oom_kill.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. #include <linux/memcontrol.h>
  28. #include <linux/security.h>
  29. int sysctl_panic_on_oom;
  30. int sysctl_oom_kill_allocating_task;
  31. int sysctl_oom_dump_tasks;
  32. static DEFINE_SPINLOCK(zone_scan_lock);
  33. /* #define DEBUG */
  34. /*
  35. * Is all threads of the target process nodes overlap ours?
  36. */
  37. static int has_intersects_mems_allowed(struct task_struct *tsk)
  38. {
  39. struct task_struct *t;
  40. t = tsk;
  41. do {
  42. if (cpuset_mems_allowed_intersects(current, t))
  43. return 1;
  44. t = next_thread(t);
  45. } while (t != tsk);
  46. return 0;
  47. }
  48. /**
  49. * badness - calculate a numeric value for how bad this task has been
  50. * @p: task struct of which task we should calculate
  51. * @uptime: current uptime in seconds
  52. *
  53. * The formula used is relatively simple and documented inline in the
  54. * function. The main rationale is that we want to select a good task
  55. * to kill when we run out of memory.
  56. *
  57. * Good in this context means that:
  58. * 1) we lose the minimum amount of work done
  59. * 2) we recover a large amount of memory
  60. * 3) we don't kill anything innocent of eating tons of memory
  61. * 4) we want to kill the minimum amount of processes (one)
  62. * 5) we try to kill the process the user expects us to kill, this
  63. * algorithm has been meticulously tuned to meet the principle
  64. * of least surprise ... (be careful when you change it)
  65. */
  66. unsigned long badness(struct task_struct *p, unsigned long uptime)
  67. {
  68. unsigned long points, cpu_time, run_time;
  69. struct mm_struct *mm;
  70. struct task_struct *child;
  71. int oom_adj = p->signal->oom_adj;
  72. struct task_cputime task_time;
  73. unsigned long utime;
  74. unsigned long stime;
  75. if (oom_adj == OOM_DISABLE)
  76. return 0;
  77. task_lock(p);
  78. mm = p->mm;
  79. if (!mm) {
  80. task_unlock(p);
  81. return 0;
  82. }
  83. /*
  84. * The memory size of the process is the basis for the badness.
  85. */
  86. points = mm->total_vm;
  87. /*
  88. * After this unlock we can no longer dereference local variable `mm'
  89. */
  90. task_unlock(p);
  91. /*
  92. * swapoff can easily use up all memory, so kill those first.
  93. */
  94. if (p->flags & PF_OOM_ORIGIN)
  95. return ULONG_MAX;
  96. /*
  97. * Processes which fork a lot of child processes are likely
  98. * a good choice. We add half the vmsize of the children if they
  99. * have an own mm. This prevents forking servers to flood the
  100. * machine with an endless amount of children. In case a single
  101. * child is eating the vast majority of memory, adding only half
  102. * to the parents will make the child our kill candidate of choice.
  103. */
  104. list_for_each_entry(child, &p->children, sibling) {
  105. task_lock(child);
  106. if (child->mm != mm && child->mm)
  107. points += child->mm->total_vm/2 + 1;
  108. task_unlock(child);
  109. }
  110. /*
  111. * CPU time is in tens of seconds and run time is in thousands
  112. * of seconds. There is no particular reason for this other than
  113. * that it turned out to work very well in practice.
  114. */
  115. thread_group_cputime(p, &task_time);
  116. utime = cputime_to_jiffies(task_time.utime);
  117. stime = cputime_to_jiffies(task_time.stime);
  118. cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
  119. if (uptime >= p->start_time.tv_sec)
  120. run_time = (uptime - p->start_time.tv_sec) >> 10;
  121. else
  122. run_time = 0;
  123. if (cpu_time)
  124. points /= int_sqrt(cpu_time);
  125. if (run_time)
  126. points /= int_sqrt(int_sqrt(run_time));
  127. /*
  128. * Niced processes are most likely less important, so double
  129. * their badness points.
  130. */
  131. if (task_nice(p) > 0)
  132. points *= 2;
  133. /*
  134. * Superuser processes are usually more important, so we make it
  135. * less likely that we kill those.
  136. */
  137. if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
  138. has_capability_noaudit(p, CAP_SYS_RESOURCE))
  139. points /= 4;
  140. /*
  141. * We don't want to kill a process with direct hardware access.
  142. * Not only could that mess up the hardware, but usually users
  143. * tend to only have this flag set on applications they think
  144. * of as important.
  145. */
  146. if (has_capability_noaudit(p, CAP_SYS_RAWIO))
  147. points /= 4;
  148. /*
  149. * If p's nodes don't overlap ours, it may still help to kill p
  150. * because p may have allocated or otherwise mapped memory on
  151. * this node before. However it will be less likely.
  152. */
  153. if (!has_intersects_mems_allowed(p))
  154. points /= 8;
  155. /*
  156. * Adjust the score by oom_adj.
  157. */
  158. if (oom_adj) {
  159. if (oom_adj > 0) {
  160. if (!points)
  161. points = 1;
  162. points <<= oom_adj;
  163. } else
  164. points >>= -(oom_adj);
  165. }
  166. #ifdef DEBUG
  167. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  168. p->pid, p->comm, points);
  169. #endif
  170. return points;
  171. }
  172. /*
  173. * Determine the type of allocation constraint.
  174. */
  175. #ifdef CONFIG_NUMA
  176. static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  177. gfp_t gfp_mask, nodemask_t *nodemask)
  178. {
  179. struct zone *zone;
  180. struct zoneref *z;
  181. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  182. /*
  183. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  184. * to kill current.We have to random task kill in this case.
  185. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  186. */
  187. if (gfp_mask & __GFP_THISNODE)
  188. return CONSTRAINT_NONE;
  189. /*
  190. * The nodemask here is a nodemask passed to alloc_pages(). Now,
  191. * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
  192. * feature. mempolicy is an only user of nodemask here.
  193. * check mempolicy's nodemask contains all N_HIGH_MEMORY
  194. */
  195. if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
  196. return CONSTRAINT_MEMORY_POLICY;
  197. /* Check this allocation failure is caused by cpuset's wall function */
  198. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  199. high_zoneidx, nodemask)
  200. if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
  201. return CONSTRAINT_CPUSET;
  202. return CONSTRAINT_NONE;
  203. }
  204. #else
  205. static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  206. gfp_t gfp_mask, nodemask_t *nodemask)
  207. {
  208. return CONSTRAINT_NONE;
  209. }
  210. #endif
  211. /*
  212. * Simple selection loop. We chose the process with the highest
  213. * number of 'points'. We expect the caller will lock the tasklist.
  214. *
  215. * (not docbooked, we don't want this one cluttering up the manual)
  216. */
  217. static struct task_struct *select_bad_process(unsigned long *ppoints,
  218. struct mem_cgroup *mem)
  219. {
  220. struct task_struct *p;
  221. struct task_struct *chosen = NULL;
  222. struct timespec uptime;
  223. *ppoints = 0;
  224. do_posix_clock_monotonic_gettime(&uptime);
  225. for_each_process(p) {
  226. unsigned long points;
  227. /*
  228. * skip kernel threads and tasks which have already released
  229. * their mm.
  230. */
  231. if (!p->mm)
  232. continue;
  233. /* skip the init task */
  234. if (is_global_init(p))
  235. continue;
  236. if (mem && !task_in_mem_cgroup(p, mem))
  237. continue;
  238. /*
  239. * This task already has access to memory reserves and is
  240. * being killed. Don't allow any other task access to the
  241. * memory reserve.
  242. *
  243. * Note: this may have a chance of deadlock if it gets
  244. * blocked waiting for another task which itself is waiting
  245. * for memory. Is there a better alternative?
  246. */
  247. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  248. return ERR_PTR(-1UL);
  249. /*
  250. * This is in the process of releasing memory so wait for it
  251. * to finish before killing some other task by mistake.
  252. *
  253. * However, if p is the current task, we allow the 'kill' to
  254. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  255. * which will allow it to gain access to memory reserves in
  256. * the process of exiting and releasing its resources.
  257. * Otherwise we could get an easy OOM deadlock.
  258. */
  259. if (p->flags & PF_EXITING) {
  260. if (p != current)
  261. return ERR_PTR(-1UL);
  262. chosen = p;
  263. *ppoints = ULONG_MAX;
  264. }
  265. if (p->signal->oom_adj == OOM_DISABLE)
  266. continue;
  267. points = badness(p, uptime.tv_sec);
  268. if (points > *ppoints || !chosen) {
  269. chosen = p;
  270. *ppoints = points;
  271. }
  272. }
  273. return chosen;
  274. }
  275. /**
  276. * dump_tasks - dump current memory state of all system tasks
  277. * @mem: target memory controller
  278. *
  279. * Dumps the current memory state of all system tasks, excluding kernel threads.
  280. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
  281. * score, and name.
  282. *
  283. * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  284. * shown.
  285. *
  286. * Call with tasklist_lock read-locked.
  287. */
  288. static void dump_tasks(const struct mem_cgroup *mem)
  289. {
  290. struct task_struct *g, *p;
  291. printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
  292. "name\n");
  293. do_each_thread(g, p) {
  294. struct mm_struct *mm;
  295. if (mem && !task_in_mem_cgroup(p, mem))
  296. continue;
  297. if (!thread_group_leader(p))
  298. continue;
  299. task_lock(p);
  300. mm = p->mm;
  301. if (!mm) {
  302. /*
  303. * total_vm and rss sizes do not exist for tasks with no
  304. * mm so there's no need to report them; they can't be
  305. * oom killed anyway.
  306. */
  307. task_unlock(p);
  308. continue;
  309. }
  310. printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
  311. p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
  312. get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
  313. p->comm);
  314. task_unlock(p);
  315. } while_each_thread(g, p);
  316. }
  317. static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
  318. struct mem_cgroup *mem)
  319. {
  320. pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
  321. "oom_adj=%d\n",
  322. current->comm, gfp_mask, order, current->signal->oom_adj);
  323. task_lock(current);
  324. cpuset_print_task_mems_allowed(current);
  325. task_unlock(current);
  326. dump_stack();
  327. mem_cgroup_print_oom_info(mem, p);
  328. show_mem();
  329. if (sysctl_oom_dump_tasks)
  330. dump_tasks(mem);
  331. }
  332. #define K(x) ((x) << (PAGE_SHIFT-10))
  333. /*
  334. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  335. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  336. * set.
  337. */
  338. static void __oom_kill_task(struct task_struct *p, int verbose)
  339. {
  340. if (is_global_init(p)) {
  341. WARN_ON(1);
  342. printk(KERN_WARNING "tried to kill init!\n");
  343. return;
  344. }
  345. task_lock(p);
  346. if (!p->mm) {
  347. WARN_ON(1);
  348. printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n",
  349. task_pid_nr(p), p->comm);
  350. task_unlock(p);
  351. return;
  352. }
  353. if (verbose)
  354. printk(KERN_ERR "Killed process %d (%s) "
  355. "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
  356. task_pid_nr(p), p->comm,
  357. K(p->mm->total_vm),
  358. K(get_mm_counter(p->mm, anon_rss)),
  359. K(get_mm_counter(p->mm, file_rss)));
  360. task_unlock(p);
  361. /*
  362. * We give our sacrificial lamb high priority and access to
  363. * all the memory it needs. That way it should be able to
  364. * exit() and clear out its resources quickly...
  365. */
  366. p->rt.time_slice = HZ;
  367. set_tsk_thread_flag(p, TIF_MEMDIE);
  368. force_sig(SIGKILL, p);
  369. }
  370. static int oom_kill_task(struct task_struct *p)
  371. {
  372. /* WARNING: mm may not be dereferenced since we did not obtain its
  373. * value from get_task_mm(p). This is OK since all we need to do is
  374. * compare mm to q->mm below.
  375. *
  376. * Furthermore, even if mm contains a non-NULL value, p->mm may
  377. * change to NULL at any time since we do not hold task_lock(p).
  378. * However, this is of no concern to us.
  379. */
  380. if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
  381. return 1;
  382. __oom_kill_task(p, 1);
  383. return 0;
  384. }
  385. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  386. unsigned long points, struct mem_cgroup *mem,
  387. const char *message)
  388. {
  389. struct task_struct *c;
  390. if (printk_ratelimit())
  391. dump_header(p, gfp_mask, order, mem);
  392. /*
  393. * If the task is already exiting, don't alarm the sysadmin or kill
  394. * its children or threads, just set TIF_MEMDIE so it can die quickly
  395. */
  396. if (p->flags & PF_EXITING) {
  397. __oom_kill_task(p, 0);
  398. return 0;
  399. }
  400. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  401. message, task_pid_nr(p), p->comm, points);
  402. /* Try to kill a child first */
  403. list_for_each_entry(c, &p->children, sibling) {
  404. if (c->mm == p->mm)
  405. continue;
  406. if (!oom_kill_task(c))
  407. return 0;
  408. }
  409. return oom_kill_task(p);
  410. }
  411. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  412. void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
  413. {
  414. unsigned long points = 0;
  415. struct task_struct *p;
  416. read_lock(&tasklist_lock);
  417. retry:
  418. p = select_bad_process(&points, mem);
  419. if (PTR_ERR(p) == -1UL)
  420. goto out;
  421. if (!p)
  422. p = current;
  423. if (oom_kill_process(p, gfp_mask, 0, points, mem,
  424. "Memory cgroup out of memory"))
  425. goto retry;
  426. out:
  427. read_unlock(&tasklist_lock);
  428. }
  429. #endif
  430. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  431. int register_oom_notifier(struct notifier_block *nb)
  432. {
  433. return blocking_notifier_chain_register(&oom_notify_list, nb);
  434. }
  435. EXPORT_SYMBOL_GPL(register_oom_notifier);
  436. int unregister_oom_notifier(struct notifier_block *nb)
  437. {
  438. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  439. }
  440. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  441. /*
  442. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  443. * if a parallel OOM killing is already taking place that includes a zone in
  444. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  445. */
  446. int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  447. {
  448. struct zoneref *z;
  449. struct zone *zone;
  450. int ret = 1;
  451. spin_lock(&zone_scan_lock);
  452. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  453. if (zone_is_oom_locked(zone)) {
  454. ret = 0;
  455. goto out;
  456. }
  457. }
  458. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  459. /*
  460. * Lock each zone in the zonelist under zone_scan_lock so a
  461. * parallel invocation of try_set_zone_oom() doesn't succeed
  462. * when it shouldn't.
  463. */
  464. zone_set_flag(zone, ZONE_OOM_LOCKED);
  465. }
  466. out:
  467. spin_unlock(&zone_scan_lock);
  468. return ret;
  469. }
  470. /*
  471. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  472. * allocation attempts with zonelists containing them may now recall the OOM
  473. * killer, if necessary.
  474. */
  475. void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  476. {
  477. struct zoneref *z;
  478. struct zone *zone;
  479. spin_lock(&zone_scan_lock);
  480. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  481. zone_clear_flag(zone, ZONE_OOM_LOCKED);
  482. }
  483. spin_unlock(&zone_scan_lock);
  484. }
  485. /*
  486. * Must be called with tasklist_lock held for read.
  487. */
  488. static void __out_of_memory(gfp_t gfp_mask, int order)
  489. {
  490. struct task_struct *p;
  491. unsigned long points;
  492. if (sysctl_oom_kill_allocating_task)
  493. if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
  494. "Out of memory (oom_kill_allocating_task)"))
  495. return;
  496. retry:
  497. /*
  498. * Rambo mode: Shoot down a process and hope it solves whatever
  499. * issues we may have.
  500. */
  501. p = select_bad_process(&points, NULL);
  502. if (PTR_ERR(p) == -1UL)
  503. return;
  504. /* Found nothing?!?! Either we hang forever, or we panic. */
  505. if (!p) {
  506. read_unlock(&tasklist_lock);
  507. dump_header(NULL, gfp_mask, order, NULL);
  508. panic("Out of memory and no killable processes...\n");
  509. }
  510. if (oom_kill_process(p, gfp_mask, order, points, NULL,
  511. "Out of memory"))
  512. goto retry;
  513. }
  514. /*
  515. * pagefault handler calls into here because it is out of memory but
  516. * doesn't know exactly how or why.
  517. */
  518. void pagefault_out_of_memory(void)
  519. {
  520. unsigned long freed = 0;
  521. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  522. if (freed > 0)
  523. /* Got some memory back in the last second. */
  524. return;
  525. /*
  526. * If this is from memcg, oom-killer is already invoked.
  527. * and not worth to go system-wide-oom.
  528. */
  529. if (mem_cgroup_oom_called(current))
  530. goto rest_and_return;
  531. if (sysctl_panic_on_oom)
  532. panic("out of memory from page fault. panic_on_oom is selected.\n");
  533. read_lock(&tasklist_lock);
  534. __out_of_memory(0, 0); /* unknown gfp_mask and order */
  535. read_unlock(&tasklist_lock);
  536. /*
  537. * Give "p" a good chance of killing itself before we
  538. * retry to allocate memory.
  539. */
  540. rest_and_return:
  541. if (!test_thread_flag(TIF_MEMDIE))
  542. schedule_timeout_uninterruptible(1);
  543. }
  544. /**
  545. * out_of_memory - kill the "best" process when we run out of memory
  546. * @zonelist: zonelist pointer
  547. * @gfp_mask: memory allocation flags
  548. * @order: amount of memory being requested as a power of 2
  549. *
  550. * If we run out of memory, we have the choice between either
  551. * killing a random task (bad), letting the system crash (worse)
  552. * OR try to be smart about which process to kill. Note that we
  553. * don't have to be perfect here, we just have to be good.
  554. */
  555. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
  556. int order, nodemask_t *nodemask)
  557. {
  558. unsigned long freed = 0;
  559. enum oom_constraint constraint;
  560. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  561. if (freed > 0)
  562. /* Got some memory back in the last second. */
  563. return;
  564. if (sysctl_panic_on_oom == 2) {
  565. dump_header(NULL, gfp_mask, order, NULL);
  566. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  567. }
  568. /*
  569. * Check if there were limitations on the allocation (only relevant for
  570. * NUMA) that may require different handling.
  571. */
  572. constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
  573. read_lock(&tasklist_lock);
  574. switch (constraint) {
  575. case CONSTRAINT_MEMORY_POLICY:
  576. oom_kill_process(current, gfp_mask, order, 0, NULL,
  577. "No available memory (MPOL_BIND)");
  578. break;
  579. case CONSTRAINT_NONE:
  580. if (sysctl_panic_on_oom) {
  581. dump_header(NULL, gfp_mask, order, NULL);
  582. panic("out of memory. panic_on_oom is selected\n");
  583. }
  584. /* Fall-through */
  585. case CONSTRAINT_CPUSET:
  586. __out_of_memory(gfp_mask, order);
  587. break;
  588. }
  589. read_unlock(&tasklist_lock);
  590. /*
  591. * Give "p" a good chance of killing itself before we
  592. * retry to allocate memory unless "p" is current
  593. */
  594. if (!test_thread_flag(TIF_MEMDIE))
  595. schedule_timeout_uninterruptible(1);
  596. }