /* policy information */
  2980. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2981. pol->sadb_x_policy_len = size_pol / 8;
  2982. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2983. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2984. pol->sadb_x_policy_dir = dir + 1;
  2985. pol->sadb_x_policy_id = 0;
  2986. pol->sadb_x_policy_priority = 0;
  2987. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2988. /* old ipsecrequest */
  2989. int mode = pfkey_mode_from_xfrm(mp->mode);
  2990. if (mode < 0)
  2991. goto err;
  2992. if (set_ipsecrequest(skb, mp->proto, mode,
  2993. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2994. mp->reqid, mp->old_family,
  2995. &mp->old_saddr, &mp->old_daddr) < 0)
  2996. goto err;
  2997. /* new ipsecrequest */
  2998. if (set_ipsecrequest(skb, mp->proto, mode,
  2999. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3000. mp->reqid, mp->new_family,
  3001. &mp->new_saddr, &mp->new_daddr) < 0)
  3002. goto err;
  3003. }
  3004. /* broadcast migrate message to sockets */
  3005. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3006. return 0;
  3007. err:
  3008. kfree_skb(skb);
  3009. return -EINVAL;
  3010. }
  3011. #else
  3012. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3013. struct xfrm_migrate *m, int num_bundles,
  3014. struct xfrm_kmaddress *k)
  3015. {
  3016. return -ENOPROTOOPT;
  3017. }
  3018. #endif
  3019. static int pfkey_sendmsg(struct kiocb *kiocb,
  3020. struct socket *sock, struct msghdr *msg, size_t len)
  3021. {
  3022. struct sock *sk = sock->sk;
  3023. struct sk_buff *skb = NULL;
  3024. struct sadb_msg *hdr = NULL;
  3025. int err;
  3026. err = -EOPNOTSUPP;
  3027. if (msg->msg_flags & MSG_OOB)
  3028. goto out;
  3029. err = -EMSGSIZE;
  3030. if ((unsigned)len > sk->sk_sndbuf - 32)
  3031. goto out;
  3032. err = -ENOBUFS;
  3033. skb = alloc_skb(len, GFP_KERNEL);
  3034. if (skb == NULL)
  3035. goto out;
  3036. err = -EFAULT;
  3037. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3038. goto out;
  3039. hdr = pfkey_get_base_msg(skb, &err);
  3040. if (!hdr)
  3041. goto out;
  3042. mutex_lock(&xfrm_cfg_mutex);
  3043. err = pfkey_process(sk, skb, hdr);
  3044. mutex_unlock(&xfrm_cfg_mutex);
  3045. out:
  3046. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3047. err = 0;
  3048. kfree_skb(skb);
  3049. return err ? : len;
  3050. }
  3051. static int pfkey_recvmsg(struct kiocb *kiocb,
  3052. struct socket *sock, struct msghdr *msg, size_t len,
  3053. int flags)
  3054. {
  3055. struct sock *sk = sock->sk;
  3056. struct pfkey_sock *pfk = pfkey_sk(sk);
  3057. struct sk_buff *skb;
  3058. int copied, err;
  3059. err = -EINVAL;
  3060. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3061. goto out;
  3062. msg->msg_namelen = 0;
  3063. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3064. if (skb == NULL)
  3065. goto out;
  3066. copied = skb->len;
  3067. if (copied > len) {
  3068. msg->msg_flags |= MSG_TRUNC;
  3069. copied = len;
  3070. }
  3071. skb_reset_transport_header(skb);
  3072. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3073. if (err)
  3074. goto out_free;
  3075. sock_recv_ts_and_drops(msg, sk, skb);
  3076. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3077. if (pfk->dump.dump != NULL &&
  3078. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3079. pfkey_do_dump(pfk);
  3080. out_free:
  3081. skb_free_datagram(sk, skb);
  3082. out:
  3083. return err;
  3084. }
  3085. static const struct proto_ops pfkey_ops = {
  3086. .family = PF_KEY,
  3087. .owner = THIS_MODULE,
  3088. /* Operations that make no sense on pfkey sockets. */
  3089. .bind = sock_no_bind,
  3090. .connect = sock_no_connect,
  3091. .socketpair = sock_no_socketpair,
  3092. .accept = sock_no_accept,
  3093. .getname = sock_no_getname,
  3094. .ioctl = sock_no_ioctl,
  3095. .listen = sock_no_listen,
  3096. .shutdown = sock_no_shutdown,
  3097. .setsockopt = sock_no_setsockopt,
  3098. .getsockopt = sock_no_getsockopt,
  3099. .mmap = sock_no_mmap,
  3100. .sendpage = sock_no_sendpage,
  3101. /* Now the operations that really occur. */
  3102. .release = pfkey_release,
  3103. .poll = datagram_poll,
  3104. .sendmsg = pfkey_sendmsg,
  3105. .recvmsg = pfkey_recvmsg,
  3106. };
  3107. static const struct net_proto_family pfkey_family_ops = {
  3108. .family = PF_KEY,
  3109. .create = pfkey_create,
  3110. .owner = THIS_MODULE,
  3111. };
  3112. #ifdef CONFIG_PROC_FS
  3113. static int pfkey_seq_show(struct seq_file *f, void *v)
  3114. {
  3115. struct sock *s;
  3116. s = (struct sock *)v;
  3117. if (v == SEQ_START_TOKEN)
  3118. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3119. else
  3120. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3121. s,
  3122. atomic_read(&s->sk_refcnt),
  3123. sk_rmem_alloc_get(s),
  3124. sk_wmem_alloc_get(s),
  3125. sock_i_uid(s),
  3126. sock_i_ino(s)
  3127. );
  3128. return 0;
  3129. }
  3130. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3131. {
  3132. struct net *net = seq_file_net(f);
  3133. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3134. struct sock *s;
  3135. struct hlist_node *node;
  3136. loff_t pos = *ppos;
  3137. read_lock(&pfkey_table_lock);
  3138. if (pos == 0)
  3139. return SEQ_START_TOKEN;
  3140. sk_for_each(s, node, &net_pfkey->table)
  3141. if (pos-- == 1)
  3142. return s;
  3143. return NULL;
  3144. }
  3145. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3146. {
  3147. struct net *net = seq_file_net(f);
  3148. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3149. ++*ppos;
  3150. return (v == SEQ_START_TOKEN) ?
  3151. sk_head(&net_pfkey->table) :
  3152. sk_next((struct sock *)v);
  3153. }
  3154. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3155. {
  3156. read_unlock(&pfkey_table_lock);
  3157. }
  3158. static const struct seq_operations pfkey_seq_ops = {
  3159. .start = pfkey_seq_start,
  3160. .next = pfkey_seq_next,
  3161. .stop = pfkey_seq_stop,
  3162. .show = pfkey_seq_show,
  3163. };
  3164. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3165. {
  3166. return seq_open_net(inode, file, &pfkey_seq_ops,
  3167. sizeof(struct seq_net_private));
  3168. }
  3169. static const struct file_operations pfkey_proc_ops = {
  3170. .open = pfkey_seq_open,
  3171. .read = seq_read,
  3172. .llseek = seq_lseek,
  3173. .release = seq_release_net,
  3174. };
  3175. static int __net_init pfkey_init_proc(struct net *net)
  3176. {
  3177. struct proc_dir_entry *e;
  3178. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3179. if (e == NULL)
  3180. return -ENOMEM;
  3181. return 0;
  3182. }
  3183. static void pfkey_exit_proc(struct net *net)
  3184. {
  3185. proc_net_remove(net, "pfkey");
  3186. }
  3187. #else
  3188. static int __net_init pfkey_init_proc(struct net *net)
  3189. {
  3190. return 0;
  3191. }
  3192. static void pfkey_exit_proc(struct net *net)
  3193. {
  3194. }
  3195. #endif
  3196. static struct xfrm_mgr pfkeyv2_mgr =
  3197. {
  3198. .id = "pfkeyv2",
  3199. .notify = pfkey_send_notify,
  3200. .acquire = pfkey_send_acquire,
  3201. .compile_policy = pfkey_compile_policy,
  3202. .new_mapping = pfkey_send_new_mapping,
  3203. .notify_policy = pfkey_send_policy_notify,
  3204. .migrate = pfkey_send_migrate,
  3205. };
  3206. static int __net_init pfkey_net_init(struct net *net)
  3207. {
  3208. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3209. int rv;
  3210. INIT_HLIST_HEAD(&net_pfkey->table);
  3211. atomic_set(&net_pfkey->socks_nr, 0);
  3212. rv = pfkey_init_proc(net);
  3213. return rv;
  3214. }
  3215. static void __net_exit pfkey_net_exit(struct net *net)
  3216. {
  3217. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3218. pfkey_exit_proc(net);
  3219. BUG_ON(!hlist_empty(&net_pfkey->table));
  3220. }
  3221. static struct pernet_operations pfkey_net_ops = {
  3222. .init = pfkey_net_init,
  3223. .exit = pfkey_net_exit,
  3224. .id = &pfkey_net_id,
  3225. .size = sizeof(struct netns_pfkey),
  3226. };
  3227. static void __exit ipsec_pfkey_exit(void)
  3228. {
  3229. unregister_pernet_subsys(&pfkey_net_ops);
  3230. xfrm_unregister_km(&pfkeyv2_mgr);
  3231. sock_unregister(PF_KEY);
  3232. proto_unregister(&key_proto);
  3233. }
  3234. static int __init ipsec_pfkey_init(void)
  3235. {
  3236. int err = proto_register(&key_proto, 0);
  3237. if (err != 0)
  3238. goto out;
  3239. err = sock_register(&pfkey_family_ops);
  3240. if (err != 0)
  3241. goto out_unregister_key_proto;
  3242. err = xfrm_register_km(&pfkeyv2_mgr);
  3243. if (err != 0)
  3244. goto out_sock_unregister;
  3245. err = register_pernet_subsys(&pfkey_net_ops);
  3246. if (err != 0)
  3247. goto out_xfrm_unregister_km;
  3248. out:
  3249. return err;
  3250. out_xfrm_unregister_km:
  3251. xfrm_unregister_km(&pfkeyv2_mgr);
  3252. out_sock_unregister:
  3253. sock_unregister(PF_KEY);
  3254. out_unregister_key_proto:
  3255. proto_unregister(&key_proto);
  3256. goto out;
  3257. }
  3258. module_init(ipsec_pfkey_init);
  3259. module_exit(ipsec_pfkey_exit);
  3260. MODULE_LICENSE("GPL");
  3261. MODULE_ALIAS_NETPROTO(PF_KEY);