page_alloc.c 141 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <linux/memory.h>
  51. #include <trace/events/kmem.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/div64.h>
  54. #include "internal.h"
  55. /*
  56. * Array of node states.
  57. */
  58. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  59. [N_POSSIBLE] = NODE_MASK_ALL,
  60. [N_ONLINE] = { { [0] = 1UL } },
  61. #ifndef CONFIG_NUMA
  62. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  63. #ifdef CONFIG_HIGHMEM
  64. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  65. #endif
  66. [N_CPU] = { { [0] = 1UL } },
  67. #endif /* NUMA */
  68. };
  69. EXPORT_SYMBOL(node_states);
  70. unsigned long totalram_pages __read_mostly;
  71. unsigned long totalreserve_pages __read_mostly;
  72. int percpu_pagelist_fraction;
  73. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  74. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  75. int pageblock_order __read_mostly;
  76. #endif
  77. static void __free_pages_ok(struct page *page, unsigned int order);
  78. /*
  79. * results with 256, 32 in the lowmem_reserve sysctl:
  80. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  81. * 1G machine -> (16M dma, 784M normal, 224M high)
  82. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  83. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  84. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  85. *
  86. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  87. * don't need any ZONE_NORMAL reservation
  88. */
  89. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  90. #ifdef CONFIG_ZONE_DMA
  91. 256,
  92. #endif
  93. #ifdef CONFIG_ZONE_DMA32
  94. 256,
  95. #endif
  96. #ifdef CONFIG_HIGHMEM
  97. 32,
  98. #endif
  99. 32,
  100. };
  101. EXPORT_SYMBOL(totalram_pages);
  102. static char * const zone_names[MAX_NR_ZONES] = {
  103. #ifdef CONFIG_ZONE_DMA
  104. "DMA",
  105. #endif
  106. #ifdef CONFIG_ZONE_DMA32
  107. "DMA32",
  108. #endif
  109. "Normal",
  110. #ifdef CONFIG_HIGHMEM
  111. "HighMem",
  112. #endif
  113. "Movable",
  114. };
  115. int min_free_kbytes = 1024;
  116. static unsigned long __meminitdata nr_kernel_pages;
  117. static unsigned long __meminitdata nr_all_pages;
  118. static unsigned long __meminitdata dma_reserve;
  119. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  120. /*
  121. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  122. * ranges of memory (RAM) that may be registered with add_active_range().
  123. * Ranges passed to add_active_range() will be merged if possible
  124. * so the number of times add_active_range() can be called is
  125. * related to the number of nodes and the number of holes
  126. */
  127. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  128. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  129. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  130. #else
  131. #if MAX_NUMNODES >= 32
  132. /* If there can be many nodes, allow up to 50 holes per node */
  133. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  134. #else
  135. /* By default, allow up to 256 distinct regions */
  136. #define MAX_ACTIVE_REGIONS 256
  137. #endif
  138. #endif
  139. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  140. static int __meminitdata nr_nodemap_entries;
  141. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  142. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. int nr_online_nodes __read_mostly = 1;
  153. EXPORT_SYMBOL(nr_node_ids);
  154. EXPORT_SYMBOL(nr_online_nodes);
  155. #endif
  156. int page_group_by_mobility_disabled __read_mostly;
  157. static void set_pageblock_migratetype(struct page *page, int migratetype)
  158. {
  159. if (unlikely(page_group_by_mobility_disabled))
  160. migratetype = MIGRATE_UNMOVABLE;
  161. set_pageblock_flags_group(page, (unsigned long)migratetype,
  162. PB_migrate, PB_migrate_end);
  163. }
  164. bool oom_killer_disabled __read_mostly;
  165. #ifdef CONFIG_DEBUG_VM
  166. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  167. {
  168. int ret = 0;
  169. unsigned seq;
  170. unsigned long pfn = page_to_pfn(page);
  171. do {
  172. seq = zone_span_seqbegin(zone);
  173. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  174. ret = 1;
  175. else if (pfn < zone->zone_start_pfn)
  176. ret = 1;
  177. } while (zone_span_seqretry(zone, seq));
  178. return ret;
  179. }
  180. static int page_is_consistent(struct zone *zone, struct page *page)
  181. {
  182. if (!pfn_valid_within(page_to_pfn(page)))
  183. return 0;
  184. if (zone != page_zone(page))
  185. return 0;
  186. return 1;
  187. }
  188. /*
  189. * Temporary debugging check for pages not lying within a given zone.
  190. */
  191. static int bad_range(struct zone *zone, struct page *page)
  192. {
  193. if (page_outside_zone_boundaries(zone, page))
  194. return 1;
  195. if (!page_is_consistent(zone, page))
  196. return 1;
  197. return 0;
  198. }
  199. #else
  200. static inline int bad_range(struct zone *zone, struct page *page)
  201. {
  202. return 0;
  203. }
  204. #endif
  205. static void bad_page(struct page *page)
  206. {
  207. static unsigned long resume;
  208. static unsigned long nr_shown;
  209. static unsigned long nr_unshown;
  210. /* Don't complain about poisoned pages */
  211. if (PageHWPoison(page)) {
  212. __ClearPageBuddy(page);
  213. return;
  214. }
  215. /*
  216. * Allow a burst of 60 reports, then keep quiet for that minute;
  217. * or allow a steady drip of one report per second.
  218. */
  219. if (nr_shown == 60) {
  220. if (time_before(jiffies, resume)) {
  221. nr_unshown++;
  222. goto out;
  223. }
  224. if (nr_unshown) {
  225. printk(KERN_ALERT
  226. "BUG: Bad page state: %lu messages suppressed\n",
  227. nr_unshown);
  228. nr_unshown = 0;
  229. }
  230. nr_shown = 0;
  231. }
  232. if (nr_shown++ == 0)
  233. resume = jiffies + 60 * HZ;
  234. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  235. current->comm, page_to_pfn(page));
  236. printk(KERN_ALERT
  237. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  238. page, (void *)page->flags, page_count(page),
  239. page_mapcount(page), page->mapping, page->index);
  240. dump_stack();
  241. out:
  242. /* Leave bad fields for debug, except PageBuddy could make trouble */
  243. __ClearPageBuddy(page);
  244. add_taint(TAINT_BAD_PAGE);
  245. }
  246. /*
  247. * Higher-order pages are called "compound pages". They are structured thusly:
  248. *
  249. * The first PAGE_SIZE page is called the "head page".
  250. *
  251. * The remaining PAGE_SIZE pages are called "tail pages".
  252. *
  253. * All pages have PG_compound set. All pages have their ->private pointing at
  254. * the head page (even the head page has this).
  255. *
  256. * The first tail page's ->lru.next holds the address of the compound page's
  257. * put_page() function. Its ->lru.prev holds the order of allocation.
  258. * This usage means that zero-order pages may not be compound.
  259. */
  260. static void free_compound_page(struct page *page)
  261. {
  262. __free_pages_ok(page, compound_order(page));
  263. }
  264. void prep_compound_page(struct page *page, unsigned long order)
  265. {
  266. int i;
  267. int nr_pages = 1 << order;
  268. set_compound_page_dtor(page, free_compound_page);
  269. set_compound_order(page, order);
  270. __SetPageHead(page);
  271. for (i = 1; i < nr_pages; i++) {
  272. struct page *p = page + i;
  273. __SetPageTail(p);
  274. p->first_page = page;
  275. }
  276. }
  277. static int destroy_compound_page(struct page *page, unsigned long order)
  278. {
  279. int i;
  280. int nr_pages = 1 << order;
  281. int bad = 0;
  282. if (unlikely(compound_order(page) != order) ||
  283. unlikely(!PageHead(page))) {
  284. bad_page(page);
  285. bad++;
  286. }
  287. __ClearPageHead(page);
  288. for (i = 1; i < nr_pages; i++) {
  289. struct page *p = page + i;
  290. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  291. bad_page(page);
  292. bad++;
  293. }
  294. __ClearPageTail(p);
  295. }
  296. return bad;
  297. }
  298. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  299. {
  300. int i;
  301. /*
  302. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  303. * and __GFP_HIGHMEM from hard or soft interrupt context.
  304. */
  305. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  306. for (i = 0; i < (1 << order); i++)
  307. clear_highpage(page + i);
  308. }
  309. static inline void set_page_order(struct page *page, int order)
  310. {
  311. set_page_private(page, order);
  312. __SetPageBuddy(page);
  313. }
  314. static inline void rmv_page_order(struct page *page)
  315. {
  316. __ClearPageBuddy(page);
  317. set_page_private(page, 0);
  318. }
  319. /*
  320. * Locate the struct page for both the matching buddy in our
  321. * pair (buddy1) and the combined O(n+1) page they form (page).
  322. *
  323. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  324. * the following equation:
  325. * B2 = B1 ^ (1 << O)
  326. * For example, if the starting buddy (buddy2) is #8 its order
  327. * 1 buddy is #10:
  328. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  329. *
  330. * 2) Any buddy B will have an order O+1 parent P which
  331. * satisfies the following equation:
  332. * P = B & ~(1 << O)
  333. *
  334. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  335. */
  336. static inline struct page *
  337. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  338. {
  339. unsigned long buddy_idx = page_idx ^ (1 << order);
  340. return page + (buddy_idx - page_idx);
  341. }
  342. static inline unsigned long
  343. __find_combined_index(unsigned long page_idx, unsigned int order)
  344. {
  345. return (page_idx & ~(1 << order));
  346. }
  347. /*
  348. * This function checks whether a page is free && is the buddy
  349. * we can do coalesce a page and its buddy if
  350. * (a) the buddy is not in a hole &&
  351. * (b) the buddy is in the buddy system &&
  352. * (c) a page and its buddy have the same order &&
  353. * (d) a page and its buddy are in the same zone.
  354. *
  355. * For recording whether a page is in the buddy system, we use PG_buddy.
  356. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  357. *
  358. * For recording page's order, we use page_private(page).
  359. */
  360. static inline int page_is_buddy(struct page *page, struct page *buddy,
  361. int order)
  362. {
  363. if (!pfn_valid_within(page_to_pfn(buddy)))
  364. return 0;
  365. if (page_zone_id(page) != page_zone_id(buddy))
  366. return 0;
  367. if (PageBuddy(buddy) && page_order(buddy) == order) {
  368. VM_BUG_ON(page_count(buddy) != 0);
  369. return 1;
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Freeing function for a buddy system allocator.
  375. *
  376. * The concept of a buddy system is to maintain direct-mapped table
  377. * (containing bit values) for memory blocks of various "orders".
  378. * The bottom level table contains the map for the smallest allocatable
  379. * units of memory (here, pages), and each level above it describes
  380. * pairs of units from the levels below, hence, "buddies".
  381. * At a high level, all that happens here is marking the table entry
  382. * at the bottom level available, and propagating the changes upward
  383. * as necessary, plus some accounting needed to play nicely with other
  384. * parts of the VM system.
  385. * At each level, we keep a list of pages, which are heads of continuous
  386. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  387. * order is recorded in page_private(page) field.
  388. * So when we are allocating or freeing one, we can derive the state of the
  389. * other. That is, if we allocate a small block, and both were
  390. * free, the remainder of the region must be split into blocks.
  391. * If a block is freed, and its buddy is also free, then this
  392. * triggers coalescing into a block of larger size.
  393. *
  394. * -- wli
  395. */
  396. static inline void __free_one_page(struct page *page,
  397. struct zone *zone, unsigned int order,
  398. int migratetype)
  399. {
  400. unsigned long page_idx;
  401. if (unlikely(PageCompound(page)))
  402. if (unlikely(destroy_compound_page(page, order)))
  403. return;
  404. VM_BUG_ON(migratetype == -1);
  405. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  406. VM_BUG_ON(page_idx & ((1 << order) - 1));
  407. VM_BUG_ON(bad_range(zone, page));
  408. while (order < MAX_ORDER-1) {
  409. unsigned long combined_idx;
  410. struct page *buddy;
  411. buddy = __page_find_buddy(page, page_idx, order);
  412. if (!page_is_buddy(page, buddy, order))
  413. break;
  414. /* Our buddy is free, merge with it and move up one order. */
  415. list_del(&buddy->lru);
  416. zone->free_area[order].nr_free--;
  417. rmv_page_order(buddy);
  418. combined_idx = __find_combined_index(page_idx, order);
  419. page = page + (combined_idx - page_idx);
  420. page_idx = combined_idx;
  421. order++;
  422. }
  423. set_page_order(page, order);
  424. list_add(&page->lru,
  425. &zone->free_area[order].free_list[migratetype]);
  426. zone->free_area[order].nr_free++;
  427. }
  428. /*
  429. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  430. * Page should not be on lru, so no need to fix that up.
  431. * free_pages_check() will verify...
  432. */
  433. static inline void free_page_mlock(struct page *page)
  434. {
  435. __dec_zone_page_state(page, NR_MLOCK);
  436. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  437. }
  438. static inline int free_pages_check(struct page *page)
  439. {
  440. if (unlikely(page_mapcount(page) |
  441. (page->mapping != NULL) |
  442. (atomic_read(&page->_count) != 0) |
  443. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  444. bad_page(page);
  445. return 1;
  446. }
  447. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  448. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  449. return 0;
  450. }
  451. /*
  452. * Frees a number of pages from the PCP lists
  453. * Assumes all pages on list are in same zone, and of same order.
  454. * count is the number of pages to free.
  455. *
  456. * If the zone was previously in an "all pages pinned" state then look to
  457. * see if this freeing clears that state.
  458. *
  459. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  460. * pinned" detection logic.
  461. */
  462. static void free_pcppages_bulk(struct zone *zone, int count,
  463. struct per_cpu_pages *pcp)
  464. {
  465. int migratetype = 0;
  466. int batch_free = 0;
  467. spin_lock(&zone->lock);
  468. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  469. zone->pages_scanned = 0;
  470. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  471. while (count) {
  472. struct page *page;
  473. struct list_head *list;
  474. /*
  475. * Remove pages from lists in a round-robin fashion. A
  476. * batch_free count is maintained that is incremented when an
  477. * empty list is encountered. This is so more pages are freed
  478. * off fuller lists instead of spinning excessively around empty
  479. * lists
  480. */
  481. do {
  482. batch_free++;
  483. if (++migratetype == MIGRATE_PCPTYPES)
  484. migratetype = 0;
  485. list = &pcp->lists[migratetype];
  486. } while (list_empty(list));
  487. do {
  488. page = list_entry(list->prev, struct page, lru);
  489. /* must delete as __free_one_page list manipulates */
  490. list_del(&page->lru);
  491. __free_one_page(page, zone, 0, migratetype);
  492. trace_mm_page_pcpu_drain(page, 0, migratetype);
  493. } while (--count && --batch_free && !list_empty(list));
  494. }
  495. spin_unlock(&zone->lock);
  496. }
  497. static void free_one_page(struct zone *zone, struct page *page, int order,
  498. int migratetype)
  499. {
  500. spin_lock(&zone->lock);
  501. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  502. zone->pages_scanned = 0;
  503. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  504. __free_one_page(page, zone, order, migratetype);
  505. spin_unlock(&zone->lock);
  506. }
  507. static void __free_pages_ok(struct page *page, unsigned int order)
  508. {
  509. unsigned long flags;
  510. int i;
  511. int bad = 0;
  512. int wasMlocked = __TestClearPageMlocked(page);
  513. kmemcheck_free_shadow(page, order);
  514. for (i = 0 ; i < (1 << order) ; ++i)
  515. bad += free_pages_check(page + i);
  516. if (bad)
  517. return;
  518. if (!PageHighMem(page)) {
  519. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  520. debug_check_no_obj_freed(page_address(page),
  521. PAGE_SIZE << order);
  522. }
  523. arch_free_page(page, order);
  524. kernel_map_pages(page, 1 << order, 0);
  525. local_irq_save(flags);
  526. if (unlikely(wasMlocked))
  527. free_page_mlock(page);
  528. __count_vm_events(PGFREE, 1 << order);
  529. free_one_page(page_zone(page), page, order,
  530. get_pageblock_migratetype(page));
  531. local_irq_restore(flags);
  532. }
  533. /*
  534. * permit the bootmem allocator to evade page validation on high-order frees
  535. */
  536. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  537. {
  538. if (order == 0) {
  539. __ClearPageReserved(page);
  540. set_page_count(page, 0);
  541. set_page_refcounted(page);
  542. __free_page(page);
  543. } else {
  544. int loop;
  545. prefetchw(page);
  546. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  547. struct page *p = &page[loop];
  548. if (loop + 1 < BITS_PER_LONG)
  549. prefetchw(p + 1);
  550. __ClearPageReserved(p);
  551. set_page_count(p, 0);
  552. }
  553. set_page_refcounted(page);
  554. __free_pages(page, order);
  555. }
  556. }
  557. /*
  558. * The order of subdivision here is critical for the IO subsystem.
  559. * Please do not alter this order without good reasons and regression
  560. * testing. Specifically, as large blocks of memory are subdivided,
  561. * the order in which smaller blocks are delivered depends on the order
  562. * they're subdivided in this function. This is the primary factor
  563. * influencing the order in which pages are delivered to the IO
  564. * subsystem according to empirical testing, and this is also justified
  565. * by considering the behavior of a buddy system containing a single
  566. * large block of memory acted on by a series of small allocations.
  567. * This behavior is a critical factor in sglist merging's success.
  568. *
  569. * -- wli
  570. */
  571. static inline void expand(struct zone *zone, struct page *page,
  572. int low, int high, struct free_area *area,
  573. int migratetype)
  574. {
  575. unsigned long size = 1 << high;
  576. while (high > low) {
  577. area--;
  578. high--;
  579. size >>= 1;
  580. VM_BUG_ON(bad_range(zone, &page[size]));
  581. list_add(&page[size].lru, &area->free_list[migratetype]);
  582. area->nr_free++;
  583. set_page_order(&page[size], high);
  584. }
  585. }
  586. /*
  587. * This page is about to be returned from the page allocator
  588. */
  589. static inline int check_new_page(struct page *page)
  590. {
  591. if (unlikely(page_mapcount(page) |
  592. (page->mapping != NULL) |
  593. (atomic_read(&page->_count) != 0) |
  594. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  595. bad_page(page);
  596. return 1;
  597. }
  598. return 0;
  599. }
  600. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  601. {
  602. int i;
  603. for (i = 0; i < (1 << order); i++) {
  604. struct page *p = page + i;
  605. if (unlikely(check_new_page(p)))
  606. return 1;
  607. }
  608. set_page_private(page, 0);
  609. set_page_refcounted(page);
  610. arch_alloc_page(page, order);
  611. kernel_map_pages(page, 1 << order, 1);
  612. if (gfp_flags & __GFP_ZERO)
  613. prep_zero_page(page, order, gfp_flags);
  614. if (order && (gfp_flags & __GFP_COMP))
  615. prep_compound_page(page, order);
  616. return 0;
  617. }
  618. /*
  619. * Go through the free lists for the given migratetype and remove
  620. * the smallest available page from the freelists
  621. */
  622. static inline
  623. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  624. int migratetype)
  625. {
  626. unsigned int current_order;
  627. struct free_area * area;
  628. struct page *page;
  629. /* Find a page of the appropriate size in the preferred list */
  630. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  631. area = &(zone->free_area[current_order]);
  632. if (list_empty(&area->free_list[migratetype]))
  633. continue;
  634. page = list_entry(area->free_list[migratetype].next,
  635. struct page, lru);
  636. list_del(&page->lru);
  637. rmv_page_order(page);
  638. area->nr_free--;
  639. expand(zone, page, order, current_order, area, migratetype);
  640. return page;
  641. }
  642. return NULL;
  643. }
  644. /*
  645. * This array describes the order lists are fallen back to when
  646. * the free lists for the desirable migrate type are depleted
  647. */
  648. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  649. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  650. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  651. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  652. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  653. };
  654. /*
  655. * Move the free pages in a range to the free lists of the requested type.
  656. * Note that start_page and end_pages are not aligned on a pageblock
  657. * boundary. If alignment is required, use move_freepages_block()
  658. */
  659. static int move_freepages(struct zone *zone,
  660. struct page *start_page, struct page *end_page,
  661. int migratetype)
  662. {
  663. struct page *page;
  664. unsigned long order;
  665. int pages_moved = 0;
  666. #ifndef CONFIG_HOLES_IN_ZONE
  667. /*
  668. * page_zone is not safe to call in this context when
  669. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  670. * anyway as we check zone boundaries in move_freepages_block().
  671. * Remove at a later date when no bug reports exist related to
  672. * grouping pages by mobility
  673. */
  674. BUG_ON(page_zone(start_page) != page_zone(end_page));
  675. #endif
  676. for (page = start_page; page <= end_page;) {
  677. /* Make sure we are not inadvertently changing nodes */
  678. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  679. if (!pfn_valid_within(page_to_pfn(page))) {
  680. page++;
  681. continue;
  682. }
  683. if (!PageBuddy(page)) {
  684. page++;
  685. continue;
  686. }
  687. order = page_order(page);
  688. list_del(&page->lru);
  689. list_add(&page->lru,
  690. &zone->free_area[order].free_list[migratetype]);
  691. page += 1 << order;
  692. pages_moved += 1 << order;
  693. }
  694. return pages_moved;
  695. }
  696. static int move_freepages_block(struct zone *zone, struct page *page,
  697. int migratetype)
  698. {
  699. unsigned long start_pfn, end_pfn;
  700. struct page *start_page, *end_page;
  701. start_pfn = page_to_pfn(page);
  702. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  703. start_page = pfn_to_page(start_pfn);
  704. end_page = start_page + pageblock_nr_pages - 1;
  705. end_pfn = start_pfn + pageblock_nr_pages - 1;
  706. /* Do not cross zone boundaries */
  707. if (start_pfn < zone->zone_start_pfn)
  708. start_page = page;
  709. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  710. return 0;
  711. return move_freepages(zone, start_page, end_page, migratetype);
  712. }
  713. static void change_pageblock_range(struct page *pageblock_page,
  714. int start_order, int migratetype)
  715. {
  716. int nr_pageblocks = 1 << (start_order - pageblock_order);
  717. while (nr_pageblocks--) {
  718. set_pageblock_migratetype(pageblock_page, migratetype);
  719. pageblock_page += pageblock_nr_pages;
  720. }
  721. }
  722. /* Remove an element from the buddy allocator from the fallback list */
  723. static inline struct page *
  724. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  725. {
  726. struct free_area * area;
  727. int current_order;
  728. struct page *page;
  729. int migratetype, i;
  730. /* Find the largest possible block of pages in the other list */
  731. for (current_order = MAX_ORDER-1; current_order >= order;
  732. --current_order) {
  733. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  734. migratetype = fallbacks[start_migratetype][i];
  735. /* MIGRATE_RESERVE handled later if necessary */
  736. if (migratetype == MIGRATE_RESERVE)
  737. continue;
  738. area = &(zone->free_area[current_order]);
  739. if (list_empty(&area->free_list[migratetype]))
  740. continue;
  741. page = list_entry(area->free_list[migratetype].next,
  742. struct page, lru);
  743. area->nr_free--;
  744. /*
  745. * If breaking a large block of pages, move all free
  746. * pages to the preferred allocation list. If falling
  747. * back for a reclaimable kernel allocation, be more
  748. * agressive about taking ownership of free pages
  749. */
  750. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  751. start_migratetype == MIGRATE_RECLAIMABLE ||
  752. page_group_by_mobility_disabled) {
  753. unsigned long pages;
  754. pages = move_freepages_block(zone, page,
  755. start_migratetype);
  756. /* Claim the whole block if over half of it is free */
  757. if (pages >= (1 << (pageblock_order-1)) ||
  758. page_group_by_mobility_disabled)
  759. set_pageblock_migratetype(page,
  760. start_migratetype);
  761. migratetype = start_migratetype;
  762. }
  763. /* Remove the page from the freelists */
  764. list_del(&page->lru);
  765. rmv_page_order(page);
  766. /* Take ownership for orders >= pageblock_order */
  767. if (current_order >= pageblock_order)
  768. change_pageblock_range(page, current_order,
  769. start_migratetype);
  770. expand(zone, page, order, current_order, area, migratetype);
  771. trace_mm_page_alloc_extfrag(page, order, current_order,
  772. start_migratetype, migratetype);
  773. return page;
  774. }
  775. }
  776. return NULL;
  777. }
  778. /*
  779. * Do the hard work of removing an element from the buddy allocator.
  780. * Call me with the zone->lock already held.
  781. */
  782. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  783. int migratetype)
  784. {
  785. struct page *page;
  786. retry_reserve:
  787. page = __rmqueue_smallest(zone, order, migratetype);
  788. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  789. page = __rmqueue_fallback(zone, order, migratetype);
  790. /*
  791. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  792. * is used because __rmqueue_smallest is an inline function
  793. * and we want just one call site
  794. */
  795. if (!page) {
  796. migratetype = MIGRATE_RESERVE;
  797. goto retry_reserve;
  798. }
  799. }
  800. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  801. return page;
  802. }
  803. /*
  804. * Obtain a specified number of elements from the buddy allocator, all under
  805. * a single hold of the lock, for efficiency. Add them to the supplied list.
  806. * Returns the number of new pages which were placed at *list.
  807. */
  808. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  809. unsigned long count, struct list_head *list,
  810. int migratetype, int cold)
  811. {
  812. int i;
  813. spin_lock(&zone->lock);
  814. for (i = 0; i < count; ++i) {
  815. struct page *page = __rmqueue(zone, order, migratetype);
  816. if (unlikely(page == NULL))
  817. break;
  818. /*
  819. * Split buddy pages returned by expand() are received here
  820. * in physical page order. The page is added to the callers and
  821. * list and the list head then moves forward. From the callers
  822. * perspective, the linked list is ordered by page number in
  823. * some conditions. This is useful for IO devices that can
  824. * merge IO requests if the physical pages are ordered
  825. * properly.
  826. */
  827. if (likely(cold == 0))
  828. list_add(&page->lru, list);
  829. else
  830. list_add_tail(&page->lru, list);
  831. set_page_private(page, migratetype);
  832. list = &page->lru;
  833. }
  834. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  835. spin_unlock(&zone->lock);
  836. return i;
  837. }
  838. #ifdef CONFIG_NUMA
  839. /*
  840. * Called from the vmstat counter updater to drain pagesets of this
  841. * currently executing processor on remote nodes after they have
  842. * expired.
  843. *
  844. * Note that this function must be called with the thread pinned to
  845. * a single processor.
  846. */
  847. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  848. {
  849. unsigned long flags;
  850. int to_drain;
  851. local_irq_save(flags);
  852. if (pcp->count >= pcp->batch)
  853. to_drain = pcp->batch;
  854. else
  855. to_drain = pcp->count;
  856. free_pcppages_bulk(zone, to_drain, pcp);
  857. pcp->count -= to_drain;
  858. local_irq_restore(flags);
  859. }
  860. #endif
  861. /*
  862. * Drain pages of the indicated processor.
  863. *
  864. * The processor must either be the current processor and the
  865. * thread pinned to the current processor or a processor that
  866. * is not online.
  867. */
  868. static void drain_pages(unsigned int cpu)
  869. {
  870. unsigned long flags;
  871. struct zone *zone;
  872. for_each_populated_zone(zone) {
  873. struct per_cpu_pageset *pset;
  874. struct per_cpu_pages *pcp;
  875. pset = zone_pcp(zone, cpu);
  876. pcp = &pset->pcp;
  877. local_irq_save(flags);
  878. free_pcppages_bulk(zone, pcp->count, pcp);
  879. pcp->count = 0;
  880. local_irq_restore(flags);
  881. }
  882. }
  883. /*
  884. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  885. */
  886. void drain_local_pages(void *arg)
  887. {
  888. drain_pages(smp_processor_id());
  889. }
  890. /*
  891. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  892. */
  893. void drain_all_pages(void)
  894. {
  895. on_each_cpu(drain_local_pages, NULL, 1);
  896. }
  897. #ifdef CONFIG_HIBERNATION
  898. void mark_free_pages(struct zone *zone)
  899. {
  900. unsigned long pfn, max_zone_pfn;
  901. unsigned long flags;
  902. int order, t;
  903. struct list_head *curr;
  904. if (!zone->spanned_pages)
  905. return;
  906. spin_lock_irqsave(&zone->lock, flags);
  907. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  908. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  909. if (pfn_valid(pfn)) {
  910. struct page *page = pfn_to_page(pfn);
  911. if (!swsusp_page_is_forbidden(page))
  912. swsusp_unset_page_free(page);
  913. }
  914. for_each_migratetype_order(order, t) {
  915. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  916. unsigned long i;
  917. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  918. for (i = 0; i < (1UL << order); i++)
  919. swsusp_set_page_free(pfn_to_page(pfn + i));
  920. }
  921. }
  922. spin_unlock_irqrestore(&zone->lock, flags);
  923. }
  924. #endif /* CONFIG_PM */
  925. /*
  926. * Free a 0-order page
  927. */
  928. static void free_hot_cold_page(struct page *page, int cold)
  929. {
  930. struct zone *zone = page_zone(page);
  931. struct per_cpu_pages *pcp;
  932. unsigned long flags;
  933. int migratetype;
  934. int wasMlocked = __TestClearPageMlocked(page);
  935. kmemcheck_free_shadow(page, 0);
  936. if (PageAnon(page))
  937. page->mapping = NULL;
  938. if (free_pages_check(page))
  939. return;
  940. if (!PageHighMem(page)) {
  941. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  942. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  943. }
  944. arch_free_page(page, 0);
  945. kernel_map_pages(page, 1, 0);
  946. pcp = &zone_pcp(zone, get_cpu())->pcp;
  947. migratetype = get_pageblock_migratetype(page);
  948. set_page_private(page, migratetype);
  949. local_irq_save(flags);
  950. if (unlikely(wasMlocked))
  951. free_page_mlock(page);
  952. __count_vm_event(PGFREE);
  953. /*
  954. * We only track unmovable, reclaimable and movable on pcp lists.
  955. * Free ISOLATE pages back to the allocator because they are being
  956. * offlined but treat RESERVE as movable pages so we can get those
  957. * areas back if necessary. Otherwise, we may have to free
  958. * excessively into the page allocator
  959. */
  960. if (migratetype >= MIGRATE_PCPTYPES) {
  961. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  962. free_one_page(zone, page, 0, migratetype);
  963. goto out;
  964. }
  965. migratetype = MIGRATE_MOVABLE;
  966. }
  967. if (cold)
  968. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  969. else
  970. list_add(&page->lru, &pcp->lists[migratetype]);
  971. pcp->count++;
  972. if (pcp->count >= pcp->high) {
  973. free_pcppages_bulk(zone, pcp->batch, pcp);
  974. pcp->count -= pcp->batch;
  975. }
  976. out:
  977. local_irq_restore(flags);
  978. put_cpu();
  979. }
  980. void free_hot_page(struct page *page)
  981. {
  982. trace_mm_page_free_direct(page, 0);
  983. free_hot_cold_page(page, 0);
  984. }
  985. /*
  986. * split_page takes a non-compound higher-order page, and splits it into
  987. * n (1<<order) sub-pages: page[0..n]
  988. * Each sub-page must be freed individually.
  989. *
  990. * Note: this is probably too low level an operation for use in drivers.
  991. * Please consult with lkml before using this in your driver.
  992. */
  993. void split_page(struct page *page, unsigned int order)
  994. {
  995. int i;
  996. VM_BUG_ON(PageCompound(page));
  997. VM_BUG_ON(!page_count(page));
  998. #ifdef CONFIG_KMEMCHECK
  999. /*
  1000. * Split shadow pages too, because free(page[0]) would
  1001. * otherwise free the whole shadow.
  1002. */
  1003. if (kmemcheck_page_is_tracked(page))
  1004. split_page(virt_to_page(page[0].shadow), order);
  1005. #endif
  1006. for (i = 1; i < (1 << order); i++)
  1007. set_page_refcounted(page + i);
  1008. }
  1009. /*
  1010. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1011. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1012. * or two.
  1013. */
  1014. static inline
  1015. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1016. struct zone *zone, int order, gfp_t gfp_flags,
  1017. int migratetype)
  1018. {
  1019. unsigned long flags;
  1020. struct page *page;
  1021. int cold = !!(gfp_flags & __GFP_COLD);
  1022. int cpu;
  1023. again:
  1024. cpu = get_cpu();
  1025. if (likely(order == 0)) {
  1026. struct per_cpu_pages *pcp;
  1027. struct list_head *list;
  1028. pcp = &zone_pcp(zone, cpu)->pcp;
  1029. list = &pcp->lists[migratetype];
  1030. local_irq_save(flags);
  1031. if (list_empty(list)) {
  1032. pcp->count += rmqueue_bulk(zone, 0,
  1033. pcp->batch, list,
  1034. migratetype, cold);
  1035. if (unlikely(list_empty(list)))
  1036. goto failed;
  1037. }
  1038. if (cold)
  1039. page = list_entry(list->prev, struct page, lru);
  1040. else
  1041. page = list_entry(list->next, struct page, lru);
  1042. list_del(&page->lru);
  1043. pcp->count--;
  1044. } else {
  1045. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1046. /*
  1047. * __GFP_NOFAIL is not to be used in new code.
  1048. *
  1049. * All __GFP_NOFAIL callers should be fixed so that they
  1050. * properly detect and handle allocation failures.
  1051. *
  1052. * We most definitely don't want callers attempting to
  1053. * allocate greater than order-1 page units with
  1054. * __GFP_NOFAIL.
  1055. */
  1056. WARN_ON_ONCE(order > 1);
  1057. }
  1058. spin_lock_irqsave(&zone->lock, flags);
  1059. page = __rmqueue(zone, order, migratetype);
  1060. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1061. spin_unlock(&zone->lock);
  1062. if (!page)
  1063. goto failed;
  1064. }
  1065. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1066. zone_statistics(preferred_zone, zone);
  1067. local_irq_restore(flags);
  1068. put_cpu();
  1069. VM_BUG_ON(bad_range(zone, page));
  1070. if (prep_new_page(page, order, gfp_flags))
  1071. goto again;
  1072. return page;
  1073. failed:
  1074. local_irq_restore(flags);
  1075. put_cpu();
  1076. return NULL;
  1077. }
  1078. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1079. #define ALLOC_WMARK_MIN WMARK_MIN
  1080. #define ALLOC_WMARK_LOW WMARK_LOW
  1081. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1082. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1083. /* Mask to get the watermark bits */
  1084. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1085. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1086. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1087. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1088. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1089. static struct fail_page_alloc_attr {
  1090. struct fault_attr attr;
  1091. u32 ignore_gfp_highmem;
  1092. u32 ignore_gfp_wait;
  1093. u32 min_order;
  1094. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1095. struct dentry *ignore_gfp_highmem_file;
  1096. struct dentry *ignore_gfp_wait_file;
  1097. struct dentry *min_order_file;
  1098. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1099. } fail_page_alloc = {
  1100. .attr = FAULT_ATTR_INITIALIZER,
  1101. .ignore_gfp_wait = 1,
  1102. .ignore_gfp_highmem = 1,
  1103. .min_order = 1,
  1104. };
  1105. static int __init setup_fail_page_alloc(char *str)
  1106. {
  1107. return setup_fault_attr(&fail_page_alloc.attr, str);
  1108. }
  1109. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1110. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1111. {
  1112. if (order < fail_page_alloc.min_order)
  1113. return 0;
  1114. if (gfp_mask & __GFP_NOFAIL)
  1115. return 0;
  1116. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1117. return 0;
  1118. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1119. return 0;
  1120. return should_fail(&fail_page_alloc.attr, 1 << order);
  1121. }
  1122. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1123. static int __init fail_page_alloc_debugfs(void)
  1124. {
  1125. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1126. struct dentry *dir;
  1127. int err;
  1128. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1129. "fail_page_alloc");
  1130. if (err)
  1131. return err;
  1132. dir = fail_page_alloc.attr.dentries.dir;
  1133. fail_page_alloc.ignore_gfp_wait_file =
  1134. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1135. &fail_page_alloc.ignore_gfp_wait);
  1136. fail_page_alloc.ignore_gfp_highmem_file =
  1137. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1138. &fail_page_alloc.ignore_gfp_highmem);
  1139. fail_page_alloc.min_order_file =
  1140. debugfs_create_u32("min-order", mode, dir,
  1141. &fail_page_alloc.min_order);
  1142. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1143. !fail_page_alloc.ignore_gfp_highmem_file ||
  1144. !fail_page_alloc.min_order_file) {
  1145. err = -ENOMEM;
  1146. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1147. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1148. debugfs_remove(fail_page_alloc.min_order_file);
  1149. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1150. }
  1151. return err;
  1152. }
  1153. late_initcall(fail_page_alloc_debugfs);
  1154. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1155. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1156. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1157. {
  1158. return 0;
  1159. }
  1160. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1161. /*
  1162. * Return 1 if free pages are above 'mark'. This takes into account the order
  1163. * of the allocation.
  1164. */
  1165. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1166. int classzone_idx, int alloc_flags)
  1167. {
  1168. /* free_pages my go negative - that's OK */
  1169. long min = mark;
  1170. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1171. int o;
  1172. if (alloc_flags & ALLOC_HIGH)
  1173. min -= min / 2;
  1174. if (alloc_flags & ALLOC_HARDER)
  1175. min -= min / 4;
  1176. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1177. return 0;
  1178. for (o = 0; o < order; o++) {
  1179. /* At the next order, this order's pages become unavailable */
  1180. free_pages -= z->free_area[o].nr_free << o;
  1181. /* Require fewer higher order pages to be free */
  1182. min >>= 1;
  1183. if (free_pages <= min)
  1184. return 0;
  1185. }
  1186. return 1;
  1187. }
  1188. #ifdef CONFIG_NUMA
  1189. /*
  1190. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1191. * skip over zones that are not allowed by the cpuset, or that have
  1192. * been recently (in last second) found to be nearly full. See further
  1193. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1194. * that have to skip over a lot of full or unallowed zones.
  1195. *
  1196. * If the zonelist cache is present in the passed in zonelist, then
  1197. * returns a pointer to the allowed node mask (either the current
  1198. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1199. *
  1200. * If the zonelist cache is not available for this zonelist, does
  1201. * nothing and returns NULL.
  1202. *
  1203. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1204. * a second since last zap'd) then we zap it out (clear its bits.)
  1205. *
  1206. * We hold off even calling zlc_setup, until after we've checked the
  1207. * first zone in the zonelist, on the theory that most allocations will
  1208. * be satisfied from that first zone, so best to examine that zone as
  1209. * quickly as we can.
  1210. */
  1211. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1212. {
  1213. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1214. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1215. zlc = zonelist->zlcache_ptr;
  1216. if (!zlc)
  1217. return NULL;
  1218. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1219. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1220. zlc->last_full_zap = jiffies;
  1221. }
  1222. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1223. &cpuset_current_mems_allowed :
  1224. &node_states[N_HIGH_MEMORY];
  1225. return allowednodes;
  1226. }
  1227. /*
  1228. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1229. * if it is worth looking at further for free memory:
  1230. * 1) Check that the zone isn't thought to be full (doesn't have its
  1231. * bit set in the zonelist_cache fullzones BITMAP).
  1232. * 2) Check that the zones node (obtained from the zonelist_cache
  1233. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1234. * Return true (non-zero) if zone is worth looking at further, or
  1235. * else return false (zero) if it is not.
  1236. *
  1237. * This check -ignores- the distinction between various watermarks,
  1238. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1239. * found to be full for any variation of these watermarks, it will
  1240. * be considered full for up to one second by all requests, unless
  1241. * we are so low on memory on all allowed nodes that we are forced
  1242. * into the second scan of the zonelist.
  1243. *
  1244. * In the second scan we ignore this zonelist cache and exactly
  1245. * apply the watermarks to all zones, even it is slower to do so.
  1246. * We are low on memory in the second scan, and should leave no stone
  1247. * unturned looking for a free page.
  1248. */
  1249. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1250. nodemask_t *allowednodes)
  1251. {
  1252. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1253. int i; /* index of *z in zonelist zones */
  1254. int n; /* node that zone *z is on */
  1255. zlc = zonelist->zlcache_ptr;
  1256. if (!zlc)
  1257. return 1;
  1258. i = z - zonelist->_zonerefs;
  1259. n = zlc->z_to_n[i];
  1260. /* This zone is worth trying if it is allowed but not full */
  1261. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1262. }
  1263. /*
  1264. * Given 'z' scanning a zonelist, set the corresponding bit in
  1265. * zlc->fullzones, so that subsequent attempts to allocate a page
  1266. * from that zone don't waste time re-examining it.
  1267. */
  1268. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1269. {
  1270. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1271. int i; /* index of *z in zonelist zones */
  1272. zlc = zonelist->zlcache_ptr;
  1273. if (!zlc)
  1274. return;
  1275. i = z - zonelist->_zonerefs;
  1276. set_bit(i, zlc->fullzones);
  1277. }
  1278. #else /* CONFIG_NUMA */
  1279. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1280. {
  1281. return NULL;
  1282. }
  1283. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1284. nodemask_t *allowednodes)
  1285. {
  1286. return 1;
  1287. }
  1288. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1289. {
  1290. }
  1291. #endif /* CONFIG_NUMA */
  1292. /*
  1293. * get_page_from_freelist goes through the zonelist trying to allocate
  1294. * a page.
  1295. */
  1296. static struct page *
  1297. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1298. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1299. struct zone *preferred_zone, int migratetype)
  1300. {
  1301. struct zoneref *z;
  1302. struct page *page = NULL;
  1303. int classzone_idx;
  1304. struct zone *zone;
  1305. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1306. int zlc_active = 0; /* set if using zonelist_cache */
  1307. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1308. classzone_idx = zone_idx(preferred_zone);
  1309. zonelist_scan:
  1310. /*
  1311. * Scan zonelist, looking for a zone with enough free.
  1312. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1313. */
  1314. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1315. high_zoneidx, nodemask) {
  1316. if (NUMA_BUILD && zlc_active &&
  1317. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1318. continue;
  1319. if ((alloc_flags & ALLOC_CPUSET) &&
  1320. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1321. goto try_next_zone;
  1322. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1323. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1324. unsigned long mark;
  1325. int ret;
  1326. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1327. if (zone_watermark_ok(zone, order, mark,
  1328. classzone_idx, alloc_flags))
  1329. goto try_this_zone;
  1330. if (zone_reclaim_mode == 0)
  1331. goto this_zone_full;
  1332. ret = zone_reclaim(zone, gfp_mask, order);
  1333. switch (ret) {
  1334. case ZONE_RECLAIM_NOSCAN:
  1335. /* did not scan */
  1336. goto try_next_zone;
  1337. case ZONE_RECLAIM_FULL:
  1338. /* scanned but unreclaimable */
  1339. goto this_zone_full;
  1340. default:
  1341. /* did we reclaim enough */
  1342. if (!zone_watermark_ok(zone, order, mark,
  1343. classzone_idx, alloc_flags))
  1344. goto this_zone_full;
  1345. }
  1346. }
  1347. try_this_zone:
  1348. page = buffered_rmqueue(preferred_zone, zone, order,
  1349. gfp_mask, migratetype);
  1350. if (page)
  1351. break;
  1352. this_zone_full:
  1353. if (NUMA_BUILD)
  1354. zlc_mark_zone_full(zonelist, z);
  1355. try_next_zone:
  1356. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1357. /*
  1358. * we do zlc_setup after the first zone is tried but only
  1359. * if there are multiple nodes make it worthwhile
  1360. */
  1361. allowednodes = zlc_setup(zonelist, alloc_flags);
  1362. zlc_active = 1;
  1363. did_zlc_setup = 1;
  1364. }
  1365. }
  1366. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1367. /* Disable zlc cache for second zonelist scan */
  1368. zlc_active = 0;
  1369. goto zonelist_scan;
  1370. }
  1371. return page;
  1372. }
  1373. static inline int
  1374. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1375. unsigned long pages_reclaimed)
  1376. {
  1377. /* Do not loop if specifically requested */
  1378. if (gfp_mask & __GFP_NORETRY)
  1379. return 0;
  1380. /*
  1381. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1382. * means __GFP_NOFAIL, but that may not be true in other
  1383. * implementations.
  1384. */
  1385. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1386. return 1;
  1387. /*
  1388. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1389. * specified, then we retry until we no longer reclaim any pages
  1390. * (above), or we've reclaimed an order of pages at least as
  1391. * large as the allocation's order. In both cases, if the
  1392. * allocation still fails, we stop retrying.
  1393. */
  1394. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1395. return 1;
  1396. /*
  1397. * Don't let big-order allocations loop unless the caller
  1398. * explicitly requests that.
  1399. */
  1400. if (gfp_mask & __GFP_NOFAIL)
  1401. return 1;
  1402. return 0;
  1403. }
  1404. static inline struct page *
  1405. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1406. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1407. nodemask_t *nodemask, struct zone *preferred_zone,
  1408. int migratetype)
  1409. {
  1410. struct page *page;
  1411. /* Acquire the OOM killer lock for the zones in zonelist */
  1412. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1413. schedule_timeout_uninterruptible(1);
  1414. return NULL;
  1415. }
  1416. /*
  1417. * Go through the zonelist yet one more time, keep very high watermark
  1418. * here, this is only to catch a parallel oom killing, we must fail if
  1419. * we're still under heavy pressure.
  1420. */
  1421. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1422. order, zonelist, high_zoneidx,
  1423. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1424. preferred_zone, migratetype);
  1425. if (page)
  1426. goto out;
  1427. if (!(gfp_mask & __GFP_NOFAIL)) {
  1428. /* The OOM killer will not help higher order allocs */
  1429. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1430. goto out;
  1431. /*
  1432. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1433. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1434. * The caller should handle page allocation failure by itself if
  1435. * it specifies __GFP_THISNODE.
  1436. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1437. */
  1438. if (gfp_mask & __GFP_THISNODE)
  1439. goto out;
  1440. }
  1441. /* Exhausted what can be done so it's blamo time */
  1442. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1443. out:
  1444. clear_zonelist_oom(zonelist, gfp_mask);
  1445. return page;
  1446. }
  1447. /* The really slow allocator path where we enter direct reclaim */
  1448. static inline struct page *
  1449. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1450. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1451. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1452. int migratetype, unsigned long *did_some_progress)
  1453. {
  1454. struct page *page = NULL;
  1455. struct reclaim_state reclaim_state;
  1456. struct task_struct *p = current;
  1457. cond_resched();
  1458. /* We now go into synchronous reclaim */
  1459. cpuset_memory_pressure_bump();
  1460. p->flags |= PF_MEMALLOC;
  1461. lockdep_set_current_reclaim_state(gfp_mask);
  1462. reclaim_state.reclaimed_slab = 0;
  1463. p->reclaim_state = &reclaim_state;
  1464. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1465. p->reclaim_state = NULL;
  1466. lockdep_clear_current_reclaim_state();
  1467. p->flags &= ~PF_MEMALLOC;
  1468. cond_resched();
  1469. if (order != 0)
  1470. drain_all_pages();
  1471. if (likely(*did_some_progress))
  1472. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1473. zonelist, high_zoneidx,
  1474. alloc_flags, preferred_zone,
  1475. migratetype);
  1476. return page;
  1477. }
  1478. /*
  1479. * This is called in the allocator slow-path if the allocation request is of
  1480. * sufficient urgency to ignore watermarks and take other desperate measures
  1481. */
  1482. static inline struct page *
  1483. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1484. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1485. nodemask_t *nodemask, struct zone *preferred_zone,
  1486. int migratetype)
  1487. {
  1488. struct page *page;
  1489. do {
  1490. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1491. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1492. preferred_zone, migratetype);
  1493. if (!page && gfp_mask & __GFP_NOFAIL)
  1494. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1495. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1496. return page;
  1497. }
  1498. static inline
  1499. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1500. enum zone_type high_zoneidx)
  1501. {
  1502. struct zoneref *z;
  1503. struct zone *zone;
  1504. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1505. wakeup_kswapd(zone, order);
  1506. }
  1507. static inline int
  1508. gfp_to_alloc_flags(gfp_t gfp_mask)
  1509. {
  1510. struct task_struct *p = current;
  1511. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1512. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1513. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1514. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1515. /*
  1516. * The caller may dip into page reserves a bit more if the caller
  1517. * cannot run direct reclaim, or if the caller has realtime scheduling
  1518. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1519. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1520. */
  1521. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1522. if (!wait) {
  1523. alloc_flags |= ALLOC_HARDER;
  1524. /*
  1525. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1526. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1527. */
  1528. alloc_flags &= ~ALLOC_CPUSET;
  1529. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1530. alloc_flags |= ALLOC_HARDER;
  1531. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1532. if (!in_interrupt() &&
  1533. ((p->flags & PF_MEMALLOC) ||
  1534. unlikely(test_thread_flag(TIF_MEMDIE))))
  1535. alloc_flags |= ALLOC_NO_WATERMARKS;
  1536. }
  1537. return alloc_flags;
  1538. }
  1539. static inline struct page *
  1540. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1541. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1542. nodemask_t *nodemask, struct zone *preferred_zone,
  1543. int migratetype)
  1544. {
  1545. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1546. struct page *page = NULL;
  1547. int alloc_flags;
  1548. unsigned long pages_reclaimed = 0;
  1549. unsigned long did_some_progress;
  1550. struct task_struct *p = current;
  1551. /*
  1552. * In the slowpath, we sanity check order to avoid ever trying to
  1553. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1554. * be using allocators in order of preference for an area that is
  1555. * too large.
  1556. */
  1557. if (order >= MAX_ORDER) {
  1558. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1559. return NULL;
  1560. }
  1561. /*
  1562. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1563. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1564. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1565. * using a larger set of nodes after it has established that the
  1566. * allowed per node queues are empty and that nodes are
  1567. * over allocated.
  1568. */
  1569. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1570. goto nopage;
  1571. restart:
  1572. wake_all_kswapd(order, zonelist, high_zoneidx);
  1573. /*
  1574. * OK, we're below the kswapd watermark and have kicked background
  1575. * reclaim. Now things get more complex, so set up alloc_flags according
  1576. * to how we want to proceed.
  1577. */
  1578. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1579. /* This is the last chance, in general, before the goto nopage. */
  1580. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1581. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1582. preferred_zone, migratetype);
  1583. if (page)
  1584. goto got_pg;
  1585. rebalance:
  1586. /* Allocate without watermarks if the context allows */
  1587. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1588. page = __alloc_pages_high_priority(gfp_mask, order,
  1589. zonelist, high_zoneidx, nodemask,
  1590. preferred_zone, migratetype);
  1591. if (page)
  1592. goto got_pg;
  1593. }
  1594. /* Atomic allocations - we can't balance anything */
  1595. if (!wait)
  1596. goto nopage;
  1597. /* Avoid recursion of direct reclaim */
  1598. if (p->flags & PF_MEMALLOC)
  1599. goto nopage;
  1600. /* Avoid allocations with no watermarks from looping endlessly */
  1601. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1602. goto nopage;
  1603. /* Try direct reclaim and then allocating */
  1604. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1605. zonelist, high_zoneidx,
  1606. nodemask,
  1607. alloc_flags, preferred_zone,
  1608. migratetype, &did_some_progress);
  1609. if (page)
  1610. goto got_pg;
  1611. /*
  1612. * If we failed to make any progress reclaiming, then we are
  1613. * running out of options and have to consider going OOM
  1614. */
  1615. if (!did_some_progress) {
  1616. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1617. if (oom_killer_disabled)
  1618. goto nopage;
  1619. page = __alloc_pages_may_oom(gfp_mask, order,
  1620. zonelist, high_zoneidx,
  1621. nodemask, preferred_zone,
  1622. migratetype);
  1623. if (page)
  1624. goto got_pg;
  1625. /*
  1626. * The OOM killer does not trigger for high-order
  1627. * ~__GFP_NOFAIL allocations so if no progress is being
  1628. * made, there are no other options and retrying is
  1629. * unlikely to help.
  1630. */
  1631. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1632. !(gfp_mask & __GFP_NOFAIL))
  1633. goto nopage;
  1634. goto restart;
  1635. }
  1636. }
  1637. /* Check if we should retry the allocation */
  1638. pages_reclaimed += did_some_progress;
  1639. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1640. /* Wait for some write requests to complete then retry */
  1641. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1642. goto rebalance;
  1643. }
  1644. nopage:
  1645. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1646. printk(KERN_WARNING "%s: page allocation failure."
  1647. " order:%d, mode:0x%x\n",
  1648. p->comm, order, gfp_mask);
  1649. dump_stack();
  1650. show_mem();
  1651. }
  1652. return page;
  1653. got_pg:
  1654. if (kmemcheck_enabled)
  1655. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1656. return page;
  1657. }
  1658. /*
  1659. * This is the 'heart' of the zoned buddy allocator.
  1660. */
  1661. struct page *
  1662. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1663. struct zonelist *zonelist, nodemask_t *nodemask)
  1664. {
  1665. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1666. struct zone *preferred_zone;
  1667. struct page *page;
  1668. int migratetype = allocflags_to_migratetype(gfp_mask);
  1669. gfp_mask &= gfp_allowed_mask;
  1670. lockdep_trace_alloc(gfp_mask);
  1671. might_sleep_if(gfp_mask & __GFP_WAIT);
  1672. if (should_fail_alloc_page(gfp_mask, order))
  1673. return NULL;
  1674. /*
  1675. * Check the zones suitable for the gfp_mask contain at least one
  1676. * valid zone. It's possible to have an empty zonelist as a result
  1677. * of GFP_THISNODE and a memoryless node
  1678. */
  1679. if (unlikely(!zonelist->_zonerefs->zone))
  1680. return NULL;
  1681. /* The preferred zone is used for statistics later */
  1682. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1683. if (!preferred_zone)
  1684. return NULL;
  1685. /* First allocation attempt */
  1686. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1687. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1688. preferred_zone, migratetype);
  1689. if (unlikely(!page))
  1690. page = __alloc_pages_slowpath(gfp_mask, order,
  1691. zonelist, high_zoneidx, nodemask,
  1692. preferred_zone, migratetype);
  1693. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1694. return page;
  1695. }
  1696. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1697. /*
  1698. * Common helper functions.
  1699. */
  1700. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1701. {
  1702. struct page *page;
  1703. /*
  1704. * __get_free_pages() returns a 32-bit address, which cannot represent
  1705. * a highmem page
  1706. */
  1707. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1708. page = alloc_pages(gfp_mask, order);
  1709. if (!page)
  1710. return 0;
  1711. return (unsigned long) page_address(page);
  1712. }
  1713. EXPORT_SYMBOL(__get_free_pages);
  1714. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1715. {
  1716. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1717. }
  1718. EXPORT_SYMBOL(get_zeroed_page);
  1719. void __pagevec_free(struct pagevec *pvec)
  1720. {
  1721. int i = pagevec_count(pvec);
  1722. while (--i >= 0) {
  1723. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1724. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1725. }
  1726. }
  1727. void __free_pages(struct page *page, unsigned int order)
  1728. {
  1729. if (put_page_testzero(page)) {
  1730. trace_mm_page_free_direct(page, order);
  1731. if (order == 0)
  1732. free_hot_page(page);
  1733. else
  1734. __free_pages_ok(page, order);
  1735. }
  1736. }
  1737. EXPORT_SYMBOL(__free_pages);
  1738. void free_pages(unsigned long addr, unsigned int order)
  1739. {
  1740. if (addr != 0) {
  1741. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1742. __free_pages(virt_to_page((void *)addr), order);
  1743. }
  1744. }
  1745. EXPORT_SYMBOL(free_pages);
  1746. /**
  1747. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1748. * @size: the number of bytes to allocate
  1749. * @gfp_mask: GFP flags for the allocation
  1750. *
  1751. * This function is similar to alloc_pages(), except that it allocates the
  1752. * minimum number of pages to satisfy the request. alloc_pages() can only
  1753. * allocate memory in power-of-two pages.
  1754. *
  1755. * This function is also limited by MAX_ORDER.
  1756. *
  1757. * Memory allocated by this function must be released by free_pages_exact().
  1758. */
  1759. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1760. {
  1761. unsigned int order = get_order(size);
  1762. unsigned long addr;
  1763. addr = __get_free_pages(gfp_mask, order);
  1764. if (addr) {
  1765. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1766. unsigned long used = addr + PAGE_ALIGN(size);
  1767. split_page(virt_to_page((void *)addr), order);
  1768. while (used < alloc_end) {
  1769. free_page(used);
  1770. used += PAGE_SIZE;
  1771. }
  1772. }
  1773. return (void *)addr;
  1774. }
  1775. EXPORT_SYMBOL(alloc_pages_exact);
  1776. /**
  1777. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1778. * @virt: the value returned by alloc_pages_exact.
  1779. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1780. *
  1781. * Release the memory allocated by a previous call to alloc_pages_exact.
  1782. */
  1783. void free_pages_exact(void *virt, size_t size)
  1784. {
  1785. unsigned long addr = (unsigned long)virt;
  1786. unsigned long end = addr + PAGE_ALIGN(size);
  1787. while (addr < end) {
  1788. free_page(addr);
  1789. addr += PAGE_SIZE;
  1790. }
  1791. }
  1792. EXPORT_SYMBOL(free_pages_exact);
  1793. static unsigned int nr_free_zone_pages(int offset)
  1794. {
  1795. struct zoneref *z;
  1796. struct zone *zone;
  1797. /* Just pick one node, since fallback list is circular */
  1798. unsigned int sum = 0;
  1799. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1800. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1801. unsigned long size = zone->present_pages;
  1802. unsigned long high = high_wmark_pages(zone);
  1803. if (size > high)
  1804. sum += size - high;
  1805. }
  1806. return sum;
  1807. }
  1808. /*
  1809. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1810. */
  1811. unsigned int nr_free_buffer_pages(void)
  1812. {
  1813. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1814. }
  1815. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1816. /*
  1817. * Amount of free RAM allocatable within all zones
  1818. */
  1819. unsigned int nr_free_pagecache_pages(void)
  1820. {
  1821. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1822. }
  1823. static inline void show_node(struct zone *zone)
  1824. {
  1825. if (NUMA_BUILD)
  1826. printk("Node %d ", zone_to_nid(zone));
  1827. }
  1828. void si_meminfo(struct sysinfo *val)
  1829. {
  1830. val->totalram = totalram_pages;
  1831. val->sharedram = 0;
  1832. val->freeram = global_page_state(NR_FREE_PAGES);
  1833. val->bufferram = nr_blockdev_pages();
  1834. val->totalhigh = totalhigh_pages;
  1835. val->freehigh = nr_free_highpages();
  1836. val->mem_unit = PAGE_SIZE;
  1837. }
  1838. EXPORT_SYMBOL(si_meminfo);
  1839. #ifdef CONFIG_NUMA
  1840. void si_meminfo_node(struct sysinfo *val, int nid)
  1841. {
  1842. pg_data_t *pgdat = NODE_DATA(nid);
  1843. val->totalram = pgdat->node_present_pages;
  1844. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1845. #ifdef CONFIG_HIGHMEM
  1846. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1847. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1848. NR_FREE_PAGES);
  1849. #else
  1850. val->totalhigh = 0;
  1851. val->freehigh = 0;
  1852. #endif
  1853. val->mem_unit = PAGE_SIZE;
  1854. }
  1855. #endif
  1856. #define K(x) ((x) << (PAGE_SHIFT-10))
  1857. /*
  1858. * Show free area list (used inside shift_scroll-lock stuff)
  1859. * We also calculate the percentage fragmentation. We do this by counting the
  1860. * memory on each free list with the exception of the first item on the list.
  1861. */
  1862. void show_free_areas(void)
  1863. {
  1864. int cpu;
  1865. struct zone *zone;
  1866. for_each_populated_zone(zone) {
  1867. show_node(zone);
  1868. printk("%s per-cpu:\n", zone->name);
  1869. for_each_online_cpu(cpu) {
  1870. struct per_cpu_pageset *pageset;
  1871. pageset = zone_pcp(zone, cpu);
  1872. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1873. cpu, pageset->pcp.high,
  1874. pageset->pcp.batch, pageset->pcp.count);
  1875. }
  1876. }
  1877. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1878. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1879. " unevictable:%lu"
  1880. " dirty:%lu writeback:%lu unstable:%lu\n"
  1881. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1882. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1883. global_page_state(NR_ACTIVE_ANON),
  1884. global_page_state(NR_INACTIVE_ANON),
  1885. global_page_state(NR_ISOLATED_ANON),
  1886. global_page_state(NR_ACTIVE_FILE),
  1887. global_page_state(NR_INACTIVE_FILE),
  1888. global_page_state(NR_ISOLATED_FILE),
  1889. global_page_state(NR_UNEVICTABLE),
  1890. global_page_state(NR_FILE_DIRTY),
  1891. global_page_state(NR_WRITEBACK),
  1892. global_page_state(NR_UNSTABLE_NFS),
  1893. global_page_state(NR_FREE_PAGES),
  1894. global_page_state(NR_SLAB_RECLAIMABLE),
  1895. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1896. global_page_state(NR_FILE_MAPPED),
  1897. global_page_state(NR_SHMEM),
  1898. global_page_state(NR_PAGETABLE),
  1899. global_page_state(NR_BOUNCE));
  1900. for_each_populated_zone(zone) {
  1901. int i;
  1902. show_node(zone);
  1903. printk("%s"
  1904. " free:%lukB"
  1905. " min:%lukB"
  1906. " low:%lukB"
  1907. " high:%lukB"
  1908. " active_anon:%lukB"
  1909. " inactive_anon:%lukB"
  1910. " active_file:%lukB"
  1911. " inactive_file:%lukB"
  1912. " unevictable:%lukB"
  1913. " isolated(anon):%lukB"
  1914. " isolated(file):%lukB"
  1915. " present:%lukB"
  1916. " mlocked:%lukB"
  1917. " dirty:%lukB"
  1918. " writeback:%lukB"
  1919. " mapped:%lukB"
  1920. " shmem:%lukB"
  1921. " slab_reclaimable:%lukB"
  1922. " slab_unreclaimable:%lukB"
  1923. " kernel_stack:%lukB"
  1924. " pagetables:%lukB"
  1925. " unstable:%lukB"
  1926. " bounce:%lukB"
  1927. " writeback_tmp:%lukB"
  1928. " pages_scanned:%lu"
  1929. " all_unreclaimable? %s"
  1930. "\n",
  1931. zone->name,
  1932. K(zone_page_state(zone, NR_FREE_PAGES)),
  1933. K(min_wmark_pages(zone)),
  1934. K(low_wmark_pages(zone)),
  1935. K(high_wmark_pages(zone)),
  1936. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1937. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1938. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1939. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1940. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1941. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1942. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1943. K(zone->present_pages),
  1944. K(zone_page_state(zone, NR_MLOCK)),
  1945. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1946. K(zone_page_state(zone, NR_WRITEBACK)),
  1947. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1948. K(zone_page_state(zone, NR_SHMEM)),
  1949. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1950. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1951. zone_page_state(zone, NR_KERNEL_STACK) *
  1952. THREAD_SIZE / 1024,
  1953. K(zone_page_state(zone, NR_PAGETABLE)),
  1954. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1955. K(zone_page_state(zone, NR_BOUNCE)),
  1956. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1957. zone->pages_scanned,
  1958. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1959. );
  1960. printk("lowmem_reserve[]:");
  1961. for (i = 0; i < MAX_NR_ZONES; i++)
  1962. printk(" %lu", zone->lowmem_reserve[i]);
  1963. printk("\n");
  1964. }
  1965. for_each_populated_zone(zone) {
  1966. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1967. show_node(zone);
  1968. printk("%s: ", zone->name);
  1969. spin_lock_irqsave(&zone->lock, flags);
  1970. for (order = 0; order < MAX_ORDER; order++) {
  1971. nr[order] = zone->free_area[order].nr_free;
  1972. total += nr[order] << order;
  1973. }
  1974. spin_unlock_irqrestore(&zone->lock, flags);
  1975. for (order = 0; order < MAX_ORDER; order++)
  1976. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1977. printk("= %lukB\n", K(total));
  1978. }
  1979. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1980. show_swap_cache_info();
  1981. }
  1982. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1983. {
  1984. zoneref->zone = zone;
  1985. zoneref->zone_idx = zone_idx(zone);
  1986. }
  1987. /*
  1988. * Builds allocation fallback zone lists.
  1989. *
  1990. * Add all populated zones of a node to the zonelist.
  1991. */
  1992. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1993. int nr_zones, enum zone_type zone_type)
  1994. {
  1995. struct zone *zone;
  1996. BUG_ON(zone_type >= MAX_NR_ZONES);
  1997. zone_type++;
  1998. do {
  1999. zone_type--;
  2000. zone = pgdat->node_zones + zone_type;
  2001. if (populated_zone(zone)) {
  2002. zoneref_set_zone(zone,
  2003. &zonelist->_zonerefs[nr_zones++]);
  2004. check_highest_zone(zone_type);
  2005. }
  2006. } while (zone_type);
  2007. return nr_zones;
  2008. }
  2009. /*
  2010. * zonelist_order:
  2011. * 0 = automatic detection of better ordering.
  2012. * 1 = order by ([node] distance, -zonetype)
  2013. * 2 = order by (-zonetype, [node] distance)
  2014. *
  2015. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2016. * the same zonelist. So only NUMA can configure this param.
  2017. */
  2018. #define ZONELIST_ORDER_DEFAULT 0
  2019. #define ZONELIST_ORDER_NODE 1
  2020. #define ZONELIST_ORDER_ZONE 2
  2021. /* zonelist order in the kernel.
  2022. * set_zonelist_order() will set this to NODE or ZONE.
  2023. */
  2024. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2025. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2026. #ifdef CONFIG_NUMA
  2027. /* The value user specified ....changed by config */
  2028. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2029. /* string for sysctl */
  2030. #define NUMA_ZONELIST_ORDER_LEN 16
  2031. char numa_zonelist_order[16] = "default";
  2032. /*
  2033. * interface for configure zonelist ordering.
  2034. * command line option "numa_zonelist_order"
  2035. * = "[dD]efault - default, automatic configuration.
  2036. * = "[nN]ode - order by node locality, then by zone within node
  2037. * = "[zZ]one - order by zone, then by locality within zone
  2038. */
  2039. static int __parse_numa_zonelist_order(char *s)
  2040. {
  2041. if (*s == 'd' || *s == 'D') {
  2042. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2043. } else if (*s == 'n' || *s == 'N') {
  2044. user_zonelist_order = ZONELIST_ORDER_NODE;
  2045. } else if (*s == 'z' || *s == 'Z') {
  2046. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2047. } else {
  2048. printk(KERN_WARNING
  2049. "Ignoring invalid numa_zonelist_order value: "
  2050. "%s\n", s);
  2051. return -EINVAL;
  2052. }
  2053. return 0;
  2054. }
  2055. static __init int setup_numa_zonelist_order(char *s)
  2056. {
  2057. if (s)
  2058. return __parse_numa_zonelist_order(s);
  2059. return 0;
  2060. }
  2061. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2062. /*
  2063. * sysctl handler for numa_zonelist_order
  2064. */
  2065. int numa_zonelist_order_handler(ctl_table *table, int write,
  2066. void __user *buffer, size_t *length,
  2067. loff_t *ppos)
  2068. {
  2069. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2070. int ret;
  2071. static DEFINE_MUTEX(zl_order_mutex);
  2072. mutex_lock(&zl_order_mutex);
  2073. if (write)
  2074. strcpy(saved_string, (char*)table->data);
  2075. ret = proc_dostring(table, write, buffer, length, ppos);
  2076. if (ret)
  2077. goto out;
  2078. if (write) {
  2079. int oldval = user_zonelist_order;
  2080. if (__parse_numa_zonelist_order((char*)table->data)) {
  2081. /*
  2082. * bogus value. restore saved string
  2083. */
  2084. strncpy((char*)table->data, saved_string,
  2085. NUMA_ZONELIST_ORDER_LEN);
  2086. user_zonelist_order = oldval;
  2087. } else if (oldval != user_zonelist_order)
  2088. build_all_zonelists();
  2089. }
  2090. out:
  2091. mutex_unlock(&zl_order_mutex);
  2092. return ret;
  2093. }
  2094. #define MAX_NODE_LOAD (nr_online_nodes)
  2095. static int node_load[MAX_NUMNODES];
  2096. /**
  2097. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2098. * @node: node whose fallback list we're appending
  2099. * @used_node_mask: nodemask_t of already used nodes
  2100. *
  2101. * We use a number of factors to determine which is the next node that should
  2102. * appear on a given node's fallback list. The node should not have appeared
  2103. * already in @node's fallback list, and it should be the next closest node
  2104. * according to the distance array (which contains arbitrary distance values
  2105. * from each node to each node in the system), and should also prefer nodes
  2106. * with no CPUs, since presumably they'll have very little allocation pressure
  2107. * on them otherwise.
  2108. * It returns -1 if no node is found.
  2109. */
  2110. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2111. {
  2112. int n, val;
  2113. int min_val = INT_MAX;
  2114. int best_node = -1;
  2115. const struct cpumask *tmp = cpumask_of_node(0);
  2116. /* Use the local node if we haven't already */
  2117. if (!node_isset(node, *used_node_mask)) {
  2118. node_set(node, *used_node_mask);
  2119. return node;
  2120. }
  2121. for_each_node_state(n, N_HIGH_MEMORY) {
  2122. /* Don't want a node to appear more than once */
  2123. if (node_isset(n, *used_node_mask))
  2124. continue;
  2125. /* Use the distance array to find the distance */
  2126. val = node_distance(node, n);
  2127. /* Penalize nodes under us ("prefer the next node") */
  2128. val += (n < node);
  2129. /* Give preference to headless and unused nodes */
  2130. tmp = cpumask_of_node(n);
  2131. if (!cpumask_empty(tmp))
  2132. val += PENALTY_FOR_NODE_WITH_CPUS;
  2133. /* Slight preference for less loaded node */
  2134. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2135. val += node_load[n];
  2136. if (val < min_val) {
  2137. min_val = val;
  2138. best_node = n;
  2139. }
  2140. }
  2141. if (best_node >= 0)
  2142. node_set(best_node, *used_node_mask);
  2143. return best_node;
  2144. }
  2145. /*
  2146. * Build zonelists ordered by node and zones within node.
  2147. * This results in maximum locality--normal zone overflows into local
  2148. * DMA zone, if any--but risks exhausting DMA zone.
  2149. */
  2150. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2151. {
  2152. int j;
  2153. struct zonelist *zonelist;
  2154. zonelist = &pgdat->node_zonelists[0];
  2155. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2156. ;
  2157. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2158. MAX_NR_ZONES - 1);
  2159. zonelist->_zonerefs[j].zone = NULL;
  2160. zonelist->_zonerefs[j].zone_idx = 0;
  2161. }
  2162. /*
  2163. * Build gfp_thisnode zonelists
  2164. */
  2165. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2166. {
  2167. int j;
  2168. struct zonelist *zonelist;
  2169. zonelist = &pgdat->node_zonelists[1];
  2170. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2171. zonelist->_zonerefs[j].zone = NULL;
  2172. zonelist->_zonerefs[j].zone_idx = 0;
  2173. }
  2174. /*
  2175. * Build zonelists ordered by zone and nodes within zones.
  2176. * This results in conserving DMA zone[s] until all Normal memory is
  2177. * exhausted, but results in overflowing to remote node while memory
  2178. * may still exist in local DMA zone.
  2179. */
  2180. static int node_order[MAX_NUMNODES];
  2181. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2182. {
  2183. int pos, j, node;
  2184. int zone_type; /* needs to be signed */
  2185. struct zone *z;
  2186. struct zonelist *zonelist;
  2187. zonelist = &pgdat->node_zonelists[0];
  2188. pos = 0;
  2189. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2190. for (j = 0; j < nr_nodes; j++) {
  2191. node = node_order[j];
  2192. z = &NODE_DATA(node)->node_zones[zone_type];
  2193. if (populated_zone(z)) {
  2194. zoneref_set_zone(z,
  2195. &zonelist->_zonerefs[pos++]);
  2196. check_highest_zone(zone_type);
  2197. }
  2198. }
  2199. }
  2200. zonelist->_zonerefs[pos].zone = NULL;
  2201. zonelist->_zonerefs[pos].zone_idx = 0;
  2202. }
  2203. static int default_zonelist_order(void)
  2204. {
  2205. int nid, zone_type;
  2206. unsigned long low_kmem_size,total_size;
  2207. struct zone *z;
  2208. int average_size;
  2209. /*
  2210. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2211. * If they are really small and used heavily, the system can fall
  2212. * into OOM very easily.
  2213. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2214. */
  2215. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2216. low_kmem_size = 0;
  2217. total_size = 0;
  2218. for_each_online_node(nid) {
  2219. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2220. z = &NODE_DATA(nid)->node_zones[zone_type];
  2221. if (populated_zone(z)) {
  2222. if (zone_type < ZONE_NORMAL)
  2223. low_kmem_size += z->present_pages;
  2224. total_size += z->present_pages;
  2225. }
  2226. }
  2227. }
  2228. if (!low_kmem_size || /* there are no DMA area. */
  2229. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2230. return ZONELIST_ORDER_NODE;
  2231. /*
  2232. * look into each node's config.
  2233. * If there is a node whose DMA/DMA32 memory is very big area on
  2234. * local memory, NODE_ORDER may be suitable.
  2235. */
  2236. average_size = total_size /
  2237. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2238. for_each_online_node(nid) {
  2239. low_kmem_size = 0;
  2240. total_size = 0;
  2241. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2242. z = &NODE_DATA(nid)->node_zones[zone_type];
  2243. if (populated_zone(z)) {
  2244. if (zone_type < ZONE_NORMAL)
  2245. low_kmem_size += z->present_pages;
  2246. total_size += z->present_pages;
  2247. }
  2248. }
  2249. if (low_kmem_size &&
  2250. total_size > average_size && /* ignore small node */
  2251. low_kmem_size > total_size * 70/100)
  2252. return ZONELIST_ORDER_NODE;
  2253. }
  2254. return ZONELIST_ORDER_ZONE;
  2255. }
  2256. static void set_zonelist_order(void)
  2257. {
  2258. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2259. current_zonelist_order = default_zonelist_order();
  2260. else
  2261. current_zonelist_order = user_zonelist_order;
  2262. }
  2263. static void build_zonelists(pg_data_t *pgdat)
  2264. {
  2265. int j, node, load;
  2266. enum zone_type i;
  2267. nodemask_t used_mask;
  2268. int local_node, prev_node;
  2269. struct zonelist *zonelist;
  2270. int order = current_zonelist_order;
  2271. /* initialize zonelists */
  2272. for (i = 0; i < MAX_ZONELISTS; i++) {
  2273. zonelist = pgdat->node_zonelists + i;
  2274. zonelist->_zonerefs[0].zone = NULL;
  2275. zonelist->_zonerefs[0].zone_idx = 0;
  2276. }
  2277. /* NUMA-aware ordering of nodes */
  2278. local_node = pgdat->node_id;
  2279. load = nr_online_nodes;
  2280. prev_node = local_node;
  2281. nodes_clear(used_mask);
  2282. memset(node_order, 0, sizeof(node_order));
  2283. j = 0;
  2284. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2285. int distance = node_distance(local_node, node);
  2286. /*
  2287. * If another node is sufficiently far away then it is better
  2288. * to reclaim pages in a zone before going off node.
  2289. */
  2290. if (distance > RECLAIM_DISTANCE)
  2291. zone_reclaim_mode = 1;
  2292. /*
  2293. * We don't want to pressure a particular node.
  2294. * So adding penalty to the first node in same
  2295. * distance group to make it round-robin.
  2296. */
  2297. if (distance != node_distance(local_node, prev_node))
  2298. node_load[node] = load;
  2299. prev_node = node;
  2300. load--;
  2301. if (order == ZONELIST_ORDER_NODE)
  2302. build_zonelists_in_node_order(pgdat, node);
  2303. else
  2304. node_order[j++] = node; /* remember order */
  2305. }
  2306. if (order == ZONELIST_ORDER_ZONE) {
  2307. /* calculate node order -- i.e., DMA last! */
  2308. build_zonelists_in_zone_order(pgdat, j);
  2309. }
  2310. build_thisnode_zonelists(pgdat);
  2311. }
  2312. /* Construct the zonelist performance cache - see further mmzone.h */
  2313. static void build_zonelist_cache(pg_data_t *pgdat)
  2314. {
  2315. struct zonelist *zonelist;
  2316. struct zonelist_cache *zlc;
  2317. struct zoneref *z;
  2318. zonelist = &pgdat->node_zonelists[0];
  2319. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2320. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2321. for (z = zonelist->_zonerefs; z->zone; z++)
  2322. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2323. }
  2324. #else /* CONFIG_NUMA */
  2325. static void set_zonelist_order(void)
  2326. {
  2327. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2328. }
  2329. static void build_zonelists(pg_data_t *pgdat)
  2330. {
  2331. int node, local_node;
  2332. enum zone_type j;
  2333. struct zonelist *zonelist;
  2334. local_node = pgdat->node_id;
  2335. zonelist = &pgdat->node_zonelists[0];
  2336. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2337. /*
  2338. * Now we build the zonelist so that it contains the zones
  2339. * of all the other nodes.
  2340. * We don't want to pressure a particular node, so when
  2341. * building the zones for node N, we make sure that the
  2342. * zones coming right after the local ones are those from
  2343. * node N+1 (modulo N)
  2344. */
  2345. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2346. if (!node_online(node))
  2347. continue;
  2348. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2349. MAX_NR_ZONES - 1);
  2350. }
  2351. for (node = 0; node < local_node; node++) {
  2352. if (!node_online(node))
  2353. continue;
  2354. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2355. MAX_NR_ZONES - 1);
  2356. }
  2357. zonelist->_zonerefs[j].zone = NULL;
  2358. zonelist->_zonerefs[j].zone_idx = 0;
  2359. }
  2360. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2361. static void build_zonelist_cache(pg_data_t *pgdat)
  2362. {
  2363. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2364. }
  2365. #endif /* CONFIG_NUMA */
  2366. /* return values int ....just for stop_machine() */
  2367. static int __build_all_zonelists(void *dummy)
  2368. {
  2369. int nid;
  2370. #ifdef CONFIG_NUMA
  2371. memset(node_load, 0, sizeof(node_load));
  2372. #endif
  2373. for_each_online_node(nid) {
  2374. pg_data_t *pgdat = NODE_DATA(nid);
  2375. build_zonelists(pgdat);
  2376. build_zonelist_cache(pgdat);
  2377. }
  2378. return 0;
  2379. }
  2380. void build_all_zonelists(void)
  2381. {
  2382. set_zonelist_order();
  2383. if (system_state == SYSTEM_BOOTING) {
  2384. __build_all_zonelists(NULL);
  2385. mminit_verify_zonelist();
  2386. cpuset_init_current_mems_allowed();
  2387. } else {
  2388. /* we have to stop all cpus to guarantee there is no user
  2389. of zonelist */
  2390. stop_machine(__build_all_zonelists, NULL, NULL);
  2391. /* cpuset refresh routine should be here */
  2392. }
  2393. vm_total_pages = nr_free_pagecache_pages();
  2394. /*
  2395. * Disable grouping by mobility if the number of pages in the
  2396. * system is too low to allow the mechanism to work. It would be
  2397. * more accurate, but expensive to check per-zone. This check is
  2398. * made on memory-hotadd so a system can start with mobility
  2399. * disabled and enable it later
  2400. */
  2401. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2402. page_group_by_mobility_disabled = 1;
  2403. else
  2404. page_group_by_mobility_disabled = 0;
  2405. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2406. "Total pages: %ld\n",
  2407. nr_online_nodes,
  2408. zonelist_order_name[current_zonelist_order],
  2409. page_group_by_mobility_disabled ? "off" : "on",
  2410. vm_total_pages);
  2411. #ifdef CONFIG_NUMA
  2412. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2413. #endif
  2414. }
  2415. /*
  2416. * Helper functions to size the waitqueue hash table.
  2417. * Essentially these want to choose hash table sizes sufficiently
  2418. * large so that collisions trying to wait on pages are rare.
  2419. * But in fact, the number of active page waitqueues on typical
  2420. * systems is ridiculously low, less than 200. So this is even
  2421. * conservative, even though it seems large.
  2422. *
  2423. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2424. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2425. */
  2426. #define PAGES_PER_WAITQUEUE 256
  2427. #ifndef CONFIG_MEMORY_HOTPLUG
  2428. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2429. {
  2430. unsigned long size = 1;
  2431. pages /= PAGES_PER_WAITQUEUE;
  2432. while (size < pages)
  2433. size <<= 1;
  2434. /*
  2435. * Once we have dozens or even hundreds of threads sleeping
  2436. * on IO we've got bigger problems than wait queue collision.
  2437. * Limit the size of the wait table to a reasonable size.
  2438. */
  2439. size = min(size, 4096UL);
  2440. return max(size, 4UL);
  2441. }
  2442. #else
  2443. /*
  2444. * A zone's size might be changed by hot-add, so it is not possible to determine
  2445. * a suitable size for its wait_table. So we use the maximum size now.
  2446. *
  2447. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2448. *
  2449. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2450. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2451. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2452. *
  2453. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2454. * or more by the traditional way. (See above). It equals:
  2455. *
  2456. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2457. * ia64(16K page size) : = ( 8G + 4M)byte.
  2458. * powerpc (64K page size) : = (32G +16M)byte.
  2459. */
  2460. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2461. {
  2462. return 4096UL;
  2463. }
  2464. #endif
  2465. /*
  2466. * This is an integer logarithm so that shifts can be used later
  2467. * to extract the more random high bits from the multiplicative
  2468. * hash function before the remainder is taken.
  2469. */
  2470. static inline unsigned long wait_table_bits(unsigned long size)
  2471. {
  2472. return ffz(~size);
  2473. }
  2474. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2475. /*
  2476. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2477. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2478. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2479. * higher will lead to a bigger reserve which will get freed as contiguous
  2480. * blocks as reclaim kicks in
  2481. */
  2482. static void setup_zone_migrate_reserve(struct zone *zone)
  2483. {
  2484. unsigned long start_pfn, pfn, end_pfn;
  2485. struct page *page;
  2486. unsigned long block_migratetype;
  2487. int reserve;
  2488. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2489. start_pfn = zone->zone_start_pfn;
  2490. end_pfn = start_pfn + zone->spanned_pages;
  2491. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2492. pageblock_order;
  2493. /*
  2494. * Reserve blocks are generally in place to help high-order atomic
  2495. * allocations that are short-lived. A min_free_kbytes value that
  2496. * would result in more than 2 reserve blocks for atomic allocations
  2497. * is assumed to be in place to help anti-fragmentation for the
  2498. * future allocation of hugepages at runtime.
  2499. */
  2500. reserve = min(2, reserve);
  2501. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2502. if (!pfn_valid(pfn))
  2503. continue;
  2504. page = pfn_to_page(pfn);
  2505. /* Watch out for overlapping nodes */
  2506. if (page_to_nid(page) != zone_to_nid(zone))
  2507. continue;
  2508. /* Blocks with reserved pages will never free, skip them. */
  2509. if (PageReserved(page))
  2510. continue;
  2511. block_migratetype = get_pageblock_migratetype(page);
  2512. /* If this block is reserved, account for it */
  2513. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2514. reserve--;
  2515. continue;
  2516. }
  2517. /* Suitable for reserving if this block is movable */
  2518. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2519. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2520. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2521. reserve--;
  2522. continue;
  2523. }
  2524. /*
  2525. * If the reserve is met and this is a previous reserved block,
  2526. * take it back
  2527. */
  2528. if (block_migratetype == MIGRATE_RESERVE) {
  2529. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2530. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2531. }
  2532. }
  2533. }
  2534. /*
  2535. * Initially all pages are reserved - free ones are freed
  2536. * up by free_all_bootmem() once the early boot process is
  2537. * done. Non-atomic initialization, single-pass.
  2538. */
  2539. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2540. unsigned long start_pfn, enum memmap_context context)
  2541. {
  2542. struct page *page;
  2543. unsigned long end_pfn = start_pfn + size;
  2544. unsigned long pfn;
  2545. struct zone *z;
  2546. if (highest_memmap_pfn < end_pfn - 1)
  2547. highest_memmap_pfn = end_pfn - 1;
  2548. z = &NODE_DATA(nid)->node_zones[zone];
  2549. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2550. /*
  2551. * There can be holes in boot-time mem_map[]s
  2552. * handed to this function. They do not
  2553. * exist on hotplugged memory.
  2554. */
  2555. if (context == MEMMAP_EARLY) {
  2556. if (!early_pfn_valid(pfn))
  2557. continue;
  2558. if (!early_pfn_in_nid(pfn, nid))
  2559. continue;
  2560. }
  2561. page = pfn_to_page(pfn);
  2562. set_page_links(page, zone, nid, pfn);
  2563. mminit_verify_page_links(page, zone, nid, pfn);
  2564. init_page_count(page);
  2565. reset_page_mapcount(page);
  2566. SetPageReserved(page);
  2567. /*
  2568. * Mark the block movable so that blocks are reserved for
  2569. * movable at startup. This will force kernel allocations
  2570. * to reserve their blocks rather than leaking throughout
  2571. * the address space during boot when many long-lived
  2572. * kernel allocations are made. Later some blocks near
  2573. * the start are marked MIGRATE_RESERVE by
  2574. * setup_zone_migrate_reserve()
  2575. *
  2576. * bitmap is created for zone's valid pfn range. but memmap
  2577. * can be created for invalid pages (for alignment)
  2578. * check here not to call set_pageblock_migratetype() against
  2579. * pfn out of zone.
  2580. */
  2581. if ((z->zone_start_pfn <= pfn)
  2582. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2583. && !(pfn & (pageblock_nr_pages - 1)))
  2584. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2585. INIT_LIST_HEAD(&page->lru);
  2586. #ifdef WANT_PAGE_VIRTUAL
  2587. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2588. if (!is_highmem_idx(zone))
  2589. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2590. #endif
  2591. }
  2592. }
  2593. static void __meminit zone_init_free_lists(struct zone *zone)
  2594. {
  2595. int order, t;
  2596. for_each_migratetype_order(order, t) {
  2597. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2598. zone->free_area[order].nr_free = 0;
  2599. }
  2600. }
  2601. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2602. #define memmap_init(size, nid, zone, start_pfn) \
  2603. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2604. #endif
  2605. static int zone_batchsize(struct zone *zone)
  2606. {
  2607. #ifdef CONFIG_MMU
  2608. int batch;
  2609. /*
  2610. * The per-cpu-pages pools are set to around 1000th of the
  2611. * size of the zone. But no more than 1/2 of a meg.
  2612. *
  2613. * OK, so we don't know how big the cache is. So guess.
  2614. */
  2615. batch = zone->present_pages / 1024;
  2616. if (batch * PAGE_SIZE > 512 * 1024)
  2617. batch = (512 * 1024) / PAGE_SIZE;
  2618. batch /= 4; /* We effectively *= 4 below */
  2619. if (batch < 1)
  2620. batch = 1;
  2621. /*
  2622. * Clamp the batch to a 2^n - 1 value. Having a power
  2623. * of 2 value was found to be more likely to have
  2624. * suboptimal cache aliasing properties in some cases.
  2625. *
  2626. * For example if 2 tasks are alternately allocating
  2627. * batches of pages, one task can end up with a lot
  2628. * of pages of one half of the possible page colors
  2629. * and the other with pages of the other colors.
  2630. */
  2631. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2632. return batch;
  2633. #else
  2634. /* The deferral and batching of frees should be suppressed under NOMMU
  2635. * conditions.
  2636. *
  2637. * The problem is that NOMMU needs to be able to allocate large chunks
  2638. * of contiguous memory as there's no hardware page translation to
  2639. * assemble apparent contiguous memory from discontiguous pages.
  2640. *
  2641. * Queueing large contiguous runs of pages for batching, however,
  2642. * causes the pages to actually be freed in smaller chunks. As there
  2643. * can be a significant delay between the individual batches being
  2644. * recycled, this leads to the once large chunks of space being
  2645. * fragmented and becoming unavailable for high-order allocations.
  2646. */
  2647. return 0;
  2648. #endif
  2649. }
  2650. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2651. {
  2652. struct per_cpu_pages *pcp;
  2653. int migratetype;
  2654. memset(p, 0, sizeof(*p));
  2655. pcp = &p->pcp;
  2656. pcp->count = 0;
  2657. pcp->high = 6 * batch;
  2658. pcp->batch = max(1UL, 1 * batch);
  2659. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2660. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2661. }
  2662. /*
  2663. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2664. * to the value high for the pageset p.
  2665. */
  2666. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2667. unsigned long high)
  2668. {
  2669. struct per_cpu_pages *pcp;
  2670. pcp = &p->pcp;
  2671. pcp->high = high;
  2672. pcp->batch = max(1UL, high/4);
  2673. if ((high/4) > (PAGE_SHIFT * 8))
  2674. pcp->batch = PAGE_SHIFT * 8;
  2675. }
  2676. #ifdef CONFIG_NUMA
  2677. /*
  2678. * Boot pageset table. One per cpu which is going to be used for all
  2679. * zones and all nodes. The parameters will be set in such a way
  2680. * that an item put on a list will immediately be handed over to
  2681. * the buddy list. This is safe since pageset manipulation is done
  2682. * with interrupts disabled.
  2683. *
  2684. * Some NUMA counter updates may also be caught by the boot pagesets.
  2685. *
  2686. * The boot_pagesets must be kept even after bootup is complete for
  2687. * unused processors and/or zones. They do play a role for bootstrapping
  2688. * hotplugged processors.
  2689. *
  2690. * zoneinfo_show() and maybe other functions do
  2691. * not check if the processor is online before following the pageset pointer.
  2692. * Other parts of the kernel may not check if the zone is available.
  2693. */
  2694. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2695. /*
  2696. * Dynamically allocate memory for the
  2697. * per cpu pageset array in struct zone.
  2698. */
  2699. static int __cpuinit process_zones(int cpu)
  2700. {
  2701. struct zone *zone, *dzone;
  2702. int node = cpu_to_node(cpu);
  2703. node_set_state(node, N_CPU); /* this node has a cpu */
  2704. for_each_populated_zone(zone) {
  2705. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2706. GFP_KERNEL, node);
  2707. if (!zone_pcp(zone, cpu))
  2708. goto bad;
  2709. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2710. if (percpu_pagelist_fraction)
  2711. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2712. (zone->present_pages / percpu_pagelist_fraction));
  2713. }
  2714. return 0;
  2715. bad:
  2716. for_each_zone(dzone) {
  2717. if (!populated_zone(dzone))
  2718. continue;
  2719. if (dzone == zone)
  2720. break;
  2721. kfree(zone_pcp(dzone, cpu));
  2722. zone_pcp(dzone, cpu) = &boot_pageset[cpu];
  2723. }
  2724. return -ENOMEM;
  2725. }
  2726. static inline void free_zone_pagesets(int cpu)
  2727. {
  2728. struct zone *zone;
  2729. for_each_zone(zone) {
  2730. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2731. /* Free per_cpu_pageset if it is slab allocated */
  2732. if (pset != &boot_pageset[cpu])
  2733. kfree(pset);
  2734. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2735. }
  2736. }
  2737. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2738. unsigned long action,
  2739. void *hcpu)
  2740. {
  2741. int cpu = (long)hcpu;
  2742. int ret = NOTIFY_OK;
  2743. switch (action) {
  2744. case CPU_UP_PREPARE:
  2745. case CPU_UP_PREPARE_FROZEN:
  2746. if (process_zones(cpu))
  2747. ret = NOTIFY_BAD;
  2748. break;
  2749. case CPU_UP_CANCELED:
  2750. case CPU_UP_CANCELED_FROZEN:
  2751. case CPU_DEAD:
  2752. case CPU_DEAD_FROZEN:
  2753. free_zone_pagesets(cpu);
  2754. break;
  2755. default:
  2756. break;
  2757. }
  2758. return ret;
  2759. }
  2760. static struct notifier_block __cpuinitdata pageset_notifier =
  2761. { &pageset_cpuup_callback, NULL, 0 };
  2762. void __init setup_per_cpu_pageset(void)
  2763. {
  2764. int err;
  2765. /* Initialize per_cpu_pageset for cpu 0.
  2766. * A cpuup callback will do this for every cpu
  2767. * as it comes online
  2768. */
  2769. err = process_zones(smp_processor_id());
  2770. BUG_ON(err);
  2771. register_cpu_notifier(&pageset_notifier);
  2772. }
  2773. #endif
  2774. static noinline __init_refok
  2775. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2776. {
  2777. int i;
  2778. struct pglist_data *pgdat = zone->zone_pgdat;
  2779. size_t alloc_size;
  2780. /*
  2781. * The per-page waitqueue mechanism uses hashed waitqueues
  2782. * per zone.
  2783. */
  2784. zone->wait_table_hash_nr_entries =
  2785. wait_table_hash_nr_entries(zone_size_pages);
  2786. zone->wait_table_bits =
  2787. wait_table_bits(zone->wait_table_hash_nr_entries);
  2788. alloc_size = zone->wait_table_hash_nr_entries
  2789. * sizeof(wait_queue_head_t);
  2790. if (!slab_is_available()) {
  2791. zone->wait_table = (wait_queue_head_t *)
  2792. alloc_bootmem_node(pgdat, alloc_size);
  2793. } else {
  2794. /*
  2795. * This case means that a zone whose size was 0 gets new memory
  2796. * via memory hot-add.
  2797. * But it may be the case that a new node was hot-added. In
  2798. * this case vmalloc() will not be able to use this new node's
  2799. * memory - this wait_table must be initialized to use this new
  2800. * node itself as well.
  2801. * To use this new node's memory, further consideration will be
  2802. * necessary.
  2803. */
  2804. zone->wait_table = vmalloc(alloc_size);
  2805. }
  2806. if (!zone->wait_table)
  2807. return -ENOMEM;
  2808. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2809. init_waitqueue_head(zone->wait_table + i);
  2810. return 0;
  2811. }
  2812. static int __zone_pcp_update(void *data)
  2813. {
  2814. struct zone *zone = data;
  2815. int cpu;
  2816. unsigned long batch = zone_batchsize(zone), flags;
  2817. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2818. struct per_cpu_pageset *pset;
  2819. struct per_cpu_pages *pcp;
  2820. pset = zone_pcp(zone, cpu);
  2821. pcp = &pset->pcp;
  2822. local_irq_save(flags);
  2823. free_pcppages_bulk(zone, pcp->count, pcp);
  2824. setup_pageset(pset, batch);
  2825. local_irq_restore(flags);
  2826. }
  2827. return 0;
  2828. }
  2829. void zone_pcp_update(struct zone *zone)
  2830. {
  2831. stop_machine(__zone_pcp_update, zone, NULL);
  2832. }
  2833. static __meminit void zone_pcp_init(struct zone *zone)
  2834. {
  2835. int cpu;
  2836. unsigned long batch = zone_batchsize(zone);
  2837. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2838. #ifdef CONFIG_NUMA
  2839. /* Early boot. Slab allocator not functional yet */
  2840. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2841. setup_pageset(&boot_pageset[cpu],0);
  2842. #else
  2843. setup_pageset(zone_pcp(zone,cpu), batch);
  2844. #endif
  2845. }
  2846. if (zone->present_pages)
  2847. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2848. zone->name, zone->present_pages, batch);
  2849. }
  2850. __meminit int init_currently_empty_zone(struct zone *zone,
  2851. unsigned long zone_start_pfn,
  2852. unsigned long size,
  2853. enum memmap_context context)
  2854. {
  2855. struct pglist_data *pgdat = zone->zone_pgdat;
  2856. int ret;
  2857. ret = zone_wait_table_init(zone, size);
  2858. if (ret)
  2859. return ret;
  2860. pgdat->nr_zones = zone_idx(zone) + 1;
  2861. zone->zone_start_pfn = zone_start_pfn;
  2862. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2863. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2864. pgdat->node_id,
  2865. (unsigned long)zone_idx(zone),
  2866. zone_start_pfn, (zone_start_pfn + size));
  2867. zone_init_free_lists(zone);
  2868. return 0;
  2869. }
  2870. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2871. /*
  2872. * Basic iterator support. Return the first range of PFNs for a node
  2873. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2874. */
  2875. static int __meminit first_active_region_index_in_nid(int nid)
  2876. {
  2877. int i;
  2878. for (i = 0; i < nr_nodemap_entries; i++)
  2879. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2880. return i;
  2881. return -1;
  2882. }
  2883. /*
  2884. * Basic iterator support. Return the next active range of PFNs for a node
  2885. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2886. */
  2887. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2888. {
  2889. for (index = index + 1; index < nr_nodemap_entries; index++)
  2890. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2891. return index;
  2892. return -1;
  2893. }
  2894. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2895. /*
  2896. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2897. * Architectures may implement their own version but if add_active_range()
  2898. * was used and there are no special requirements, this is a convenient
  2899. * alternative
  2900. */
  2901. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2902. {
  2903. int i;
  2904. for (i = 0; i < nr_nodemap_entries; i++) {
  2905. unsigned long start_pfn = early_node_map[i].start_pfn;
  2906. unsigned long end_pfn = early_node_map[i].end_pfn;
  2907. if (start_pfn <= pfn && pfn < end_pfn)
  2908. return early_node_map[i].nid;
  2909. }
  2910. /* This is a memory hole */
  2911. return -1;
  2912. }
  2913. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2914. int __meminit early_pfn_to_nid(unsigned long pfn)
  2915. {
  2916. int nid;
  2917. nid = __early_pfn_to_nid(pfn);
  2918. if (nid >= 0)
  2919. return nid;
  2920. /* just returns 0 */
  2921. return 0;
  2922. }
  2923. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2924. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2925. {
  2926. int nid;
  2927. nid = __early_pfn_to_nid(pfn);
  2928. if (nid >= 0 && nid != node)
  2929. return false;
  2930. return true;
  2931. }
  2932. #endif
  2933. /* Basic iterator support to walk early_node_map[] */
  2934. #define for_each_active_range_index_in_nid(i, nid) \
  2935. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2936. i = next_active_region_index_in_nid(i, nid))
  2937. /**
  2938. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2939. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2940. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2941. *
  2942. * If an architecture guarantees that all ranges registered with
  2943. * add_active_ranges() contain no holes and may be freed, this
  2944. * this function may be used instead of calling free_bootmem() manually.
  2945. */
  2946. void __init free_bootmem_with_active_regions(int nid,
  2947. unsigned long max_low_pfn)
  2948. {
  2949. int i;
  2950. for_each_active_range_index_in_nid(i, nid) {
  2951. unsigned long size_pages = 0;
  2952. unsigned long end_pfn = early_node_map[i].end_pfn;
  2953. if (early_node_map[i].start_pfn >= max_low_pfn)
  2954. continue;
  2955. if (end_pfn > max_low_pfn)
  2956. end_pfn = max_low_pfn;
  2957. size_pages = end_pfn - early_node_map[i].start_pfn;
  2958. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2959. PFN_PHYS(early_node_map[i].start_pfn),
  2960. size_pages << PAGE_SHIFT);
  2961. }
  2962. }
  2963. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2964. {
  2965. int i;
  2966. int ret;
  2967. for_each_active_range_index_in_nid(i, nid) {
  2968. ret = work_fn(early_node_map[i].start_pfn,
  2969. early_node_map[i].end_pfn, data);
  2970. if (ret)
  2971. break;
  2972. }
  2973. }
  2974. /**
  2975. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2976. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2977. *
  2978. * If an architecture guarantees that all ranges registered with
  2979. * add_active_ranges() contain no holes and may be freed, this
  2980. * function may be used instead of calling memory_present() manually.
  2981. */
  2982. void __init sparse_memory_present_with_active_regions(int nid)
  2983. {
  2984. int i;
  2985. for_each_active_range_index_in_nid(i, nid)
  2986. memory_present(early_node_map[i].nid,
  2987. early_node_map[i].start_pfn,
  2988. early_node_map[i].end_pfn);
  2989. }
  2990. /**
  2991. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2992. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2993. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2994. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2995. *
  2996. * It returns the start and end page frame of a node based on information
  2997. * provided by an arch calling add_active_range(). If called for a node
  2998. * with no available memory, a warning is printed and the start and end
  2999. * PFNs will be 0.
  3000. */
  3001. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3002. unsigned long *start_pfn, unsigned long *end_pfn)
  3003. {
  3004. int i;
  3005. *start_pfn = -1UL;
  3006. *end_pfn = 0;
  3007. for_each_active_range_index_in_nid(i, nid) {
  3008. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3009. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3010. }
  3011. if (*start_pfn == -1UL)
  3012. *start_pfn = 0;
  3013. }
  3014. /*
  3015. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3016. * assumption is made that zones within a node are ordered in monotonic
  3017. * increasing memory addresses so that the "highest" populated zone is used
  3018. */
  3019. static void __init find_usable_zone_for_movable(void)
  3020. {
  3021. int zone_index;
  3022. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3023. if (zone_index == ZONE_MOVABLE)
  3024. continue;
  3025. if (arch_zone_highest_possible_pfn[zone_index] >
  3026. arch_zone_lowest_possible_pfn[zone_index])
  3027. break;
  3028. }
  3029. VM_BUG_ON(zone_index == -1);
  3030. movable_zone = zone_index;
  3031. }
  3032. /*
  3033. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3034. * because it is sized independant of architecture. Unlike the other zones,
  3035. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3036. * in each node depending on the size of each node and how evenly kernelcore
  3037. * is distributed. This helper function adjusts the zone ranges
  3038. * provided by the architecture for a given node by using the end of the
  3039. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3040. * zones within a node are in order of monotonic increases memory addresses
  3041. */
  3042. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3043. unsigned long zone_type,
  3044. unsigned long node_start_pfn,
  3045. unsigned long node_end_pfn,
  3046. unsigned long *zone_start_pfn,
  3047. unsigned long *zone_end_pfn)
  3048. {
  3049. /* Only adjust if ZONE_MOVABLE is on this node */
  3050. if (zone_movable_pfn[nid]) {
  3051. /* Size ZONE_MOVABLE */
  3052. if (zone_type == ZONE_MOVABLE) {
  3053. *zone_start_pfn = zone_movable_pfn[nid];
  3054. *zone_end_pfn = min(node_end_pfn,
  3055. arch_zone_highest_possible_pfn[movable_zone]);
  3056. /* Adjust for ZONE_MOVABLE starting within this range */
  3057. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3058. *zone_end_pfn > zone_movable_pfn[nid]) {
  3059. *zone_end_pfn = zone_movable_pfn[nid];
  3060. /* Check if this whole range is within ZONE_MOVABLE */
  3061. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3062. *zone_start_pfn = *zone_end_pfn;
  3063. }
  3064. }
  3065. /*
  3066. * Return the number of pages a zone spans in a node, including holes
  3067. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3068. */
  3069. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3070. unsigned long zone_type,
  3071. unsigned long *ignored)
  3072. {
  3073. unsigned long node_start_pfn, node_end_pfn;
  3074. unsigned long zone_start_pfn, zone_end_pfn;
  3075. /* Get the start and end of the node and zone */
  3076. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3077. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3078. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3079. adjust_zone_range_for_zone_movable(nid, zone_type,
  3080. node_start_pfn, node_end_pfn,
  3081. &zone_start_pfn, &zone_end_pfn);
  3082. /* Check that this node has pages within the zone's required range */
  3083. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3084. return 0;
  3085. /* Move the zone boundaries inside the node if necessary */
  3086. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3087. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3088. /* Return the spanned pages */
  3089. return zone_end_pfn - zone_start_pfn;
  3090. }
  3091. /*
  3092. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3093. * then all holes in the requested range will be accounted for.
  3094. */
  3095. unsigned long __meminit __absent_pages_in_range(int nid,
  3096. unsigned long range_start_pfn,
  3097. unsigned long range_end_pfn)
  3098. {
  3099. int i = 0;
  3100. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3101. unsigned long start_pfn;
  3102. /* Find the end_pfn of the first active range of pfns in the node */
  3103. i = first_active_region_index_in_nid(nid);
  3104. if (i == -1)
  3105. return 0;
  3106. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3107. /* Account for ranges before physical memory on this node */
  3108. if (early_node_map[i].start_pfn > range_start_pfn)
  3109. hole_pages = prev_end_pfn - range_start_pfn;
  3110. /* Find all holes for the zone within the node */
  3111. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3112. /* No need to continue if prev_end_pfn is outside the zone */
  3113. if (prev_end_pfn >= range_end_pfn)
  3114. break;
  3115. /* Make sure the end of the zone is not within the hole */
  3116. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3117. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3118. /* Update the hole size cound and move on */
  3119. if (start_pfn > range_start_pfn) {
  3120. BUG_ON(prev_end_pfn > start_pfn);
  3121. hole_pages += start_pfn - prev_end_pfn;
  3122. }
  3123. prev_end_pfn = early_node_map[i].end_pfn;
  3124. }
  3125. /* Account for ranges past physical memory on this node */
  3126. if (range_end_pfn > prev_end_pfn)
  3127. hole_pages += range_end_pfn -
  3128. max(range_start_pfn, prev_end_pfn);
  3129. return hole_pages;
  3130. }
  3131. /**
  3132. * absent_pages_in_range - Return number of page frames in holes within a range
  3133. * @start_pfn: The start PFN to start searching for holes
  3134. * @end_pfn: The end PFN to stop searching for holes
  3135. *
  3136. * It returns the number of pages frames in memory holes within a range.
  3137. */
  3138. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3139. unsigned long end_pfn)
  3140. {
  3141. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3142. }
  3143. /* Return the number of page frames in holes in a zone on a node */
  3144. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3145. unsigned long zone_type,
  3146. unsigned long *ignored)
  3147. {
  3148. unsigned long node_start_pfn, node_end_pfn;
  3149. unsigned long zone_start_pfn, zone_end_pfn;
  3150. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3151. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3152. node_start_pfn);
  3153. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3154. node_end_pfn);
  3155. adjust_zone_range_for_zone_movable(nid, zone_type,
  3156. node_start_pfn, node_end_pfn,
  3157. &zone_start_pfn, &zone_end_pfn);
  3158. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3159. }
  3160. #else
  3161. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3162. unsigned long zone_type,
  3163. unsigned long *zones_size)
  3164. {
  3165. return zones_size[zone_type];
  3166. }
  3167. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3168. unsigned long zone_type,
  3169. unsigned long *zholes_size)
  3170. {
  3171. if (!zholes_size)
  3172. return 0;
  3173. return zholes_size[zone_type];
  3174. }
  3175. #endif
  3176. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3177. unsigned long *zones_size, unsigned long *zholes_size)
  3178. {
  3179. unsigned long realtotalpages, totalpages = 0;
  3180. enum zone_type i;
  3181. for (i = 0; i < MAX_NR_ZONES; i++)
  3182. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3183. zones_size);
  3184. pgdat->node_spanned_pages = totalpages;
  3185. realtotalpages = totalpages;
  3186. for (i = 0; i < MAX_NR_ZONES; i++)
  3187. realtotalpages -=
  3188. zone_absent_pages_in_node(pgdat->node_id, i,
  3189. zholes_size);
  3190. pgdat->node_present_pages = realtotalpages;
  3191. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3192. realtotalpages);
  3193. }
  3194. #ifndef CONFIG_SPARSEMEM
  3195. /*
  3196. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3197. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3198. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3199. * round what is now in bits to nearest long in bits, then return it in
  3200. * bytes.
  3201. */
  3202. static unsigned long __init usemap_size(unsigned long zonesize)
  3203. {
  3204. unsigned long usemapsize;
  3205. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3206. usemapsize = usemapsize >> pageblock_order;
  3207. usemapsize *= NR_PAGEBLOCK_BITS;
  3208. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3209. return usemapsize / 8;
  3210. }
  3211. static void __init setup_usemap(struct pglist_data *pgdat,
  3212. struct zone *zone, unsigned long zonesize)
  3213. {
  3214. unsigned long usemapsize = usemap_size(zonesize);
  3215. zone->pageblock_flags = NULL;
  3216. if (usemapsize)
  3217. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3218. }
  3219. #else
  3220. static void inline setup_usemap(struct pglist_data *pgdat,
  3221. struct zone *zone, unsigned long zonesize) {}
  3222. #endif /* CONFIG_SPARSEMEM */
  3223. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3224. /* Return a sensible default order for the pageblock size. */
  3225. static inline int pageblock_default_order(void)
  3226. {
  3227. if (HPAGE_SHIFT > PAGE_SHIFT)
  3228. return HUGETLB_PAGE_ORDER;
  3229. return MAX_ORDER-1;
  3230. }
  3231. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3232. static inline void __init set_pageblock_order(unsigned int order)
  3233. {
  3234. /* Check that pageblock_nr_pages has not already been setup */
  3235. if (pageblock_order)
  3236. return;
  3237. /*
  3238. * Assume the largest contiguous order of interest is a huge page.
  3239. * This value may be variable depending on boot parameters on IA64
  3240. */
  3241. pageblock_order = order;
  3242. }
  3243. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3244. /*
  3245. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3246. * and pageblock_default_order() are unused as pageblock_order is set
  3247. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3248. * pageblock_order based on the kernel config
  3249. */
  3250. static inline int pageblock_default_order(unsigned int order)
  3251. {
  3252. return MAX_ORDER-1;
  3253. }
  3254. #define set_pageblock_order(x) do {} while (0)
  3255. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3256. /*
  3257. * Set up the zone data structures:
  3258. * - mark all pages reserved
  3259. * - mark all memory queues empty
  3260. * - clear the memory bitmaps
  3261. */
  3262. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3263. unsigned long *zones_size, unsigned long *zholes_size)
  3264. {
  3265. enum zone_type j;
  3266. int nid = pgdat->node_id;
  3267. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3268. int ret;
  3269. pgdat_resize_init(pgdat);
  3270. pgdat->nr_zones = 0;
  3271. init_waitqueue_head(&pgdat->kswapd_wait);
  3272. pgdat->kswapd_max_order = 0;
  3273. pgdat_page_cgroup_init(pgdat);
  3274. for (j = 0; j < MAX_NR_ZONES; j++) {
  3275. struct zone *zone = pgdat->node_zones + j;
  3276. unsigned long size, realsize, memmap_pages;
  3277. enum lru_list l;
  3278. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3279. realsize = size - zone_absent_pages_in_node(nid, j,
  3280. zholes_size);
  3281. /*
  3282. * Adjust realsize so that it accounts for how much memory
  3283. * is used by this zone for memmap. This affects the watermark
  3284. * and per-cpu initialisations
  3285. */
  3286. memmap_pages =
  3287. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3288. if (realsize >= memmap_pages) {
  3289. realsize -= memmap_pages;
  3290. if (memmap_pages)
  3291. printk(KERN_DEBUG
  3292. " %s zone: %lu pages used for memmap\n",
  3293. zone_names[j], memmap_pages);
  3294. } else
  3295. printk(KERN_WARNING
  3296. " %s zone: %lu pages exceeds realsize %lu\n",
  3297. zone_names[j], memmap_pages, realsize);
  3298. /* Account for reserved pages */
  3299. if (j == 0 && realsize > dma_reserve) {
  3300. realsize -= dma_reserve;
  3301. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3302. zone_names[0], dma_reserve);
  3303. }
  3304. if (!is_highmem_idx(j))
  3305. nr_kernel_pages += realsize;
  3306. nr_all_pages += realsize;
  3307. zone->spanned_pages = size;
  3308. zone->present_pages = realsize;
  3309. #ifdef CONFIG_NUMA
  3310. zone->node = nid;
  3311. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3312. / 100;
  3313. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3314. #endif
  3315. zone->name = zone_names[j];
  3316. spin_lock_init(&zone->lock);
  3317. spin_lock_init(&zone->lru_lock);
  3318. zone_seqlock_init(zone);
  3319. zone->zone_pgdat = pgdat;
  3320. zone->prev_priority = DEF_PRIORITY;
  3321. zone_pcp_init(zone);
  3322. for_each_lru(l) {
  3323. INIT_LIST_HEAD(&zone->lru[l].list);
  3324. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3325. }
  3326. zone->reclaim_stat.recent_rotated[0] = 0;
  3327. zone->reclaim_stat.recent_rotated[1] = 0;
  3328. zone->reclaim_stat.recent_scanned[0] = 0;
  3329. zone->reclaim_stat.recent_scanned[1] = 0;
  3330. zap_zone_vm_stats(zone);
  3331. zone->flags = 0;
  3332. if (!size)
  3333. continue;
  3334. set_pageblock_order(pageblock_default_order());
  3335. setup_usemap(pgdat, zone, size);
  3336. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3337. size, MEMMAP_EARLY);
  3338. BUG_ON(ret);
  3339. memmap_init(size, nid, j, zone_start_pfn);
  3340. zone_start_pfn += size;
  3341. }
  3342. }
  3343. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3344. {
  3345. /* Skip empty nodes */
  3346. if (!pgdat->node_spanned_pages)
  3347. return;
  3348. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3349. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3350. if (!pgdat->node_mem_map) {
  3351. unsigned long size, start, end;
  3352. struct page *map;
  3353. /*
  3354. * The zone's endpoints aren't required to be MAX_ORDER
  3355. * aligned but the node_mem_map endpoints must be in order
  3356. * for the buddy allocator to function correctly.
  3357. */
  3358. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3359. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3360. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3361. size = (end - start) * sizeof(struct page);
  3362. map = alloc_remap(pgdat->node_id, size);
  3363. if (!map)
  3364. map = alloc_bootmem_node(pgdat, size);
  3365. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3366. }
  3367. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3368. /*
  3369. * With no DISCONTIG, the global mem_map is just set as node 0's
  3370. */
  3371. if (pgdat == NODE_DATA(0)) {
  3372. mem_map = NODE_DATA(0)->node_mem_map;
  3373. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3374. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3375. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3376. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3377. }
  3378. #endif
  3379. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3380. }
  3381. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3382. unsigned long node_start_pfn, unsigned long *zholes_size)
  3383. {
  3384. pg_data_t *pgdat = NODE_DATA(nid);
  3385. pgdat->node_id = nid;
  3386. pgdat->node_start_pfn = node_start_pfn;
  3387. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3388. alloc_node_mem_map(pgdat);
  3389. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3390. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3391. nid, (unsigned long)pgdat,
  3392. (unsigned long)pgdat->node_mem_map);
  3393. #endif
  3394. free_area_init_core(pgdat, zones_size, zholes_size);
  3395. }
  3396. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3397. #if MAX_NUMNODES > 1
  3398. /*
  3399. * Figure out the number of possible node ids.
  3400. */
  3401. static void __init setup_nr_node_ids(void)
  3402. {
  3403. unsigned int node;
  3404. unsigned int highest = 0;
  3405. for_each_node_mask(node, node_possible_map)
  3406. highest = node;
  3407. nr_node_ids = highest + 1;
  3408. }
  3409. #else
  3410. static inline void setup_nr_node_ids(void)
  3411. {
  3412. }
  3413. #endif
  3414. /**
  3415. * add_active_range - Register a range of PFNs backed by physical memory
  3416. * @nid: The node ID the range resides on
  3417. * @start_pfn: The start PFN of the available physical memory
  3418. * @end_pfn: The end PFN of the available physical memory
  3419. *
  3420. * These ranges are stored in an early_node_map[] and later used by
  3421. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3422. * range spans a memory hole, it is up to the architecture to ensure
  3423. * the memory is not freed by the bootmem allocator. If possible
  3424. * the range being registered will be merged with existing ranges.
  3425. */
  3426. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3427. unsigned long end_pfn)
  3428. {
  3429. int i;
  3430. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3431. "Entering add_active_range(%d, %#lx, %#lx) "
  3432. "%d entries of %d used\n",
  3433. nid, start_pfn, end_pfn,
  3434. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3435. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3436. /* Merge with existing active regions if possible */
  3437. for (i = 0; i < nr_nodemap_entries; i++) {
  3438. if (early_node_map[i].nid != nid)
  3439. continue;
  3440. /* Skip if an existing region covers this new one */
  3441. if (start_pfn >= early_node_map[i].start_pfn &&
  3442. end_pfn <= early_node_map[i].end_pfn)
  3443. return;
  3444. /* Merge forward if suitable */
  3445. if (start_pfn <= early_node_map[i].end_pfn &&
  3446. end_pfn > early_node_map[i].end_pfn) {
  3447. early_node_map[i].end_pfn = end_pfn;
  3448. return;
  3449. }
  3450. /* Merge backward if suitable */
  3451. if (start_pfn < early_node_map[i].end_pfn &&
  3452. end_pfn >= early_node_map[i].start_pfn) {
  3453. early_node_map[i].start_pfn = start_pfn;
  3454. return;
  3455. }
  3456. }
  3457. /* Check that early_node_map is large enough */
  3458. if (i >= MAX_ACTIVE_REGIONS) {
  3459. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3460. MAX_ACTIVE_REGIONS);
  3461. return;
  3462. }
  3463. early_node_map[i].nid = nid;
  3464. early_node_map[i].start_pfn = start_pfn;
  3465. early_node_map[i].end_pfn = end_pfn;
  3466. nr_nodemap_entries = i + 1;
  3467. }
  3468. /**
  3469. * remove_active_range - Shrink an existing registered range of PFNs
  3470. * @nid: The node id the range is on that should be shrunk
  3471. * @start_pfn: The new PFN of the range
  3472. * @end_pfn: The new PFN of the range
  3473. *
  3474. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3475. * The map is kept near the end physical page range that has already been
  3476. * registered. This function allows an arch to shrink an existing registered
  3477. * range.
  3478. */
  3479. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3480. unsigned long end_pfn)
  3481. {
  3482. int i, j;
  3483. int removed = 0;
  3484. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3485. nid, start_pfn, end_pfn);
  3486. /* Find the old active region end and shrink */
  3487. for_each_active_range_index_in_nid(i, nid) {
  3488. if (early_node_map[i].start_pfn >= start_pfn &&
  3489. early_node_map[i].end_pfn <= end_pfn) {
  3490. /* clear it */
  3491. early_node_map[i].start_pfn = 0;
  3492. early_node_map[i].end_pfn = 0;
  3493. removed = 1;
  3494. continue;
  3495. }
  3496. if (early_node_map[i].start_pfn < start_pfn &&
  3497. early_node_map[i].end_pfn > start_pfn) {
  3498. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3499. early_node_map[i].end_pfn = start_pfn;
  3500. if (temp_end_pfn > end_pfn)
  3501. add_active_range(nid, end_pfn, temp_end_pfn);
  3502. continue;
  3503. }
  3504. if (early_node_map[i].start_pfn >= start_pfn &&
  3505. early_node_map[i].end_pfn > end_pfn &&
  3506. early_node_map[i].start_pfn < end_pfn) {
  3507. early_node_map[i].start_pfn = end_pfn;
  3508. continue;
  3509. }
  3510. }
  3511. if (!removed)
  3512. return;
  3513. /* remove the blank ones */
  3514. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3515. if (early_node_map[i].nid != nid)
  3516. continue;
  3517. if (early_node_map[i].end_pfn)
  3518. continue;
  3519. /* we found it, get rid of it */
  3520. for (j = i; j < nr_nodemap_entries - 1; j++)
  3521. memcpy(&early_node_map[j], &early_node_map[j+1],
  3522. sizeof(early_node_map[j]));
  3523. j = nr_nodemap_entries - 1;
  3524. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3525. nr_nodemap_entries--;
  3526. }
  3527. }
  3528. /**
  3529. * remove_all_active_ranges - Remove all currently registered regions
  3530. *
  3531. * During discovery, it may be found that a table like SRAT is invalid
  3532. * and an alternative discovery method must be used. This function removes
  3533. * all currently registered regions.
  3534. */
  3535. void __init remove_all_active_ranges(void)
  3536. {
  3537. memset(early_node_map, 0, sizeof(early_node_map));
  3538. nr_nodemap_entries = 0;
  3539. }
  3540. /* Compare two active node_active_regions */
  3541. static int __init cmp_node_active_region(const void *a, const void *b)
  3542. {
  3543. struct node_active_region *arange = (struct node_active_region *)a;
  3544. struct node_active_region *brange = (struct node_active_region *)b;
  3545. /* Done this way to avoid overflows */
  3546. if (arange->start_pfn > brange->start_pfn)
  3547. return 1;
  3548. if (arange->start_pfn < brange->start_pfn)
  3549. return -1;
  3550. return 0;
  3551. }
  3552. /* sort the node_map by start_pfn */
  3553. void __init sort_node_map(void)
  3554. {
  3555. sort(early_node_map, (size_t)nr_nodemap_entries,
  3556. sizeof(struct node_active_region),
  3557. cmp_node_active_region, NULL);
  3558. }
  3559. /* Find the lowest pfn for a node */
  3560. static unsigned long __init find_min_pfn_for_node(int nid)
  3561. {
  3562. int i;
  3563. unsigned long min_pfn = ULONG_MAX;
  3564. /* Assuming a sorted map, the first range found has the starting pfn */
  3565. for_each_active_range_index_in_nid(i, nid)
  3566. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3567. if (min_pfn == ULONG_MAX) {
  3568. printk(KERN_WARNING
  3569. "Could not find start_pfn for node %d\n", nid);
  3570. return 0;
  3571. }
  3572. return min_pfn;
  3573. }
  3574. /**
  3575. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3576. *
  3577. * It returns the minimum PFN based on information provided via
  3578. * add_active_range().
  3579. */
  3580. unsigned long __init find_min_pfn_with_active_regions(void)
  3581. {
  3582. return find_min_pfn_for_node(MAX_NUMNODES);
  3583. }
  3584. /*
  3585. * early_calculate_totalpages()
  3586. * Sum pages in active regions for movable zone.
  3587. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3588. */
  3589. static unsigned long __init early_calculate_totalpages(void)
  3590. {
  3591. int i;
  3592. unsigned long totalpages = 0;
  3593. for (i = 0; i < nr_nodemap_entries; i++) {
  3594. unsigned long pages = early_node_map[i].end_pfn -
  3595. early_node_map[i].start_pfn;
  3596. totalpages += pages;
  3597. if (pages)
  3598. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3599. }
  3600. return totalpages;
  3601. }
  3602. /*
  3603. * Find the PFN the Movable zone begins in each node. Kernel memory
  3604. * is spread evenly between nodes as long as the nodes have enough
  3605. * memory. When they don't, some nodes will have more kernelcore than
  3606. * others
  3607. */
  3608. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3609. {
  3610. int i, nid;
  3611. unsigned long usable_startpfn;
  3612. unsigned long kernelcore_node, kernelcore_remaining;
  3613. /* save the state before borrow the nodemask */
  3614. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3615. unsigned long totalpages = early_calculate_totalpages();
  3616. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3617. /*
  3618. * If movablecore was specified, calculate what size of
  3619. * kernelcore that corresponds so that memory usable for
  3620. * any allocation type is evenly spread. If both kernelcore
  3621. * and movablecore are specified, then the value of kernelcore
  3622. * will be used for required_kernelcore if it's greater than
  3623. * what movablecore would have allowed.
  3624. */
  3625. if (required_movablecore) {
  3626. unsigned long corepages;
  3627. /*
  3628. * Round-up so that ZONE_MOVABLE is at least as large as what
  3629. * was requested by the user
  3630. */
  3631. required_movablecore =
  3632. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3633. corepages = totalpages - required_movablecore;
  3634. required_kernelcore = max(required_kernelcore, corepages);
  3635. }
  3636. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3637. if (!required_kernelcore)
  3638. goto out;
  3639. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3640. find_usable_zone_for_movable();
  3641. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3642. restart:
  3643. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3644. kernelcore_node = required_kernelcore / usable_nodes;
  3645. for_each_node_state(nid, N_HIGH_MEMORY) {
  3646. /*
  3647. * Recalculate kernelcore_node if the division per node
  3648. * now exceeds what is necessary to satisfy the requested
  3649. * amount of memory for the kernel
  3650. */
  3651. if (required_kernelcore < kernelcore_node)
  3652. kernelcore_node = required_kernelcore / usable_nodes;
  3653. /*
  3654. * As the map is walked, we track how much memory is usable
  3655. * by the kernel using kernelcore_remaining. When it is
  3656. * 0, the rest of the node is usable by ZONE_MOVABLE
  3657. */
  3658. kernelcore_remaining = kernelcore_node;
  3659. /* Go through each range of PFNs within this node */
  3660. for_each_active_range_index_in_nid(i, nid) {
  3661. unsigned long start_pfn, end_pfn;
  3662. unsigned long size_pages;
  3663. start_pfn = max(early_node_map[i].start_pfn,
  3664. zone_movable_pfn[nid]);
  3665. end_pfn = early_node_map[i].end_pfn;
  3666. if (start_pfn >= end_pfn)
  3667. continue;
  3668. /* Account for what is only usable for kernelcore */
  3669. if (start_pfn < usable_startpfn) {
  3670. unsigned long kernel_pages;
  3671. kernel_pages = min(end_pfn, usable_startpfn)
  3672. - start_pfn;
  3673. kernelcore_remaining -= min(kernel_pages,
  3674. kernelcore_remaining);
  3675. required_kernelcore -= min(kernel_pages,
  3676. required_kernelcore);
  3677. /* Continue if range is now fully accounted */
  3678. if (end_pfn <= usable_startpfn) {
  3679. /*
  3680. * Push zone_movable_pfn to the end so
  3681. * that if we have to rebalance
  3682. * kernelcore across nodes, we will
  3683. * not double account here
  3684. */
  3685. zone_movable_pfn[nid] = end_pfn;
  3686. continue;
  3687. }
  3688. start_pfn = usable_startpfn;
  3689. }
  3690. /*
  3691. * The usable PFN range for ZONE_MOVABLE is from
  3692. * start_pfn->end_pfn. Calculate size_pages as the
  3693. * number of pages used as kernelcore
  3694. */
  3695. size_pages = end_pfn - start_pfn;
  3696. if (size_pages > kernelcore_remaining)
  3697. size_pages = kernelcore_remaining;
  3698. zone_movable_pfn[nid] = start_pfn + size_pages;
  3699. /*
  3700. * Some kernelcore has been met, update counts and
  3701. * break if the kernelcore for this node has been
  3702. * satisified
  3703. */
  3704. required_kernelcore -= min(required_kernelcore,
  3705. size_pages);
  3706. kernelcore_remaining -= size_pages;
  3707. if (!kernelcore_remaining)
  3708. break;
  3709. }
  3710. }
  3711. /*
  3712. * If there is still required_kernelcore, we do another pass with one
  3713. * less node in the count. This will push zone_movable_pfn[nid] further
  3714. * along on the nodes that still have memory until kernelcore is
  3715. * satisified
  3716. */
  3717. usable_nodes--;
  3718. if (usable_nodes && required_kernelcore > usable_nodes)
  3719. goto restart;
  3720. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3721. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3722. zone_movable_pfn[nid] =
  3723. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3724. out:
  3725. /* restore the node_state */
  3726. node_states[N_HIGH_MEMORY] = saved_node_state;
  3727. }
  3728. /* Any regular memory on that node ? */
  3729. static void check_for_regular_memory(pg_data_t *pgdat)
  3730. {
  3731. #ifdef CONFIG_HIGHMEM
  3732. enum zone_type zone_type;
  3733. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3734. struct zone *zone = &pgdat->node_zones[zone_type];
  3735. if (zone->present_pages)
  3736. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3737. }
  3738. #endif
  3739. }
  3740. /**
  3741. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3742. * @max_zone_pfn: an array of max PFNs for each zone
  3743. *
  3744. * This will call free_area_init_node() for each active node in the system.
  3745. * Using the page ranges provided by add_active_range(), the size of each
  3746. * zone in each node and their holes is calculated. If the maximum PFN
  3747. * between two adjacent zones match, it is assumed that the zone is empty.
  3748. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3749. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3750. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3751. * at arch_max_dma_pfn.
  3752. */
  3753. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3754. {
  3755. unsigned long nid;
  3756. int i;
  3757. /* Sort early_node_map as initialisation assumes it is sorted */
  3758. sort_node_map();
  3759. /* Record where the zone boundaries are */
  3760. memset(arch_zone_lowest_possible_pfn, 0,
  3761. sizeof(arch_zone_lowest_possible_pfn));
  3762. memset(arch_zone_highest_possible_pfn, 0,
  3763. sizeof(arch_zone_highest_possible_pfn));
  3764. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3765. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3766. for (i = 1; i < MAX_NR_ZONES; i++) {
  3767. if (i == ZONE_MOVABLE)
  3768. continue;
  3769. arch_zone_lowest_possible_pfn[i] =
  3770. arch_zone_highest_possible_pfn[i-1];
  3771. arch_zone_highest_possible_pfn[i] =
  3772. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3773. }
  3774. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3775. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3776. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3777. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3778. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3779. /* Print out the zone ranges */
  3780. printk("Zone PFN ranges:\n");
  3781. for (i = 0; i < MAX_NR_ZONES; i++) {
  3782. if (i == ZONE_MOVABLE)
  3783. continue;
  3784. printk(" %-8s %0#10lx -> %0#10lx\n",
  3785. zone_names[i],
  3786. arch_zone_lowest_possible_pfn[i],
  3787. arch_zone_highest_possible_pfn[i]);
  3788. }
  3789. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3790. printk("Movable zone start PFN for each node\n");
  3791. for (i = 0; i < MAX_NUMNODES; i++) {
  3792. if (zone_movable_pfn[i])
  3793. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3794. }
  3795. /* Print out the early_node_map[] */
  3796. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3797. for (i = 0; i < nr_nodemap_entries; i++)
  3798. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3799. early_node_map[i].start_pfn,
  3800. early_node_map[i].end_pfn);
  3801. /* Initialise every node */
  3802. mminit_verify_pageflags_layout();
  3803. setup_nr_node_ids();
  3804. for_each_online_node(nid) {
  3805. pg_data_t *pgdat = NODE_DATA(nid);
  3806. free_area_init_node(nid, NULL,
  3807. find_min_pfn_for_node(nid), NULL);
  3808. /* Any memory on that node */
  3809. if (pgdat->node_present_pages)
  3810. node_set_state(nid, N_HIGH_MEMORY);
  3811. check_for_regular_memory(pgdat);
  3812. }
  3813. }
  3814. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3815. {
  3816. unsigned long long coremem;
  3817. if (!p)
  3818. return -EINVAL;
  3819. coremem = memparse(p, &p);
  3820. *core = coremem >> PAGE_SHIFT;
  3821. /* Paranoid check that UL is enough for the coremem value */
  3822. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3823. return 0;
  3824. }
  3825. /*
  3826. * kernelcore=size sets the amount of memory for use for allocations that
  3827. * cannot be reclaimed or migrated.
  3828. */
  3829. static int __init cmdline_parse_kernelcore(char *p)
  3830. {
  3831. return cmdline_parse_core(p, &required_kernelcore);
  3832. }
  3833. /*
  3834. * movablecore=size sets the amount of memory for use for allocations that
  3835. * can be reclaimed or migrated.
  3836. */
  3837. static int __init cmdline_parse_movablecore(char *p)
  3838. {
  3839. return cmdline_parse_core(p, &required_movablecore);
  3840. }
  3841. early_param("kernelcore", cmdline_parse_kernelcore);
  3842. early_param("movablecore", cmdline_parse_movablecore);
  3843. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3844. /**
  3845. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3846. * @new_dma_reserve: The number of pages to mark reserved
  3847. *
  3848. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3849. * In the DMA zone, a significant percentage may be consumed by kernel image
  3850. * and other unfreeable allocations which can skew the watermarks badly. This
  3851. * function may optionally be used to account for unfreeable pages in the
  3852. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3853. * smaller per-cpu batchsize.
  3854. */
  3855. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3856. {
  3857. dma_reserve = new_dma_reserve;
  3858. }
  3859. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3860. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3861. EXPORT_SYMBOL(contig_page_data);
  3862. #endif
  3863. void __init free_area_init(unsigned long *zones_size)
  3864. {
  3865. free_area_init_node(0, zones_size,
  3866. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3867. }
  3868. static int page_alloc_cpu_notify(struct notifier_block *self,
  3869. unsigned long action, void *hcpu)
  3870. {
  3871. int cpu = (unsigned long)hcpu;
  3872. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3873. drain_pages(cpu);
  3874. /*
  3875. * Spill the event counters of the dead processor
  3876. * into the current processors event counters.
  3877. * This artificially elevates the count of the current
  3878. * processor.
  3879. */
  3880. vm_events_fold_cpu(cpu);
  3881. /*
  3882. * Zero the differential counters of the dead processor
  3883. * so that the vm statistics are consistent.
  3884. *
  3885. * This is only okay since the processor is dead and cannot
  3886. * race with what we are doing.
  3887. */
  3888. refresh_cpu_vm_stats(cpu);
  3889. }
  3890. return NOTIFY_OK;
  3891. }
  3892. void __init page_alloc_init(void)
  3893. {
  3894. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3895. }
  3896. /*
  3897. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3898. * or min_free_kbytes changes.
  3899. */
  3900. static void calculate_totalreserve_pages(void)
  3901. {
  3902. struct pglist_data *pgdat;
  3903. unsigned long reserve_pages = 0;
  3904. enum zone_type i, j;
  3905. for_each_online_pgdat(pgdat) {
  3906. for (i = 0; i < MAX_NR_ZONES; i++) {
  3907. struct zone *zone = pgdat->node_zones + i;
  3908. unsigned long max = 0;
  3909. /* Find valid and maximum lowmem_reserve in the zone */
  3910. for (j = i; j < MAX_NR_ZONES; j++) {
  3911. if (zone->lowmem_reserve[j] > max)
  3912. max = zone->lowmem_reserve[j];
  3913. }
  3914. /* we treat the high watermark as reserved pages. */
  3915. max += high_wmark_pages(zone);
  3916. if (max > zone->present_pages)
  3917. max = zone->present_pages;
  3918. reserve_pages += max;
  3919. }
  3920. }
  3921. totalreserve_pages = reserve_pages;
  3922. }
  3923. /*
  3924. * setup_per_zone_lowmem_reserve - called whenever
  3925. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3926. * has a correct pages reserved value, so an adequate number of
  3927. * pages are left in the zone after a successful __alloc_pages().
  3928. */
  3929. static void setup_per_zone_lowmem_reserve(void)
  3930. {
  3931. struct pglist_data *pgdat;
  3932. enum zone_type j, idx;
  3933. for_each_online_pgdat(pgdat) {
  3934. for (j = 0; j < MAX_NR_ZONES; j++) {
  3935. struct zone *zone = pgdat->node_zones + j;
  3936. unsigned long present_pages = zone->present_pages;
  3937. zone->lowmem_reserve[j] = 0;
  3938. idx = j;
  3939. while (idx) {
  3940. struct zone *lower_zone;
  3941. idx--;
  3942. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3943. sysctl_lowmem_reserve_ratio[idx] = 1;
  3944. lower_zone = pgdat->node_zones + idx;
  3945. lower_zone->lowmem_reserve[j] = present_pages /
  3946. sysctl_lowmem_reserve_ratio[idx];
  3947. present_pages += lower_zone->present_pages;
  3948. }
  3949. }
  3950. }
  3951. /* update totalreserve_pages */
  3952. calculate_totalreserve_pages();
  3953. }
  3954. /**
  3955. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3956. * or when memory is hot-{added|removed}
  3957. *
  3958. * Ensures that the watermark[min,low,high] values for each zone are set
  3959. * correctly with respect to min_free_kbytes.
  3960. */
  3961. void setup_per_zone_wmarks(void)
  3962. {
  3963. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3964. unsigned long lowmem_pages = 0;
  3965. struct zone *zone;
  3966. unsigned long flags;
  3967. /* Calculate total number of !ZONE_HIGHMEM pages */
  3968. for_each_zone(zone) {
  3969. if (!is_highmem(zone))
  3970. lowmem_pages += zone->present_pages;
  3971. }
  3972. for_each_zone(zone) {
  3973. u64 tmp;
  3974. spin_lock_irqsave(&zone->lock, flags);
  3975. tmp = (u64)pages_min * zone->present_pages;
  3976. do_div(tmp, lowmem_pages);
  3977. if (is_highmem(zone)) {
  3978. /*
  3979. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3980. * need highmem pages, so cap pages_min to a small
  3981. * value here.
  3982. *
  3983. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3984. * deltas controls asynch page reclaim, and so should
  3985. * not be capped for highmem.
  3986. */
  3987. int min_pages;
  3988. min_pages = zone->present_pages / 1024;
  3989. if (min_pages < SWAP_CLUSTER_MAX)
  3990. min_pages = SWAP_CLUSTER_MAX;
  3991. if (min_pages > 128)
  3992. min_pages = 128;
  3993. zone->watermark[WMARK_MIN] = min_pages;
  3994. } else {
  3995. /*
  3996. * If it's a lowmem zone, reserve a number of pages
  3997. * proportionate to the zone's size.
  3998. */
  3999. zone->watermark[WMARK_MIN] = tmp;
  4000. }
  4001. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4002. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4003. setup_zone_migrate_reserve(zone);
  4004. spin_unlock_irqrestore(&zone->lock, flags);
  4005. }
  4006. /* update totalreserve_pages */
  4007. calculate_totalreserve_pages();
  4008. }
  4009. /*
  4010. * The inactive anon list should be small enough that the VM never has to
  4011. * do too much work, but large enough that each inactive page has a chance
  4012. * to be referenced again before it is swapped out.
  4013. *
  4014. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4015. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4016. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4017. * the anonymous pages are kept on the inactive list.
  4018. *
  4019. * total target max
  4020. * memory ratio inactive anon
  4021. * -------------------------------------
  4022. * 10MB 1 5MB
  4023. * 100MB 1 50MB
  4024. * 1GB 3 250MB
  4025. * 10GB 10 0.9GB
  4026. * 100GB 31 3GB
  4027. * 1TB 101 10GB
  4028. * 10TB 320 32GB
  4029. */
  4030. void calculate_zone_inactive_ratio(struct zone *zone)
  4031. {
  4032. unsigned int gb, ratio;
  4033. /* Zone size in gigabytes */
  4034. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4035. if (gb)
  4036. ratio = int_sqrt(10 * gb);
  4037. else
  4038. ratio = 1;
  4039. zone->inactive_ratio = ratio;
  4040. }
  4041. static void __init setup_per_zone_inactive_ratio(void)
  4042. {
  4043. struct zone *zone;
  4044. for_each_zone(zone)
  4045. calculate_zone_inactive_ratio(zone);
  4046. }
  4047. /*
  4048. * Initialise min_free_kbytes.
  4049. *
  4050. * For small machines we want it small (128k min). For large machines
  4051. * we want it large (64MB max). But it is not linear, because network
  4052. * bandwidth does not increase linearly with machine size. We use
  4053. *
  4054. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4055. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4056. *
  4057. * which yields
  4058. *
  4059. * 16MB: 512k
  4060. * 32MB: 724k
  4061. * 64MB: 1024k
  4062. * 128MB: 1448k
  4063. * 256MB: 2048k
  4064. * 512MB: 2896k
  4065. * 1024MB: 4096k
  4066. * 2048MB: 5792k
  4067. * 4096MB: 8192k
  4068. * 8192MB: 11584k
  4069. * 16384MB: 16384k
  4070. */
  4071. static int __init init_per_zone_wmark_min(void)
  4072. {
  4073. unsigned long lowmem_kbytes;
  4074. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4075. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4076. if (min_free_kbytes < 128)
  4077. min_free_kbytes = 128;
  4078. if (min_free_kbytes > 65536)
  4079. min_free_kbytes = 65536;
  4080. setup_per_zone_wmarks();
  4081. setup_per_zone_lowmem_reserve();
  4082. setup_per_zone_inactive_ratio();
  4083. return 0;
  4084. }
  4085. module_init(init_per_zone_wmark_min)
  4086. /*
  4087. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4088. * that we can call two helper functions whenever min_free_kbytes
  4089. * changes.
  4090. */
  4091. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4092. void __user *buffer, size_t *length, loff_t *ppos)
  4093. {
  4094. proc_dointvec(table, write, buffer, length, ppos);
  4095. if (write)
  4096. setup_per_zone_wmarks();
  4097. return 0;
  4098. }
  4099. #ifdef CONFIG_NUMA
  4100. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4101. void __user *buffer, size_t *length, loff_t *ppos)
  4102. {
  4103. struct zone *zone;
  4104. int rc;
  4105. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4106. if (rc)
  4107. return rc;
  4108. for_each_zone(zone)
  4109. zone->min_unmapped_pages = (zone->present_pages *
  4110. sysctl_min_unmapped_ratio) / 100;
  4111. return 0;
  4112. }
  4113. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4114. void __user *buffer, size_t *length, loff_t *ppos)
  4115. {
  4116. struct zone *zone;
  4117. int rc;
  4118. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4119. if (rc)
  4120. return rc;
  4121. for_each_zone(zone)
  4122. zone->min_slab_pages = (zone->present_pages *
  4123. sysctl_min_slab_ratio) / 100;
  4124. return 0;
  4125. }
  4126. #endif
  4127. /*
  4128. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4129. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4130. * whenever sysctl_lowmem_reserve_ratio changes.
  4131. *
  4132. * The reserve ratio obviously has absolutely no relation with the
  4133. * minimum watermarks. The lowmem reserve ratio can only make sense
  4134. * if in function of the boot time zone sizes.
  4135. */
  4136. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4137. void __user *buffer, size_t *length, loff_t *ppos)
  4138. {
  4139. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4140. setup_per_zone_lowmem_reserve();
  4141. return 0;
  4142. }
  4143. /*
  4144. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4145. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4146. * can have before it gets flushed back to buddy allocator.
  4147. */
  4148. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4149. void __user *buffer, size_t *length, loff_t *ppos)
  4150. {
  4151. struct zone *zone;
  4152. unsigned int cpu;
  4153. int ret;
  4154. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4155. if (!write || (ret == -EINVAL))
  4156. return ret;
  4157. for_each_populated_zone(zone) {
  4158. for_each_online_cpu(cpu) {
  4159. unsigned long high;
  4160. high = zone->present_pages / percpu_pagelist_fraction;
  4161. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  4162. }
  4163. }
  4164. return 0;
  4165. }
  4166. int hashdist = HASHDIST_DEFAULT;
  4167. #ifdef CONFIG_NUMA
  4168. static int __init set_hashdist(char *str)
  4169. {
  4170. if (!str)
  4171. return 0;
  4172. hashdist = simple_strtoul(str, &str, 0);
  4173. return 1;
  4174. }
  4175. __setup("hashdist=", set_hashdist);
  4176. #endif
  4177. /*
  4178. * allocate a large system hash table from bootmem
  4179. * - it is assumed that the hash table must contain an exact power-of-2
  4180. * quantity of entries
  4181. * - limit is the number of hash buckets, not the total allocation size
  4182. */
  4183. void *__init alloc_large_system_hash(const char *tablename,
  4184. unsigned long bucketsize,
  4185. unsigned long numentries,
  4186. int scale,
  4187. int flags,
  4188. unsigned int *_hash_shift,
  4189. unsigned int *_hash_mask,
  4190. unsigned long limit)
  4191. {
  4192. unsigned long long max = limit;
  4193. unsigned long log2qty, size;
  4194. void *table = NULL;
  4195. /* allow the kernel cmdline to have a say */
  4196. if (!numentries) {
  4197. /* round applicable memory size up to nearest megabyte */
  4198. numentries = nr_kernel_pages;
  4199. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4200. numentries >>= 20 - PAGE_SHIFT;
  4201. numentries <<= 20 - PAGE_SHIFT;
  4202. /* limit to 1 bucket per 2^scale bytes of low memory */
  4203. if (scale > PAGE_SHIFT)
  4204. numentries >>= (scale - PAGE_SHIFT);
  4205. else
  4206. numentries <<= (PAGE_SHIFT - scale);
  4207. /* Make sure we've got at least a 0-order allocation.. */
  4208. if (unlikely(flags & HASH_SMALL)) {
  4209. /* Makes no sense without HASH_EARLY */
  4210. WARN_ON(!(flags & HASH_EARLY));
  4211. if (!(numentries >> *_hash_shift)) {
  4212. numentries = 1UL << *_hash_shift;
  4213. BUG_ON(!numentries);
  4214. }
  4215. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4216. numentries = PAGE_SIZE / bucketsize;
  4217. }
  4218. numentries = roundup_pow_of_two(numentries);
  4219. /* limit allocation size to 1/16 total memory by default */
  4220. if (max == 0) {
  4221. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4222. do_div(max, bucketsize);
  4223. }
  4224. if (numentries > max)
  4225. numentries = max;
  4226. log2qty = ilog2(numentries);
  4227. do {
  4228. size = bucketsize << log2qty;
  4229. if (flags & HASH_EARLY)
  4230. table = alloc_bootmem_nopanic(size);
  4231. else if (hashdist)
  4232. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4233. else {
  4234. /*
  4235. * If bucketsize is not a power-of-two, we may free
  4236. * some pages at the end of hash table which
  4237. * alloc_pages_exact() automatically does
  4238. */
  4239. if (get_order(size) < MAX_ORDER) {
  4240. table = alloc_pages_exact(size, GFP_ATOMIC);
  4241. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4242. }
  4243. }
  4244. } while (!table && size > PAGE_SIZE && --log2qty);
  4245. if (!table)
  4246. panic("Failed to allocate %s hash table\n", tablename);
  4247. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4248. tablename,
  4249. (1U << log2qty),
  4250. ilog2(size) - PAGE_SHIFT,
  4251. size);
  4252. if (_hash_shift)
  4253. *_hash_shift = log2qty;
  4254. if (_hash_mask)
  4255. *_hash_mask = (1 << log2qty) - 1;
  4256. return table;
  4257. }
  4258. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4259. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4260. unsigned long pfn)
  4261. {
  4262. #ifdef CONFIG_SPARSEMEM
  4263. return __pfn_to_section(pfn)->pageblock_flags;
  4264. #else
  4265. return zone->pageblock_flags;
  4266. #endif /* CONFIG_SPARSEMEM */
  4267. }
  4268. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4269. {
  4270. #ifdef CONFIG_SPARSEMEM
  4271. pfn &= (PAGES_PER_SECTION-1);
  4272. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4273. #else
  4274. pfn = pfn - zone->zone_start_pfn;
  4275. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4276. #endif /* CONFIG_SPARSEMEM */
  4277. }
  4278. /**
  4279. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4280. * @page: The page within the block of interest
  4281. * @start_bitidx: The first bit of interest to retrieve
  4282. * @end_bitidx: The last bit of interest
  4283. * returns pageblock_bits flags
  4284. */
  4285. unsigned long get_pageblock_flags_group(struct page *page,
  4286. int start_bitidx, int end_bitidx)
  4287. {
  4288. struct zone *zone;
  4289. unsigned long *bitmap;
  4290. unsigned long pfn, bitidx;
  4291. unsigned long flags = 0;
  4292. unsigned long value = 1;
  4293. zone = page_zone(page);
  4294. pfn = page_to_pfn(page);
  4295. bitmap = get_pageblock_bitmap(zone, pfn);
  4296. bitidx = pfn_to_bitidx(zone, pfn);
  4297. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4298. if (test_bit(bitidx + start_bitidx, bitmap))
  4299. flags |= value;
  4300. return flags;
  4301. }
  4302. /**
  4303. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4304. * @page: The page within the block of interest
  4305. * @start_bitidx: The first bit of interest
  4306. * @end_bitidx: The last bit of interest
  4307. * @flags: The flags to set
  4308. */
  4309. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4310. int start_bitidx, int end_bitidx)
  4311. {
  4312. struct zone *zone;
  4313. unsigned long *bitmap;
  4314. unsigned long pfn, bitidx;
  4315. unsigned long value = 1;
  4316. zone = page_zone(page);
  4317. pfn = page_to_pfn(page);
  4318. bitmap = get_pageblock_bitmap(zone, pfn);
  4319. bitidx = pfn_to_bitidx(zone, pfn);
  4320. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4321. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4322. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4323. if (flags & value)
  4324. __set_bit(bitidx + start_bitidx, bitmap);
  4325. else
  4326. __clear_bit(bitidx + start_bitidx, bitmap);
  4327. }
  4328. /*
  4329. * This is designed as sub function...plz see page_isolation.c also.
  4330. * set/clear page block's type to be ISOLATE.
  4331. * page allocater never alloc memory from ISOLATE block.
  4332. */
  4333. int set_migratetype_isolate(struct page *page)
  4334. {
  4335. struct zone *zone;
  4336. struct page *curr_page;
  4337. unsigned long flags, pfn, iter;
  4338. unsigned long immobile = 0;
  4339. struct memory_isolate_notify arg;
  4340. int notifier_ret;
  4341. int ret = -EBUSY;
  4342. int zone_idx;
  4343. zone = page_zone(page);
  4344. zone_idx = zone_idx(zone);
  4345. spin_lock_irqsave(&zone->lock, flags);
  4346. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
  4347. zone_idx == ZONE_MOVABLE) {
  4348. ret = 0;
  4349. goto out;
  4350. }
  4351. pfn = page_to_pfn(page);
  4352. arg.start_pfn = pfn;
  4353. arg.nr_pages = pageblock_nr_pages;
  4354. arg.pages_found = 0;
  4355. /*
  4356. * It may be possible to isolate a pageblock even if the
  4357. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4358. * notifier chain is used by balloon drivers to return the
  4359. * number of pages in a range that are held by the balloon
  4360. * driver to shrink memory. If all the pages are accounted for
  4361. * by balloons, are free, or on the LRU, isolation can continue.
  4362. * Later, for example, when memory hotplug notifier runs, these
  4363. * pages reported as "can be isolated" should be isolated(freed)
  4364. * by the balloon driver through the memory notifier chain.
  4365. */
  4366. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4367. notifier_ret = notifier_to_errno(notifier_ret);
  4368. if (notifier_ret || !arg.pages_found)
  4369. goto out;
  4370. for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
  4371. if (!pfn_valid_within(pfn))
  4372. continue;
  4373. curr_page = pfn_to_page(iter);
  4374. if (!page_count(curr_page) || PageLRU(curr_page))
  4375. continue;
  4376. immobile++;
  4377. }
  4378. if (arg.pages_found == immobile)
  4379. ret = 0;
  4380. out:
  4381. if (!ret) {
  4382. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4383. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4384. }
  4385. spin_unlock_irqrestore(&zone->lock, flags);
  4386. if (!ret)
  4387. drain_all_pages();
  4388. return ret;
  4389. }
  4390. void unset_migratetype_isolate(struct page *page)
  4391. {
  4392. struct zone *zone;
  4393. unsigned long flags;
  4394. zone = page_zone(page);
  4395. spin_lock_irqsave(&zone->lock, flags);
  4396. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4397. goto out;
  4398. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4399. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4400. out:
  4401. spin_unlock_irqrestore(&zone->lock, flags);
  4402. }
  4403. #ifdef CONFIG_MEMORY_HOTREMOVE
  4404. /*
  4405. * All pages in the range must be isolated before calling this.
  4406. */
  4407. void
  4408. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4409. {
  4410. struct page *page;
  4411. struct zone *zone;
  4412. int order, i;
  4413. unsigned long pfn;
  4414. unsigned long flags;
  4415. /* find the first valid pfn */
  4416. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4417. if (pfn_valid(pfn))
  4418. break;
  4419. if (pfn == end_pfn)
  4420. return;
  4421. zone = page_zone(pfn_to_page(pfn));
  4422. spin_lock_irqsave(&zone->lock, flags);
  4423. pfn = start_pfn;
  4424. while (pfn < end_pfn) {
  4425. if (!pfn_valid(pfn)) {
  4426. pfn++;
  4427. continue;
  4428. }
  4429. page = pfn_to_page(pfn);
  4430. BUG_ON(page_count(page));
  4431. BUG_ON(!PageBuddy(page));
  4432. order = page_order(page);
  4433. #ifdef CONFIG_DEBUG_VM
  4434. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4435. pfn, 1 << order, end_pfn);
  4436. #endif
  4437. list_del(&page->lru);
  4438. rmv_page_order(page);
  4439. zone->free_area[order].nr_free--;
  4440. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4441. - (1UL << order));
  4442. for (i = 0; i < (1 << order); i++)
  4443. SetPageReserved((page+i));
  4444. pfn += (1 << order);
  4445. }
  4446. spin_unlock_irqrestore(&zone->lock, flags);
  4447. }
  4448. #endif
  4449. #ifdef CONFIG_MEMORY_FAILURE
  4450. bool is_free_buddy_page(struct page *page)
  4451. {
  4452. struct zone *zone = page_zone(page);
  4453. unsigned long pfn = page_to_pfn(page);
  4454. unsigned long flags;
  4455. int order;
  4456. spin_lock_irqsave(&zone->lock, flags);
  4457. for (order = 0; order < MAX_ORDER; order++) {
  4458. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4459. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4460. break;
  4461. }
  4462. spin_unlock_irqrestore(&zone->lock, flags);
  4463. return order < MAX_ORDER;
  4464. }
  4465. #endif