slab.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. /*
  143. * Enforce a minimum alignment for the kmalloc caches.
  144. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  145. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  146. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  147. * alignment larger than the alignment of a 64-bit integer.
  148. * ARCH_KMALLOC_MINALIGN allows that.
  149. * Note that increasing this value may disable some debug features.
  150. */
  151. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #ifndef ARCH_SLAB_MINALIGN
  154. /*
  155. * Enforce a minimum alignment for all caches.
  156. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  157. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  158. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  159. * some debug features.
  160. */
  161. #define ARCH_SLAB_MINALIGN 0
  162. #endif
  163. #ifndef ARCH_KMALLOC_FLAGS
  164. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  165. #endif
  166. /* Legal flag mask for kmem_cache_create(). */
  167. #if DEBUG
  168. # define CREATE_MASK (SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | \
  171. SLAB_STORE_USER | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  174. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  175. #else
  176. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  177. SLAB_CACHE_DMA | \
  178. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  179. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  180. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  181. #endif
  182. /*
  183. * kmem_bufctl_t:
  184. *
  185. * Bufctl's are used for linking objs within a slab
  186. * linked offsets.
  187. *
  188. * This implementation relies on "struct page" for locating the cache &
  189. * slab an object belongs to.
  190. * This allows the bufctl structure to be small (one int), but limits
  191. * the number of objects a slab (not a cache) can contain when off-slab
  192. * bufctls are used. The limit is the size of the largest general cache
  193. * that does not use off-slab slabs.
  194. * For 32bit archs with 4 kB pages, is this 56.
  195. * This is not serious, as it is only for large objects, when it is unwise
  196. * to have too many per slab.
  197. * Note: This limit can be raised by introducing a general cache whose size
  198. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  199. */
  200. typedef unsigned int kmem_bufctl_t;
  201. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  202. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  203. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  204. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  205. /*
  206. * struct slab
  207. *
  208. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  209. * for a slab, or allocated from an general cache.
  210. * Slabs are chained into three list: fully used, partial, fully free slabs.
  211. */
  212. struct slab {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. /*
  221. * struct slab_rcu
  222. *
  223. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  224. * arrange for kmem_freepages to be called via RCU. This is useful if
  225. * we need to approach a kernel structure obliquely, from its address
  226. * obtained without the usual locking. We can lock the structure to
  227. * stabilize it and check it's still at the given address, only if we
  228. * can be sure that the memory has not been meanwhile reused for some
  229. * other kind of object (which our subsystem's lock might corrupt).
  230. *
  231. * rcu_read_lock before reading the address, then rcu_read_unlock after
  232. * taking the spinlock within the structure expected at that address.
  233. *
  234. * We assume struct slab_rcu can overlay struct slab when destroying.
  235. */
  236. struct slab_rcu {
  237. struct rcu_head head;
  238. struct kmem_cache *cachep;
  239. void *addr;
  240. };
  241. /*
  242. * struct array_cache
  243. *
  244. * Purpose:
  245. * - LIFO ordering, to hand out cache-warm objects from _alloc
  246. * - reduce the number of linked list operations
  247. * - reduce spinlock operations
  248. *
  249. * The limit is stored in the per-cpu structure to reduce the data cache
  250. * footprint.
  251. *
  252. */
  253. struct array_cache {
  254. unsigned int avail;
  255. unsigned int limit;
  256. unsigned int batchcount;
  257. unsigned int touched;
  258. spinlock_t lock;
  259. void *entry[]; /*
  260. * Must have this definition in here for the proper
  261. * alignment of array_cache. Also simplifies accessing
  262. * the entries.
  263. */
  264. };
  265. /*
  266. * bootstrap: The caches do not work without cpuarrays anymore, but the
  267. * cpuarrays are allocated from the generic caches...
  268. */
  269. #define BOOT_CPUCACHE_ENTRIES 1
  270. struct arraycache_init {
  271. struct array_cache cache;
  272. void *entries[BOOT_CPUCACHE_ENTRIES];
  273. };
  274. /*
  275. * The slab lists for all objects.
  276. */
  277. struct kmem_list3 {
  278. struct list_head slabs_partial; /* partial list first, better asm code */
  279. struct list_head slabs_full;
  280. struct list_head slabs_free;
  281. unsigned long free_objects;
  282. unsigned int free_limit;
  283. unsigned int colour_next; /* Per-node cache coloring */
  284. spinlock_t list_lock;
  285. struct array_cache *shared; /* shared per node */
  286. struct array_cache **alien; /* on other nodes */
  287. unsigned long next_reap; /* updated without locking */
  288. int free_touched; /* updated without locking */
  289. };
  290. /*
  291. * Need this for bootstrapping a per node allocator.
  292. */
  293. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  294. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  295. #define CACHE_CACHE 0
  296. #define SIZE_AC MAX_NUMNODES
  297. #define SIZE_L3 (2 * MAX_NUMNODES)
  298. static int drain_freelist(struct kmem_cache *cache,
  299. struct kmem_list3 *l3, int tofree);
  300. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  301. int node);
  302. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  303. static void cache_reap(struct work_struct *unused);
  304. /*
  305. * This function must be completely optimized away if a constant is passed to
  306. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  307. */
  308. static __always_inline int index_of(const size_t size)
  309. {
  310. extern void __bad_size(void);
  311. if (__builtin_constant_p(size)) {
  312. int i = 0;
  313. #define CACHE(x) \
  314. if (size <=x) \
  315. return i; \
  316. else \
  317. i++;
  318. #include <linux/kmalloc_sizes.h>
  319. #undef CACHE
  320. __bad_size();
  321. } else
  322. __bad_size();
  323. return 0;
  324. }
  325. static int slab_early_init = 1;
  326. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  327. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  328. static void kmem_list3_init(struct kmem_list3 *parent)
  329. {
  330. INIT_LIST_HEAD(&parent->slabs_full);
  331. INIT_LIST_HEAD(&parent->slabs_partial);
  332. INIT_LIST_HEAD(&parent->slabs_free);
  333. parent->shared = NULL;
  334. parent->alien = NULL;
  335. parent->colour_next = 0;
  336. spin_lock_init(&parent->list_lock);
  337. parent->free_objects = 0;
  338. parent->free_touched = 0;
  339. }
  340. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  341. do { \
  342. INIT_LIST_HEAD(listp); \
  343. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  344. } while (0)
  345. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  346. do { \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  348. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  349. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  350. } while (0)
  351. #define CFLGS_OFF_SLAB (0x80000000UL)
  352. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  353. #define BATCHREFILL_LIMIT 16
  354. /*
  355. * Optimization question: fewer reaps means less probability for unnessary
  356. * cpucache drain/refill cycles.
  357. *
  358. * OTOH the cpuarrays can contain lots of objects,
  359. * which could lock up otherwise freeable slabs.
  360. */
  361. #define REAPTIMEOUT_CPUC (2*HZ)
  362. #define REAPTIMEOUT_LIST3 (4*HZ)
  363. #if STATS
  364. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  365. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  366. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  367. #define STATS_INC_GROWN(x) ((x)->grown++)
  368. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  369. #define STATS_SET_HIGH(x) \
  370. do { \
  371. if ((x)->num_active > (x)->high_mark) \
  372. (x)->high_mark = (x)->num_active; \
  373. } while (0)
  374. #define STATS_INC_ERR(x) ((x)->errors++)
  375. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  376. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  377. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  378. #define STATS_SET_FREEABLE(x, i) \
  379. do { \
  380. if ((x)->max_freeable < i) \
  381. (x)->max_freeable = i; \
  382. } while (0)
  383. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  384. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  385. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  386. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  387. #else
  388. #define STATS_INC_ACTIVE(x) do { } while (0)
  389. #define STATS_DEC_ACTIVE(x) do { } while (0)
  390. #define STATS_INC_ALLOCED(x) do { } while (0)
  391. #define STATS_INC_GROWN(x) do { } while (0)
  392. #define STATS_ADD_REAPED(x,y) do { } while (0)
  393. #define STATS_SET_HIGH(x) do { } while (0)
  394. #define STATS_INC_ERR(x) do { } while (0)
  395. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  396. #define STATS_INC_NODEFREES(x) do { } while (0)
  397. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  398. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  399. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  400. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  401. #define STATS_INC_FREEHIT(x) do { } while (0)
  402. #define STATS_INC_FREEMISS(x) do { } while (0)
  403. #endif
  404. #if DEBUG
  405. /*
  406. * memory layout of objects:
  407. * 0 : objp
  408. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  409. * the end of an object is aligned with the end of the real
  410. * allocation. Catches writes behind the end of the allocation.
  411. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  412. * redzone word.
  413. * cachep->obj_offset: The real object.
  414. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  415. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  416. * [BYTES_PER_WORD long]
  417. */
  418. static int obj_offset(struct kmem_cache *cachep)
  419. {
  420. return cachep->obj_offset;
  421. }
  422. static int obj_size(struct kmem_cache *cachep)
  423. {
  424. return cachep->obj_size;
  425. }
  426. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  427. {
  428. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  429. return (unsigned long long*) (objp + obj_offset(cachep) -
  430. sizeof(unsigned long long));
  431. }
  432. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  433. {
  434. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  435. if (cachep->flags & SLAB_STORE_USER)
  436. return (unsigned long long *)(objp + cachep->buffer_size -
  437. sizeof(unsigned long long) -
  438. REDZONE_ALIGN);
  439. return (unsigned long long *) (objp + cachep->buffer_size -
  440. sizeof(unsigned long long));
  441. }
  442. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  443. {
  444. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  445. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  446. }
  447. #else
  448. #define obj_offset(x) 0
  449. #define obj_size(cachep) (cachep->buffer_size)
  450. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  451. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  452. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  453. #endif
  454. #ifdef CONFIG_TRACING
  455. size_t slab_buffer_size(struct kmem_cache *cachep)
  456. {
  457. return cachep->buffer_size;
  458. }
  459. EXPORT_SYMBOL(slab_buffer_size);
  460. #endif
  461. /*
  462. * Do not go above this order unless 0 objects fit into the slab.
  463. */
  464. #define BREAK_GFP_ORDER_HI 1
  465. #define BREAK_GFP_ORDER_LO 0
  466. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  467. /*
  468. * Functions for storing/retrieving the cachep and or slab from the page
  469. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  470. * these are used to find the cache which an obj belongs to.
  471. */
  472. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  473. {
  474. page->lru.next = (struct list_head *)cache;
  475. }
  476. static inline struct kmem_cache *page_get_cache(struct page *page)
  477. {
  478. page = compound_head(page);
  479. BUG_ON(!PageSlab(page));
  480. return (struct kmem_cache *)page->lru.next;
  481. }
  482. static inline void page_set_slab(struct page *page, struct slab *slab)
  483. {
  484. page->lru.prev = (struct list_head *)slab;
  485. }
  486. static inline struct slab *page_get_slab(struct page *page)
  487. {
  488. BUG_ON(!PageSlab(page));
  489. return (struct slab *)page->lru.prev;
  490. }
  491. static inline struct kmem_cache *virt_to_cache(const void *obj)
  492. {
  493. struct page *page = virt_to_head_page(obj);
  494. return page_get_cache(page);
  495. }
  496. static inline struct slab *virt_to_slab(const void *obj)
  497. {
  498. struct page *page = virt_to_head_page(obj);
  499. return page_get_slab(page);
  500. }
  501. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  502. unsigned int idx)
  503. {
  504. return slab->s_mem + cache->buffer_size * idx;
  505. }
  506. /*
  507. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  508. * Using the fact that buffer_size is a constant for a particular cache,
  509. * we can replace (offset / cache->buffer_size) by
  510. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  511. */
  512. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  513. const struct slab *slab, void *obj)
  514. {
  515. u32 offset = (obj - slab->s_mem);
  516. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  517. }
  518. /*
  519. * These are the default caches for kmalloc. Custom caches can have other sizes.
  520. */
  521. struct cache_sizes malloc_sizes[] = {
  522. #define CACHE(x) { .cs_size = (x) },
  523. #include <linux/kmalloc_sizes.h>
  524. CACHE(ULONG_MAX)
  525. #undef CACHE
  526. };
  527. EXPORT_SYMBOL(malloc_sizes);
  528. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  529. struct cache_names {
  530. char *name;
  531. char *name_dma;
  532. };
  533. static struct cache_names __initdata cache_names[] = {
  534. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  535. #include <linux/kmalloc_sizes.h>
  536. {NULL,}
  537. #undef CACHE
  538. };
  539. static struct arraycache_init initarray_cache __initdata =
  540. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  541. static struct arraycache_init initarray_generic =
  542. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  543. /* internal cache of cache description objs */
  544. static struct kmem_cache cache_cache = {
  545. .batchcount = 1,
  546. .limit = BOOT_CPUCACHE_ENTRIES,
  547. .shared = 1,
  548. .buffer_size = sizeof(struct kmem_cache),
  549. .name = "kmem_cache",
  550. };
  551. #define BAD_ALIEN_MAGIC 0x01020304ul
  552. /*
  553. * chicken and egg problem: delay the per-cpu array allocation
  554. * until the general caches are up.
  555. */
  556. static enum {
  557. NONE,
  558. PARTIAL_AC,
  559. PARTIAL_L3,
  560. EARLY,
  561. FULL
  562. } g_cpucache_up;
  563. /*
  564. * used by boot code to determine if it can use slab based allocator
  565. */
  566. int slab_is_available(void)
  567. {
  568. return g_cpucache_up >= EARLY;
  569. }
  570. #ifdef CONFIG_LOCKDEP
  571. /*
  572. * Slab sometimes uses the kmalloc slabs to store the slab headers
  573. * for other slabs "off slab".
  574. * The locking for this is tricky in that it nests within the locks
  575. * of all other slabs in a few places; to deal with this special
  576. * locking we put on-slab caches into a separate lock-class.
  577. *
  578. * We set lock class for alien array caches which are up during init.
  579. * The lock annotation will be lost if all cpus of a node goes down and
  580. * then comes back up during hotplug
  581. */
  582. static struct lock_class_key on_slab_l3_key;
  583. static struct lock_class_key on_slab_alc_key;
  584. static void init_node_lock_keys(int q)
  585. {
  586. struct cache_sizes *s = malloc_sizes;
  587. if (g_cpucache_up != FULL)
  588. return;
  589. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  590. struct array_cache **alc;
  591. struct kmem_list3 *l3;
  592. int r;
  593. l3 = s->cs_cachep->nodelists[q];
  594. if (!l3 || OFF_SLAB(s->cs_cachep))
  595. continue;
  596. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  597. alc = l3->alien;
  598. /*
  599. * FIXME: This check for BAD_ALIEN_MAGIC
  600. * should go away when common slab code is taught to
  601. * work even without alien caches.
  602. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  603. * for alloc_alien_cache,
  604. */
  605. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  606. continue;
  607. for_each_node(r) {
  608. if (alc[r])
  609. lockdep_set_class(&alc[r]->lock,
  610. &on_slab_alc_key);
  611. }
  612. }
  613. }
  614. static inline void init_lock_keys(void)
  615. {
  616. int node;
  617. for_each_node(node)
  618. init_node_lock_keys(node);
  619. }
  620. #else
  621. static void init_node_lock_keys(int q)
  622. {
  623. }
  624. static inline void init_lock_keys(void)
  625. {
  626. }
  627. #endif
  628. /*
  629. * Guard access to the cache-chain.
  630. */
  631. static DEFINE_MUTEX(cache_chain_mutex);
  632. static struct list_head cache_chain;
  633. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  634. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  635. {
  636. return cachep->array[smp_processor_id()];
  637. }
  638. static inline struct kmem_cache *__find_general_cachep(size_t size,
  639. gfp_t gfpflags)
  640. {
  641. struct cache_sizes *csizep = malloc_sizes;
  642. #if DEBUG
  643. /* This happens if someone tries to call
  644. * kmem_cache_create(), or __kmalloc(), before
  645. * the generic caches are initialized.
  646. */
  647. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  648. #endif
  649. if (!size)
  650. return ZERO_SIZE_PTR;
  651. while (size > csizep->cs_size)
  652. csizep++;
  653. /*
  654. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  655. * has cs_{dma,}cachep==NULL. Thus no special case
  656. * for large kmalloc calls required.
  657. */
  658. #ifdef CONFIG_ZONE_DMA
  659. if (unlikely(gfpflags & GFP_DMA))
  660. return csizep->cs_dmacachep;
  661. #endif
  662. return csizep->cs_cachep;
  663. }
  664. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  665. {
  666. return __find_general_cachep(size, gfpflags);
  667. }
  668. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  669. {
  670. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  671. }
  672. /*
  673. * Calculate the number of objects and left-over bytes for a given buffer size.
  674. */
  675. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  676. size_t align, int flags, size_t *left_over,
  677. unsigned int *num)
  678. {
  679. int nr_objs;
  680. size_t mgmt_size;
  681. size_t slab_size = PAGE_SIZE << gfporder;
  682. /*
  683. * The slab management structure can be either off the slab or
  684. * on it. For the latter case, the memory allocated for a
  685. * slab is used for:
  686. *
  687. * - The struct slab
  688. * - One kmem_bufctl_t for each object
  689. * - Padding to respect alignment of @align
  690. * - @buffer_size bytes for each object
  691. *
  692. * If the slab management structure is off the slab, then the
  693. * alignment will already be calculated into the size. Because
  694. * the slabs are all pages aligned, the objects will be at the
  695. * correct alignment when allocated.
  696. */
  697. if (flags & CFLGS_OFF_SLAB) {
  698. mgmt_size = 0;
  699. nr_objs = slab_size / buffer_size;
  700. if (nr_objs > SLAB_LIMIT)
  701. nr_objs = SLAB_LIMIT;
  702. } else {
  703. /*
  704. * Ignore padding for the initial guess. The padding
  705. * is at most @align-1 bytes, and @buffer_size is at
  706. * least @align. In the worst case, this result will
  707. * be one greater than the number of objects that fit
  708. * into the memory allocation when taking the padding
  709. * into account.
  710. */
  711. nr_objs = (slab_size - sizeof(struct slab)) /
  712. (buffer_size + sizeof(kmem_bufctl_t));
  713. /*
  714. * This calculated number will be either the right
  715. * amount, or one greater than what we want.
  716. */
  717. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  718. > slab_size)
  719. nr_objs--;
  720. if (nr_objs > SLAB_LIMIT)
  721. nr_objs = SLAB_LIMIT;
  722. mgmt_size = slab_mgmt_size(nr_objs, align);
  723. }
  724. *num = nr_objs;
  725. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  726. }
  727. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  728. static void __slab_error(const char *function, struct kmem_cache *cachep,
  729. char *msg)
  730. {
  731. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  732. function, cachep->name, msg);
  733. dump_stack();
  734. }
  735. /*
  736. * By default on NUMA we use alien caches to stage the freeing of
  737. * objects allocated from other nodes. This causes massive memory
  738. * inefficiencies when using fake NUMA setup to split memory into a
  739. * large number of small nodes, so it can be disabled on the command
  740. * line
  741. */
  742. static int use_alien_caches __read_mostly = 1;
  743. static int __init noaliencache_setup(char *s)
  744. {
  745. use_alien_caches = 0;
  746. return 1;
  747. }
  748. __setup("noaliencache", noaliencache_setup);
  749. #ifdef CONFIG_NUMA
  750. /*
  751. * Special reaping functions for NUMA systems called from cache_reap().
  752. * These take care of doing round robin flushing of alien caches (containing
  753. * objects freed on different nodes from which they were allocated) and the
  754. * flushing of remote pcps by calling drain_node_pages.
  755. */
  756. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  757. static void init_reap_node(int cpu)
  758. {
  759. int node;
  760. node = next_node(cpu_to_node(cpu), node_online_map);
  761. if (node == MAX_NUMNODES)
  762. node = first_node(node_online_map);
  763. per_cpu(slab_reap_node, cpu) = node;
  764. }
  765. static void next_reap_node(void)
  766. {
  767. int node = __get_cpu_var(slab_reap_node);
  768. node = next_node(node, node_online_map);
  769. if (unlikely(node >= MAX_NUMNODES))
  770. node = first_node(node_online_map);
  771. __get_cpu_var(slab_reap_node) = node;
  772. }
  773. #else
  774. #define init_reap_node(cpu) do { } while (0)
  775. #define next_reap_node(void) do { } while (0)
  776. #endif
  777. /*
  778. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  779. * via the workqueue/eventd.
  780. * Add the CPU number into the expiration time to minimize the possibility of
  781. * the CPUs getting into lockstep and contending for the global cache chain
  782. * lock.
  783. */
  784. static void __cpuinit start_cpu_timer(int cpu)
  785. {
  786. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  787. /*
  788. * When this gets called from do_initcalls via cpucache_init(),
  789. * init_workqueues() has already run, so keventd will be setup
  790. * at that time.
  791. */
  792. if (keventd_up() && reap_work->work.func == NULL) {
  793. init_reap_node(cpu);
  794. INIT_DELAYED_WORK(reap_work, cache_reap);
  795. schedule_delayed_work_on(cpu, reap_work,
  796. __round_jiffies_relative(HZ, cpu));
  797. }
  798. }
  799. static struct array_cache *alloc_arraycache(int node, int entries,
  800. int batchcount, gfp_t gfp)
  801. {
  802. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  803. struct array_cache *nc = NULL;
  804. nc = kmalloc_node(memsize, gfp, node);
  805. /*
  806. * The array_cache structures contain pointers to free object.
  807. * However, when such objects are allocated or transfered to another
  808. * cache the pointers are not cleared and they could be counted as
  809. * valid references during a kmemleak scan. Therefore, kmemleak must
  810. * not scan such objects.
  811. */
  812. kmemleak_no_scan(nc);
  813. if (nc) {
  814. nc->avail = 0;
  815. nc->limit = entries;
  816. nc->batchcount = batchcount;
  817. nc->touched = 0;
  818. spin_lock_init(&nc->lock);
  819. }
  820. return nc;
  821. }
  822. /*
  823. * Transfer objects in one arraycache to another.
  824. * Locking must be handled by the caller.
  825. *
  826. * Return the number of entries transferred.
  827. */
  828. static int transfer_objects(struct array_cache *to,
  829. struct array_cache *from, unsigned int max)
  830. {
  831. /* Figure out how many entries to transfer */
  832. int nr = min(min(from->avail, max), to->limit - to->avail);
  833. if (!nr)
  834. return 0;
  835. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  836. sizeof(void *) *nr);
  837. from->avail -= nr;
  838. to->avail += nr;
  839. to->touched = 1;
  840. return nr;
  841. }
  842. #ifndef CONFIG_NUMA
  843. #define drain_alien_cache(cachep, alien) do { } while (0)
  844. #define reap_alien(cachep, l3) do { } while (0)
  845. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  846. {
  847. return (struct array_cache **)BAD_ALIEN_MAGIC;
  848. }
  849. static inline void free_alien_cache(struct array_cache **ac_ptr)
  850. {
  851. }
  852. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  853. {
  854. return 0;
  855. }
  856. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  857. gfp_t flags)
  858. {
  859. return NULL;
  860. }
  861. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  862. gfp_t flags, int nodeid)
  863. {
  864. return NULL;
  865. }
  866. #else /* CONFIG_NUMA */
  867. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  868. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  869. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  870. {
  871. struct array_cache **ac_ptr;
  872. int memsize = sizeof(void *) * nr_node_ids;
  873. int i;
  874. if (limit > 1)
  875. limit = 12;
  876. ac_ptr = kmalloc_node(memsize, gfp, node);
  877. if (ac_ptr) {
  878. for_each_node(i) {
  879. if (i == node || !node_online(i)) {
  880. ac_ptr[i] = NULL;
  881. continue;
  882. }
  883. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  884. if (!ac_ptr[i]) {
  885. for (i--; i >= 0; i--)
  886. kfree(ac_ptr[i]);
  887. kfree(ac_ptr);
  888. return NULL;
  889. }
  890. }
  891. }
  892. return ac_ptr;
  893. }
  894. static void free_alien_cache(struct array_cache **ac_ptr)
  895. {
  896. int i;
  897. if (!ac_ptr)
  898. return;
  899. for_each_node(i)
  900. kfree(ac_ptr[i]);
  901. kfree(ac_ptr);
  902. }
  903. static void __drain_alien_cache(struct kmem_cache *cachep,
  904. struct array_cache *ac, int node)
  905. {
  906. struct kmem_list3 *rl3 = cachep->nodelists[node];
  907. if (ac->avail) {
  908. spin_lock(&rl3->list_lock);
  909. /*
  910. * Stuff objects into the remote nodes shared array first.
  911. * That way we could avoid the overhead of putting the objects
  912. * into the free lists and getting them back later.
  913. */
  914. if (rl3->shared)
  915. transfer_objects(rl3->shared, ac, ac->limit);
  916. free_block(cachep, ac->entry, ac->avail, node);
  917. ac->avail = 0;
  918. spin_unlock(&rl3->list_lock);
  919. }
  920. }
  921. /*
  922. * Called from cache_reap() to regularly drain alien caches round robin.
  923. */
  924. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  925. {
  926. int node = __get_cpu_var(slab_reap_node);
  927. if (l3->alien) {
  928. struct array_cache *ac = l3->alien[node];
  929. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  930. __drain_alien_cache(cachep, ac, node);
  931. spin_unlock_irq(&ac->lock);
  932. }
  933. }
  934. }
  935. static void drain_alien_cache(struct kmem_cache *cachep,
  936. struct array_cache **alien)
  937. {
  938. int i = 0;
  939. struct array_cache *ac;
  940. unsigned long flags;
  941. for_each_online_node(i) {
  942. ac = alien[i];
  943. if (ac) {
  944. spin_lock_irqsave(&ac->lock, flags);
  945. __drain_alien_cache(cachep, ac, i);
  946. spin_unlock_irqrestore(&ac->lock, flags);
  947. }
  948. }
  949. }
  950. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  951. {
  952. struct slab *slabp = virt_to_slab(objp);
  953. int nodeid = slabp->nodeid;
  954. struct kmem_list3 *l3;
  955. struct array_cache *alien = NULL;
  956. int node;
  957. node = numa_node_id();
  958. /*
  959. * Make sure we are not freeing a object from another node to the array
  960. * cache on this cpu.
  961. */
  962. if (likely(slabp->nodeid == node))
  963. return 0;
  964. l3 = cachep->nodelists[node];
  965. STATS_INC_NODEFREES(cachep);
  966. if (l3->alien && l3->alien[nodeid]) {
  967. alien = l3->alien[nodeid];
  968. spin_lock(&alien->lock);
  969. if (unlikely(alien->avail == alien->limit)) {
  970. STATS_INC_ACOVERFLOW(cachep);
  971. __drain_alien_cache(cachep, alien, nodeid);
  972. }
  973. alien->entry[alien->avail++] = objp;
  974. spin_unlock(&alien->lock);
  975. } else {
  976. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  977. free_block(cachep, &objp, 1, nodeid);
  978. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  979. }
  980. return 1;
  981. }
  982. #endif
  983. static void __cpuinit cpuup_canceled(long cpu)
  984. {
  985. struct kmem_cache *cachep;
  986. struct kmem_list3 *l3 = NULL;
  987. int node = cpu_to_node(cpu);
  988. const struct cpumask *mask = cpumask_of_node(node);
  989. list_for_each_entry(cachep, &cache_chain, next) {
  990. struct array_cache *nc;
  991. struct array_cache *shared;
  992. struct array_cache **alien;
  993. /* cpu is dead; no one can alloc from it. */
  994. nc = cachep->array[cpu];
  995. cachep->array[cpu] = NULL;
  996. l3 = cachep->nodelists[node];
  997. if (!l3)
  998. goto free_array_cache;
  999. spin_lock_irq(&l3->list_lock);
  1000. /* Free limit for this kmem_list3 */
  1001. l3->free_limit -= cachep->batchcount;
  1002. if (nc)
  1003. free_block(cachep, nc->entry, nc->avail, node);
  1004. if (!cpumask_empty(mask)) {
  1005. spin_unlock_irq(&l3->list_lock);
  1006. goto free_array_cache;
  1007. }
  1008. shared = l3->shared;
  1009. if (shared) {
  1010. free_block(cachep, shared->entry,
  1011. shared->avail, node);
  1012. l3->shared = NULL;
  1013. }
  1014. alien = l3->alien;
  1015. l3->alien = NULL;
  1016. spin_unlock_irq(&l3->list_lock);
  1017. kfree(shared);
  1018. if (alien) {
  1019. drain_alien_cache(cachep, alien);
  1020. free_alien_cache(alien);
  1021. }
  1022. free_array_cache:
  1023. kfree(nc);
  1024. }
  1025. /*
  1026. * In the previous loop, all the objects were freed to
  1027. * the respective cache's slabs, now we can go ahead and
  1028. * shrink each nodelist to its limit.
  1029. */
  1030. list_for_each_entry(cachep, &cache_chain, next) {
  1031. l3 = cachep->nodelists[node];
  1032. if (!l3)
  1033. continue;
  1034. drain_freelist(cachep, l3, l3->free_objects);
  1035. }
  1036. }
  1037. static int __cpuinit cpuup_prepare(long cpu)
  1038. {
  1039. struct kmem_cache *cachep;
  1040. struct kmem_list3 *l3 = NULL;
  1041. int node = cpu_to_node(cpu);
  1042. const int memsize = sizeof(struct kmem_list3);
  1043. /*
  1044. * We need to do this right in the beginning since
  1045. * alloc_arraycache's are going to use this list.
  1046. * kmalloc_node allows us to add the slab to the right
  1047. * kmem_list3 and not this cpu's kmem_list3
  1048. */
  1049. list_for_each_entry(cachep, &cache_chain, next) {
  1050. /*
  1051. * Set up the size64 kmemlist for cpu before we can
  1052. * begin anything. Make sure some other cpu on this
  1053. * node has not already allocated this
  1054. */
  1055. if (!cachep->nodelists[node]) {
  1056. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1057. if (!l3)
  1058. goto bad;
  1059. kmem_list3_init(l3);
  1060. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1061. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1062. /*
  1063. * The l3s don't come and go as CPUs come and
  1064. * go. cache_chain_mutex is sufficient
  1065. * protection here.
  1066. */
  1067. cachep->nodelists[node] = l3;
  1068. }
  1069. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1070. cachep->nodelists[node]->free_limit =
  1071. (1 + nr_cpus_node(node)) *
  1072. cachep->batchcount + cachep->num;
  1073. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1074. }
  1075. /*
  1076. * Now we can go ahead with allocating the shared arrays and
  1077. * array caches
  1078. */
  1079. list_for_each_entry(cachep, &cache_chain, next) {
  1080. struct array_cache *nc;
  1081. struct array_cache *shared = NULL;
  1082. struct array_cache **alien = NULL;
  1083. nc = alloc_arraycache(node, cachep->limit,
  1084. cachep->batchcount, GFP_KERNEL);
  1085. if (!nc)
  1086. goto bad;
  1087. if (cachep->shared) {
  1088. shared = alloc_arraycache(node,
  1089. cachep->shared * cachep->batchcount,
  1090. 0xbaadf00d, GFP_KERNEL);
  1091. if (!shared) {
  1092. kfree(nc);
  1093. goto bad;
  1094. }
  1095. }
  1096. if (use_alien_caches) {
  1097. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1098. if (!alien) {
  1099. kfree(shared);
  1100. kfree(nc);
  1101. goto bad;
  1102. }
  1103. }
  1104. cachep->array[cpu] = nc;
  1105. l3 = cachep->nodelists[node];
  1106. BUG_ON(!l3);
  1107. spin_lock_irq(&l3->list_lock);
  1108. if (!l3->shared) {
  1109. /*
  1110. * We are serialised from CPU_DEAD or
  1111. * CPU_UP_CANCELLED by the cpucontrol lock
  1112. */
  1113. l3->shared = shared;
  1114. shared = NULL;
  1115. }
  1116. #ifdef CONFIG_NUMA
  1117. if (!l3->alien) {
  1118. l3->alien = alien;
  1119. alien = NULL;
  1120. }
  1121. #endif
  1122. spin_unlock_irq(&l3->list_lock);
  1123. kfree(shared);
  1124. free_alien_cache(alien);
  1125. }
  1126. init_node_lock_keys(node);
  1127. return 0;
  1128. bad:
  1129. cpuup_canceled(cpu);
  1130. return -ENOMEM;
  1131. }
  1132. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1133. unsigned long action, void *hcpu)
  1134. {
  1135. long cpu = (long)hcpu;
  1136. int err = 0;
  1137. switch (action) {
  1138. case CPU_UP_PREPARE:
  1139. case CPU_UP_PREPARE_FROZEN:
  1140. mutex_lock(&cache_chain_mutex);
  1141. err = cpuup_prepare(cpu);
  1142. mutex_unlock(&cache_chain_mutex);
  1143. break;
  1144. case CPU_ONLINE:
  1145. case CPU_ONLINE_FROZEN:
  1146. start_cpu_timer(cpu);
  1147. break;
  1148. #ifdef CONFIG_HOTPLUG_CPU
  1149. case CPU_DOWN_PREPARE:
  1150. case CPU_DOWN_PREPARE_FROZEN:
  1151. /*
  1152. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1153. * held so that if cache_reap() is invoked it cannot do
  1154. * anything expensive but will only modify reap_work
  1155. * and reschedule the timer.
  1156. */
  1157. cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
  1158. /* Now the cache_reaper is guaranteed to be not running. */
  1159. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1160. break;
  1161. case CPU_DOWN_FAILED:
  1162. case CPU_DOWN_FAILED_FROZEN:
  1163. start_cpu_timer(cpu);
  1164. break;
  1165. case CPU_DEAD:
  1166. case CPU_DEAD_FROZEN:
  1167. /*
  1168. * Even if all the cpus of a node are down, we don't free the
  1169. * kmem_list3 of any cache. This to avoid a race between
  1170. * cpu_down, and a kmalloc allocation from another cpu for
  1171. * memory from the node of the cpu going down. The list3
  1172. * structure is usually allocated from kmem_cache_create() and
  1173. * gets destroyed at kmem_cache_destroy().
  1174. */
  1175. /* fall through */
  1176. #endif
  1177. case CPU_UP_CANCELED:
  1178. case CPU_UP_CANCELED_FROZEN:
  1179. mutex_lock(&cache_chain_mutex);
  1180. cpuup_canceled(cpu);
  1181. mutex_unlock(&cache_chain_mutex);
  1182. break;
  1183. }
  1184. return err ? NOTIFY_BAD : NOTIFY_OK;
  1185. }
  1186. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1187. &cpuup_callback, NULL, 0
  1188. };
  1189. /*
  1190. * swap the static kmem_list3 with kmalloced memory
  1191. */
  1192. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1193. int nodeid)
  1194. {
  1195. struct kmem_list3 *ptr;
  1196. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1197. BUG_ON(!ptr);
  1198. memcpy(ptr, list, sizeof(struct kmem_list3));
  1199. /*
  1200. * Do not assume that spinlocks can be initialized via memcpy:
  1201. */
  1202. spin_lock_init(&ptr->list_lock);
  1203. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1204. cachep->nodelists[nodeid] = ptr;
  1205. }
  1206. /*
  1207. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1208. * size of kmem_list3.
  1209. */
  1210. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1211. {
  1212. int node;
  1213. for_each_online_node(node) {
  1214. cachep->nodelists[node] = &initkmem_list3[index + node];
  1215. cachep->nodelists[node]->next_reap = jiffies +
  1216. REAPTIMEOUT_LIST3 +
  1217. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1218. }
  1219. }
  1220. /*
  1221. * Initialisation. Called after the page allocator have been initialised and
  1222. * before smp_init().
  1223. */
  1224. void __init kmem_cache_init(void)
  1225. {
  1226. size_t left_over;
  1227. struct cache_sizes *sizes;
  1228. struct cache_names *names;
  1229. int i;
  1230. int order;
  1231. int node;
  1232. if (num_possible_nodes() == 1)
  1233. use_alien_caches = 0;
  1234. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1235. kmem_list3_init(&initkmem_list3[i]);
  1236. if (i < MAX_NUMNODES)
  1237. cache_cache.nodelists[i] = NULL;
  1238. }
  1239. set_up_list3s(&cache_cache, CACHE_CACHE);
  1240. /*
  1241. * Fragmentation resistance on low memory - only use bigger
  1242. * page orders on machines with more than 32MB of memory.
  1243. */
  1244. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1245. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1246. /* Bootstrap is tricky, because several objects are allocated
  1247. * from caches that do not exist yet:
  1248. * 1) initialize the cache_cache cache: it contains the struct
  1249. * kmem_cache structures of all caches, except cache_cache itself:
  1250. * cache_cache is statically allocated.
  1251. * Initially an __init data area is used for the head array and the
  1252. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1253. * array at the end of the bootstrap.
  1254. * 2) Create the first kmalloc cache.
  1255. * The struct kmem_cache for the new cache is allocated normally.
  1256. * An __init data area is used for the head array.
  1257. * 3) Create the remaining kmalloc caches, with minimally sized
  1258. * head arrays.
  1259. * 4) Replace the __init data head arrays for cache_cache and the first
  1260. * kmalloc cache with kmalloc allocated arrays.
  1261. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1262. * the other cache's with kmalloc allocated memory.
  1263. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1264. */
  1265. node = numa_node_id();
  1266. /* 1) create the cache_cache */
  1267. INIT_LIST_HEAD(&cache_chain);
  1268. list_add(&cache_cache.next, &cache_chain);
  1269. cache_cache.colour_off = cache_line_size();
  1270. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1271. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1272. /*
  1273. * struct kmem_cache size depends on nr_node_ids, which
  1274. * can be less than MAX_NUMNODES.
  1275. */
  1276. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1277. nr_node_ids * sizeof(struct kmem_list3 *);
  1278. #if DEBUG
  1279. cache_cache.obj_size = cache_cache.buffer_size;
  1280. #endif
  1281. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1282. cache_line_size());
  1283. cache_cache.reciprocal_buffer_size =
  1284. reciprocal_value(cache_cache.buffer_size);
  1285. for (order = 0; order < MAX_ORDER; order++) {
  1286. cache_estimate(order, cache_cache.buffer_size,
  1287. cache_line_size(), 0, &left_over, &cache_cache.num);
  1288. if (cache_cache.num)
  1289. break;
  1290. }
  1291. BUG_ON(!cache_cache.num);
  1292. cache_cache.gfporder = order;
  1293. cache_cache.colour = left_over / cache_cache.colour_off;
  1294. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1295. sizeof(struct slab), cache_line_size());
  1296. /* 2+3) create the kmalloc caches */
  1297. sizes = malloc_sizes;
  1298. names = cache_names;
  1299. /*
  1300. * Initialize the caches that provide memory for the array cache and the
  1301. * kmem_list3 structures first. Without this, further allocations will
  1302. * bug.
  1303. */
  1304. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1305. sizes[INDEX_AC].cs_size,
  1306. ARCH_KMALLOC_MINALIGN,
  1307. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1308. NULL);
  1309. if (INDEX_AC != INDEX_L3) {
  1310. sizes[INDEX_L3].cs_cachep =
  1311. kmem_cache_create(names[INDEX_L3].name,
  1312. sizes[INDEX_L3].cs_size,
  1313. ARCH_KMALLOC_MINALIGN,
  1314. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1315. NULL);
  1316. }
  1317. slab_early_init = 0;
  1318. while (sizes->cs_size != ULONG_MAX) {
  1319. /*
  1320. * For performance, all the general caches are L1 aligned.
  1321. * This should be particularly beneficial on SMP boxes, as it
  1322. * eliminates "false sharing".
  1323. * Note for systems short on memory removing the alignment will
  1324. * allow tighter packing of the smaller caches.
  1325. */
  1326. if (!sizes->cs_cachep) {
  1327. sizes->cs_cachep = kmem_cache_create(names->name,
  1328. sizes->cs_size,
  1329. ARCH_KMALLOC_MINALIGN,
  1330. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1331. NULL);
  1332. }
  1333. #ifdef CONFIG_ZONE_DMA
  1334. sizes->cs_dmacachep = kmem_cache_create(
  1335. names->name_dma,
  1336. sizes->cs_size,
  1337. ARCH_KMALLOC_MINALIGN,
  1338. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1339. SLAB_PANIC,
  1340. NULL);
  1341. #endif
  1342. sizes++;
  1343. names++;
  1344. }
  1345. /* 4) Replace the bootstrap head arrays */
  1346. {
  1347. struct array_cache *ptr;
  1348. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1349. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1350. memcpy(ptr, cpu_cache_get(&cache_cache),
  1351. sizeof(struct arraycache_init));
  1352. /*
  1353. * Do not assume that spinlocks can be initialized via memcpy:
  1354. */
  1355. spin_lock_init(&ptr->lock);
  1356. cache_cache.array[smp_processor_id()] = ptr;
  1357. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1358. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1359. != &initarray_generic.cache);
  1360. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1361. sizeof(struct arraycache_init));
  1362. /*
  1363. * Do not assume that spinlocks can be initialized via memcpy:
  1364. */
  1365. spin_lock_init(&ptr->lock);
  1366. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1367. ptr;
  1368. }
  1369. /* 5) Replace the bootstrap kmem_list3's */
  1370. {
  1371. int nid;
  1372. for_each_online_node(nid) {
  1373. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1374. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1375. &initkmem_list3[SIZE_AC + nid], nid);
  1376. if (INDEX_AC != INDEX_L3) {
  1377. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1378. &initkmem_list3[SIZE_L3 + nid], nid);
  1379. }
  1380. }
  1381. }
  1382. g_cpucache_up = EARLY;
  1383. }
  1384. void __init kmem_cache_init_late(void)
  1385. {
  1386. struct kmem_cache *cachep;
  1387. /* 6) resize the head arrays to their final sizes */
  1388. mutex_lock(&cache_chain_mutex);
  1389. list_for_each_entry(cachep, &cache_chain, next)
  1390. if (enable_cpucache(cachep, GFP_NOWAIT))
  1391. BUG();
  1392. mutex_unlock(&cache_chain_mutex);
  1393. /* Done! */
  1394. g_cpucache_up = FULL;
  1395. /* Annotate slab for lockdep -- annotate the malloc caches */
  1396. init_lock_keys();
  1397. /*
  1398. * Register a cpu startup notifier callback that initializes
  1399. * cpu_cache_get for all new cpus
  1400. */
  1401. register_cpu_notifier(&cpucache_notifier);
  1402. /*
  1403. * The reap timers are started later, with a module init call: That part
  1404. * of the kernel is not yet operational.
  1405. */
  1406. }
  1407. static int __init cpucache_init(void)
  1408. {
  1409. int cpu;
  1410. /*
  1411. * Register the timers that return unneeded pages to the page allocator
  1412. */
  1413. for_each_online_cpu(cpu)
  1414. start_cpu_timer(cpu);
  1415. return 0;
  1416. }
  1417. __initcall(cpucache_init);
  1418. /*
  1419. * Interface to system's page allocator. No need to hold the cache-lock.
  1420. *
  1421. * If we requested dmaable memory, we will get it. Even if we
  1422. * did not request dmaable memory, we might get it, but that
  1423. * would be relatively rare and ignorable.
  1424. */
  1425. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1426. {
  1427. struct page *page;
  1428. int nr_pages;
  1429. int i;
  1430. #ifndef CONFIG_MMU
  1431. /*
  1432. * Nommu uses slab's for process anonymous memory allocations, and thus
  1433. * requires __GFP_COMP to properly refcount higher order allocations
  1434. */
  1435. flags |= __GFP_COMP;
  1436. #endif
  1437. flags |= cachep->gfpflags;
  1438. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1439. flags |= __GFP_RECLAIMABLE;
  1440. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1441. if (!page)
  1442. return NULL;
  1443. nr_pages = (1 << cachep->gfporder);
  1444. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1445. add_zone_page_state(page_zone(page),
  1446. NR_SLAB_RECLAIMABLE, nr_pages);
  1447. else
  1448. add_zone_page_state(page_zone(page),
  1449. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1450. for (i = 0; i < nr_pages; i++)
  1451. __SetPageSlab(page + i);
  1452. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1453. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1454. if (cachep->ctor)
  1455. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1456. else
  1457. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1458. }
  1459. return page_address(page);
  1460. }
  1461. /*
  1462. * Interface to system's page release.
  1463. */
  1464. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1465. {
  1466. unsigned long i = (1 << cachep->gfporder);
  1467. struct page *page = virt_to_page(addr);
  1468. const unsigned long nr_freed = i;
  1469. kmemcheck_free_shadow(page, cachep->gfporder);
  1470. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1471. sub_zone_page_state(page_zone(page),
  1472. NR_SLAB_RECLAIMABLE, nr_freed);
  1473. else
  1474. sub_zone_page_state(page_zone(page),
  1475. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1476. while (i--) {
  1477. BUG_ON(!PageSlab(page));
  1478. __ClearPageSlab(page);
  1479. page++;
  1480. }
  1481. if (current->reclaim_state)
  1482. current->reclaim_state->reclaimed_slab += nr_freed;
  1483. free_pages((unsigned long)addr, cachep->gfporder);
  1484. }
  1485. static void kmem_rcu_free(struct rcu_head *head)
  1486. {
  1487. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1488. struct kmem_cache *cachep = slab_rcu->cachep;
  1489. kmem_freepages(cachep, slab_rcu->addr);
  1490. if (OFF_SLAB(cachep))
  1491. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1492. }
  1493. #if DEBUG
  1494. #ifdef CONFIG_DEBUG_PAGEALLOC
  1495. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1496. unsigned long caller)
  1497. {
  1498. int size = obj_size(cachep);
  1499. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1500. if (size < 5 * sizeof(unsigned long))
  1501. return;
  1502. *addr++ = 0x12345678;
  1503. *addr++ = caller;
  1504. *addr++ = smp_processor_id();
  1505. size -= 3 * sizeof(unsigned long);
  1506. {
  1507. unsigned long *sptr = &caller;
  1508. unsigned long svalue;
  1509. while (!kstack_end(sptr)) {
  1510. svalue = *sptr++;
  1511. if (kernel_text_address(svalue)) {
  1512. *addr++ = svalue;
  1513. size -= sizeof(unsigned long);
  1514. if (size <= sizeof(unsigned long))
  1515. break;
  1516. }
  1517. }
  1518. }
  1519. *addr++ = 0x87654321;
  1520. }
  1521. #endif
  1522. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1523. {
  1524. int size = obj_size(cachep);
  1525. addr = &((char *)addr)[obj_offset(cachep)];
  1526. memset(addr, val, size);
  1527. *(unsigned char *)(addr + size - 1) = POISON_END;
  1528. }
  1529. static void dump_line(char *data, int offset, int limit)
  1530. {
  1531. int i;
  1532. unsigned char error = 0;
  1533. int bad_count = 0;
  1534. printk(KERN_ERR "%03x:", offset);
  1535. for (i = 0; i < limit; i++) {
  1536. if (data[offset + i] != POISON_FREE) {
  1537. error = data[offset + i];
  1538. bad_count++;
  1539. }
  1540. printk(" %02x", (unsigned char)data[offset + i]);
  1541. }
  1542. printk("\n");
  1543. if (bad_count == 1) {
  1544. error ^= POISON_FREE;
  1545. if (!(error & (error - 1))) {
  1546. printk(KERN_ERR "Single bit error detected. Probably "
  1547. "bad RAM.\n");
  1548. #ifdef CONFIG_X86
  1549. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1550. "test tool.\n");
  1551. #else
  1552. printk(KERN_ERR "Run a memory test tool.\n");
  1553. #endif
  1554. }
  1555. }
  1556. }
  1557. #endif
  1558. #if DEBUG
  1559. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1560. {
  1561. int i, size;
  1562. char *realobj;
  1563. if (cachep->flags & SLAB_RED_ZONE) {
  1564. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1565. *dbg_redzone1(cachep, objp),
  1566. *dbg_redzone2(cachep, objp));
  1567. }
  1568. if (cachep->flags & SLAB_STORE_USER) {
  1569. printk(KERN_ERR "Last user: [<%p>]",
  1570. *dbg_userword(cachep, objp));
  1571. print_symbol("(%s)",
  1572. (unsigned long)*dbg_userword(cachep, objp));
  1573. printk("\n");
  1574. }
  1575. realobj = (char *)objp + obj_offset(cachep);
  1576. size = obj_size(cachep);
  1577. for (i = 0; i < size && lines; i += 16, lines--) {
  1578. int limit;
  1579. limit = 16;
  1580. if (i + limit > size)
  1581. limit = size - i;
  1582. dump_line(realobj, i, limit);
  1583. }
  1584. }
  1585. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1586. {
  1587. char *realobj;
  1588. int size, i;
  1589. int lines = 0;
  1590. realobj = (char *)objp + obj_offset(cachep);
  1591. size = obj_size(cachep);
  1592. for (i = 0; i < size; i++) {
  1593. char exp = POISON_FREE;
  1594. if (i == size - 1)
  1595. exp = POISON_END;
  1596. if (realobj[i] != exp) {
  1597. int limit;
  1598. /* Mismatch ! */
  1599. /* Print header */
  1600. if (lines == 0) {
  1601. printk(KERN_ERR
  1602. "Slab corruption: %s start=%p, len=%d\n",
  1603. cachep->name, realobj, size);
  1604. print_objinfo(cachep, objp, 0);
  1605. }
  1606. /* Hexdump the affected line */
  1607. i = (i / 16) * 16;
  1608. limit = 16;
  1609. if (i + limit > size)
  1610. limit = size - i;
  1611. dump_line(realobj, i, limit);
  1612. i += 16;
  1613. lines++;
  1614. /* Limit to 5 lines */
  1615. if (lines > 5)
  1616. break;
  1617. }
  1618. }
  1619. if (lines != 0) {
  1620. /* Print some data about the neighboring objects, if they
  1621. * exist:
  1622. */
  1623. struct slab *slabp = virt_to_slab(objp);
  1624. unsigned int objnr;
  1625. objnr = obj_to_index(cachep, slabp, objp);
  1626. if (objnr) {
  1627. objp = index_to_obj(cachep, slabp, objnr - 1);
  1628. realobj = (char *)objp + obj_offset(cachep);
  1629. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1630. realobj, size);
  1631. print_objinfo(cachep, objp, 2);
  1632. }
  1633. if (objnr + 1 < cachep->num) {
  1634. objp = index_to_obj(cachep, slabp, objnr + 1);
  1635. realobj = (char *)objp + obj_offset(cachep);
  1636. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1637. realobj, size);
  1638. print_objinfo(cachep, objp, 2);
  1639. }
  1640. }
  1641. }
  1642. #endif
  1643. #if DEBUG
  1644. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1645. {
  1646. int i;
  1647. for (i = 0; i < cachep->num; i++) {
  1648. void *objp = index_to_obj(cachep, slabp, i);
  1649. if (cachep->flags & SLAB_POISON) {
  1650. #ifdef CONFIG_DEBUG_PAGEALLOC
  1651. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1652. OFF_SLAB(cachep))
  1653. kernel_map_pages(virt_to_page(objp),
  1654. cachep->buffer_size / PAGE_SIZE, 1);
  1655. else
  1656. check_poison_obj(cachep, objp);
  1657. #else
  1658. check_poison_obj(cachep, objp);
  1659. #endif
  1660. }
  1661. if (cachep->flags & SLAB_RED_ZONE) {
  1662. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1663. slab_error(cachep, "start of a freed object "
  1664. "was overwritten");
  1665. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1666. slab_error(cachep, "end of a freed object "
  1667. "was overwritten");
  1668. }
  1669. }
  1670. }
  1671. #else
  1672. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1673. {
  1674. }
  1675. #endif
  1676. /**
  1677. * slab_destroy - destroy and release all objects in a slab
  1678. * @cachep: cache pointer being destroyed
  1679. * @slabp: slab pointer being destroyed
  1680. *
  1681. * Destroy all the objs in a slab, and release the mem back to the system.
  1682. * Before calling the slab must have been unlinked from the cache. The
  1683. * cache-lock is not held/needed.
  1684. */
  1685. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1686. {
  1687. void *addr = slabp->s_mem - slabp->colouroff;
  1688. slab_destroy_debugcheck(cachep, slabp);
  1689. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1690. struct slab_rcu *slab_rcu;
  1691. slab_rcu = (struct slab_rcu *)slabp;
  1692. slab_rcu->cachep = cachep;
  1693. slab_rcu->addr = addr;
  1694. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1695. } else {
  1696. kmem_freepages(cachep, addr);
  1697. if (OFF_SLAB(cachep))
  1698. kmem_cache_free(cachep->slabp_cache, slabp);
  1699. }
  1700. }
  1701. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1702. {
  1703. int i;
  1704. struct kmem_list3 *l3;
  1705. for_each_online_cpu(i)
  1706. kfree(cachep->array[i]);
  1707. /* NUMA: free the list3 structures */
  1708. for_each_online_node(i) {
  1709. l3 = cachep->nodelists[i];
  1710. if (l3) {
  1711. kfree(l3->shared);
  1712. free_alien_cache(l3->alien);
  1713. kfree(l3);
  1714. }
  1715. }
  1716. kmem_cache_free(&cache_cache, cachep);
  1717. }
  1718. /**
  1719. * calculate_slab_order - calculate size (page order) of slabs
  1720. * @cachep: pointer to the cache that is being created
  1721. * @size: size of objects to be created in this cache.
  1722. * @align: required alignment for the objects.
  1723. * @flags: slab allocation flags
  1724. *
  1725. * Also calculates the number of objects per slab.
  1726. *
  1727. * This could be made much more intelligent. For now, try to avoid using
  1728. * high order pages for slabs. When the gfp() functions are more friendly
  1729. * towards high-order requests, this should be changed.
  1730. */
  1731. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1732. size_t size, size_t align, unsigned long flags)
  1733. {
  1734. unsigned long offslab_limit;
  1735. size_t left_over = 0;
  1736. int gfporder;
  1737. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1738. unsigned int num;
  1739. size_t remainder;
  1740. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1741. if (!num)
  1742. continue;
  1743. if (flags & CFLGS_OFF_SLAB) {
  1744. /*
  1745. * Max number of objs-per-slab for caches which
  1746. * use off-slab slabs. Needed to avoid a possible
  1747. * looping condition in cache_grow().
  1748. */
  1749. offslab_limit = size - sizeof(struct slab);
  1750. offslab_limit /= sizeof(kmem_bufctl_t);
  1751. if (num > offslab_limit)
  1752. break;
  1753. }
  1754. /* Found something acceptable - save it away */
  1755. cachep->num = num;
  1756. cachep->gfporder = gfporder;
  1757. left_over = remainder;
  1758. /*
  1759. * A VFS-reclaimable slab tends to have most allocations
  1760. * as GFP_NOFS and we really don't want to have to be allocating
  1761. * higher-order pages when we are unable to shrink dcache.
  1762. */
  1763. if (flags & SLAB_RECLAIM_ACCOUNT)
  1764. break;
  1765. /*
  1766. * Large number of objects is good, but very large slabs are
  1767. * currently bad for the gfp()s.
  1768. */
  1769. if (gfporder >= slab_break_gfp_order)
  1770. break;
  1771. /*
  1772. * Acceptable internal fragmentation?
  1773. */
  1774. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1775. break;
  1776. }
  1777. return left_over;
  1778. }
  1779. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1780. {
  1781. if (g_cpucache_up == FULL)
  1782. return enable_cpucache(cachep, gfp);
  1783. if (g_cpucache_up == NONE) {
  1784. /*
  1785. * Note: the first kmem_cache_create must create the cache
  1786. * that's used by kmalloc(24), otherwise the creation of
  1787. * further caches will BUG().
  1788. */
  1789. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1790. /*
  1791. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1792. * the first cache, then we need to set up all its list3s,
  1793. * otherwise the creation of further caches will BUG().
  1794. */
  1795. set_up_list3s(cachep, SIZE_AC);
  1796. if (INDEX_AC == INDEX_L3)
  1797. g_cpucache_up = PARTIAL_L3;
  1798. else
  1799. g_cpucache_up = PARTIAL_AC;
  1800. } else {
  1801. cachep->array[smp_processor_id()] =
  1802. kmalloc(sizeof(struct arraycache_init), gfp);
  1803. if (g_cpucache_up == PARTIAL_AC) {
  1804. set_up_list3s(cachep, SIZE_L3);
  1805. g_cpucache_up = PARTIAL_L3;
  1806. } else {
  1807. int node;
  1808. for_each_online_node(node) {
  1809. cachep->nodelists[node] =
  1810. kmalloc_node(sizeof(struct kmem_list3),
  1811. gfp, node);
  1812. BUG_ON(!cachep->nodelists[node]);
  1813. kmem_list3_init(cachep->nodelists[node]);
  1814. }
  1815. }
  1816. }
  1817. cachep->nodelists[numa_node_id()]->next_reap =
  1818. jiffies + REAPTIMEOUT_LIST3 +
  1819. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1820. cpu_cache_get(cachep)->avail = 0;
  1821. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1822. cpu_cache_get(cachep)->batchcount = 1;
  1823. cpu_cache_get(cachep)->touched = 0;
  1824. cachep->batchcount = 1;
  1825. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1826. return 0;
  1827. }
  1828. /**
  1829. * kmem_cache_create - Create a cache.
  1830. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1831. * @size: The size of objects to be created in this cache.
  1832. * @align: The required alignment for the objects.
  1833. * @flags: SLAB flags
  1834. * @ctor: A constructor for the objects.
  1835. *
  1836. * Returns a ptr to the cache on success, NULL on failure.
  1837. * Cannot be called within a int, but can be interrupted.
  1838. * The @ctor is run when new pages are allocated by the cache.
  1839. *
  1840. * @name must be valid until the cache is destroyed. This implies that
  1841. * the module calling this has to destroy the cache before getting unloaded.
  1842. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1843. * therefore applications must manage it themselves.
  1844. *
  1845. * The flags are
  1846. *
  1847. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1848. * to catch references to uninitialised memory.
  1849. *
  1850. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1851. * for buffer overruns.
  1852. *
  1853. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1854. * cacheline. This can be beneficial if you're counting cycles as closely
  1855. * as davem.
  1856. */
  1857. struct kmem_cache *
  1858. kmem_cache_create (const char *name, size_t size, size_t align,
  1859. unsigned long flags, void (*ctor)(void *))
  1860. {
  1861. size_t left_over, slab_size, ralign;
  1862. struct kmem_cache *cachep = NULL, *pc;
  1863. gfp_t gfp;
  1864. /*
  1865. * Sanity checks... these are all serious usage bugs.
  1866. */
  1867. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1868. size > KMALLOC_MAX_SIZE) {
  1869. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1870. name);
  1871. BUG();
  1872. }
  1873. /*
  1874. * We use cache_chain_mutex to ensure a consistent view of
  1875. * cpu_online_mask as well. Please see cpuup_callback
  1876. */
  1877. if (slab_is_available()) {
  1878. get_online_cpus();
  1879. mutex_lock(&cache_chain_mutex);
  1880. }
  1881. list_for_each_entry(pc, &cache_chain, next) {
  1882. char tmp;
  1883. int res;
  1884. /*
  1885. * This happens when the module gets unloaded and doesn't
  1886. * destroy its slab cache and no-one else reuses the vmalloc
  1887. * area of the module. Print a warning.
  1888. */
  1889. res = probe_kernel_address(pc->name, tmp);
  1890. if (res) {
  1891. printk(KERN_ERR
  1892. "SLAB: cache with size %d has lost its name\n",
  1893. pc->buffer_size);
  1894. continue;
  1895. }
  1896. if (!strcmp(pc->name, name)) {
  1897. printk(KERN_ERR
  1898. "kmem_cache_create: duplicate cache %s\n", name);
  1899. dump_stack();
  1900. goto oops;
  1901. }
  1902. }
  1903. #if DEBUG
  1904. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1905. #if FORCED_DEBUG
  1906. /*
  1907. * Enable redzoning and last user accounting, except for caches with
  1908. * large objects, if the increased size would increase the object size
  1909. * above the next power of two: caches with object sizes just above a
  1910. * power of two have a significant amount of internal fragmentation.
  1911. */
  1912. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1913. 2 * sizeof(unsigned long long)))
  1914. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1915. if (!(flags & SLAB_DESTROY_BY_RCU))
  1916. flags |= SLAB_POISON;
  1917. #endif
  1918. if (flags & SLAB_DESTROY_BY_RCU)
  1919. BUG_ON(flags & SLAB_POISON);
  1920. #endif
  1921. /*
  1922. * Always checks flags, a caller might be expecting debug support which
  1923. * isn't available.
  1924. */
  1925. BUG_ON(flags & ~CREATE_MASK);
  1926. /*
  1927. * Check that size is in terms of words. This is needed to avoid
  1928. * unaligned accesses for some archs when redzoning is used, and makes
  1929. * sure any on-slab bufctl's are also correctly aligned.
  1930. */
  1931. if (size & (BYTES_PER_WORD - 1)) {
  1932. size += (BYTES_PER_WORD - 1);
  1933. size &= ~(BYTES_PER_WORD - 1);
  1934. }
  1935. /* calculate the final buffer alignment: */
  1936. /* 1) arch recommendation: can be overridden for debug */
  1937. if (flags & SLAB_HWCACHE_ALIGN) {
  1938. /*
  1939. * Default alignment: as specified by the arch code. Except if
  1940. * an object is really small, then squeeze multiple objects into
  1941. * one cacheline.
  1942. */
  1943. ralign = cache_line_size();
  1944. while (size <= ralign / 2)
  1945. ralign /= 2;
  1946. } else {
  1947. ralign = BYTES_PER_WORD;
  1948. }
  1949. /*
  1950. * Redzoning and user store require word alignment or possibly larger.
  1951. * Note this will be overridden by architecture or caller mandated
  1952. * alignment if either is greater than BYTES_PER_WORD.
  1953. */
  1954. if (flags & SLAB_STORE_USER)
  1955. ralign = BYTES_PER_WORD;
  1956. if (flags & SLAB_RED_ZONE) {
  1957. ralign = REDZONE_ALIGN;
  1958. /* If redzoning, ensure that the second redzone is suitably
  1959. * aligned, by adjusting the object size accordingly. */
  1960. size += REDZONE_ALIGN - 1;
  1961. size &= ~(REDZONE_ALIGN - 1);
  1962. }
  1963. /* 2) arch mandated alignment */
  1964. if (ralign < ARCH_SLAB_MINALIGN) {
  1965. ralign = ARCH_SLAB_MINALIGN;
  1966. }
  1967. /* 3) caller mandated alignment */
  1968. if (ralign < align) {
  1969. ralign = align;
  1970. }
  1971. /* disable debug if necessary */
  1972. if (ralign > __alignof__(unsigned long long))
  1973. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1974. /*
  1975. * 4) Store it.
  1976. */
  1977. align = ralign;
  1978. if (slab_is_available())
  1979. gfp = GFP_KERNEL;
  1980. else
  1981. gfp = GFP_NOWAIT;
  1982. /* Get cache's description obj. */
  1983. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  1984. if (!cachep)
  1985. goto oops;
  1986. #if DEBUG
  1987. cachep->obj_size = size;
  1988. /*
  1989. * Both debugging options require word-alignment which is calculated
  1990. * into align above.
  1991. */
  1992. if (flags & SLAB_RED_ZONE) {
  1993. /* add space for red zone words */
  1994. cachep->obj_offset += sizeof(unsigned long long);
  1995. size += 2 * sizeof(unsigned long long);
  1996. }
  1997. if (flags & SLAB_STORE_USER) {
  1998. /* user store requires one word storage behind the end of
  1999. * the real object. But if the second red zone needs to be
  2000. * aligned to 64 bits, we must allow that much space.
  2001. */
  2002. if (flags & SLAB_RED_ZONE)
  2003. size += REDZONE_ALIGN;
  2004. else
  2005. size += BYTES_PER_WORD;
  2006. }
  2007. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2008. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2009. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2010. cachep->obj_offset += PAGE_SIZE - size;
  2011. size = PAGE_SIZE;
  2012. }
  2013. #endif
  2014. #endif
  2015. /*
  2016. * Determine if the slab management is 'on' or 'off' slab.
  2017. * (bootstrapping cannot cope with offslab caches so don't do
  2018. * it too early on. Always use on-slab management when
  2019. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2020. */
  2021. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2022. !(flags & SLAB_NOLEAKTRACE))
  2023. /*
  2024. * Size is large, assume best to place the slab management obj
  2025. * off-slab (should allow better packing of objs).
  2026. */
  2027. flags |= CFLGS_OFF_SLAB;
  2028. size = ALIGN(size, align);
  2029. left_over = calculate_slab_order(cachep, size, align, flags);
  2030. if (!cachep->num) {
  2031. printk(KERN_ERR
  2032. "kmem_cache_create: couldn't create cache %s.\n", name);
  2033. kmem_cache_free(&cache_cache, cachep);
  2034. cachep = NULL;
  2035. goto oops;
  2036. }
  2037. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2038. + sizeof(struct slab), align);
  2039. /*
  2040. * If the slab has been placed off-slab, and we have enough space then
  2041. * move it on-slab. This is at the expense of any extra colouring.
  2042. */
  2043. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2044. flags &= ~CFLGS_OFF_SLAB;
  2045. left_over -= slab_size;
  2046. }
  2047. if (flags & CFLGS_OFF_SLAB) {
  2048. /* really off slab. No need for manual alignment */
  2049. slab_size =
  2050. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2051. #ifdef CONFIG_PAGE_POISONING
  2052. /* If we're going to use the generic kernel_map_pages()
  2053. * poisoning, then it's going to smash the contents of
  2054. * the redzone and userword anyhow, so switch them off.
  2055. */
  2056. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2057. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2058. #endif
  2059. }
  2060. cachep->colour_off = cache_line_size();
  2061. /* Offset must be a multiple of the alignment. */
  2062. if (cachep->colour_off < align)
  2063. cachep->colour_off = align;
  2064. cachep->colour = left_over / cachep->colour_off;
  2065. cachep->slab_size = slab_size;
  2066. cachep->flags = flags;
  2067. cachep->gfpflags = 0;
  2068. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2069. cachep->gfpflags |= GFP_DMA;
  2070. cachep->buffer_size = size;
  2071. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2072. if (flags & CFLGS_OFF_SLAB) {
  2073. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2074. /*
  2075. * This is a possibility for one of the malloc_sizes caches.
  2076. * But since we go off slab only for object size greater than
  2077. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2078. * this should not happen at all.
  2079. * But leave a BUG_ON for some lucky dude.
  2080. */
  2081. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2082. }
  2083. cachep->ctor = ctor;
  2084. cachep->name = name;
  2085. if (setup_cpu_cache(cachep, gfp)) {
  2086. __kmem_cache_destroy(cachep);
  2087. cachep = NULL;
  2088. goto oops;
  2089. }
  2090. /* cache setup completed, link it into the list */
  2091. list_add(&cachep->next, &cache_chain);
  2092. oops:
  2093. if (!cachep && (flags & SLAB_PANIC))
  2094. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2095. name);
  2096. if (slab_is_available()) {
  2097. mutex_unlock(&cache_chain_mutex);
  2098. put_online_cpus();
  2099. }
  2100. return cachep;
  2101. }
  2102. EXPORT_SYMBOL(kmem_cache_create);
  2103. #if DEBUG
  2104. static void check_irq_off(void)
  2105. {
  2106. BUG_ON(!irqs_disabled());
  2107. }
  2108. static void check_irq_on(void)
  2109. {
  2110. BUG_ON(irqs_disabled());
  2111. }
  2112. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2113. {
  2114. #ifdef CONFIG_SMP
  2115. check_irq_off();
  2116. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2117. #endif
  2118. }
  2119. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2120. {
  2121. #ifdef CONFIG_SMP
  2122. check_irq_off();
  2123. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2124. #endif
  2125. }
  2126. #else
  2127. #define check_irq_off() do { } while(0)
  2128. #define check_irq_on() do { } while(0)
  2129. #define check_spinlock_acquired(x) do { } while(0)
  2130. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2131. #endif
  2132. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2133. struct array_cache *ac,
  2134. int force, int node);
  2135. static void do_drain(void *arg)
  2136. {
  2137. struct kmem_cache *cachep = arg;
  2138. struct array_cache *ac;
  2139. int node = numa_node_id();
  2140. check_irq_off();
  2141. ac = cpu_cache_get(cachep);
  2142. spin_lock(&cachep->nodelists[node]->list_lock);
  2143. free_block(cachep, ac->entry, ac->avail, node);
  2144. spin_unlock(&cachep->nodelists[node]->list_lock);
  2145. ac->avail = 0;
  2146. }
  2147. static void drain_cpu_caches(struct kmem_cache *cachep)
  2148. {
  2149. struct kmem_list3 *l3;
  2150. int node;
  2151. on_each_cpu(do_drain, cachep, 1);
  2152. check_irq_on();
  2153. for_each_online_node(node) {
  2154. l3 = cachep->nodelists[node];
  2155. if (l3 && l3->alien)
  2156. drain_alien_cache(cachep, l3->alien);
  2157. }
  2158. for_each_online_node(node) {
  2159. l3 = cachep->nodelists[node];
  2160. if (l3)
  2161. drain_array(cachep, l3, l3->shared, 1, node);
  2162. }
  2163. }
  2164. /*
  2165. * Remove slabs from the list of free slabs.
  2166. * Specify the number of slabs to drain in tofree.
  2167. *
  2168. * Returns the actual number of slabs released.
  2169. */
  2170. static int drain_freelist(struct kmem_cache *cache,
  2171. struct kmem_list3 *l3, int tofree)
  2172. {
  2173. struct list_head *p;
  2174. int nr_freed;
  2175. struct slab *slabp;
  2176. nr_freed = 0;
  2177. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2178. spin_lock_irq(&l3->list_lock);
  2179. p = l3->slabs_free.prev;
  2180. if (p == &l3->slabs_free) {
  2181. spin_unlock_irq(&l3->list_lock);
  2182. goto out;
  2183. }
  2184. slabp = list_entry(p, struct slab, list);
  2185. #if DEBUG
  2186. BUG_ON(slabp->inuse);
  2187. #endif
  2188. list_del(&slabp->list);
  2189. /*
  2190. * Safe to drop the lock. The slab is no longer linked
  2191. * to the cache.
  2192. */
  2193. l3->free_objects -= cache->num;
  2194. spin_unlock_irq(&l3->list_lock);
  2195. slab_destroy(cache, slabp);
  2196. nr_freed++;
  2197. }
  2198. out:
  2199. return nr_freed;
  2200. }
  2201. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2202. static int __cache_shrink(struct kmem_cache *cachep)
  2203. {
  2204. int ret = 0, i = 0;
  2205. struct kmem_list3 *l3;
  2206. drain_cpu_caches(cachep);
  2207. check_irq_on();
  2208. for_each_online_node(i) {
  2209. l3 = cachep->nodelists[i];
  2210. if (!l3)
  2211. continue;
  2212. drain_freelist(cachep, l3, l3->free_objects);
  2213. ret += !list_empty(&l3->slabs_full) ||
  2214. !list_empty(&l3->slabs_partial);
  2215. }
  2216. return (ret ? 1 : 0);
  2217. }
  2218. /**
  2219. * kmem_cache_shrink - Shrink a cache.
  2220. * @cachep: The cache to shrink.
  2221. *
  2222. * Releases as many slabs as possible for a cache.
  2223. * To help debugging, a zero exit status indicates all slabs were released.
  2224. */
  2225. int kmem_cache_shrink(struct kmem_cache *cachep)
  2226. {
  2227. int ret;
  2228. BUG_ON(!cachep || in_interrupt());
  2229. get_online_cpus();
  2230. mutex_lock(&cache_chain_mutex);
  2231. ret = __cache_shrink(cachep);
  2232. mutex_unlock(&cache_chain_mutex);
  2233. put_online_cpus();
  2234. return ret;
  2235. }
  2236. EXPORT_SYMBOL(kmem_cache_shrink);
  2237. /**
  2238. * kmem_cache_destroy - delete a cache
  2239. * @cachep: the cache to destroy
  2240. *
  2241. * Remove a &struct kmem_cache object from the slab cache.
  2242. *
  2243. * It is expected this function will be called by a module when it is
  2244. * unloaded. This will remove the cache completely, and avoid a duplicate
  2245. * cache being allocated each time a module is loaded and unloaded, if the
  2246. * module doesn't have persistent in-kernel storage across loads and unloads.
  2247. *
  2248. * The cache must be empty before calling this function.
  2249. *
  2250. * The caller must guarantee that noone will allocate memory from the cache
  2251. * during the kmem_cache_destroy().
  2252. */
  2253. void kmem_cache_destroy(struct kmem_cache *cachep)
  2254. {
  2255. BUG_ON(!cachep || in_interrupt());
  2256. /* Find the cache in the chain of caches. */
  2257. get_online_cpus();
  2258. mutex_lock(&cache_chain_mutex);
  2259. /*
  2260. * the chain is never empty, cache_cache is never destroyed
  2261. */
  2262. list_del(&cachep->next);
  2263. if (__cache_shrink(cachep)) {
  2264. slab_error(cachep, "Can't free all objects");
  2265. list_add(&cachep->next, &cache_chain);
  2266. mutex_unlock(&cache_chain_mutex);
  2267. put_online_cpus();
  2268. return;
  2269. }
  2270. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2271. rcu_barrier();
  2272. __kmem_cache_destroy(cachep);
  2273. mutex_unlock(&cache_chain_mutex);
  2274. put_online_cpus();
  2275. }
  2276. EXPORT_SYMBOL(kmem_cache_destroy);
  2277. /*
  2278. * Get the memory for a slab management obj.
  2279. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2280. * always come from malloc_sizes caches. The slab descriptor cannot
  2281. * come from the same cache which is getting created because,
  2282. * when we are searching for an appropriate cache for these
  2283. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2284. * If we are creating a malloc_sizes cache here it would not be visible to
  2285. * kmem_find_general_cachep till the initialization is complete.
  2286. * Hence we cannot have slabp_cache same as the original cache.
  2287. */
  2288. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2289. int colour_off, gfp_t local_flags,
  2290. int nodeid)
  2291. {
  2292. struct slab *slabp;
  2293. if (OFF_SLAB(cachep)) {
  2294. /* Slab management obj is off-slab. */
  2295. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2296. local_flags, nodeid);
  2297. /*
  2298. * If the first object in the slab is leaked (it's allocated
  2299. * but no one has a reference to it), we want to make sure
  2300. * kmemleak does not treat the ->s_mem pointer as a reference
  2301. * to the object. Otherwise we will not report the leak.
  2302. */
  2303. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2304. local_flags);
  2305. if (!slabp)
  2306. return NULL;
  2307. } else {
  2308. slabp = objp + colour_off;
  2309. colour_off += cachep->slab_size;
  2310. }
  2311. slabp->inuse = 0;
  2312. slabp->colouroff = colour_off;
  2313. slabp->s_mem = objp + colour_off;
  2314. slabp->nodeid = nodeid;
  2315. slabp->free = 0;
  2316. return slabp;
  2317. }
  2318. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2319. {
  2320. return (kmem_bufctl_t *) (slabp + 1);
  2321. }
  2322. static void cache_init_objs(struct kmem_cache *cachep,
  2323. struct slab *slabp)
  2324. {
  2325. int i;
  2326. for (i = 0; i < cachep->num; i++) {
  2327. void *objp = index_to_obj(cachep, slabp, i);
  2328. #if DEBUG
  2329. /* need to poison the objs? */
  2330. if (cachep->flags & SLAB_POISON)
  2331. poison_obj(cachep, objp, POISON_FREE);
  2332. if (cachep->flags & SLAB_STORE_USER)
  2333. *dbg_userword(cachep, objp) = NULL;
  2334. if (cachep->flags & SLAB_RED_ZONE) {
  2335. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2336. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2337. }
  2338. /*
  2339. * Constructors are not allowed to allocate memory from the same
  2340. * cache which they are a constructor for. Otherwise, deadlock.
  2341. * They must also be threaded.
  2342. */
  2343. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2344. cachep->ctor(objp + obj_offset(cachep));
  2345. if (cachep->flags & SLAB_RED_ZONE) {
  2346. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2347. slab_error(cachep, "constructor overwrote the"
  2348. " end of an object");
  2349. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2350. slab_error(cachep, "constructor overwrote the"
  2351. " start of an object");
  2352. }
  2353. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2354. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2355. kernel_map_pages(virt_to_page(objp),
  2356. cachep->buffer_size / PAGE_SIZE, 0);
  2357. #else
  2358. if (cachep->ctor)
  2359. cachep->ctor(objp);
  2360. #endif
  2361. slab_bufctl(slabp)[i] = i + 1;
  2362. }
  2363. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2364. }
  2365. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2366. {
  2367. if (CONFIG_ZONE_DMA_FLAG) {
  2368. if (flags & GFP_DMA)
  2369. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2370. else
  2371. BUG_ON(cachep->gfpflags & GFP_DMA);
  2372. }
  2373. }
  2374. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2375. int nodeid)
  2376. {
  2377. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2378. kmem_bufctl_t next;
  2379. slabp->inuse++;
  2380. next = slab_bufctl(slabp)[slabp->free];
  2381. #if DEBUG
  2382. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2383. WARN_ON(slabp->nodeid != nodeid);
  2384. #endif
  2385. slabp->free = next;
  2386. return objp;
  2387. }
  2388. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2389. void *objp, int nodeid)
  2390. {
  2391. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2392. #if DEBUG
  2393. /* Verify that the slab belongs to the intended node */
  2394. WARN_ON(slabp->nodeid != nodeid);
  2395. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2396. printk(KERN_ERR "slab: double free detected in cache "
  2397. "'%s', objp %p\n", cachep->name, objp);
  2398. BUG();
  2399. }
  2400. #endif
  2401. slab_bufctl(slabp)[objnr] = slabp->free;
  2402. slabp->free = objnr;
  2403. slabp->inuse--;
  2404. }
  2405. /*
  2406. * Map pages beginning at addr to the given cache and slab. This is required
  2407. * for the slab allocator to be able to lookup the cache and slab of a
  2408. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2409. */
  2410. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2411. void *addr)
  2412. {
  2413. int nr_pages;
  2414. struct page *page;
  2415. page = virt_to_page(addr);
  2416. nr_pages = 1;
  2417. if (likely(!PageCompound(page)))
  2418. nr_pages <<= cache->gfporder;
  2419. do {
  2420. page_set_cache(page, cache);
  2421. page_set_slab(page, slab);
  2422. page++;
  2423. } while (--nr_pages);
  2424. }
  2425. /*
  2426. * Grow (by 1) the number of slabs within a cache. This is called by
  2427. * kmem_cache_alloc() when there are no active objs left in a cache.
  2428. */
  2429. static int cache_grow(struct kmem_cache *cachep,
  2430. gfp_t flags, int nodeid, void *objp)
  2431. {
  2432. struct slab *slabp;
  2433. size_t offset;
  2434. gfp_t local_flags;
  2435. struct kmem_list3 *l3;
  2436. /*
  2437. * Be lazy and only check for valid flags here, keeping it out of the
  2438. * critical path in kmem_cache_alloc().
  2439. */
  2440. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2441. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2442. /* Take the l3 list lock to change the colour_next on this node */
  2443. check_irq_off();
  2444. l3 = cachep->nodelists[nodeid];
  2445. spin_lock(&l3->list_lock);
  2446. /* Get colour for the slab, and cal the next value. */
  2447. offset = l3->colour_next;
  2448. l3->colour_next++;
  2449. if (l3->colour_next >= cachep->colour)
  2450. l3->colour_next = 0;
  2451. spin_unlock(&l3->list_lock);
  2452. offset *= cachep->colour_off;
  2453. if (local_flags & __GFP_WAIT)
  2454. local_irq_enable();
  2455. /*
  2456. * The test for missing atomic flag is performed here, rather than
  2457. * the more obvious place, simply to reduce the critical path length
  2458. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2459. * will eventually be caught here (where it matters).
  2460. */
  2461. kmem_flagcheck(cachep, flags);
  2462. /*
  2463. * Get mem for the objs. Attempt to allocate a physical page from
  2464. * 'nodeid'.
  2465. */
  2466. if (!objp)
  2467. objp = kmem_getpages(cachep, local_flags, nodeid);
  2468. if (!objp)
  2469. goto failed;
  2470. /* Get slab management. */
  2471. slabp = alloc_slabmgmt(cachep, objp, offset,
  2472. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2473. if (!slabp)
  2474. goto opps1;
  2475. slab_map_pages(cachep, slabp, objp);
  2476. cache_init_objs(cachep, slabp);
  2477. if (local_flags & __GFP_WAIT)
  2478. local_irq_disable();
  2479. check_irq_off();
  2480. spin_lock(&l3->list_lock);
  2481. /* Make slab active. */
  2482. list_add_tail(&slabp->list, &(l3->slabs_free));
  2483. STATS_INC_GROWN(cachep);
  2484. l3->free_objects += cachep->num;
  2485. spin_unlock(&l3->list_lock);
  2486. return 1;
  2487. opps1:
  2488. kmem_freepages(cachep, objp);
  2489. failed:
  2490. if (local_flags & __GFP_WAIT)
  2491. local_irq_disable();
  2492. return 0;
  2493. }
  2494. #if DEBUG
  2495. /*
  2496. * Perform extra freeing checks:
  2497. * - detect bad pointers.
  2498. * - POISON/RED_ZONE checking
  2499. */
  2500. static void kfree_debugcheck(const void *objp)
  2501. {
  2502. if (!virt_addr_valid(objp)) {
  2503. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2504. (unsigned long)objp);
  2505. BUG();
  2506. }
  2507. }
  2508. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2509. {
  2510. unsigned long long redzone1, redzone2;
  2511. redzone1 = *dbg_redzone1(cache, obj);
  2512. redzone2 = *dbg_redzone2(cache, obj);
  2513. /*
  2514. * Redzone is ok.
  2515. */
  2516. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2517. return;
  2518. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2519. slab_error(cache, "double free detected");
  2520. else
  2521. slab_error(cache, "memory outside object was overwritten");
  2522. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2523. obj, redzone1, redzone2);
  2524. }
  2525. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2526. void *caller)
  2527. {
  2528. struct page *page;
  2529. unsigned int objnr;
  2530. struct slab *slabp;
  2531. BUG_ON(virt_to_cache(objp) != cachep);
  2532. objp -= obj_offset(cachep);
  2533. kfree_debugcheck(objp);
  2534. page = virt_to_head_page(objp);
  2535. slabp = page_get_slab(page);
  2536. if (cachep->flags & SLAB_RED_ZONE) {
  2537. verify_redzone_free(cachep, objp);
  2538. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2539. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2540. }
  2541. if (cachep->flags & SLAB_STORE_USER)
  2542. *dbg_userword(cachep, objp) = caller;
  2543. objnr = obj_to_index(cachep, slabp, objp);
  2544. BUG_ON(objnr >= cachep->num);
  2545. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2546. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2547. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2548. #endif
  2549. if (cachep->flags & SLAB_POISON) {
  2550. #ifdef CONFIG_DEBUG_PAGEALLOC
  2551. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2552. store_stackinfo(cachep, objp, (unsigned long)caller);
  2553. kernel_map_pages(virt_to_page(objp),
  2554. cachep->buffer_size / PAGE_SIZE, 0);
  2555. } else {
  2556. poison_obj(cachep, objp, POISON_FREE);
  2557. }
  2558. #else
  2559. poison_obj(cachep, objp, POISON_FREE);
  2560. #endif
  2561. }
  2562. return objp;
  2563. }
  2564. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2565. {
  2566. kmem_bufctl_t i;
  2567. int entries = 0;
  2568. /* Check slab's freelist to see if this obj is there. */
  2569. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2570. entries++;
  2571. if (entries > cachep->num || i >= cachep->num)
  2572. goto bad;
  2573. }
  2574. if (entries != cachep->num - slabp->inuse) {
  2575. bad:
  2576. printk(KERN_ERR "slab: Internal list corruption detected in "
  2577. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2578. cachep->name, cachep->num, slabp, slabp->inuse);
  2579. for (i = 0;
  2580. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2581. i++) {
  2582. if (i % 16 == 0)
  2583. printk("\n%03x:", i);
  2584. printk(" %02x", ((unsigned char *)slabp)[i]);
  2585. }
  2586. printk("\n");
  2587. BUG();
  2588. }
  2589. }
  2590. #else
  2591. #define kfree_debugcheck(x) do { } while(0)
  2592. #define cache_free_debugcheck(x,objp,z) (objp)
  2593. #define check_slabp(x,y) do { } while(0)
  2594. #endif
  2595. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2596. {
  2597. int batchcount;
  2598. struct kmem_list3 *l3;
  2599. struct array_cache *ac;
  2600. int node;
  2601. retry:
  2602. check_irq_off();
  2603. node = numa_node_id();
  2604. ac = cpu_cache_get(cachep);
  2605. batchcount = ac->batchcount;
  2606. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2607. /*
  2608. * If there was little recent activity on this cache, then
  2609. * perform only a partial refill. Otherwise we could generate
  2610. * refill bouncing.
  2611. */
  2612. batchcount = BATCHREFILL_LIMIT;
  2613. }
  2614. l3 = cachep->nodelists[node];
  2615. BUG_ON(ac->avail > 0 || !l3);
  2616. spin_lock(&l3->list_lock);
  2617. /* See if we can refill from the shared array */
  2618. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2619. goto alloc_done;
  2620. while (batchcount > 0) {
  2621. struct list_head *entry;
  2622. struct slab *slabp;
  2623. /* Get slab alloc is to come from. */
  2624. entry = l3->slabs_partial.next;
  2625. if (entry == &l3->slabs_partial) {
  2626. l3->free_touched = 1;
  2627. entry = l3->slabs_free.next;
  2628. if (entry == &l3->slabs_free)
  2629. goto must_grow;
  2630. }
  2631. slabp = list_entry(entry, struct slab, list);
  2632. check_slabp(cachep, slabp);
  2633. check_spinlock_acquired(cachep);
  2634. /*
  2635. * The slab was either on partial or free list so
  2636. * there must be at least one object available for
  2637. * allocation.
  2638. */
  2639. BUG_ON(slabp->inuse >= cachep->num);
  2640. while (slabp->inuse < cachep->num && batchcount--) {
  2641. STATS_INC_ALLOCED(cachep);
  2642. STATS_INC_ACTIVE(cachep);
  2643. STATS_SET_HIGH(cachep);
  2644. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2645. node);
  2646. }
  2647. check_slabp(cachep, slabp);
  2648. /* move slabp to correct slabp list: */
  2649. list_del(&slabp->list);
  2650. if (slabp->free == BUFCTL_END)
  2651. list_add(&slabp->list, &l3->slabs_full);
  2652. else
  2653. list_add(&slabp->list, &l3->slabs_partial);
  2654. }
  2655. must_grow:
  2656. l3->free_objects -= ac->avail;
  2657. alloc_done:
  2658. spin_unlock(&l3->list_lock);
  2659. if (unlikely(!ac->avail)) {
  2660. int x;
  2661. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2662. /* cache_grow can reenable interrupts, then ac could change. */
  2663. ac = cpu_cache_get(cachep);
  2664. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2665. return NULL;
  2666. if (!ac->avail) /* objects refilled by interrupt? */
  2667. goto retry;
  2668. }
  2669. ac->touched = 1;
  2670. return ac->entry[--ac->avail];
  2671. }
  2672. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2673. gfp_t flags)
  2674. {
  2675. might_sleep_if(flags & __GFP_WAIT);
  2676. #if DEBUG
  2677. kmem_flagcheck(cachep, flags);
  2678. #endif
  2679. }
  2680. #if DEBUG
  2681. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2682. gfp_t flags, void *objp, void *caller)
  2683. {
  2684. if (!objp)
  2685. return objp;
  2686. if (cachep->flags & SLAB_POISON) {
  2687. #ifdef CONFIG_DEBUG_PAGEALLOC
  2688. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2689. kernel_map_pages(virt_to_page(objp),
  2690. cachep->buffer_size / PAGE_SIZE, 1);
  2691. else
  2692. check_poison_obj(cachep, objp);
  2693. #else
  2694. check_poison_obj(cachep, objp);
  2695. #endif
  2696. poison_obj(cachep, objp, POISON_INUSE);
  2697. }
  2698. if (cachep->flags & SLAB_STORE_USER)
  2699. *dbg_userword(cachep, objp) = caller;
  2700. if (cachep->flags & SLAB_RED_ZONE) {
  2701. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2702. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2703. slab_error(cachep, "double free, or memory outside"
  2704. " object was overwritten");
  2705. printk(KERN_ERR
  2706. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2707. objp, *dbg_redzone1(cachep, objp),
  2708. *dbg_redzone2(cachep, objp));
  2709. }
  2710. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2711. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2712. }
  2713. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2714. {
  2715. struct slab *slabp;
  2716. unsigned objnr;
  2717. slabp = page_get_slab(virt_to_head_page(objp));
  2718. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2719. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2720. }
  2721. #endif
  2722. objp += obj_offset(cachep);
  2723. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2724. cachep->ctor(objp);
  2725. #if ARCH_SLAB_MINALIGN
  2726. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2727. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2728. objp, ARCH_SLAB_MINALIGN);
  2729. }
  2730. #endif
  2731. return objp;
  2732. }
  2733. #else
  2734. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2735. #endif
  2736. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2737. {
  2738. if (cachep == &cache_cache)
  2739. return false;
  2740. return should_failslab(obj_size(cachep), flags);
  2741. }
  2742. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2743. {
  2744. void *objp;
  2745. struct array_cache *ac;
  2746. check_irq_off();
  2747. ac = cpu_cache_get(cachep);
  2748. if (likely(ac->avail)) {
  2749. STATS_INC_ALLOCHIT(cachep);
  2750. ac->touched = 1;
  2751. objp = ac->entry[--ac->avail];
  2752. } else {
  2753. STATS_INC_ALLOCMISS(cachep);
  2754. objp = cache_alloc_refill(cachep, flags);
  2755. /*
  2756. * the 'ac' may be updated by cache_alloc_refill(),
  2757. * and kmemleak_erase() requires its correct value.
  2758. */
  2759. ac = cpu_cache_get(cachep);
  2760. }
  2761. /*
  2762. * To avoid a false negative, if an object that is in one of the
  2763. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2764. * treat the array pointers as a reference to the object.
  2765. */
  2766. if (objp)
  2767. kmemleak_erase(&ac->entry[ac->avail]);
  2768. return objp;
  2769. }
  2770. #ifdef CONFIG_NUMA
  2771. /*
  2772. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2773. *
  2774. * If we are in_interrupt, then process context, including cpusets and
  2775. * mempolicy, may not apply and should not be used for allocation policy.
  2776. */
  2777. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2778. {
  2779. int nid_alloc, nid_here;
  2780. if (in_interrupt() || (flags & __GFP_THISNODE))
  2781. return NULL;
  2782. nid_alloc = nid_here = numa_node_id();
  2783. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2784. nid_alloc = cpuset_mem_spread_node();
  2785. else if (current->mempolicy)
  2786. nid_alloc = slab_node(current->mempolicy);
  2787. if (nid_alloc != nid_here)
  2788. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2789. return NULL;
  2790. }
  2791. /*
  2792. * Fallback function if there was no memory available and no objects on a
  2793. * certain node and fall back is permitted. First we scan all the
  2794. * available nodelists for available objects. If that fails then we
  2795. * perform an allocation without specifying a node. This allows the page
  2796. * allocator to do its reclaim / fallback magic. We then insert the
  2797. * slab into the proper nodelist and then allocate from it.
  2798. */
  2799. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2800. {
  2801. struct zonelist *zonelist;
  2802. gfp_t local_flags;
  2803. struct zoneref *z;
  2804. struct zone *zone;
  2805. enum zone_type high_zoneidx = gfp_zone(flags);
  2806. void *obj = NULL;
  2807. int nid;
  2808. if (flags & __GFP_THISNODE)
  2809. return NULL;
  2810. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2811. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2812. retry:
  2813. /*
  2814. * Look through allowed nodes for objects available
  2815. * from existing per node queues.
  2816. */
  2817. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2818. nid = zone_to_nid(zone);
  2819. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2820. cache->nodelists[nid] &&
  2821. cache->nodelists[nid]->free_objects) {
  2822. obj = ____cache_alloc_node(cache,
  2823. flags | GFP_THISNODE, nid);
  2824. if (obj)
  2825. break;
  2826. }
  2827. }
  2828. if (!obj) {
  2829. /*
  2830. * This allocation will be performed within the constraints
  2831. * of the current cpuset / memory policy requirements.
  2832. * We may trigger various forms of reclaim on the allowed
  2833. * set and go into memory reserves if necessary.
  2834. */
  2835. if (local_flags & __GFP_WAIT)
  2836. local_irq_enable();
  2837. kmem_flagcheck(cache, flags);
  2838. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2839. if (local_flags & __GFP_WAIT)
  2840. local_irq_disable();
  2841. if (obj) {
  2842. /*
  2843. * Insert into the appropriate per node queues
  2844. */
  2845. nid = page_to_nid(virt_to_page(obj));
  2846. if (cache_grow(cache, flags, nid, obj)) {
  2847. obj = ____cache_alloc_node(cache,
  2848. flags | GFP_THISNODE, nid);
  2849. if (!obj)
  2850. /*
  2851. * Another processor may allocate the
  2852. * objects in the slab since we are
  2853. * not holding any locks.
  2854. */
  2855. goto retry;
  2856. } else {
  2857. /* cache_grow already freed obj */
  2858. obj = NULL;
  2859. }
  2860. }
  2861. }
  2862. return obj;
  2863. }
  2864. /*
  2865. * A interface to enable slab creation on nodeid
  2866. */
  2867. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2868. int nodeid)
  2869. {
  2870. struct list_head *entry;
  2871. struct slab *slabp;
  2872. struct kmem_list3 *l3;
  2873. void *obj;
  2874. int x;
  2875. l3 = cachep->nodelists[nodeid];
  2876. BUG_ON(!l3);
  2877. retry:
  2878. check_irq_off();
  2879. spin_lock(&l3->list_lock);
  2880. entry = l3->slabs_partial.next;
  2881. if (entry == &l3->slabs_partial) {
  2882. l3->free_touched = 1;
  2883. entry = l3->slabs_free.next;
  2884. if (entry == &l3->slabs_free)
  2885. goto must_grow;
  2886. }
  2887. slabp = list_entry(entry, struct slab, list);
  2888. check_spinlock_acquired_node(cachep, nodeid);
  2889. check_slabp(cachep, slabp);
  2890. STATS_INC_NODEALLOCS(cachep);
  2891. STATS_INC_ACTIVE(cachep);
  2892. STATS_SET_HIGH(cachep);
  2893. BUG_ON(slabp->inuse == cachep->num);
  2894. obj = slab_get_obj(cachep, slabp, nodeid);
  2895. check_slabp(cachep, slabp);
  2896. l3->free_objects--;
  2897. /* move slabp to correct slabp list: */
  2898. list_del(&slabp->list);
  2899. if (slabp->free == BUFCTL_END)
  2900. list_add(&slabp->list, &l3->slabs_full);
  2901. else
  2902. list_add(&slabp->list, &l3->slabs_partial);
  2903. spin_unlock(&l3->list_lock);
  2904. goto done;
  2905. must_grow:
  2906. spin_unlock(&l3->list_lock);
  2907. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2908. if (x)
  2909. goto retry;
  2910. return fallback_alloc(cachep, flags);
  2911. done:
  2912. return obj;
  2913. }
  2914. /**
  2915. * kmem_cache_alloc_node - Allocate an object on the specified node
  2916. * @cachep: The cache to allocate from.
  2917. * @flags: See kmalloc().
  2918. * @nodeid: node number of the target node.
  2919. * @caller: return address of caller, used for debug information
  2920. *
  2921. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2922. * node, which can improve the performance for cpu bound structures.
  2923. *
  2924. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2925. */
  2926. static __always_inline void *
  2927. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2928. void *caller)
  2929. {
  2930. unsigned long save_flags;
  2931. void *ptr;
  2932. flags &= gfp_allowed_mask;
  2933. lockdep_trace_alloc(flags);
  2934. if (slab_should_failslab(cachep, flags))
  2935. return NULL;
  2936. cache_alloc_debugcheck_before(cachep, flags);
  2937. local_irq_save(save_flags);
  2938. if (nodeid == -1)
  2939. nodeid = numa_node_id();
  2940. if (unlikely(!cachep->nodelists[nodeid])) {
  2941. /* Node not bootstrapped yet */
  2942. ptr = fallback_alloc(cachep, flags);
  2943. goto out;
  2944. }
  2945. if (nodeid == numa_node_id()) {
  2946. /*
  2947. * Use the locally cached objects if possible.
  2948. * However ____cache_alloc does not allow fallback
  2949. * to other nodes. It may fail while we still have
  2950. * objects on other nodes available.
  2951. */
  2952. ptr = ____cache_alloc(cachep, flags);
  2953. if (ptr)
  2954. goto out;
  2955. }
  2956. /* ___cache_alloc_node can fall back to other nodes */
  2957. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2958. out:
  2959. local_irq_restore(save_flags);
  2960. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2961. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  2962. flags);
  2963. if (likely(ptr))
  2964. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  2965. if (unlikely((flags & __GFP_ZERO) && ptr))
  2966. memset(ptr, 0, obj_size(cachep));
  2967. return ptr;
  2968. }
  2969. static __always_inline void *
  2970. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2971. {
  2972. void *objp;
  2973. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2974. objp = alternate_node_alloc(cache, flags);
  2975. if (objp)
  2976. goto out;
  2977. }
  2978. objp = ____cache_alloc(cache, flags);
  2979. /*
  2980. * We may just have run out of memory on the local node.
  2981. * ____cache_alloc_node() knows how to locate memory on other nodes
  2982. */
  2983. if (!objp)
  2984. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2985. out:
  2986. return objp;
  2987. }
  2988. #else
  2989. static __always_inline void *
  2990. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2991. {
  2992. return ____cache_alloc(cachep, flags);
  2993. }
  2994. #endif /* CONFIG_NUMA */
  2995. static __always_inline void *
  2996. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2997. {
  2998. unsigned long save_flags;
  2999. void *objp;
  3000. flags &= gfp_allowed_mask;
  3001. lockdep_trace_alloc(flags);
  3002. if (slab_should_failslab(cachep, flags))
  3003. return NULL;
  3004. cache_alloc_debugcheck_before(cachep, flags);
  3005. local_irq_save(save_flags);
  3006. objp = __do_cache_alloc(cachep, flags);
  3007. local_irq_restore(save_flags);
  3008. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3009. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3010. flags);
  3011. prefetchw(objp);
  3012. if (likely(objp))
  3013. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3014. if (unlikely((flags & __GFP_ZERO) && objp))
  3015. memset(objp, 0, obj_size(cachep));
  3016. return objp;
  3017. }
  3018. /*
  3019. * Caller needs to acquire correct kmem_list's list_lock
  3020. */
  3021. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3022. int node)
  3023. {
  3024. int i;
  3025. struct kmem_list3 *l3;
  3026. for (i = 0; i < nr_objects; i++) {
  3027. void *objp = objpp[i];
  3028. struct slab *slabp;
  3029. slabp = virt_to_slab(objp);
  3030. l3 = cachep->nodelists[node];
  3031. list_del(&slabp->list);
  3032. check_spinlock_acquired_node(cachep, node);
  3033. check_slabp(cachep, slabp);
  3034. slab_put_obj(cachep, slabp, objp, node);
  3035. STATS_DEC_ACTIVE(cachep);
  3036. l3->free_objects++;
  3037. check_slabp(cachep, slabp);
  3038. /* fixup slab chains */
  3039. if (slabp->inuse == 0) {
  3040. if (l3->free_objects > l3->free_limit) {
  3041. l3->free_objects -= cachep->num;
  3042. /* No need to drop any previously held
  3043. * lock here, even if we have a off-slab slab
  3044. * descriptor it is guaranteed to come from
  3045. * a different cache, refer to comments before
  3046. * alloc_slabmgmt.
  3047. */
  3048. slab_destroy(cachep, slabp);
  3049. } else {
  3050. list_add(&slabp->list, &l3->slabs_free);
  3051. }
  3052. } else {
  3053. /* Unconditionally move a slab to the end of the
  3054. * partial list on free - maximum time for the
  3055. * other objects to be freed, too.
  3056. */
  3057. list_add_tail(&slabp->list, &l3->slabs_partial);
  3058. }
  3059. }
  3060. }
  3061. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3062. {
  3063. int batchcount;
  3064. struct kmem_list3 *l3;
  3065. int node = numa_node_id();
  3066. batchcount = ac->batchcount;
  3067. #if DEBUG
  3068. BUG_ON(!batchcount || batchcount > ac->avail);
  3069. #endif
  3070. check_irq_off();
  3071. l3 = cachep->nodelists[node];
  3072. spin_lock(&l3->list_lock);
  3073. if (l3->shared) {
  3074. struct array_cache *shared_array = l3->shared;
  3075. int max = shared_array->limit - shared_array->avail;
  3076. if (max) {
  3077. if (batchcount > max)
  3078. batchcount = max;
  3079. memcpy(&(shared_array->entry[shared_array->avail]),
  3080. ac->entry, sizeof(void *) * batchcount);
  3081. shared_array->avail += batchcount;
  3082. goto free_done;
  3083. }
  3084. }
  3085. free_block(cachep, ac->entry, batchcount, node);
  3086. free_done:
  3087. #if STATS
  3088. {
  3089. int i = 0;
  3090. struct list_head *p;
  3091. p = l3->slabs_free.next;
  3092. while (p != &(l3->slabs_free)) {
  3093. struct slab *slabp;
  3094. slabp = list_entry(p, struct slab, list);
  3095. BUG_ON(slabp->inuse);
  3096. i++;
  3097. p = p->next;
  3098. }
  3099. STATS_SET_FREEABLE(cachep, i);
  3100. }
  3101. #endif
  3102. spin_unlock(&l3->list_lock);
  3103. ac->avail -= batchcount;
  3104. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3105. }
  3106. /*
  3107. * Release an obj back to its cache. If the obj has a constructed state, it must
  3108. * be in this state _before_ it is released. Called with disabled ints.
  3109. */
  3110. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3111. {
  3112. struct array_cache *ac = cpu_cache_get(cachep);
  3113. check_irq_off();
  3114. kmemleak_free_recursive(objp, cachep->flags);
  3115. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3116. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3117. /*
  3118. * Skip calling cache_free_alien() when the platform is not numa.
  3119. * This will avoid cache misses that happen while accessing slabp (which
  3120. * is per page memory reference) to get nodeid. Instead use a global
  3121. * variable to skip the call, which is mostly likely to be present in
  3122. * the cache.
  3123. */
  3124. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3125. return;
  3126. if (likely(ac->avail < ac->limit)) {
  3127. STATS_INC_FREEHIT(cachep);
  3128. ac->entry[ac->avail++] = objp;
  3129. return;
  3130. } else {
  3131. STATS_INC_FREEMISS(cachep);
  3132. cache_flusharray(cachep, ac);
  3133. ac->entry[ac->avail++] = objp;
  3134. }
  3135. }
  3136. /**
  3137. * kmem_cache_alloc - Allocate an object
  3138. * @cachep: The cache to allocate from.
  3139. * @flags: See kmalloc().
  3140. *
  3141. * Allocate an object from this cache. The flags are only relevant
  3142. * if the cache has no available objects.
  3143. */
  3144. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3145. {
  3146. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3147. trace_kmem_cache_alloc(_RET_IP_, ret,
  3148. obj_size(cachep), cachep->buffer_size, flags);
  3149. return ret;
  3150. }
  3151. EXPORT_SYMBOL(kmem_cache_alloc);
  3152. #ifdef CONFIG_TRACING
  3153. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3154. {
  3155. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3156. }
  3157. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3158. #endif
  3159. /**
  3160. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3161. * @cachep: the cache we're checking against
  3162. * @ptr: pointer to validate
  3163. *
  3164. * This verifies that the untrusted pointer looks sane;
  3165. * it is _not_ a guarantee that the pointer is actually
  3166. * part of the slab cache in question, but it at least
  3167. * validates that the pointer can be dereferenced and
  3168. * looks half-way sane.
  3169. *
  3170. * Currently only used for dentry validation.
  3171. */
  3172. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3173. {
  3174. unsigned long addr = (unsigned long)ptr;
  3175. unsigned long min_addr = PAGE_OFFSET;
  3176. unsigned long align_mask = BYTES_PER_WORD - 1;
  3177. unsigned long size = cachep->buffer_size;
  3178. struct page *page;
  3179. if (unlikely(addr < min_addr))
  3180. goto out;
  3181. if (unlikely(addr > (unsigned long)high_memory - size))
  3182. goto out;
  3183. if (unlikely(addr & align_mask))
  3184. goto out;
  3185. if (unlikely(!kern_addr_valid(addr)))
  3186. goto out;
  3187. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3188. goto out;
  3189. page = virt_to_page(ptr);
  3190. if (unlikely(!PageSlab(page)))
  3191. goto out;
  3192. if (unlikely(page_get_cache(page) != cachep))
  3193. goto out;
  3194. return 1;
  3195. out:
  3196. return 0;
  3197. }
  3198. #ifdef CONFIG_NUMA
  3199. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3200. {
  3201. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3202. __builtin_return_address(0));
  3203. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3204. obj_size(cachep), cachep->buffer_size,
  3205. flags, nodeid);
  3206. return ret;
  3207. }
  3208. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3209. #ifdef CONFIG_TRACING
  3210. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3211. gfp_t flags,
  3212. int nodeid)
  3213. {
  3214. return __cache_alloc_node(cachep, flags, nodeid,
  3215. __builtin_return_address(0));
  3216. }
  3217. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3218. #endif
  3219. static __always_inline void *
  3220. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3221. {
  3222. struct kmem_cache *cachep;
  3223. void *ret;
  3224. cachep = kmem_find_general_cachep(size, flags);
  3225. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3226. return cachep;
  3227. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3228. trace_kmalloc_node((unsigned long) caller, ret,
  3229. size, cachep->buffer_size, flags, node);
  3230. return ret;
  3231. }
  3232. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3233. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3234. {
  3235. return __do_kmalloc_node(size, flags, node,
  3236. __builtin_return_address(0));
  3237. }
  3238. EXPORT_SYMBOL(__kmalloc_node);
  3239. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3240. int node, unsigned long caller)
  3241. {
  3242. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3243. }
  3244. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3245. #else
  3246. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3247. {
  3248. return __do_kmalloc_node(size, flags, node, NULL);
  3249. }
  3250. EXPORT_SYMBOL(__kmalloc_node);
  3251. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3252. #endif /* CONFIG_NUMA */
  3253. /**
  3254. * __do_kmalloc - allocate memory
  3255. * @size: how many bytes of memory are required.
  3256. * @flags: the type of memory to allocate (see kmalloc).
  3257. * @caller: function caller for debug tracking of the caller
  3258. */
  3259. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3260. void *caller)
  3261. {
  3262. struct kmem_cache *cachep;
  3263. void *ret;
  3264. /* If you want to save a few bytes .text space: replace
  3265. * __ with kmem_.
  3266. * Then kmalloc uses the uninlined functions instead of the inline
  3267. * functions.
  3268. */
  3269. cachep = __find_general_cachep(size, flags);
  3270. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3271. return cachep;
  3272. ret = __cache_alloc(cachep, flags, caller);
  3273. trace_kmalloc((unsigned long) caller, ret,
  3274. size, cachep->buffer_size, flags);
  3275. return ret;
  3276. }
  3277. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3278. void *__kmalloc(size_t size, gfp_t flags)
  3279. {
  3280. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3281. }
  3282. EXPORT_SYMBOL(__kmalloc);
  3283. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3284. {
  3285. return __do_kmalloc(size, flags, (void *)caller);
  3286. }
  3287. EXPORT_SYMBOL(__kmalloc_track_caller);
  3288. #else
  3289. void *__kmalloc(size_t size, gfp_t flags)
  3290. {
  3291. return __do_kmalloc(size, flags, NULL);
  3292. }
  3293. EXPORT_SYMBOL(__kmalloc);
  3294. #endif
  3295. /**
  3296. * kmem_cache_free - Deallocate an object
  3297. * @cachep: The cache the allocation was from.
  3298. * @objp: The previously allocated object.
  3299. *
  3300. * Free an object which was previously allocated from this
  3301. * cache.
  3302. */
  3303. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3304. {
  3305. unsigned long flags;
  3306. local_irq_save(flags);
  3307. debug_check_no_locks_freed(objp, obj_size(cachep));
  3308. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3309. debug_check_no_obj_freed(objp, obj_size(cachep));
  3310. __cache_free(cachep, objp);
  3311. local_irq_restore(flags);
  3312. trace_kmem_cache_free(_RET_IP_, objp);
  3313. }
  3314. EXPORT_SYMBOL(kmem_cache_free);
  3315. /**
  3316. * kfree - free previously allocated memory
  3317. * @objp: pointer returned by kmalloc.
  3318. *
  3319. * If @objp is NULL, no operation is performed.
  3320. *
  3321. * Don't free memory not originally allocated by kmalloc()
  3322. * or you will run into trouble.
  3323. */
  3324. void kfree(const void *objp)
  3325. {
  3326. struct kmem_cache *c;
  3327. unsigned long flags;
  3328. trace_kfree(_RET_IP_, objp);
  3329. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3330. return;
  3331. local_irq_save(flags);
  3332. kfree_debugcheck(objp);
  3333. c = virt_to_cache(objp);
  3334. debug_check_no_locks_freed(objp, obj_size(c));
  3335. debug_check_no_obj_freed(objp, obj_size(c));
  3336. __cache_free(c, (void *)objp);
  3337. local_irq_restore(flags);
  3338. }
  3339. EXPORT_SYMBOL(kfree);
  3340. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3341. {
  3342. return obj_size(cachep);
  3343. }
  3344. EXPORT_SYMBOL(kmem_cache_size);
  3345. const char *kmem_cache_name(struct kmem_cache *cachep)
  3346. {
  3347. return cachep->name;
  3348. }
  3349. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3350. /*
  3351. * This initializes kmem_list3 or resizes various caches for all nodes.
  3352. */
  3353. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3354. {
  3355. int node;
  3356. struct kmem_list3 *l3;
  3357. struct array_cache *new_shared;
  3358. struct array_cache **new_alien = NULL;
  3359. for_each_online_node(node) {
  3360. if (use_alien_caches) {
  3361. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3362. if (!new_alien)
  3363. goto fail;
  3364. }
  3365. new_shared = NULL;
  3366. if (cachep->shared) {
  3367. new_shared = alloc_arraycache(node,
  3368. cachep->shared*cachep->batchcount,
  3369. 0xbaadf00d, gfp);
  3370. if (!new_shared) {
  3371. free_alien_cache(new_alien);
  3372. goto fail;
  3373. }
  3374. }
  3375. l3 = cachep->nodelists[node];
  3376. if (l3) {
  3377. struct array_cache *shared = l3->shared;
  3378. spin_lock_irq(&l3->list_lock);
  3379. if (shared)
  3380. free_block(cachep, shared->entry,
  3381. shared->avail, node);
  3382. l3->shared = new_shared;
  3383. if (!l3->alien) {
  3384. l3->alien = new_alien;
  3385. new_alien = NULL;
  3386. }
  3387. l3->free_limit = (1 + nr_cpus_node(node)) *
  3388. cachep->batchcount + cachep->num;
  3389. spin_unlock_irq(&l3->list_lock);
  3390. kfree(shared);
  3391. free_alien_cache(new_alien);
  3392. continue;
  3393. }
  3394. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3395. if (!l3) {
  3396. free_alien_cache(new_alien);
  3397. kfree(new_shared);
  3398. goto fail;
  3399. }
  3400. kmem_list3_init(l3);
  3401. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3402. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3403. l3->shared = new_shared;
  3404. l3->alien = new_alien;
  3405. l3->free_limit = (1 + nr_cpus_node(node)) *
  3406. cachep->batchcount + cachep->num;
  3407. cachep->nodelists[node] = l3;
  3408. }
  3409. return 0;
  3410. fail:
  3411. if (!cachep->next.next) {
  3412. /* Cache is not active yet. Roll back what we did */
  3413. node--;
  3414. while (node >= 0) {
  3415. if (cachep->nodelists[node]) {
  3416. l3 = cachep->nodelists[node];
  3417. kfree(l3->shared);
  3418. free_alien_cache(l3->alien);
  3419. kfree(l3);
  3420. cachep->nodelists[node] = NULL;
  3421. }
  3422. node--;
  3423. }
  3424. }
  3425. return -ENOMEM;
  3426. }
  3427. struct ccupdate_struct {
  3428. struct kmem_cache *cachep;
  3429. struct array_cache *new[NR_CPUS];
  3430. };
  3431. static void do_ccupdate_local(void *info)
  3432. {
  3433. struct ccupdate_struct *new = info;
  3434. struct array_cache *old;
  3435. check_irq_off();
  3436. old = cpu_cache_get(new->cachep);
  3437. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3438. new->new[smp_processor_id()] = old;
  3439. }
  3440. /* Always called with the cache_chain_mutex held */
  3441. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3442. int batchcount, int shared, gfp_t gfp)
  3443. {
  3444. struct ccupdate_struct *new;
  3445. int i;
  3446. new = kzalloc(sizeof(*new), gfp);
  3447. if (!new)
  3448. return -ENOMEM;
  3449. for_each_online_cpu(i) {
  3450. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3451. batchcount, gfp);
  3452. if (!new->new[i]) {
  3453. for (i--; i >= 0; i--)
  3454. kfree(new->new[i]);
  3455. kfree(new);
  3456. return -ENOMEM;
  3457. }
  3458. }
  3459. new->cachep = cachep;
  3460. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3461. check_irq_on();
  3462. cachep->batchcount = batchcount;
  3463. cachep->limit = limit;
  3464. cachep->shared = shared;
  3465. for_each_online_cpu(i) {
  3466. struct array_cache *ccold = new->new[i];
  3467. if (!ccold)
  3468. continue;
  3469. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3470. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3471. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3472. kfree(ccold);
  3473. }
  3474. kfree(new);
  3475. return alloc_kmemlist(cachep, gfp);
  3476. }
  3477. /* Called with cache_chain_mutex held always */
  3478. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3479. {
  3480. int err;
  3481. int limit, shared;
  3482. /*
  3483. * The head array serves three purposes:
  3484. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3485. * - reduce the number of spinlock operations.
  3486. * - reduce the number of linked list operations on the slab and
  3487. * bufctl chains: array operations are cheaper.
  3488. * The numbers are guessed, we should auto-tune as described by
  3489. * Bonwick.
  3490. */
  3491. if (cachep->buffer_size > 131072)
  3492. limit = 1;
  3493. else if (cachep->buffer_size > PAGE_SIZE)
  3494. limit = 8;
  3495. else if (cachep->buffer_size > 1024)
  3496. limit = 24;
  3497. else if (cachep->buffer_size > 256)
  3498. limit = 54;
  3499. else
  3500. limit = 120;
  3501. /*
  3502. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3503. * allocation behaviour: Most allocs on one cpu, most free operations
  3504. * on another cpu. For these cases, an efficient object passing between
  3505. * cpus is necessary. This is provided by a shared array. The array
  3506. * replaces Bonwick's magazine layer.
  3507. * On uniprocessor, it's functionally equivalent (but less efficient)
  3508. * to a larger limit. Thus disabled by default.
  3509. */
  3510. shared = 0;
  3511. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3512. shared = 8;
  3513. #if DEBUG
  3514. /*
  3515. * With debugging enabled, large batchcount lead to excessively long
  3516. * periods with disabled local interrupts. Limit the batchcount
  3517. */
  3518. if (limit > 32)
  3519. limit = 32;
  3520. #endif
  3521. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3522. if (err)
  3523. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3524. cachep->name, -err);
  3525. return err;
  3526. }
  3527. /*
  3528. * Drain an array if it contains any elements taking the l3 lock only if
  3529. * necessary. Note that the l3 listlock also protects the array_cache
  3530. * if drain_array() is used on the shared array.
  3531. */
  3532. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3533. struct array_cache *ac, int force, int node)
  3534. {
  3535. int tofree;
  3536. if (!ac || !ac->avail)
  3537. return;
  3538. if (ac->touched && !force) {
  3539. ac->touched = 0;
  3540. } else {
  3541. spin_lock_irq(&l3->list_lock);
  3542. if (ac->avail) {
  3543. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3544. if (tofree > ac->avail)
  3545. tofree = (ac->avail + 1) / 2;
  3546. free_block(cachep, ac->entry, tofree, node);
  3547. ac->avail -= tofree;
  3548. memmove(ac->entry, &(ac->entry[tofree]),
  3549. sizeof(void *) * ac->avail);
  3550. }
  3551. spin_unlock_irq(&l3->list_lock);
  3552. }
  3553. }
  3554. /**
  3555. * cache_reap - Reclaim memory from caches.
  3556. * @w: work descriptor
  3557. *
  3558. * Called from workqueue/eventd every few seconds.
  3559. * Purpose:
  3560. * - clear the per-cpu caches for this CPU.
  3561. * - return freeable pages to the main free memory pool.
  3562. *
  3563. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3564. * again on the next iteration.
  3565. */
  3566. static void cache_reap(struct work_struct *w)
  3567. {
  3568. struct kmem_cache *searchp;
  3569. struct kmem_list3 *l3;
  3570. int node = numa_node_id();
  3571. struct delayed_work *work = to_delayed_work(w);
  3572. if (!mutex_trylock(&cache_chain_mutex))
  3573. /* Give up. Setup the next iteration. */
  3574. goto out;
  3575. list_for_each_entry(searchp, &cache_chain, next) {
  3576. check_irq_on();
  3577. /*
  3578. * We only take the l3 lock if absolutely necessary and we
  3579. * have established with reasonable certainty that
  3580. * we can do some work if the lock was obtained.
  3581. */
  3582. l3 = searchp->nodelists[node];
  3583. reap_alien(searchp, l3);
  3584. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3585. /*
  3586. * These are racy checks but it does not matter
  3587. * if we skip one check or scan twice.
  3588. */
  3589. if (time_after(l3->next_reap, jiffies))
  3590. goto next;
  3591. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3592. drain_array(searchp, l3, l3->shared, 0, node);
  3593. if (l3->free_touched)
  3594. l3->free_touched = 0;
  3595. else {
  3596. int freed;
  3597. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3598. 5 * searchp->num - 1) / (5 * searchp->num));
  3599. STATS_ADD_REAPED(searchp, freed);
  3600. }
  3601. next:
  3602. cond_resched();
  3603. }
  3604. check_irq_on();
  3605. mutex_unlock(&cache_chain_mutex);
  3606. next_reap_node();
  3607. out:
  3608. /* Set up the next iteration */
  3609. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3610. }
  3611. #ifdef CONFIG_SLABINFO
  3612. static void print_slabinfo_header(struct seq_file *m)
  3613. {
  3614. /*
  3615. * Output format version, so at least we can change it
  3616. * without _too_ many complaints.
  3617. */
  3618. #if STATS
  3619. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3620. #else
  3621. seq_puts(m, "slabinfo - version: 2.1\n");
  3622. #endif
  3623. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3624. "<objperslab> <pagesperslab>");
  3625. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3626. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3627. #if STATS
  3628. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3629. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3630. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3631. #endif
  3632. seq_putc(m, '\n');
  3633. }
  3634. static void *s_start(struct seq_file *m, loff_t *pos)
  3635. {
  3636. loff_t n = *pos;
  3637. mutex_lock(&cache_chain_mutex);
  3638. if (!n)
  3639. print_slabinfo_header(m);
  3640. return seq_list_start(&cache_chain, *pos);
  3641. }
  3642. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3643. {
  3644. return seq_list_next(p, &cache_chain, pos);
  3645. }
  3646. static void s_stop(struct seq_file *m, void *p)
  3647. {
  3648. mutex_unlock(&cache_chain_mutex);
  3649. }
  3650. static int s_show(struct seq_file *m, void *p)
  3651. {
  3652. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3653. struct slab *slabp;
  3654. unsigned long active_objs;
  3655. unsigned long num_objs;
  3656. unsigned long active_slabs = 0;
  3657. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3658. const char *name;
  3659. char *error = NULL;
  3660. int node;
  3661. struct kmem_list3 *l3;
  3662. active_objs = 0;
  3663. num_slabs = 0;
  3664. for_each_online_node(node) {
  3665. l3 = cachep->nodelists[node];
  3666. if (!l3)
  3667. continue;
  3668. check_irq_on();
  3669. spin_lock_irq(&l3->list_lock);
  3670. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3671. if (slabp->inuse != cachep->num && !error)
  3672. error = "slabs_full accounting error";
  3673. active_objs += cachep->num;
  3674. active_slabs++;
  3675. }
  3676. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3677. if (slabp->inuse == cachep->num && !error)
  3678. error = "slabs_partial inuse accounting error";
  3679. if (!slabp->inuse && !error)
  3680. error = "slabs_partial/inuse accounting error";
  3681. active_objs += slabp->inuse;
  3682. active_slabs++;
  3683. }
  3684. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3685. if (slabp->inuse && !error)
  3686. error = "slabs_free/inuse accounting error";
  3687. num_slabs++;
  3688. }
  3689. free_objects += l3->free_objects;
  3690. if (l3->shared)
  3691. shared_avail += l3->shared->avail;
  3692. spin_unlock_irq(&l3->list_lock);
  3693. }
  3694. num_slabs += active_slabs;
  3695. num_objs = num_slabs * cachep->num;
  3696. if (num_objs - active_objs != free_objects && !error)
  3697. error = "free_objects accounting error";
  3698. name = cachep->name;
  3699. if (error)
  3700. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3701. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3702. name, active_objs, num_objs, cachep->buffer_size,
  3703. cachep->num, (1 << cachep->gfporder));
  3704. seq_printf(m, " : tunables %4u %4u %4u",
  3705. cachep->limit, cachep->batchcount, cachep->shared);
  3706. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3707. active_slabs, num_slabs, shared_avail);
  3708. #if STATS
  3709. { /* list3 stats */
  3710. unsigned long high = cachep->high_mark;
  3711. unsigned long allocs = cachep->num_allocations;
  3712. unsigned long grown = cachep->grown;
  3713. unsigned long reaped = cachep->reaped;
  3714. unsigned long errors = cachep->errors;
  3715. unsigned long max_freeable = cachep->max_freeable;
  3716. unsigned long node_allocs = cachep->node_allocs;
  3717. unsigned long node_frees = cachep->node_frees;
  3718. unsigned long overflows = cachep->node_overflow;
  3719. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3720. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3721. reaped, errors, max_freeable, node_allocs,
  3722. node_frees, overflows);
  3723. }
  3724. /* cpu stats */
  3725. {
  3726. unsigned long allochit = atomic_read(&cachep->allochit);
  3727. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3728. unsigned long freehit = atomic_read(&cachep->freehit);
  3729. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3730. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3731. allochit, allocmiss, freehit, freemiss);
  3732. }
  3733. #endif
  3734. seq_putc(m, '\n');
  3735. return 0;
  3736. }
  3737. /*
  3738. * slabinfo_op - iterator that generates /proc/slabinfo
  3739. *
  3740. * Output layout:
  3741. * cache-name
  3742. * num-active-objs
  3743. * total-objs
  3744. * object size
  3745. * num-active-slabs
  3746. * total-slabs
  3747. * num-pages-per-slab
  3748. * + further values on SMP and with statistics enabled
  3749. */
  3750. static const struct seq_operations slabinfo_op = {
  3751. .start = s_start,
  3752. .next = s_next,
  3753. .stop = s_stop,
  3754. .show = s_show,
  3755. };
  3756. #define MAX_SLABINFO_WRITE 128
  3757. /**
  3758. * slabinfo_write - Tuning for the slab allocator
  3759. * @file: unused
  3760. * @buffer: user buffer
  3761. * @count: data length
  3762. * @ppos: unused
  3763. */
  3764. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3765. size_t count, loff_t *ppos)
  3766. {
  3767. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3768. int limit, batchcount, shared, res;
  3769. struct kmem_cache *cachep;
  3770. if (count > MAX_SLABINFO_WRITE)
  3771. return -EINVAL;
  3772. if (copy_from_user(&kbuf, buffer, count))
  3773. return -EFAULT;
  3774. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3775. tmp = strchr(kbuf, ' ');
  3776. if (!tmp)
  3777. return -EINVAL;
  3778. *tmp = '\0';
  3779. tmp++;
  3780. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3781. return -EINVAL;
  3782. /* Find the cache in the chain of caches. */
  3783. mutex_lock(&cache_chain_mutex);
  3784. res = -EINVAL;
  3785. list_for_each_entry(cachep, &cache_chain, next) {
  3786. if (!strcmp(cachep->name, kbuf)) {
  3787. if (limit < 1 || batchcount < 1 ||
  3788. batchcount > limit || shared < 0) {
  3789. res = 0;
  3790. } else {
  3791. res = do_tune_cpucache(cachep, limit,
  3792. batchcount, shared,
  3793. GFP_KERNEL);
  3794. }
  3795. break;
  3796. }
  3797. }
  3798. mutex_unlock(&cache_chain_mutex);
  3799. if (res >= 0)
  3800. res = count;
  3801. return res;
  3802. }
  3803. static int slabinfo_open(struct inode *inode, struct file *file)
  3804. {
  3805. return seq_open(file, &slabinfo_op);
  3806. }
  3807. static const struct file_operations proc_slabinfo_operations = {
  3808. .open = slabinfo_open,
  3809. .read = seq_read,
  3810. .write = slabinfo_write,
  3811. .llseek = seq_lseek,
  3812. .release = seq_release,
  3813. };
  3814. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3815. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3816. {
  3817. mutex_lock(&cache_chain_mutex);
  3818. return seq_list_start(&cache_chain, *pos);
  3819. }
  3820. static inline int add_caller(unsigned long *n, unsigned long v)
  3821. {
  3822. unsigned long *p;
  3823. int l;
  3824. if (!v)
  3825. return 1;
  3826. l = n[1];
  3827. p = n + 2;
  3828. while (l) {
  3829. int i = l/2;
  3830. unsigned long *q = p + 2 * i;
  3831. if (*q == v) {
  3832. q[1]++;
  3833. return 1;
  3834. }
  3835. if (*q > v) {
  3836. l = i;
  3837. } else {
  3838. p = q + 2;
  3839. l -= i + 1;
  3840. }
  3841. }
  3842. if (++n[1] == n[0])
  3843. return 0;
  3844. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3845. p[0] = v;
  3846. p[1] = 1;
  3847. return 1;
  3848. }
  3849. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3850. {
  3851. void *p;
  3852. int i;
  3853. if (n[0] == n[1])
  3854. return;
  3855. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3856. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3857. continue;
  3858. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3859. return;
  3860. }
  3861. }
  3862. static void show_symbol(struct seq_file *m, unsigned long address)
  3863. {
  3864. #ifdef CONFIG_KALLSYMS
  3865. unsigned long offset, size;
  3866. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3867. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3868. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3869. if (modname[0])
  3870. seq_printf(m, " [%s]", modname);
  3871. return;
  3872. }
  3873. #endif
  3874. seq_printf(m, "%p", (void *)address);
  3875. }
  3876. static int leaks_show(struct seq_file *m, void *p)
  3877. {
  3878. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3879. struct slab *slabp;
  3880. struct kmem_list3 *l3;
  3881. const char *name;
  3882. unsigned long *n = m->private;
  3883. int node;
  3884. int i;
  3885. if (!(cachep->flags & SLAB_STORE_USER))
  3886. return 0;
  3887. if (!(cachep->flags & SLAB_RED_ZONE))
  3888. return 0;
  3889. /* OK, we can do it */
  3890. n[1] = 0;
  3891. for_each_online_node(node) {
  3892. l3 = cachep->nodelists[node];
  3893. if (!l3)
  3894. continue;
  3895. check_irq_on();
  3896. spin_lock_irq(&l3->list_lock);
  3897. list_for_each_entry(slabp, &l3->slabs_full, list)
  3898. handle_slab(n, cachep, slabp);
  3899. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3900. handle_slab(n, cachep, slabp);
  3901. spin_unlock_irq(&l3->list_lock);
  3902. }
  3903. name = cachep->name;
  3904. if (n[0] == n[1]) {
  3905. /* Increase the buffer size */
  3906. mutex_unlock(&cache_chain_mutex);
  3907. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3908. if (!m->private) {
  3909. /* Too bad, we are really out */
  3910. m->private = n;
  3911. mutex_lock(&cache_chain_mutex);
  3912. return -ENOMEM;
  3913. }
  3914. *(unsigned long *)m->private = n[0] * 2;
  3915. kfree(n);
  3916. mutex_lock(&cache_chain_mutex);
  3917. /* Now make sure this entry will be retried */
  3918. m->count = m->size;
  3919. return 0;
  3920. }
  3921. for (i = 0; i < n[1]; i++) {
  3922. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3923. show_symbol(m, n[2*i+2]);
  3924. seq_putc(m, '\n');
  3925. }
  3926. return 0;
  3927. }
  3928. static const struct seq_operations slabstats_op = {
  3929. .start = leaks_start,
  3930. .next = s_next,
  3931. .stop = s_stop,
  3932. .show = leaks_show,
  3933. };
  3934. static int slabstats_open(struct inode *inode, struct file *file)
  3935. {
  3936. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3937. int ret = -ENOMEM;
  3938. if (n) {
  3939. ret = seq_open(file, &slabstats_op);
  3940. if (!ret) {
  3941. struct seq_file *m = file->private_data;
  3942. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3943. m->private = n;
  3944. n = NULL;
  3945. }
  3946. kfree(n);
  3947. }
  3948. return ret;
  3949. }
  3950. static const struct file_operations proc_slabstats_operations = {
  3951. .open = slabstats_open,
  3952. .read = seq_read,
  3953. .llseek = seq_lseek,
  3954. .release = seq_release_private,
  3955. };
  3956. #endif
  3957. static int __init slab_proc_init(void)
  3958. {
  3959. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3960. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3961. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3962. #endif
  3963. return 0;
  3964. }
  3965. module_init(slab_proc_init);
  3966. #endif
  3967. /**
  3968. * ksize - get the actual amount of memory allocated for a given object
  3969. * @objp: Pointer to the object
  3970. *
  3971. * kmalloc may internally round up allocations and return more memory
  3972. * than requested. ksize() can be used to determine the actual amount of
  3973. * memory allocated. The caller may use this additional memory, even though
  3974. * a smaller amount of memory was initially specified with the kmalloc call.
  3975. * The caller must guarantee that objp points to a valid object previously
  3976. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3977. * must not be freed during the duration of the call.
  3978. */
  3979. size_t ksize(const void *objp)
  3980. {
  3981. BUG_ON(!objp);
  3982. if (unlikely(objp == ZERO_SIZE_PTR))
  3983. return 0;
  3984. return obj_size(virt_to_cache(objp));
  3985. }
  3986. EXPORT_SYMBOL(ksize);