truncate.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /*
  2. * mm/truncate.c - code for taking down pages from address_spaces
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 10Sep2002 Andrew Morton
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/backing-dev.h>
  11. #include <linux/mm.h>
  12. #include <linux/swap.h>
  13. #include <linux/module.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/highmem.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/task_io_accounting_ops.h>
  18. #include <linux/buffer_head.h> /* grr. try_to_release_page,
  19. do_invalidatepage */
  20. #include "internal.h"
  21. /**
  22. * do_invalidatepage - invalidate part or all of a page
  23. * @page: the page which is affected
  24. * @offset: the index of the truncation point
  25. *
  26. * do_invalidatepage() is called when all or part of the page has become
  27. * invalidated by a truncate operation.
  28. *
  29. * do_invalidatepage() does not have to release all buffers, but it must
  30. * ensure that no dirty buffer is left outside @offset and that no I/O
  31. * is underway against any of the blocks which are outside the truncation
  32. * point. Because the caller is about to free (and possibly reuse) those
  33. * blocks on-disk.
  34. */
  35. void do_invalidatepage(struct page *page, unsigned long offset)
  36. {
  37. void (*invalidatepage)(struct page *, unsigned long);
  38. invalidatepage = page->mapping->a_ops->invalidatepage;
  39. #ifdef CONFIG_BLOCK
  40. if (!invalidatepage)
  41. invalidatepage = block_invalidatepage;
  42. #endif
  43. if (invalidatepage)
  44. (*invalidatepage)(page, offset);
  45. }
  46. static inline void truncate_partial_page(struct page *page, unsigned partial)
  47. {
  48. zero_user_segment(page, partial, PAGE_CACHE_SIZE);
  49. if (page_has_private(page))
  50. do_invalidatepage(page, partial);
  51. }
  52. /*
  53. * This cancels just the dirty bit on the kernel page itself, it
  54. * does NOT actually remove dirty bits on any mmap's that may be
  55. * around. It also leaves the page tagged dirty, so any sync
  56. * activity will still find it on the dirty lists, and in particular,
  57. * clear_page_dirty_for_io() will still look at the dirty bits in
  58. * the VM.
  59. *
  60. * Doing this should *normally* only ever be done when a page
  61. * is truncated, and is not actually mapped anywhere at all. However,
  62. * fs/buffer.c does this when it notices that somebody has cleaned
  63. * out all the buffers on a page without actually doing it through
  64. * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
  65. */
  66. void cancel_dirty_page(struct page *page, unsigned int account_size)
  67. {
  68. if (TestClearPageDirty(page)) {
  69. struct address_space *mapping = page->mapping;
  70. if (mapping && mapping_cap_account_dirty(mapping)) {
  71. dec_zone_page_state(page, NR_FILE_DIRTY);
  72. dec_bdi_stat(mapping->backing_dev_info,
  73. BDI_RECLAIMABLE);
  74. if (account_size)
  75. task_io_account_cancelled_write(account_size);
  76. }
  77. }
  78. }
  79. EXPORT_SYMBOL(cancel_dirty_page);
  80. /*
  81. * If truncate cannot remove the fs-private metadata from the page, the page
  82. * becomes orphaned. It will be left on the LRU and may even be mapped into
  83. * user pagetables if we're racing with filemap_fault().
  84. *
  85. * We need to bale out if page->mapping is no longer equal to the original
  86. * mapping. This happens a) when the VM reclaimed the page while we waited on
  87. * its lock, b) when a concurrent invalidate_mapping_pages got there first and
  88. * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
  89. */
  90. static int
  91. truncate_complete_page(struct address_space *mapping, struct page *page)
  92. {
  93. if (page->mapping != mapping)
  94. return -EIO;
  95. if (page_has_private(page))
  96. do_invalidatepage(page, 0);
  97. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  98. clear_page_mlock(page);
  99. remove_from_page_cache(page);
  100. ClearPageMappedToDisk(page);
  101. page_cache_release(page); /* pagecache ref */
  102. return 0;
  103. }
  104. /*
  105. * This is for invalidate_mapping_pages(). That function can be called at
  106. * any time, and is not supposed to throw away dirty pages. But pages can
  107. * be marked dirty at any time too, so use remove_mapping which safely
  108. * discards clean, unused pages.
  109. *
  110. * Returns non-zero if the page was successfully invalidated.
  111. */
  112. static int
  113. invalidate_complete_page(struct address_space *mapping, struct page *page)
  114. {
  115. int ret;
  116. if (page->mapping != mapping)
  117. return 0;
  118. if (page_has_private(page) && !try_to_release_page(page, 0))
  119. return 0;
  120. clear_page_mlock(page);
  121. ret = remove_mapping(mapping, page);
  122. return ret;
  123. }
  124. int truncate_inode_page(struct address_space *mapping, struct page *page)
  125. {
  126. if (page_mapped(page)) {
  127. unmap_mapping_range(mapping,
  128. (loff_t)page->index << PAGE_CACHE_SHIFT,
  129. PAGE_CACHE_SIZE, 0);
  130. }
  131. return truncate_complete_page(mapping, page);
  132. }
  133. /*
  134. * Used to get rid of pages on hardware memory corruption.
  135. */
  136. int generic_error_remove_page(struct address_space *mapping, struct page *page)
  137. {
  138. if (!mapping)
  139. return -EINVAL;
  140. /*
  141. * Only punch for normal data pages for now.
  142. * Handling other types like directories would need more auditing.
  143. */
  144. if (!S_ISREG(mapping->host->i_mode))
  145. return -EIO;
  146. return truncate_inode_page(mapping, page);
  147. }
  148. EXPORT_SYMBOL(generic_error_remove_page);
  149. /*
  150. * Safely invalidate one page from its pagecache mapping.
  151. * It only drops clean, unused pages. The page must be locked.
  152. *
  153. * Returns 1 if the page is successfully invalidated, otherwise 0.
  154. */
  155. int invalidate_inode_page(struct page *page)
  156. {
  157. struct address_space *mapping = page_mapping(page);
  158. if (!mapping)
  159. return 0;
  160. if (PageDirty(page) || PageWriteback(page))
  161. return 0;
  162. if (page_mapped(page))
  163. return 0;
  164. return invalidate_complete_page(mapping, page);
  165. }
  166. /**
  167. * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
  168. * @mapping: mapping to truncate
  169. * @lstart: offset from which to truncate
  170. * @lend: offset to which to truncate
  171. *
  172. * Truncate the page cache, removing the pages that are between
  173. * specified offsets (and zeroing out partial page
  174. * (if lstart is not page aligned)).
  175. *
  176. * Truncate takes two passes - the first pass is nonblocking. It will not
  177. * block on page locks and it will not block on writeback. The second pass
  178. * will wait. This is to prevent as much IO as possible in the affected region.
  179. * The first pass will remove most pages, so the search cost of the second pass
  180. * is low.
  181. *
  182. * When looking at page->index outside the page lock we need to be careful to
  183. * copy it into a local to avoid races (it could change at any time).
  184. *
  185. * We pass down the cache-hot hint to the page freeing code. Even if the
  186. * mapping is large, it is probably the case that the final pages are the most
  187. * recently touched, and freeing happens in ascending file offset order.
  188. */
  189. void truncate_inode_pages_range(struct address_space *mapping,
  190. loff_t lstart, loff_t lend)
  191. {
  192. const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  193. pgoff_t end;
  194. const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
  195. struct pagevec pvec;
  196. pgoff_t next;
  197. int i;
  198. if (mapping->nrpages == 0)
  199. return;
  200. BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
  201. end = (lend >> PAGE_CACHE_SHIFT);
  202. pagevec_init(&pvec, 0);
  203. next = start;
  204. while (next <= end &&
  205. pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  206. for (i = 0; i < pagevec_count(&pvec); i++) {
  207. struct page *page = pvec.pages[i];
  208. pgoff_t page_index = page->index;
  209. if (page_index > end) {
  210. next = page_index;
  211. break;
  212. }
  213. if (page_index > next)
  214. next = page_index;
  215. next++;
  216. if (!trylock_page(page))
  217. continue;
  218. if (PageWriteback(page)) {
  219. unlock_page(page);
  220. continue;
  221. }
  222. truncate_inode_page(mapping, page);
  223. unlock_page(page);
  224. }
  225. pagevec_release(&pvec);
  226. cond_resched();
  227. }
  228. if (partial) {
  229. struct page *page = find_lock_page(mapping, start - 1);
  230. if (page) {
  231. wait_on_page_writeback(page);
  232. truncate_partial_page(page, partial);
  233. unlock_page(page);
  234. page_cache_release(page);
  235. }
  236. }
  237. next = start;
  238. for ( ; ; ) {
  239. cond_resched();
  240. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  241. if (next == start)
  242. break;
  243. next = start;
  244. continue;
  245. }
  246. if (pvec.pages[0]->index > end) {
  247. pagevec_release(&pvec);
  248. break;
  249. }
  250. mem_cgroup_uncharge_start();
  251. for (i = 0; i < pagevec_count(&pvec); i++) {
  252. struct page *page = pvec.pages[i];
  253. if (page->index > end)
  254. break;
  255. lock_page(page);
  256. wait_on_page_writeback(page);
  257. truncate_inode_page(mapping, page);
  258. if (page->index > next)
  259. next = page->index;
  260. next++;
  261. unlock_page(page);
  262. }
  263. pagevec_release(&pvec);
  264. mem_cgroup_uncharge_end();
  265. }
  266. }
  267. EXPORT_SYMBOL(truncate_inode_pages_range);
  268. /**
  269. * truncate_inode_pages - truncate *all* the pages from an offset
  270. * @mapping: mapping to truncate
  271. * @lstart: offset from which to truncate
  272. *
  273. * Called under (and serialised by) inode->i_mutex.
  274. */
  275. void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
  276. {
  277. truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
  278. }
  279. EXPORT_SYMBOL(truncate_inode_pages);
  280. /**
  281. * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
  282. * @mapping: the address_space which holds the pages to invalidate
  283. * @start: the offset 'from' which to invalidate
  284. * @end: the offset 'to' which to invalidate (inclusive)
  285. *
  286. * This function only removes the unlocked pages, if you want to
  287. * remove all the pages of one inode, you must call truncate_inode_pages.
  288. *
  289. * invalidate_mapping_pages() will not block on IO activity. It will not
  290. * invalidate pages which are dirty, locked, under writeback or mapped into
  291. * pagetables.
  292. */
  293. unsigned long invalidate_mapping_pages(struct address_space *mapping,
  294. pgoff_t start, pgoff_t end)
  295. {
  296. struct pagevec pvec;
  297. pgoff_t next = start;
  298. unsigned long ret = 0;
  299. int i;
  300. pagevec_init(&pvec, 0);
  301. while (next <= end &&
  302. pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  303. mem_cgroup_uncharge_start();
  304. for (i = 0; i < pagevec_count(&pvec); i++) {
  305. struct page *page = pvec.pages[i];
  306. pgoff_t index;
  307. int lock_failed;
  308. lock_failed = !trylock_page(page);
  309. /*
  310. * We really shouldn't be looking at the ->index of an
  311. * unlocked page. But we're not allowed to lock these
  312. * pages. So we rely upon nobody altering the ->index
  313. * of this (pinned-by-us) page.
  314. */
  315. index = page->index;
  316. if (index > next)
  317. next = index;
  318. next++;
  319. if (lock_failed)
  320. continue;
  321. ret += invalidate_inode_page(page);
  322. unlock_page(page);
  323. if (next > end)
  324. break;
  325. }
  326. pagevec_release(&pvec);
  327. mem_cgroup_uncharge_end();
  328. cond_resched();
  329. }
  330. return ret;
  331. }
  332. EXPORT_SYMBOL(invalidate_mapping_pages);
  333. /*
  334. * This is like invalidate_complete_page(), except it ignores the page's
  335. * refcount. We do this because invalidate_inode_pages2() needs stronger
  336. * invalidation guarantees, and cannot afford to leave pages behind because
  337. * shrink_page_list() has a temp ref on them, or because they're transiently
  338. * sitting in the lru_cache_add() pagevecs.
  339. */
  340. static int
  341. invalidate_complete_page2(struct address_space *mapping, struct page *page)
  342. {
  343. if (page->mapping != mapping)
  344. return 0;
  345. if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
  346. return 0;
  347. spin_lock_irq(&mapping->tree_lock);
  348. if (PageDirty(page))
  349. goto failed;
  350. clear_page_mlock(page);
  351. BUG_ON(page_has_private(page));
  352. __remove_from_page_cache(page);
  353. spin_unlock_irq(&mapping->tree_lock);
  354. mem_cgroup_uncharge_cache_page(page);
  355. page_cache_release(page); /* pagecache ref */
  356. return 1;
  357. failed:
  358. spin_unlock_irq(&mapping->tree_lock);
  359. return 0;
  360. }
  361. static int do_launder_page(struct address_space *mapping, struct page *page)
  362. {
  363. if (!PageDirty(page))
  364. return 0;
  365. if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
  366. return 0;
  367. return mapping->a_ops->launder_page(page);
  368. }
  369. /**
  370. * invalidate_inode_pages2_range - remove range of pages from an address_space
  371. * @mapping: the address_space
  372. * @start: the page offset 'from' which to invalidate
  373. * @end: the page offset 'to' which to invalidate (inclusive)
  374. *
  375. * Any pages which are found to be mapped into pagetables are unmapped prior to
  376. * invalidation.
  377. *
  378. * Returns -EBUSY if any pages could not be invalidated.
  379. */
  380. int invalidate_inode_pages2_range(struct address_space *mapping,
  381. pgoff_t start, pgoff_t end)
  382. {
  383. struct pagevec pvec;
  384. pgoff_t next;
  385. int i;
  386. int ret = 0;
  387. int ret2 = 0;
  388. int did_range_unmap = 0;
  389. int wrapped = 0;
  390. pagevec_init(&pvec, 0);
  391. next = start;
  392. while (next <= end && !wrapped &&
  393. pagevec_lookup(&pvec, mapping, next,
  394. min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
  395. mem_cgroup_uncharge_start();
  396. for (i = 0; i < pagevec_count(&pvec); i++) {
  397. struct page *page = pvec.pages[i];
  398. pgoff_t page_index;
  399. lock_page(page);
  400. if (page->mapping != mapping) {
  401. unlock_page(page);
  402. continue;
  403. }
  404. page_index = page->index;
  405. next = page_index + 1;
  406. if (next == 0)
  407. wrapped = 1;
  408. if (page_index > end) {
  409. unlock_page(page);
  410. break;
  411. }
  412. wait_on_page_writeback(page);
  413. if (page_mapped(page)) {
  414. if (!did_range_unmap) {
  415. /*
  416. * Zap the rest of the file in one hit.
  417. */
  418. unmap_mapping_range(mapping,
  419. (loff_t)page_index<<PAGE_CACHE_SHIFT,
  420. (loff_t)(end - page_index + 1)
  421. << PAGE_CACHE_SHIFT,
  422. 0);
  423. did_range_unmap = 1;
  424. } else {
  425. /*
  426. * Just zap this page
  427. */
  428. unmap_mapping_range(mapping,
  429. (loff_t)page_index<<PAGE_CACHE_SHIFT,
  430. PAGE_CACHE_SIZE, 0);
  431. }
  432. }
  433. BUG_ON(page_mapped(page));
  434. ret2 = do_launder_page(mapping, page);
  435. if (ret2 == 0) {
  436. if (!invalidate_complete_page2(mapping, page))
  437. ret2 = -EBUSY;
  438. }
  439. if (ret2 < 0)
  440. ret = ret2;
  441. unlock_page(page);
  442. }
  443. pagevec_release(&pvec);
  444. mem_cgroup_uncharge_end();
  445. cond_resched();
  446. }
  447. return ret;
  448. }
  449. EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
  450. /**
  451. * invalidate_inode_pages2 - remove all pages from an address_space
  452. * @mapping: the address_space
  453. *
  454. * Any pages which are found to be mapped into pagetables are unmapped prior to
  455. * invalidation.
  456. *
  457. * Returns -EBUSY if any pages could not be invalidated.
  458. */
  459. int invalidate_inode_pages2(struct address_space *mapping)
  460. {
  461. return invalidate_inode_pages2_range(mapping, 0, -1);
  462. }
  463. EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
  464. /**
  465. * truncate_pagecache - unmap and remove pagecache that has been truncated
  466. * @inode: inode
  467. * @old: old file offset
  468. * @new: new file offset
  469. *
  470. * inode's new i_size must already be written before truncate_pagecache
  471. * is called.
  472. *
  473. * This function should typically be called before the filesystem
  474. * releases resources associated with the freed range (eg. deallocates
  475. * blocks). This way, pagecache will always stay logically coherent
  476. * with on-disk format, and the filesystem would not have to deal with
  477. * situations such as writepage being called for a page that has already
  478. * had its underlying blocks deallocated.
  479. */
  480. void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
  481. {
  482. if (new < old) {
  483. struct address_space *mapping = inode->i_mapping;
  484. /*
  485. * unmap_mapping_range is called twice, first simply for
  486. * efficiency so that truncate_inode_pages does fewer
  487. * single-page unmaps. However after this first call, and
  488. * before truncate_inode_pages finishes, it is possible for
  489. * private pages to be COWed, which remain after
  490. * truncate_inode_pages finishes, hence the second
  491. * unmap_mapping_range call must be made for correctness.
  492. */
  493. unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
  494. truncate_inode_pages(mapping, new);
  495. unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
  496. }
  497. }
  498. EXPORT_SYMBOL(truncate_pagecache);
  499. /**
  500. * vmtruncate - unmap mappings "freed" by truncate() syscall
  501. * @inode: inode of the file used
  502. * @offset: file offset to start truncating
  503. *
  504. * NOTE! We have to be ready to update the memory sharing
  505. * between the file and the memory map for a potential last
  506. * incomplete page. Ugly, but necessary.
  507. */
  508. int vmtruncate(struct inode *inode, loff_t offset)
  509. {
  510. loff_t oldsize;
  511. int error;
  512. error = inode_newsize_ok(inode, offset);
  513. if (error)
  514. return error;
  515. oldsize = inode->i_size;
  516. i_size_write(inode, offset);
  517. truncate_pagecache(inode, oldsize, offset);
  518. if (inode->i_op->truncate)
  519. inode->i_op->truncate(inode);
  520. return error;
  521. }
  522. EXPORT_SYMBOL(vmtruncate);