memory.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. /*
  109. * If a p?d_bad entry is found while walking page tables, report
  110. * the error, before resetting entry to p?d_none. Usually (but
  111. * very seldom) called out from the p?d_none_or_clear_bad macros.
  112. */
  113. void pgd_clear_bad(pgd_t *pgd)
  114. {
  115. pgd_ERROR(*pgd);
  116. pgd_clear(pgd);
  117. }
  118. void pud_clear_bad(pud_t *pud)
  119. {
  120. pud_ERROR(*pud);
  121. pud_clear(pud);
  122. }
  123. void pmd_clear_bad(pmd_t *pmd)
  124. {
  125. pmd_ERROR(*pmd);
  126. pmd_clear(pmd);
  127. }
  128. /*
  129. * Note: this doesn't free the actual pages themselves. That
  130. * has been handled earlier when unmapping all the memory regions.
  131. */
  132. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  133. unsigned long addr)
  134. {
  135. pgtable_t token = pmd_pgtable(*pmd);
  136. pmd_clear(pmd);
  137. pte_free_tlb(tlb, token, addr);
  138. tlb->mm->nr_ptes--;
  139. }
  140. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  141. unsigned long addr, unsigned long end,
  142. unsigned long floor, unsigned long ceiling)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. unsigned long start;
  147. start = addr;
  148. pmd = pmd_offset(pud, addr);
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (pmd_none_or_clear_bad(pmd))
  152. continue;
  153. free_pte_range(tlb, pmd, addr);
  154. } while (pmd++, addr = next, addr != end);
  155. start &= PUD_MASK;
  156. if (start < floor)
  157. return;
  158. if (ceiling) {
  159. ceiling &= PUD_MASK;
  160. if (!ceiling)
  161. return;
  162. }
  163. if (end - 1 > ceiling - 1)
  164. return;
  165. pmd = pmd_offset(pud, start);
  166. pud_clear(pud);
  167. pmd_free_tlb(tlb, pmd, start);
  168. }
  169. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  170. unsigned long addr, unsigned long end,
  171. unsigned long floor, unsigned long ceiling)
  172. {
  173. pud_t *pud;
  174. unsigned long next;
  175. unsigned long start;
  176. start = addr;
  177. pud = pud_offset(pgd, addr);
  178. do {
  179. next = pud_addr_end(addr, end);
  180. if (pud_none_or_clear_bad(pud))
  181. continue;
  182. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  183. } while (pud++, addr = next, addr != end);
  184. start &= PGDIR_MASK;
  185. if (start < floor)
  186. return;
  187. if (ceiling) {
  188. ceiling &= PGDIR_MASK;
  189. if (!ceiling)
  190. return;
  191. }
  192. if (end - 1 > ceiling - 1)
  193. return;
  194. pud = pud_offset(pgd, start);
  195. pgd_clear(pgd);
  196. pud_free_tlb(tlb, pud, start);
  197. }
  198. /*
  199. * This function frees user-level page tables of a process.
  200. *
  201. * Must be called with pagetable lock held.
  202. */
  203. void free_pgd_range(struct mmu_gather *tlb,
  204. unsigned long addr, unsigned long end,
  205. unsigned long floor, unsigned long ceiling)
  206. {
  207. pgd_t *pgd;
  208. unsigned long next;
  209. unsigned long start;
  210. /*
  211. * The next few lines have given us lots of grief...
  212. *
  213. * Why are we testing PMD* at this top level? Because often
  214. * there will be no work to do at all, and we'd prefer not to
  215. * go all the way down to the bottom just to discover that.
  216. *
  217. * Why all these "- 1"s? Because 0 represents both the bottom
  218. * of the address space and the top of it (using -1 for the
  219. * top wouldn't help much: the masks would do the wrong thing).
  220. * The rule is that addr 0 and floor 0 refer to the bottom of
  221. * the address space, but end 0 and ceiling 0 refer to the top
  222. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  223. * that end 0 case should be mythical).
  224. *
  225. * Wherever addr is brought up or ceiling brought down, we must
  226. * be careful to reject "the opposite 0" before it confuses the
  227. * subsequent tests. But what about where end is brought down
  228. * by PMD_SIZE below? no, end can't go down to 0 there.
  229. *
  230. * Whereas we round start (addr) and ceiling down, by different
  231. * masks at different levels, in order to test whether a table
  232. * now has no other vmas using it, so can be freed, we don't
  233. * bother to round floor or end up - the tests don't need that.
  234. */
  235. addr &= PMD_MASK;
  236. if (addr < floor) {
  237. addr += PMD_SIZE;
  238. if (!addr)
  239. return;
  240. }
  241. if (ceiling) {
  242. ceiling &= PMD_MASK;
  243. if (!ceiling)
  244. return;
  245. }
  246. if (end - 1 > ceiling - 1)
  247. end -= PMD_SIZE;
  248. if (addr > end - 1)
  249. return;
  250. start = addr;
  251. pgd = pgd_offset(tlb->mm, addr);
  252. do {
  253. next = pgd_addr_end(addr, end);
  254. if (pgd_none_or_clear_bad(pgd))
  255. continue;
  256. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  257. } while (pgd++, addr = next, addr != end);
  258. }
  259. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  260. unsigned long floor, unsigned long ceiling)
  261. {
  262. while (vma) {
  263. struct vm_area_struct *next = vma->vm_next;
  264. unsigned long addr = vma->vm_start;
  265. /*
  266. * Hide vma from rmap and truncate_pagecache before freeing
  267. * pgtables
  268. */
  269. anon_vma_unlink(vma);
  270. unlink_file_vma(vma);
  271. if (is_vm_hugetlb_page(vma)) {
  272. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  273. floor, next? next->vm_start: ceiling);
  274. } else {
  275. /*
  276. * Optimization: gather nearby vmas into one call down
  277. */
  278. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  279. && !is_vm_hugetlb_page(next)) {
  280. vma = next;
  281. next = vma->vm_next;
  282. anon_vma_unlink(vma);
  283. unlink_file_vma(vma);
  284. }
  285. free_pgd_range(tlb, addr, vma->vm_end,
  286. floor, next? next->vm_start: ceiling);
  287. }
  288. vma = next;
  289. }
  290. }
  291. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  292. {
  293. pgtable_t new = pte_alloc_one(mm, address);
  294. if (!new)
  295. return -ENOMEM;
  296. /*
  297. * Ensure all pte setup (eg. pte page lock and page clearing) are
  298. * visible before the pte is made visible to other CPUs by being
  299. * put into page tables.
  300. *
  301. * The other side of the story is the pointer chasing in the page
  302. * table walking code (when walking the page table without locking;
  303. * ie. most of the time). Fortunately, these data accesses consist
  304. * of a chain of data-dependent loads, meaning most CPUs (alpha
  305. * being the notable exception) will already guarantee loads are
  306. * seen in-order. See the alpha page table accessors for the
  307. * smp_read_barrier_depends() barriers in page table walking code.
  308. */
  309. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  310. spin_lock(&mm->page_table_lock);
  311. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  312. mm->nr_ptes++;
  313. pmd_populate(mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&mm->page_table_lock);
  317. if (new)
  318. pte_free(mm, new);
  319. return 0;
  320. }
  321. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  322. {
  323. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  324. if (!new)
  325. return -ENOMEM;
  326. smp_wmb(); /* See comment in __pte_alloc */
  327. spin_lock(&init_mm.page_table_lock);
  328. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  329. pmd_populate_kernel(&init_mm, pmd, new);
  330. new = NULL;
  331. }
  332. spin_unlock(&init_mm.page_table_lock);
  333. if (new)
  334. pte_free_kernel(&init_mm, new);
  335. return 0;
  336. }
  337. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  338. {
  339. if (file_rss)
  340. add_mm_counter(mm, file_rss, file_rss);
  341. if (anon_rss)
  342. add_mm_counter(mm, anon_rss, anon_rss);
  343. }
  344. /*
  345. * This function is called to print an error when a bad pte
  346. * is found. For example, we might have a PFN-mapped pte in
  347. * a region that doesn't allow it.
  348. *
  349. * The calling function must still handle the error.
  350. */
  351. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  352. pte_t pte, struct page *page)
  353. {
  354. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  355. pud_t *pud = pud_offset(pgd, addr);
  356. pmd_t *pmd = pmd_offset(pud, addr);
  357. struct address_space *mapping;
  358. pgoff_t index;
  359. static unsigned long resume;
  360. static unsigned long nr_shown;
  361. static unsigned long nr_unshown;
  362. /*
  363. * Allow a burst of 60 reports, then keep quiet for that minute;
  364. * or allow a steady drip of one report per second.
  365. */
  366. if (nr_shown == 60) {
  367. if (time_before(jiffies, resume)) {
  368. nr_unshown++;
  369. return;
  370. }
  371. if (nr_unshown) {
  372. printk(KERN_ALERT
  373. "BUG: Bad page map: %lu messages suppressed\n",
  374. nr_unshown);
  375. nr_unshown = 0;
  376. }
  377. nr_shown = 0;
  378. }
  379. if (nr_shown++ == 0)
  380. resume = jiffies + 60 * HZ;
  381. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  382. index = linear_page_index(vma, addr);
  383. printk(KERN_ALERT
  384. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  385. current->comm,
  386. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  387. if (page) {
  388. printk(KERN_ALERT
  389. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  390. page, (void *)page->flags, page_count(page),
  391. page_mapcount(page), page->mapping, page->index);
  392. }
  393. printk(KERN_ALERT
  394. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  395. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  396. /*
  397. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  398. */
  399. if (vma->vm_ops)
  400. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  401. (unsigned long)vma->vm_ops->fault);
  402. if (vma->vm_file && vma->vm_file->f_op)
  403. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  404. (unsigned long)vma->vm_file->f_op->mmap);
  405. dump_stack();
  406. add_taint(TAINT_BAD_PAGE);
  407. }
  408. static inline int is_cow_mapping(unsigned int flags)
  409. {
  410. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  411. }
  412. #ifndef is_zero_pfn
  413. static inline int is_zero_pfn(unsigned long pfn)
  414. {
  415. return pfn == zero_pfn;
  416. }
  417. #endif
  418. #ifndef my_zero_pfn
  419. static inline unsigned long my_zero_pfn(unsigned long addr)
  420. {
  421. return zero_pfn;
  422. }
  423. #endif
  424. /*
  425. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  426. *
  427. * "Special" mappings do not wish to be associated with a "struct page" (either
  428. * it doesn't exist, or it exists but they don't want to touch it). In this
  429. * case, NULL is returned here. "Normal" mappings do have a struct page.
  430. *
  431. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  432. * pte bit, in which case this function is trivial. Secondly, an architecture
  433. * may not have a spare pte bit, which requires a more complicated scheme,
  434. * described below.
  435. *
  436. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  437. * special mapping (even if there are underlying and valid "struct pages").
  438. * COWed pages of a VM_PFNMAP are always normal.
  439. *
  440. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  441. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  442. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  443. * mapping will always honor the rule
  444. *
  445. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  446. *
  447. * And for normal mappings this is false.
  448. *
  449. * This restricts such mappings to be a linear translation from virtual address
  450. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  451. * as the vma is not a COW mapping; in that case, we know that all ptes are
  452. * special (because none can have been COWed).
  453. *
  454. *
  455. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  456. *
  457. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  458. * page" backing, however the difference is that _all_ pages with a struct
  459. * page (that is, those where pfn_valid is true) are refcounted and considered
  460. * normal pages by the VM. The disadvantage is that pages are refcounted
  461. * (which can be slower and simply not an option for some PFNMAP users). The
  462. * advantage is that we don't have to follow the strict linearity rule of
  463. * PFNMAP mappings in order to support COWable mappings.
  464. *
  465. */
  466. #ifdef __HAVE_ARCH_PTE_SPECIAL
  467. # define HAVE_PTE_SPECIAL 1
  468. #else
  469. # define HAVE_PTE_SPECIAL 0
  470. #endif
  471. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  472. pte_t pte)
  473. {
  474. unsigned long pfn = pte_pfn(pte);
  475. if (HAVE_PTE_SPECIAL) {
  476. if (likely(!pte_special(pte)))
  477. goto check_pfn;
  478. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  479. return NULL;
  480. if (!is_zero_pfn(pfn))
  481. print_bad_pte(vma, addr, pte, NULL);
  482. return NULL;
  483. }
  484. /* !HAVE_PTE_SPECIAL case follows: */
  485. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  486. if (vma->vm_flags & VM_MIXEDMAP) {
  487. if (!pfn_valid(pfn))
  488. return NULL;
  489. goto out;
  490. } else {
  491. unsigned long off;
  492. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  493. if (pfn == vma->vm_pgoff + off)
  494. return NULL;
  495. if (!is_cow_mapping(vma->vm_flags))
  496. return NULL;
  497. }
  498. }
  499. if (is_zero_pfn(pfn))
  500. return NULL;
  501. check_pfn:
  502. if (unlikely(pfn > highest_memmap_pfn)) {
  503. print_bad_pte(vma, addr, pte, NULL);
  504. return NULL;
  505. }
  506. /*
  507. * NOTE! We still have PageReserved() pages in the page tables.
  508. * eg. VDSO mappings can cause them to exist.
  509. */
  510. out:
  511. return pfn_to_page(pfn);
  512. }
  513. /*
  514. * copy one vm_area from one task to the other. Assumes the page tables
  515. * already present in the new task to be cleared in the whole range
  516. * covered by this vma.
  517. */
  518. static inline unsigned long
  519. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  520. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  521. unsigned long addr, int *rss)
  522. {
  523. unsigned long vm_flags = vma->vm_flags;
  524. pte_t pte = *src_pte;
  525. struct page *page;
  526. /* pte contains position in swap or file, so copy. */
  527. if (unlikely(!pte_present(pte))) {
  528. if (!pte_file(pte)) {
  529. swp_entry_t entry = pte_to_swp_entry(pte);
  530. if (swap_duplicate(entry) < 0)
  531. return entry.val;
  532. /* make sure dst_mm is on swapoff's mmlist. */
  533. if (unlikely(list_empty(&dst_mm->mmlist))) {
  534. spin_lock(&mmlist_lock);
  535. if (list_empty(&dst_mm->mmlist))
  536. list_add(&dst_mm->mmlist,
  537. &src_mm->mmlist);
  538. spin_unlock(&mmlist_lock);
  539. }
  540. if (is_write_migration_entry(entry) &&
  541. is_cow_mapping(vm_flags)) {
  542. /*
  543. * COW mappings require pages in both parent
  544. * and child to be set to read.
  545. */
  546. make_migration_entry_read(&entry);
  547. pte = swp_entry_to_pte(entry);
  548. set_pte_at(src_mm, addr, src_pte, pte);
  549. }
  550. }
  551. goto out_set_pte;
  552. }
  553. /*
  554. * If it's a COW mapping, write protect it both
  555. * in the parent and the child
  556. */
  557. if (is_cow_mapping(vm_flags)) {
  558. ptep_set_wrprotect(src_mm, addr, src_pte);
  559. pte = pte_wrprotect(pte);
  560. }
  561. /*
  562. * If it's a shared mapping, mark it clean in
  563. * the child
  564. */
  565. if (vm_flags & VM_SHARED)
  566. pte = pte_mkclean(pte);
  567. pte = pte_mkold(pte);
  568. page = vm_normal_page(vma, addr, pte);
  569. if (page) {
  570. get_page(page);
  571. page_dup_rmap(page);
  572. rss[PageAnon(page)]++;
  573. }
  574. out_set_pte:
  575. set_pte_at(dst_mm, addr, dst_pte, pte);
  576. return 0;
  577. }
  578. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  580. unsigned long addr, unsigned long end)
  581. {
  582. pte_t *orig_src_pte, *orig_dst_pte;
  583. pte_t *src_pte, *dst_pte;
  584. spinlock_t *src_ptl, *dst_ptl;
  585. int progress = 0;
  586. int rss[2];
  587. swp_entry_t entry = (swp_entry_t){0};
  588. again:
  589. rss[1] = rss[0] = 0;
  590. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  591. if (!dst_pte)
  592. return -ENOMEM;
  593. src_pte = pte_offset_map_nested(src_pmd, addr);
  594. src_ptl = pte_lockptr(src_mm, src_pmd);
  595. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  596. orig_src_pte = src_pte;
  597. orig_dst_pte = dst_pte;
  598. arch_enter_lazy_mmu_mode();
  599. do {
  600. /*
  601. * We are holding two locks at this point - either of them
  602. * could generate latencies in another task on another CPU.
  603. */
  604. if (progress >= 32) {
  605. progress = 0;
  606. if (need_resched() ||
  607. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  608. break;
  609. }
  610. if (pte_none(*src_pte)) {
  611. progress++;
  612. continue;
  613. }
  614. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  615. vma, addr, rss);
  616. if (entry.val)
  617. break;
  618. progress += 8;
  619. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  620. arch_leave_lazy_mmu_mode();
  621. spin_unlock(src_ptl);
  622. pte_unmap_nested(orig_src_pte);
  623. add_mm_rss(dst_mm, rss[0], rss[1]);
  624. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  625. cond_resched();
  626. if (entry.val) {
  627. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  628. return -ENOMEM;
  629. progress = 0;
  630. }
  631. if (addr != end)
  632. goto again;
  633. return 0;
  634. }
  635. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  636. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  637. unsigned long addr, unsigned long end)
  638. {
  639. pmd_t *src_pmd, *dst_pmd;
  640. unsigned long next;
  641. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  642. if (!dst_pmd)
  643. return -ENOMEM;
  644. src_pmd = pmd_offset(src_pud, addr);
  645. do {
  646. next = pmd_addr_end(addr, end);
  647. if (pmd_none_or_clear_bad(src_pmd))
  648. continue;
  649. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  650. vma, addr, next))
  651. return -ENOMEM;
  652. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  653. return 0;
  654. }
  655. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  656. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  657. unsigned long addr, unsigned long end)
  658. {
  659. pud_t *src_pud, *dst_pud;
  660. unsigned long next;
  661. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  662. if (!dst_pud)
  663. return -ENOMEM;
  664. src_pud = pud_offset(src_pgd, addr);
  665. do {
  666. next = pud_addr_end(addr, end);
  667. if (pud_none_or_clear_bad(src_pud))
  668. continue;
  669. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  670. vma, addr, next))
  671. return -ENOMEM;
  672. } while (dst_pud++, src_pud++, addr = next, addr != end);
  673. return 0;
  674. }
  675. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  676. struct vm_area_struct *vma)
  677. {
  678. pgd_t *src_pgd, *dst_pgd;
  679. unsigned long next;
  680. unsigned long addr = vma->vm_start;
  681. unsigned long end = vma->vm_end;
  682. int ret;
  683. /*
  684. * Don't copy ptes where a page fault will fill them correctly.
  685. * Fork becomes much lighter when there are big shared or private
  686. * readonly mappings. The tradeoff is that copy_page_range is more
  687. * efficient than faulting.
  688. */
  689. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  690. if (!vma->anon_vma)
  691. return 0;
  692. }
  693. if (is_vm_hugetlb_page(vma))
  694. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  695. if (unlikely(is_pfn_mapping(vma))) {
  696. /*
  697. * We do not free on error cases below as remove_vma
  698. * gets called on error from higher level routine
  699. */
  700. ret = track_pfn_vma_copy(vma);
  701. if (ret)
  702. return ret;
  703. }
  704. /*
  705. * We need to invalidate the secondary MMU mappings only when
  706. * there could be a permission downgrade on the ptes of the
  707. * parent mm. And a permission downgrade will only happen if
  708. * is_cow_mapping() returns true.
  709. */
  710. if (is_cow_mapping(vma->vm_flags))
  711. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  712. ret = 0;
  713. dst_pgd = pgd_offset(dst_mm, addr);
  714. src_pgd = pgd_offset(src_mm, addr);
  715. do {
  716. next = pgd_addr_end(addr, end);
  717. if (pgd_none_or_clear_bad(src_pgd))
  718. continue;
  719. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  720. vma, addr, next))) {
  721. ret = -ENOMEM;
  722. break;
  723. }
  724. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  725. if (is_cow_mapping(vma->vm_flags))
  726. mmu_notifier_invalidate_range_end(src_mm,
  727. vma->vm_start, end);
  728. return ret;
  729. }
  730. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  731. struct vm_area_struct *vma, pmd_t *pmd,
  732. unsigned long addr, unsigned long end,
  733. long *zap_work, struct zap_details *details)
  734. {
  735. struct mm_struct *mm = tlb->mm;
  736. pte_t *pte;
  737. spinlock_t *ptl;
  738. int file_rss = 0;
  739. int anon_rss = 0;
  740. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  741. arch_enter_lazy_mmu_mode();
  742. do {
  743. pte_t ptent = *pte;
  744. if (pte_none(ptent)) {
  745. (*zap_work)--;
  746. continue;
  747. }
  748. (*zap_work) -= PAGE_SIZE;
  749. if (pte_present(ptent)) {
  750. struct page *page;
  751. page = vm_normal_page(vma, addr, ptent);
  752. if (unlikely(details) && page) {
  753. /*
  754. * unmap_shared_mapping_pages() wants to
  755. * invalidate cache without truncating:
  756. * unmap shared but keep private pages.
  757. */
  758. if (details->check_mapping &&
  759. details->check_mapping != page->mapping)
  760. continue;
  761. /*
  762. * Each page->index must be checked when
  763. * invalidating or truncating nonlinear.
  764. */
  765. if (details->nonlinear_vma &&
  766. (page->index < details->first_index ||
  767. page->index > details->last_index))
  768. continue;
  769. }
  770. ptent = ptep_get_and_clear_full(mm, addr, pte,
  771. tlb->fullmm);
  772. tlb_remove_tlb_entry(tlb, pte, addr);
  773. if (unlikely(!page))
  774. continue;
  775. if (unlikely(details) && details->nonlinear_vma
  776. && linear_page_index(details->nonlinear_vma,
  777. addr) != page->index)
  778. set_pte_at(mm, addr, pte,
  779. pgoff_to_pte(page->index));
  780. if (PageAnon(page))
  781. anon_rss--;
  782. else {
  783. if (pte_dirty(ptent))
  784. set_page_dirty(page);
  785. if (pte_young(ptent) &&
  786. likely(!VM_SequentialReadHint(vma)))
  787. mark_page_accessed(page);
  788. file_rss--;
  789. }
  790. page_remove_rmap(page);
  791. if (unlikely(page_mapcount(page) < 0))
  792. print_bad_pte(vma, addr, ptent, page);
  793. tlb_remove_page(tlb, page);
  794. continue;
  795. }
  796. /*
  797. * If details->check_mapping, we leave swap entries;
  798. * if details->nonlinear_vma, we leave file entries.
  799. */
  800. if (unlikely(details))
  801. continue;
  802. if (pte_file(ptent)) {
  803. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  804. print_bad_pte(vma, addr, ptent, NULL);
  805. } else if
  806. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  807. print_bad_pte(vma, addr, ptent, NULL);
  808. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  809. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  810. add_mm_rss(mm, file_rss, anon_rss);
  811. arch_leave_lazy_mmu_mode();
  812. pte_unmap_unlock(pte - 1, ptl);
  813. return addr;
  814. }
  815. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  816. struct vm_area_struct *vma, pud_t *pud,
  817. unsigned long addr, unsigned long end,
  818. long *zap_work, struct zap_details *details)
  819. {
  820. pmd_t *pmd;
  821. unsigned long next;
  822. pmd = pmd_offset(pud, addr);
  823. do {
  824. next = pmd_addr_end(addr, end);
  825. if (pmd_none_or_clear_bad(pmd)) {
  826. (*zap_work)--;
  827. continue;
  828. }
  829. next = zap_pte_range(tlb, vma, pmd, addr, next,
  830. zap_work, details);
  831. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  832. return addr;
  833. }
  834. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  835. struct vm_area_struct *vma, pgd_t *pgd,
  836. unsigned long addr, unsigned long end,
  837. long *zap_work, struct zap_details *details)
  838. {
  839. pud_t *pud;
  840. unsigned long next;
  841. pud = pud_offset(pgd, addr);
  842. do {
  843. next = pud_addr_end(addr, end);
  844. if (pud_none_or_clear_bad(pud)) {
  845. (*zap_work)--;
  846. continue;
  847. }
  848. next = zap_pmd_range(tlb, vma, pud, addr, next,
  849. zap_work, details);
  850. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  851. return addr;
  852. }
  853. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  854. struct vm_area_struct *vma,
  855. unsigned long addr, unsigned long end,
  856. long *zap_work, struct zap_details *details)
  857. {
  858. pgd_t *pgd;
  859. unsigned long next;
  860. if (details && !details->check_mapping && !details->nonlinear_vma)
  861. details = NULL;
  862. BUG_ON(addr >= end);
  863. mem_cgroup_uncharge_start();
  864. tlb_start_vma(tlb, vma);
  865. pgd = pgd_offset(vma->vm_mm, addr);
  866. do {
  867. next = pgd_addr_end(addr, end);
  868. if (pgd_none_or_clear_bad(pgd)) {
  869. (*zap_work)--;
  870. continue;
  871. }
  872. next = zap_pud_range(tlb, vma, pgd, addr, next,
  873. zap_work, details);
  874. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  875. tlb_end_vma(tlb, vma);
  876. mem_cgroup_uncharge_end();
  877. return addr;
  878. }
  879. #ifdef CONFIG_PREEMPT
  880. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  881. #else
  882. /* No preempt: go for improved straight-line efficiency */
  883. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  884. #endif
  885. /**
  886. * unmap_vmas - unmap a range of memory covered by a list of vma's
  887. * @tlbp: address of the caller's struct mmu_gather
  888. * @vma: the starting vma
  889. * @start_addr: virtual address at which to start unmapping
  890. * @end_addr: virtual address at which to end unmapping
  891. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  892. * @details: details of nonlinear truncation or shared cache invalidation
  893. *
  894. * Returns the end address of the unmapping (restart addr if interrupted).
  895. *
  896. * Unmap all pages in the vma list.
  897. *
  898. * We aim to not hold locks for too long (for scheduling latency reasons).
  899. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  900. * return the ending mmu_gather to the caller.
  901. *
  902. * Only addresses between `start' and `end' will be unmapped.
  903. *
  904. * The VMA list must be sorted in ascending virtual address order.
  905. *
  906. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  907. * range after unmap_vmas() returns. So the only responsibility here is to
  908. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  909. * drops the lock and schedules.
  910. */
  911. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  912. struct vm_area_struct *vma, unsigned long start_addr,
  913. unsigned long end_addr, unsigned long *nr_accounted,
  914. struct zap_details *details)
  915. {
  916. long zap_work = ZAP_BLOCK_SIZE;
  917. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  918. int tlb_start_valid = 0;
  919. unsigned long start = start_addr;
  920. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  921. int fullmm = (*tlbp)->fullmm;
  922. struct mm_struct *mm = vma->vm_mm;
  923. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  924. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  925. unsigned long end;
  926. start = max(vma->vm_start, start_addr);
  927. if (start >= vma->vm_end)
  928. continue;
  929. end = min(vma->vm_end, end_addr);
  930. if (end <= vma->vm_start)
  931. continue;
  932. if (vma->vm_flags & VM_ACCOUNT)
  933. *nr_accounted += (end - start) >> PAGE_SHIFT;
  934. if (unlikely(is_pfn_mapping(vma)))
  935. untrack_pfn_vma(vma, 0, 0);
  936. while (start != end) {
  937. if (!tlb_start_valid) {
  938. tlb_start = start;
  939. tlb_start_valid = 1;
  940. }
  941. if (unlikely(is_vm_hugetlb_page(vma))) {
  942. /*
  943. * It is undesirable to test vma->vm_file as it
  944. * should be non-null for valid hugetlb area.
  945. * However, vm_file will be NULL in the error
  946. * cleanup path of do_mmap_pgoff. When
  947. * hugetlbfs ->mmap method fails,
  948. * do_mmap_pgoff() nullifies vma->vm_file
  949. * before calling this function to clean up.
  950. * Since no pte has actually been setup, it is
  951. * safe to do nothing in this case.
  952. */
  953. if (vma->vm_file) {
  954. unmap_hugepage_range(vma, start, end, NULL);
  955. zap_work -= (end - start) /
  956. pages_per_huge_page(hstate_vma(vma));
  957. }
  958. start = end;
  959. } else
  960. start = unmap_page_range(*tlbp, vma,
  961. start, end, &zap_work, details);
  962. if (zap_work > 0) {
  963. BUG_ON(start != end);
  964. break;
  965. }
  966. tlb_finish_mmu(*tlbp, tlb_start, start);
  967. if (need_resched() ||
  968. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  969. if (i_mmap_lock) {
  970. *tlbp = NULL;
  971. goto out;
  972. }
  973. cond_resched();
  974. }
  975. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  976. tlb_start_valid = 0;
  977. zap_work = ZAP_BLOCK_SIZE;
  978. }
  979. }
  980. out:
  981. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  982. return start; /* which is now the end (or restart) address */
  983. }
  984. /**
  985. * zap_page_range - remove user pages in a given range
  986. * @vma: vm_area_struct holding the applicable pages
  987. * @address: starting address of pages to zap
  988. * @size: number of bytes to zap
  989. * @details: details of nonlinear truncation or shared cache invalidation
  990. */
  991. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  992. unsigned long size, struct zap_details *details)
  993. {
  994. struct mm_struct *mm = vma->vm_mm;
  995. struct mmu_gather *tlb;
  996. unsigned long end = address + size;
  997. unsigned long nr_accounted = 0;
  998. lru_add_drain();
  999. tlb = tlb_gather_mmu(mm, 0);
  1000. update_hiwater_rss(mm);
  1001. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1002. if (tlb)
  1003. tlb_finish_mmu(tlb, address, end);
  1004. return end;
  1005. }
  1006. /**
  1007. * zap_vma_ptes - remove ptes mapping the vma
  1008. * @vma: vm_area_struct holding ptes to be zapped
  1009. * @address: starting address of pages to zap
  1010. * @size: number of bytes to zap
  1011. *
  1012. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1013. *
  1014. * The entire address range must be fully contained within the vma.
  1015. *
  1016. * Returns 0 if successful.
  1017. */
  1018. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1019. unsigned long size)
  1020. {
  1021. if (address < vma->vm_start || address + size > vma->vm_end ||
  1022. !(vma->vm_flags & VM_PFNMAP))
  1023. return -1;
  1024. zap_page_range(vma, address, size, NULL);
  1025. return 0;
  1026. }
  1027. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1028. /*
  1029. * Do a quick page-table lookup for a single page.
  1030. */
  1031. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1032. unsigned int flags)
  1033. {
  1034. pgd_t *pgd;
  1035. pud_t *pud;
  1036. pmd_t *pmd;
  1037. pte_t *ptep, pte;
  1038. spinlock_t *ptl;
  1039. struct page *page;
  1040. struct mm_struct *mm = vma->vm_mm;
  1041. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1042. if (!IS_ERR(page)) {
  1043. BUG_ON(flags & FOLL_GET);
  1044. goto out;
  1045. }
  1046. page = NULL;
  1047. pgd = pgd_offset(mm, address);
  1048. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1049. goto no_page_table;
  1050. pud = pud_offset(pgd, address);
  1051. if (pud_none(*pud))
  1052. goto no_page_table;
  1053. if (pud_huge(*pud)) {
  1054. BUG_ON(flags & FOLL_GET);
  1055. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1056. goto out;
  1057. }
  1058. if (unlikely(pud_bad(*pud)))
  1059. goto no_page_table;
  1060. pmd = pmd_offset(pud, address);
  1061. if (pmd_none(*pmd))
  1062. goto no_page_table;
  1063. if (pmd_huge(*pmd)) {
  1064. BUG_ON(flags & FOLL_GET);
  1065. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1066. goto out;
  1067. }
  1068. if (unlikely(pmd_bad(*pmd)))
  1069. goto no_page_table;
  1070. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1071. pte = *ptep;
  1072. if (!pte_present(pte))
  1073. goto no_page;
  1074. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1075. goto unlock;
  1076. page = vm_normal_page(vma, address, pte);
  1077. if (unlikely(!page)) {
  1078. if ((flags & FOLL_DUMP) ||
  1079. !is_zero_pfn(pte_pfn(pte)))
  1080. goto bad_page;
  1081. page = pte_page(pte);
  1082. }
  1083. if (flags & FOLL_GET)
  1084. get_page(page);
  1085. if (flags & FOLL_TOUCH) {
  1086. if ((flags & FOLL_WRITE) &&
  1087. !pte_dirty(pte) && !PageDirty(page))
  1088. set_page_dirty(page);
  1089. /*
  1090. * pte_mkyoung() would be more correct here, but atomic care
  1091. * is needed to avoid losing the dirty bit: it is easier to use
  1092. * mark_page_accessed().
  1093. */
  1094. mark_page_accessed(page);
  1095. }
  1096. unlock:
  1097. pte_unmap_unlock(ptep, ptl);
  1098. out:
  1099. return page;
  1100. bad_page:
  1101. pte_unmap_unlock(ptep, ptl);
  1102. return ERR_PTR(-EFAULT);
  1103. no_page:
  1104. pte_unmap_unlock(ptep, ptl);
  1105. if (!pte_none(pte))
  1106. return page;
  1107. no_page_table:
  1108. /*
  1109. * When core dumping an enormous anonymous area that nobody
  1110. * has touched so far, we don't want to allocate unnecessary pages or
  1111. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1112. * then get_dump_page() will return NULL to leave a hole in the dump.
  1113. * But we can only make this optimization where a hole would surely
  1114. * be zero-filled if handle_mm_fault() actually did handle it.
  1115. */
  1116. if ((flags & FOLL_DUMP) &&
  1117. (!vma->vm_ops || !vma->vm_ops->fault))
  1118. return ERR_PTR(-EFAULT);
  1119. return page;
  1120. }
  1121. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1122. unsigned long start, int nr_pages, unsigned int gup_flags,
  1123. struct page **pages, struct vm_area_struct **vmas)
  1124. {
  1125. int i;
  1126. unsigned long vm_flags;
  1127. if (nr_pages <= 0)
  1128. return 0;
  1129. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1130. /*
  1131. * Require read or write permissions.
  1132. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1133. */
  1134. vm_flags = (gup_flags & FOLL_WRITE) ?
  1135. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1136. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1137. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1138. i = 0;
  1139. do {
  1140. struct vm_area_struct *vma;
  1141. vma = find_extend_vma(mm, start);
  1142. if (!vma && in_gate_area(tsk, start)) {
  1143. unsigned long pg = start & PAGE_MASK;
  1144. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1145. pgd_t *pgd;
  1146. pud_t *pud;
  1147. pmd_t *pmd;
  1148. pte_t *pte;
  1149. /* user gate pages are read-only */
  1150. if (gup_flags & FOLL_WRITE)
  1151. return i ? : -EFAULT;
  1152. if (pg > TASK_SIZE)
  1153. pgd = pgd_offset_k(pg);
  1154. else
  1155. pgd = pgd_offset_gate(mm, pg);
  1156. BUG_ON(pgd_none(*pgd));
  1157. pud = pud_offset(pgd, pg);
  1158. BUG_ON(pud_none(*pud));
  1159. pmd = pmd_offset(pud, pg);
  1160. if (pmd_none(*pmd))
  1161. return i ? : -EFAULT;
  1162. pte = pte_offset_map(pmd, pg);
  1163. if (pte_none(*pte)) {
  1164. pte_unmap(pte);
  1165. return i ? : -EFAULT;
  1166. }
  1167. if (pages) {
  1168. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1169. pages[i] = page;
  1170. if (page)
  1171. get_page(page);
  1172. }
  1173. pte_unmap(pte);
  1174. if (vmas)
  1175. vmas[i] = gate_vma;
  1176. i++;
  1177. start += PAGE_SIZE;
  1178. nr_pages--;
  1179. continue;
  1180. }
  1181. if (!vma ||
  1182. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1183. !(vm_flags & vma->vm_flags))
  1184. return i ? : -EFAULT;
  1185. if (is_vm_hugetlb_page(vma)) {
  1186. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1187. &start, &nr_pages, i, gup_flags);
  1188. continue;
  1189. }
  1190. do {
  1191. struct page *page;
  1192. unsigned int foll_flags = gup_flags;
  1193. /*
  1194. * If we have a pending SIGKILL, don't keep faulting
  1195. * pages and potentially allocating memory.
  1196. */
  1197. if (unlikely(fatal_signal_pending(current)))
  1198. return i ? i : -ERESTARTSYS;
  1199. cond_resched();
  1200. while (!(page = follow_page(vma, start, foll_flags))) {
  1201. int ret;
  1202. ret = handle_mm_fault(mm, vma, start,
  1203. (foll_flags & FOLL_WRITE) ?
  1204. FAULT_FLAG_WRITE : 0);
  1205. if (ret & VM_FAULT_ERROR) {
  1206. if (ret & VM_FAULT_OOM)
  1207. return i ? i : -ENOMEM;
  1208. if (ret &
  1209. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1210. return i ? i : -EFAULT;
  1211. BUG();
  1212. }
  1213. if (ret & VM_FAULT_MAJOR)
  1214. tsk->maj_flt++;
  1215. else
  1216. tsk->min_flt++;
  1217. /*
  1218. * The VM_FAULT_WRITE bit tells us that
  1219. * do_wp_page has broken COW when necessary,
  1220. * even if maybe_mkwrite decided not to set
  1221. * pte_write. We can thus safely do subsequent
  1222. * page lookups as if they were reads. But only
  1223. * do so when looping for pte_write is futile:
  1224. * in some cases userspace may also be wanting
  1225. * to write to the gotten user page, which a
  1226. * read fault here might prevent (a readonly
  1227. * page might get reCOWed by userspace write).
  1228. */
  1229. if ((ret & VM_FAULT_WRITE) &&
  1230. !(vma->vm_flags & VM_WRITE))
  1231. foll_flags &= ~FOLL_WRITE;
  1232. cond_resched();
  1233. }
  1234. if (IS_ERR(page))
  1235. return i ? i : PTR_ERR(page);
  1236. if (pages) {
  1237. pages[i] = page;
  1238. flush_anon_page(vma, page, start);
  1239. flush_dcache_page(page);
  1240. }
  1241. if (vmas)
  1242. vmas[i] = vma;
  1243. i++;
  1244. start += PAGE_SIZE;
  1245. nr_pages--;
  1246. } while (nr_pages && start < vma->vm_end);
  1247. } while (nr_pages);
  1248. return i;
  1249. }
  1250. /**
  1251. * get_user_pages() - pin user pages in memory
  1252. * @tsk: task_struct of target task
  1253. * @mm: mm_struct of target mm
  1254. * @start: starting user address
  1255. * @nr_pages: number of pages from start to pin
  1256. * @write: whether pages will be written to by the caller
  1257. * @force: whether to force write access even if user mapping is
  1258. * readonly. This will result in the page being COWed even
  1259. * in MAP_SHARED mappings. You do not want this.
  1260. * @pages: array that receives pointers to the pages pinned.
  1261. * Should be at least nr_pages long. Or NULL, if caller
  1262. * only intends to ensure the pages are faulted in.
  1263. * @vmas: array of pointers to vmas corresponding to each page.
  1264. * Or NULL if the caller does not require them.
  1265. *
  1266. * Returns number of pages pinned. This may be fewer than the number
  1267. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1268. * were pinned, returns -errno. Each page returned must be released
  1269. * with a put_page() call when it is finished with. vmas will only
  1270. * remain valid while mmap_sem is held.
  1271. *
  1272. * Must be called with mmap_sem held for read or write.
  1273. *
  1274. * get_user_pages walks a process's page tables and takes a reference to
  1275. * each struct page that each user address corresponds to at a given
  1276. * instant. That is, it takes the page that would be accessed if a user
  1277. * thread accesses the given user virtual address at that instant.
  1278. *
  1279. * This does not guarantee that the page exists in the user mappings when
  1280. * get_user_pages returns, and there may even be a completely different
  1281. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1282. * and subsequently re faulted). However it does guarantee that the page
  1283. * won't be freed completely. And mostly callers simply care that the page
  1284. * contains data that was valid *at some point in time*. Typically, an IO
  1285. * or similar operation cannot guarantee anything stronger anyway because
  1286. * locks can't be held over the syscall boundary.
  1287. *
  1288. * If write=0, the page must not be written to. If the page is written to,
  1289. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1290. * after the page is finished with, and before put_page is called.
  1291. *
  1292. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1293. * handle on the memory by some means other than accesses via the user virtual
  1294. * addresses. The pages may be submitted for DMA to devices or accessed via
  1295. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1296. * use the correct cache flushing APIs.
  1297. *
  1298. * See also get_user_pages_fast, for performance critical applications.
  1299. */
  1300. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1301. unsigned long start, int nr_pages, int write, int force,
  1302. struct page **pages, struct vm_area_struct **vmas)
  1303. {
  1304. int flags = FOLL_TOUCH;
  1305. if (pages)
  1306. flags |= FOLL_GET;
  1307. if (write)
  1308. flags |= FOLL_WRITE;
  1309. if (force)
  1310. flags |= FOLL_FORCE;
  1311. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1312. }
  1313. EXPORT_SYMBOL(get_user_pages);
  1314. /**
  1315. * get_dump_page() - pin user page in memory while writing it to core dump
  1316. * @addr: user address
  1317. *
  1318. * Returns struct page pointer of user page pinned for dump,
  1319. * to be freed afterwards by page_cache_release() or put_page().
  1320. *
  1321. * Returns NULL on any kind of failure - a hole must then be inserted into
  1322. * the corefile, to preserve alignment with its headers; and also returns
  1323. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1324. * allowing a hole to be left in the corefile to save diskspace.
  1325. *
  1326. * Called without mmap_sem, but after all other threads have been killed.
  1327. */
  1328. #ifdef CONFIG_ELF_CORE
  1329. struct page *get_dump_page(unsigned long addr)
  1330. {
  1331. struct vm_area_struct *vma;
  1332. struct page *page;
  1333. if (__get_user_pages(current, current->mm, addr, 1,
  1334. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1335. return NULL;
  1336. flush_cache_page(vma, addr, page_to_pfn(page));
  1337. return page;
  1338. }
  1339. #endif /* CONFIG_ELF_CORE */
  1340. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1341. spinlock_t **ptl)
  1342. {
  1343. pgd_t * pgd = pgd_offset(mm, addr);
  1344. pud_t * pud = pud_alloc(mm, pgd, addr);
  1345. if (pud) {
  1346. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1347. if (pmd)
  1348. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1349. }
  1350. return NULL;
  1351. }
  1352. /*
  1353. * This is the old fallback for page remapping.
  1354. *
  1355. * For historical reasons, it only allows reserved pages. Only
  1356. * old drivers should use this, and they needed to mark their
  1357. * pages reserved for the old functions anyway.
  1358. */
  1359. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1360. struct page *page, pgprot_t prot)
  1361. {
  1362. struct mm_struct *mm = vma->vm_mm;
  1363. int retval;
  1364. pte_t *pte;
  1365. spinlock_t *ptl;
  1366. retval = -EINVAL;
  1367. if (PageAnon(page))
  1368. goto out;
  1369. retval = -ENOMEM;
  1370. flush_dcache_page(page);
  1371. pte = get_locked_pte(mm, addr, &ptl);
  1372. if (!pte)
  1373. goto out;
  1374. retval = -EBUSY;
  1375. if (!pte_none(*pte))
  1376. goto out_unlock;
  1377. /* Ok, finally just insert the thing.. */
  1378. get_page(page);
  1379. inc_mm_counter(mm, file_rss);
  1380. page_add_file_rmap(page);
  1381. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1382. retval = 0;
  1383. pte_unmap_unlock(pte, ptl);
  1384. return retval;
  1385. out_unlock:
  1386. pte_unmap_unlock(pte, ptl);
  1387. out:
  1388. return retval;
  1389. }
  1390. /**
  1391. * vm_insert_page - insert single page into user vma
  1392. * @vma: user vma to map to
  1393. * @addr: target user address of this page
  1394. * @page: source kernel page
  1395. *
  1396. * This allows drivers to insert individual pages they've allocated
  1397. * into a user vma.
  1398. *
  1399. * The page has to be a nice clean _individual_ kernel allocation.
  1400. * If you allocate a compound page, you need to have marked it as
  1401. * such (__GFP_COMP), or manually just split the page up yourself
  1402. * (see split_page()).
  1403. *
  1404. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1405. * took an arbitrary page protection parameter. This doesn't allow
  1406. * that. Your vma protection will have to be set up correctly, which
  1407. * means that if you want a shared writable mapping, you'd better
  1408. * ask for a shared writable mapping!
  1409. *
  1410. * The page does not need to be reserved.
  1411. */
  1412. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1413. struct page *page)
  1414. {
  1415. if (addr < vma->vm_start || addr >= vma->vm_end)
  1416. return -EFAULT;
  1417. if (!page_count(page))
  1418. return -EINVAL;
  1419. vma->vm_flags |= VM_INSERTPAGE;
  1420. return insert_page(vma, addr, page, vma->vm_page_prot);
  1421. }
  1422. EXPORT_SYMBOL(vm_insert_page);
  1423. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1424. unsigned long pfn, pgprot_t prot)
  1425. {
  1426. struct mm_struct *mm = vma->vm_mm;
  1427. int retval;
  1428. pte_t *pte, entry;
  1429. spinlock_t *ptl;
  1430. retval = -ENOMEM;
  1431. pte = get_locked_pte(mm, addr, &ptl);
  1432. if (!pte)
  1433. goto out;
  1434. retval = -EBUSY;
  1435. if (!pte_none(*pte))
  1436. goto out_unlock;
  1437. /* Ok, finally just insert the thing.. */
  1438. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1439. set_pte_at(mm, addr, pte, entry);
  1440. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1441. retval = 0;
  1442. out_unlock:
  1443. pte_unmap_unlock(pte, ptl);
  1444. out:
  1445. return retval;
  1446. }
  1447. /**
  1448. * vm_insert_pfn - insert single pfn into user vma
  1449. * @vma: user vma to map to
  1450. * @addr: target user address of this page
  1451. * @pfn: source kernel pfn
  1452. *
  1453. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1454. * they've allocated into a user vma. Same comments apply.
  1455. *
  1456. * This function should only be called from a vm_ops->fault handler, and
  1457. * in that case the handler should return NULL.
  1458. *
  1459. * vma cannot be a COW mapping.
  1460. *
  1461. * As this is called only for pages that do not currently exist, we
  1462. * do not need to flush old virtual caches or the TLB.
  1463. */
  1464. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1465. unsigned long pfn)
  1466. {
  1467. int ret;
  1468. pgprot_t pgprot = vma->vm_page_prot;
  1469. /*
  1470. * Technically, architectures with pte_special can avoid all these
  1471. * restrictions (same for remap_pfn_range). However we would like
  1472. * consistency in testing and feature parity among all, so we should
  1473. * try to keep these invariants in place for everybody.
  1474. */
  1475. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1476. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1477. (VM_PFNMAP|VM_MIXEDMAP));
  1478. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1479. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1480. if (addr < vma->vm_start || addr >= vma->vm_end)
  1481. return -EFAULT;
  1482. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1483. return -EINVAL;
  1484. ret = insert_pfn(vma, addr, pfn, pgprot);
  1485. if (ret)
  1486. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1487. return ret;
  1488. }
  1489. EXPORT_SYMBOL(vm_insert_pfn);
  1490. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1491. unsigned long pfn)
  1492. {
  1493. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1494. if (addr < vma->vm_start || addr >= vma->vm_end)
  1495. return -EFAULT;
  1496. /*
  1497. * If we don't have pte special, then we have to use the pfn_valid()
  1498. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1499. * refcount the page if pfn_valid is true (hence insert_page rather
  1500. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1501. * without pte special, it would there be refcounted as a normal page.
  1502. */
  1503. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1504. struct page *page;
  1505. page = pfn_to_page(pfn);
  1506. return insert_page(vma, addr, page, vma->vm_page_prot);
  1507. }
  1508. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1509. }
  1510. EXPORT_SYMBOL(vm_insert_mixed);
  1511. /*
  1512. * maps a range of physical memory into the requested pages. the old
  1513. * mappings are removed. any references to nonexistent pages results
  1514. * in null mappings (currently treated as "copy-on-access")
  1515. */
  1516. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1517. unsigned long addr, unsigned long end,
  1518. unsigned long pfn, pgprot_t prot)
  1519. {
  1520. pte_t *pte;
  1521. spinlock_t *ptl;
  1522. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1523. if (!pte)
  1524. return -ENOMEM;
  1525. arch_enter_lazy_mmu_mode();
  1526. do {
  1527. BUG_ON(!pte_none(*pte));
  1528. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1529. pfn++;
  1530. } while (pte++, addr += PAGE_SIZE, addr != end);
  1531. arch_leave_lazy_mmu_mode();
  1532. pte_unmap_unlock(pte - 1, ptl);
  1533. return 0;
  1534. }
  1535. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1536. unsigned long addr, unsigned long end,
  1537. unsigned long pfn, pgprot_t prot)
  1538. {
  1539. pmd_t *pmd;
  1540. unsigned long next;
  1541. pfn -= addr >> PAGE_SHIFT;
  1542. pmd = pmd_alloc(mm, pud, addr);
  1543. if (!pmd)
  1544. return -ENOMEM;
  1545. do {
  1546. next = pmd_addr_end(addr, end);
  1547. if (remap_pte_range(mm, pmd, addr, next,
  1548. pfn + (addr >> PAGE_SHIFT), prot))
  1549. return -ENOMEM;
  1550. } while (pmd++, addr = next, addr != end);
  1551. return 0;
  1552. }
  1553. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1554. unsigned long addr, unsigned long end,
  1555. unsigned long pfn, pgprot_t prot)
  1556. {
  1557. pud_t *pud;
  1558. unsigned long next;
  1559. pfn -= addr >> PAGE_SHIFT;
  1560. pud = pud_alloc(mm, pgd, addr);
  1561. if (!pud)
  1562. return -ENOMEM;
  1563. do {
  1564. next = pud_addr_end(addr, end);
  1565. if (remap_pmd_range(mm, pud, addr, next,
  1566. pfn + (addr >> PAGE_SHIFT), prot))
  1567. return -ENOMEM;
  1568. } while (pud++, addr = next, addr != end);
  1569. return 0;
  1570. }
  1571. /**
  1572. * remap_pfn_range - remap kernel memory to userspace
  1573. * @vma: user vma to map to
  1574. * @addr: target user address to start at
  1575. * @pfn: physical address of kernel memory
  1576. * @size: size of map area
  1577. * @prot: page protection flags for this mapping
  1578. *
  1579. * Note: this is only safe if the mm semaphore is held when called.
  1580. */
  1581. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1582. unsigned long pfn, unsigned long size, pgprot_t prot)
  1583. {
  1584. pgd_t *pgd;
  1585. unsigned long next;
  1586. unsigned long end = addr + PAGE_ALIGN(size);
  1587. struct mm_struct *mm = vma->vm_mm;
  1588. int err;
  1589. /*
  1590. * Physically remapped pages are special. Tell the
  1591. * rest of the world about it:
  1592. * VM_IO tells people not to look at these pages
  1593. * (accesses can have side effects).
  1594. * VM_RESERVED is specified all over the place, because
  1595. * in 2.4 it kept swapout's vma scan off this vma; but
  1596. * in 2.6 the LRU scan won't even find its pages, so this
  1597. * flag means no more than count its pages in reserved_vm,
  1598. * and omit it from core dump, even when VM_IO turned off.
  1599. * VM_PFNMAP tells the core MM that the base pages are just
  1600. * raw PFN mappings, and do not have a "struct page" associated
  1601. * with them.
  1602. *
  1603. * There's a horrible special case to handle copy-on-write
  1604. * behaviour that some programs depend on. We mark the "original"
  1605. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1606. */
  1607. if (addr == vma->vm_start && end == vma->vm_end) {
  1608. vma->vm_pgoff = pfn;
  1609. vma->vm_flags |= VM_PFN_AT_MMAP;
  1610. } else if (is_cow_mapping(vma->vm_flags))
  1611. return -EINVAL;
  1612. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1613. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1614. if (err) {
  1615. /*
  1616. * To indicate that track_pfn related cleanup is not
  1617. * needed from higher level routine calling unmap_vmas
  1618. */
  1619. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1620. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1621. return -EINVAL;
  1622. }
  1623. BUG_ON(addr >= end);
  1624. pfn -= addr >> PAGE_SHIFT;
  1625. pgd = pgd_offset(mm, addr);
  1626. flush_cache_range(vma, addr, end);
  1627. do {
  1628. next = pgd_addr_end(addr, end);
  1629. err = remap_pud_range(mm, pgd, addr, next,
  1630. pfn + (addr >> PAGE_SHIFT), prot);
  1631. if (err)
  1632. break;
  1633. } while (pgd++, addr = next, addr != end);
  1634. if (err)
  1635. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1636. return err;
  1637. }
  1638. EXPORT_SYMBOL(remap_pfn_range);
  1639. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1640. unsigned long addr, unsigned long end,
  1641. pte_fn_t fn, void *data)
  1642. {
  1643. pte_t *pte;
  1644. int err;
  1645. pgtable_t token;
  1646. spinlock_t *uninitialized_var(ptl);
  1647. pte = (mm == &init_mm) ?
  1648. pte_alloc_kernel(pmd, addr) :
  1649. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1650. if (!pte)
  1651. return -ENOMEM;
  1652. BUG_ON(pmd_huge(*pmd));
  1653. arch_enter_lazy_mmu_mode();
  1654. token = pmd_pgtable(*pmd);
  1655. do {
  1656. err = fn(pte++, token, addr, data);
  1657. if (err)
  1658. break;
  1659. } while (addr += PAGE_SIZE, addr != end);
  1660. arch_leave_lazy_mmu_mode();
  1661. if (mm != &init_mm)
  1662. pte_unmap_unlock(pte-1, ptl);
  1663. return err;
  1664. }
  1665. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1666. unsigned long addr, unsigned long end,
  1667. pte_fn_t fn, void *data)
  1668. {
  1669. pmd_t *pmd;
  1670. unsigned long next;
  1671. int err;
  1672. BUG_ON(pud_huge(*pud));
  1673. pmd = pmd_alloc(mm, pud, addr);
  1674. if (!pmd)
  1675. return -ENOMEM;
  1676. do {
  1677. next = pmd_addr_end(addr, end);
  1678. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1679. if (err)
  1680. break;
  1681. } while (pmd++, addr = next, addr != end);
  1682. return err;
  1683. }
  1684. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1685. unsigned long addr, unsigned long end,
  1686. pte_fn_t fn, void *data)
  1687. {
  1688. pud_t *pud;
  1689. unsigned long next;
  1690. int err;
  1691. pud = pud_alloc(mm, pgd, addr);
  1692. if (!pud)
  1693. return -ENOMEM;
  1694. do {
  1695. next = pud_addr_end(addr, end);
  1696. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1697. if (err)
  1698. break;
  1699. } while (pud++, addr = next, addr != end);
  1700. return err;
  1701. }
  1702. /*
  1703. * Scan a region of virtual memory, filling in page tables as necessary
  1704. * and calling a provided function on each leaf page table.
  1705. */
  1706. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1707. unsigned long size, pte_fn_t fn, void *data)
  1708. {
  1709. pgd_t *pgd;
  1710. unsigned long next;
  1711. unsigned long start = addr, end = addr + size;
  1712. int err;
  1713. BUG_ON(addr >= end);
  1714. mmu_notifier_invalidate_range_start(mm, start, end);
  1715. pgd = pgd_offset(mm, addr);
  1716. do {
  1717. next = pgd_addr_end(addr, end);
  1718. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1719. if (err)
  1720. break;
  1721. } while (pgd++, addr = next, addr != end);
  1722. mmu_notifier_invalidate_range_end(mm, start, end);
  1723. return err;
  1724. }
  1725. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1726. /*
  1727. * handle_pte_fault chooses page fault handler according to an entry
  1728. * which was read non-atomically. Before making any commitment, on
  1729. * those architectures or configurations (e.g. i386 with PAE) which
  1730. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1731. * must check under lock before unmapping the pte and proceeding
  1732. * (but do_wp_page is only called after already making such a check;
  1733. * and do_anonymous_page and do_no_page can safely check later on).
  1734. */
  1735. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1736. pte_t *page_table, pte_t orig_pte)
  1737. {
  1738. int same = 1;
  1739. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1740. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1741. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1742. spin_lock(ptl);
  1743. same = pte_same(*page_table, orig_pte);
  1744. spin_unlock(ptl);
  1745. }
  1746. #endif
  1747. pte_unmap(page_table);
  1748. return same;
  1749. }
  1750. /*
  1751. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1752. * servicing faults for write access. In the normal case, do always want
  1753. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1754. * that do not have writing enabled, when used by access_process_vm.
  1755. */
  1756. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1757. {
  1758. if (likely(vma->vm_flags & VM_WRITE))
  1759. pte = pte_mkwrite(pte);
  1760. return pte;
  1761. }
  1762. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1763. {
  1764. /*
  1765. * If the source page was a PFN mapping, we don't have
  1766. * a "struct page" for it. We do a best-effort copy by
  1767. * just copying from the original user address. If that
  1768. * fails, we just zero-fill it. Live with it.
  1769. */
  1770. if (unlikely(!src)) {
  1771. void *kaddr = kmap_atomic(dst, KM_USER0);
  1772. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1773. /*
  1774. * This really shouldn't fail, because the page is there
  1775. * in the page tables. But it might just be unreadable,
  1776. * in which case we just give up and fill the result with
  1777. * zeroes.
  1778. */
  1779. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1780. memset(kaddr, 0, PAGE_SIZE);
  1781. kunmap_atomic(kaddr, KM_USER0);
  1782. flush_dcache_page(dst);
  1783. } else
  1784. copy_user_highpage(dst, src, va, vma);
  1785. }
  1786. /*
  1787. * This routine handles present pages, when users try to write
  1788. * to a shared page. It is done by copying the page to a new address
  1789. * and decrementing the shared-page counter for the old page.
  1790. *
  1791. * Note that this routine assumes that the protection checks have been
  1792. * done by the caller (the low-level page fault routine in most cases).
  1793. * Thus we can safely just mark it writable once we've done any necessary
  1794. * COW.
  1795. *
  1796. * We also mark the page dirty at this point even though the page will
  1797. * change only once the write actually happens. This avoids a few races,
  1798. * and potentially makes it more efficient.
  1799. *
  1800. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1801. * but allow concurrent faults), with pte both mapped and locked.
  1802. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1803. */
  1804. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1805. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1806. spinlock_t *ptl, pte_t orig_pte)
  1807. {
  1808. struct page *old_page, *new_page;
  1809. pte_t entry;
  1810. int reuse = 0, ret = 0;
  1811. int page_mkwrite = 0;
  1812. struct page *dirty_page = NULL;
  1813. old_page = vm_normal_page(vma, address, orig_pte);
  1814. if (!old_page) {
  1815. /*
  1816. * VM_MIXEDMAP !pfn_valid() case
  1817. *
  1818. * We should not cow pages in a shared writeable mapping.
  1819. * Just mark the pages writable as we can't do any dirty
  1820. * accounting on raw pfn maps.
  1821. */
  1822. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1823. (VM_WRITE|VM_SHARED))
  1824. goto reuse;
  1825. goto gotten;
  1826. }
  1827. /*
  1828. * Take out anonymous pages first, anonymous shared vmas are
  1829. * not dirty accountable.
  1830. */
  1831. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1832. if (!trylock_page(old_page)) {
  1833. page_cache_get(old_page);
  1834. pte_unmap_unlock(page_table, ptl);
  1835. lock_page(old_page);
  1836. page_table = pte_offset_map_lock(mm, pmd, address,
  1837. &ptl);
  1838. if (!pte_same(*page_table, orig_pte)) {
  1839. unlock_page(old_page);
  1840. page_cache_release(old_page);
  1841. goto unlock;
  1842. }
  1843. page_cache_release(old_page);
  1844. }
  1845. reuse = reuse_swap_page(old_page);
  1846. unlock_page(old_page);
  1847. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1848. (VM_WRITE|VM_SHARED))) {
  1849. /*
  1850. * Only catch write-faults on shared writable pages,
  1851. * read-only shared pages can get COWed by
  1852. * get_user_pages(.write=1, .force=1).
  1853. */
  1854. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1855. struct vm_fault vmf;
  1856. int tmp;
  1857. vmf.virtual_address = (void __user *)(address &
  1858. PAGE_MASK);
  1859. vmf.pgoff = old_page->index;
  1860. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1861. vmf.page = old_page;
  1862. /*
  1863. * Notify the address space that the page is about to
  1864. * become writable so that it can prohibit this or wait
  1865. * for the page to get into an appropriate state.
  1866. *
  1867. * We do this without the lock held, so that it can
  1868. * sleep if it needs to.
  1869. */
  1870. page_cache_get(old_page);
  1871. pte_unmap_unlock(page_table, ptl);
  1872. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1873. if (unlikely(tmp &
  1874. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1875. ret = tmp;
  1876. goto unwritable_page;
  1877. }
  1878. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1879. lock_page(old_page);
  1880. if (!old_page->mapping) {
  1881. ret = 0; /* retry the fault */
  1882. unlock_page(old_page);
  1883. goto unwritable_page;
  1884. }
  1885. } else
  1886. VM_BUG_ON(!PageLocked(old_page));
  1887. /*
  1888. * Since we dropped the lock we need to revalidate
  1889. * the PTE as someone else may have changed it. If
  1890. * they did, we just return, as we can count on the
  1891. * MMU to tell us if they didn't also make it writable.
  1892. */
  1893. page_table = pte_offset_map_lock(mm, pmd, address,
  1894. &ptl);
  1895. if (!pte_same(*page_table, orig_pte)) {
  1896. unlock_page(old_page);
  1897. page_cache_release(old_page);
  1898. goto unlock;
  1899. }
  1900. page_mkwrite = 1;
  1901. }
  1902. dirty_page = old_page;
  1903. get_page(dirty_page);
  1904. reuse = 1;
  1905. }
  1906. if (reuse) {
  1907. reuse:
  1908. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1909. entry = pte_mkyoung(orig_pte);
  1910. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1911. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1912. update_mmu_cache(vma, address, entry);
  1913. ret |= VM_FAULT_WRITE;
  1914. goto unlock;
  1915. }
  1916. /*
  1917. * Ok, we need to copy. Oh, well..
  1918. */
  1919. page_cache_get(old_page);
  1920. gotten:
  1921. pte_unmap_unlock(page_table, ptl);
  1922. if (unlikely(anon_vma_prepare(vma)))
  1923. goto oom;
  1924. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1925. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1926. if (!new_page)
  1927. goto oom;
  1928. } else {
  1929. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1930. if (!new_page)
  1931. goto oom;
  1932. cow_user_page(new_page, old_page, address, vma);
  1933. }
  1934. __SetPageUptodate(new_page);
  1935. /*
  1936. * Don't let another task, with possibly unlocked vma,
  1937. * keep the mlocked page.
  1938. */
  1939. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1940. lock_page(old_page); /* for LRU manipulation */
  1941. clear_page_mlock(old_page);
  1942. unlock_page(old_page);
  1943. }
  1944. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1945. goto oom_free_new;
  1946. /*
  1947. * Re-check the pte - we dropped the lock
  1948. */
  1949. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1950. if (likely(pte_same(*page_table, orig_pte))) {
  1951. if (old_page) {
  1952. if (!PageAnon(old_page)) {
  1953. dec_mm_counter(mm, file_rss);
  1954. inc_mm_counter(mm, anon_rss);
  1955. }
  1956. } else
  1957. inc_mm_counter(mm, anon_rss);
  1958. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1959. entry = mk_pte(new_page, vma->vm_page_prot);
  1960. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1961. /*
  1962. * Clear the pte entry and flush it first, before updating the
  1963. * pte with the new entry. This will avoid a race condition
  1964. * seen in the presence of one thread doing SMC and another
  1965. * thread doing COW.
  1966. */
  1967. ptep_clear_flush(vma, address, page_table);
  1968. page_add_new_anon_rmap(new_page, vma, address);
  1969. /*
  1970. * We call the notify macro here because, when using secondary
  1971. * mmu page tables (such as kvm shadow page tables), we want the
  1972. * new page to be mapped directly into the secondary page table.
  1973. */
  1974. set_pte_at_notify(mm, address, page_table, entry);
  1975. update_mmu_cache(vma, address, entry);
  1976. if (old_page) {
  1977. /*
  1978. * Only after switching the pte to the new page may
  1979. * we remove the mapcount here. Otherwise another
  1980. * process may come and find the rmap count decremented
  1981. * before the pte is switched to the new page, and
  1982. * "reuse" the old page writing into it while our pte
  1983. * here still points into it and can be read by other
  1984. * threads.
  1985. *
  1986. * The critical issue is to order this
  1987. * page_remove_rmap with the ptp_clear_flush above.
  1988. * Those stores are ordered by (if nothing else,)
  1989. * the barrier present in the atomic_add_negative
  1990. * in page_remove_rmap.
  1991. *
  1992. * Then the TLB flush in ptep_clear_flush ensures that
  1993. * no process can access the old page before the
  1994. * decremented mapcount is visible. And the old page
  1995. * cannot be reused until after the decremented
  1996. * mapcount is visible. So transitively, TLBs to
  1997. * old page will be flushed before it can be reused.
  1998. */
  1999. page_remove_rmap(old_page);
  2000. }
  2001. /* Free the old page.. */
  2002. new_page = old_page;
  2003. ret |= VM_FAULT_WRITE;
  2004. } else
  2005. mem_cgroup_uncharge_page(new_page);
  2006. if (new_page)
  2007. page_cache_release(new_page);
  2008. if (old_page)
  2009. page_cache_release(old_page);
  2010. unlock:
  2011. pte_unmap_unlock(page_table, ptl);
  2012. if (dirty_page) {
  2013. /*
  2014. * Yes, Virginia, this is actually required to prevent a race
  2015. * with clear_page_dirty_for_io() from clearing the page dirty
  2016. * bit after it clear all dirty ptes, but before a racing
  2017. * do_wp_page installs a dirty pte.
  2018. *
  2019. * do_no_page is protected similarly.
  2020. */
  2021. if (!page_mkwrite) {
  2022. wait_on_page_locked(dirty_page);
  2023. set_page_dirty_balance(dirty_page, page_mkwrite);
  2024. }
  2025. put_page(dirty_page);
  2026. if (page_mkwrite) {
  2027. struct address_space *mapping = dirty_page->mapping;
  2028. set_page_dirty(dirty_page);
  2029. unlock_page(dirty_page);
  2030. page_cache_release(dirty_page);
  2031. if (mapping) {
  2032. /*
  2033. * Some device drivers do not set page.mapping
  2034. * but still dirty their pages
  2035. */
  2036. balance_dirty_pages_ratelimited(mapping);
  2037. }
  2038. }
  2039. /* file_update_time outside page_lock */
  2040. if (vma->vm_file)
  2041. file_update_time(vma->vm_file);
  2042. }
  2043. return ret;
  2044. oom_free_new:
  2045. page_cache_release(new_page);
  2046. oom:
  2047. if (old_page) {
  2048. if (page_mkwrite) {
  2049. unlock_page(old_page);
  2050. page_cache_release(old_page);
  2051. }
  2052. page_cache_release(old_page);
  2053. }
  2054. return VM_FAULT_OOM;
  2055. unwritable_page:
  2056. page_cache_release(old_page);
  2057. return ret;
  2058. }
  2059. /*
  2060. * Helper functions for unmap_mapping_range().
  2061. *
  2062. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2063. *
  2064. * We have to restart searching the prio_tree whenever we drop the lock,
  2065. * since the iterator is only valid while the lock is held, and anyway
  2066. * a later vma might be split and reinserted earlier while lock dropped.
  2067. *
  2068. * The list of nonlinear vmas could be handled more efficiently, using
  2069. * a placeholder, but handle it in the same way until a need is shown.
  2070. * It is important to search the prio_tree before nonlinear list: a vma
  2071. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2072. * while the lock is dropped; but never shifted from list to prio_tree.
  2073. *
  2074. * In order to make forward progress despite restarting the search,
  2075. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2076. * quickly skip it next time around. Since the prio_tree search only
  2077. * shows us those vmas affected by unmapping the range in question, we
  2078. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2079. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2080. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2081. * i_mmap_lock.
  2082. *
  2083. * In order to make forward progress despite repeatedly restarting some
  2084. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2085. * and restart from that address when we reach that vma again. It might
  2086. * have been split or merged, shrunk or extended, but never shifted: so
  2087. * restart_addr remains valid so long as it remains in the vma's range.
  2088. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2089. * values so we can save vma's restart_addr in its truncate_count field.
  2090. */
  2091. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2092. static void reset_vma_truncate_counts(struct address_space *mapping)
  2093. {
  2094. struct vm_area_struct *vma;
  2095. struct prio_tree_iter iter;
  2096. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2097. vma->vm_truncate_count = 0;
  2098. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2099. vma->vm_truncate_count = 0;
  2100. }
  2101. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2102. unsigned long start_addr, unsigned long end_addr,
  2103. struct zap_details *details)
  2104. {
  2105. unsigned long restart_addr;
  2106. int need_break;
  2107. /*
  2108. * files that support invalidating or truncating portions of the
  2109. * file from under mmaped areas must have their ->fault function
  2110. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2111. * This provides synchronisation against concurrent unmapping here.
  2112. */
  2113. again:
  2114. restart_addr = vma->vm_truncate_count;
  2115. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2116. start_addr = restart_addr;
  2117. if (start_addr >= end_addr) {
  2118. /* Top of vma has been split off since last time */
  2119. vma->vm_truncate_count = details->truncate_count;
  2120. return 0;
  2121. }
  2122. }
  2123. restart_addr = zap_page_range(vma, start_addr,
  2124. end_addr - start_addr, details);
  2125. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2126. if (restart_addr >= end_addr) {
  2127. /* We have now completed this vma: mark it so */
  2128. vma->vm_truncate_count = details->truncate_count;
  2129. if (!need_break)
  2130. return 0;
  2131. } else {
  2132. /* Note restart_addr in vma's truncate_count field */
  2133. vma->vm_truncate_count = restart_addr;
  2134. if (!need_break)
  2135. goto again;
  2136. }
  2137. spin_unlock(details->i_mmap_lock);
  2138. cond_resched();
  2139. spin_lock(details->i_mmap_lock);
  2140. return -EINTR;
  2141. }
  2142. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2143. struct zap_details *details)
  2144. {
  2145. struct vm_area_struct *vma;
  2146. struct prio_tree_iter iter;
  2147. pgoff_t vba, vea, zba, zea;
  2148. restart:
  2149. vma_prio_tree_foreach(vma, &iter, root,
  2150. details->first_index, details->last_index) {
  2151. /* Skip quickly over those we have already dealt with */
  2152. if (vma->vm_truncate_count == details->truncate_count)
  2153. continue;
  2154. vba = vma->vm_pgoff;
  2155. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2156. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2157. zba = details->first_index;
  2158. if (zba < vba)
  2159. zba = vba;
  2160. zea = details->last_index;
  2161. if (zea > vea)
  2162. zea = vea;
  2163. if (unmap_mapping_range_vma(vma,
  2164. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2165. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2166. details) < 0)
  2167. goto restart;
  2168. }
  2169. }
  2170. static inline void unmap_mapping_range_list(struct list_head *head,
  2171. struct zap_details *details)
  2172. {
  2173. struct vm_area_struct *vma;
  2174. /*
  2175. * In nonlinear VMAs there is no correspondence between virtual address
  2176. * offset and file offset. So we must perform an exhaustive search
  2177. * across *all* the pages in each nonlinear VMA, not just the pages
  2178. * whose virtual address lies outside the file truncation point.
  2179. */
  2180. restart:
  2181. list_for_each_entry(vma, head, shared.vm_set.list) {
  2182. /* Skip quickly over those we have already dealt with */
  2183. if (vma->vm_truncate_count == details->truncate_count)
  2184. continue;
  2185. details->nonlinear_vma = vma;
  2186. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2187. vma->vm_end, details) < 0)
  2188. goto restart;
  2189. }
  2190. }
  2191. /**
  2192. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2193. * @mapping: the address space containing mmaps to be unmapped.
  2194. * @holebegin: byte in first page to unmap, relative to the start of
  2195. * the underlying file. This will be rounded down to a PAGE_SIZE
  2196. * boundary. Note that this is different from truncate_pagecache(), which
  2197. * must keep the partial page. In contrast, we must get rid of
  2198. * partial pages.
  2199. * @holelen: size of prospective hole in bytes. This will be rounded
  2200. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2201. * end of the file.
  2202. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2203. * but 0 when invalidating pagecache, don't throw away private data.
  2204. */
  2205. void unmap_mapping_range(struct address_space *mapping,
  2206. loff_t const holebegin, loff_t const holelen, int even_cows)
  2207. {
  2208. struct zap_details details;
  2209. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2210. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2211. /* Check for overflow. */
  2212. if (sizeof(holelen) > sizeof(hlen)) {
  2213. long long holeend =
  2214. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2215. if (holeend & ~(long long)ULONG_MAX)
  2216. hlen = ULONG_MAX - hba + 1;
  2217. }
  2218. details.check_mapping = even_cows? NULL: mapping;
  2219. details.nonlinear_vma = NULL;
  2220. details.first_index = hba;
  2221. details.last_index = hba + hlen - 1;
  2222. if (details.last_index < details.first_index)
  2223. details.last_index = ULONG_MAX;
  2224. details.i_mmap_lock = &mapping->i_mmap_lock;
  2225. spin_lock(&mapping->i_mmap_lock);
  2226. /* Protect against endless unmapping loops */
  2227. mapping->truncate_count++;
  2228. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2229. if (mapping->truncate_count == 0)
  2230. reset_vma_truncate_counts(mapping);
  2231. mapping->truncate_count++;
  2232. }
  2233. details.truncate_count = mapping->truncate_count;
  2234. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2235. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2236. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2237. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2238. spin_unlock(&mapping->i_mmap_lock);
  2239. }
  2240. EXPORT_SYMBOL(unmap_mapping_range);
  2241. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2242. {
  2243. struct address_space *mapping = inode->i_mapping;
  2244. /*
  2245. * If the underlying filesystem is not going to provide
  2246. * a way to truncate a range of blocks (punch a hole) -
  2247. * we should return failure right now.
  2248. */
  2249. if (!inode->i_op->truncate_range)
  2250. return -ENOSYS;
  2251. mutex_lock(&inode->i_mutex);
  2252. down_write(&inode->i_alloc_sem);
  2253. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2254. truncate_inode_pages_range(mapping, offset, end);
  2255. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2256. inode->i_op->truncate_range(inode, offset, end);
  2257. up_write(&inode->i_alloc_sem);
  2258. mutex_unlock(&inode->i_mutex);
  2259. return 0;
  2260. }
  2261. /*
  2262. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2263. * but allow concurrent faults), and pte mapped but not yet locked.
  2264. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2265. */
  2266. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2267. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2268. unsigned int flags, pte_t orig_pte)
  2269. {
  2270. spinlock_t *ptl;
  2271. struct page *page;
  2272. swp_entry_t entry;
  2273. pte_t pte;
  2274. struct mem_cgroup *ptr = NULL;
  2275. int ret = 0;
  2276. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2277. goto out;
  2278. entry = pte_to_swp_entry(orig_pte);
  2279. if (unlikely(non_swap_entry(entry))) {
  2280. if (is_migration_entry(entry)) {
  2281. migration_entry_wait(mm, pmd, address);
  2282. } else if (is_hwpoison_entry(entry)) {
  2283. ret = VM_FAULT_HWPOISON;
  2284. } else {
  2285. print_bad_pte(vma, address, orig_pte, NULL);
  2286. ret = VM_FAULT_SIGBUS;
  2287. }
  2288. goto out;
  2289. }
  2290. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2291. page = lookup_swap_cache(entry);
  2292. if (!page) {
  2293. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2294. page = swapin_readahead(entry,
  2295. GFP_HIGHUSER_MOVABLE, vma, address);
  2296. if (!page) {
  2297. /*
  2298. * Back out if somebody else faulted in this pte
  2299. * while we released the pte lock.
  2300. */
  2301. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2302. if (likely(pte_same(*page_table, orig_pte)))
  2303. ret = VM_FAULT_OOM;
  2304. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2305. goto unlock;
  2306. }
  2307. /* Had to read the page from swap area: Major fault */
  2308. ret = VM_FAULT_MAJOR;
  2309. count_vm_event(PGMAJFAULT);
  2310. } else if (PageHWPoison(page)) {
  2311. /*
  2312. * hwpoisoned dirty swapcache pages are kept for killing
  2313. * owner processes (which may be unknown at hwpoison time)
  2314. */
  2315. ret = VM_FAULT_HWPOISON;
  2316. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2317. goto out_release;
  2318. }
  2319. lock_page(page);
  2320. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2321. page = ksm_might_need_to_copy(page, vma, address);
  2322. if (!page) {
  2323. ret = VM_FAULT_OOM;
  2324. goto out;
  2325. }
  2326. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2327. ret = VM_FAULT_OOM;
  2328. goto out_page;
  2329. }
  2330. /*
  2331. * Back out if somebody else already faulted in this pte.
  2332. */
  2333. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2334. if (unlikely(!pte_same(*page_table, orig_pte)))
  2335. goto out_nomap;
  2336. if (unlikely(!PageUptodate(page))) {
  2337. ret = VM_FAULT_SIGBUS;
  2338. goto out_nomap;
  2339. }
  2340. /*
  2341. * The page isn't present yet, go ahead with the fault.
  2342. *
  2343. * Be careful about the sequence of operations here.
  2344. * To get its accounting right, reuse_swap_page() must be called
  2345. * while the page is counted on swap but not yet in mapcount i.e.
  2346. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2347. * must be called after the swap_free(), or it will never succeed.
  2348. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2349. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2350. * in page->private. In this case, a record in swap_cgroup is silently
  2351. * discarded at swap_free().
  2352. */
  2353. inc_mm_counter(mm, anon_rss);
  2354. pte = mk_pte(page, vma->vm_page_prot);
  2355. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2356. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2357. flags &= ~FAULT_FLAG_WRITE;
  2358. }
  2359. flush_icache_page(vma, page);
  2360. set_pte_at(mm, address, page_table, pte);
  2361. page_add_anon_rmap(page, vma, address);
  2362. /* It's better to call commit-charge after rmap is established */
  2363. mem_cgroup_commit_charge_swapin(page, ptr);
  2364. swap_free(entry);
  2365. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2366. try_to_free_swap(page);
  2367. unlock_page(page);
  2368. if (flags & FAULT_FLAG_WRITE) {
  2369. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2370. if (ret & VM_FAULT_ERROR)
  2371. ret &= VM_FAULT_ERROR;
  2372. goto out;
  2373. }
  2374. /* No need to invalidate - it was non-present before */
  2375. update_mmu_cache(vma, address, pte);
  2376. unlock:
  2377. pte_unmap_unlock(page_table, ptl);
  2378. out:
  2379. return ret;
  2380. out_nomap:
  2381. mem_cgroup_cancel_charge_swapin(ptr);
  2382. pte_unmap_unlock(page_table, ptl);
  2383. out_page:
  2384. unlock_page(page);
  2385. out_release:
  2386. page_cache_release(page);
  2387. return ret;
  2388. }
  2389. /*
  2390. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2391. * but allow concurrent faults), and pte mapped but not yet locked.
  2392. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2393. */
  2394. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2395. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2396. unsigned int flags)
  2397. {
  2398. struct page *page;
  2399. spinlock_t *ptl;
  2400. pte_t entry;
  2401. if (!(flags & FAULT_FLAG_WRITE)) {
  2402. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2403. vma->vm_page_prot));
  2404. ptl = pte_lockptr(mm, pmd);
  2405. spin_lock(ptl);
  2406. if (!pte_none(*page_table))
  2407. goto unlock;
  2408. goto setpte;
  2409. }
  2410. /* Allocate our own private page. */
  2411. pte_unmap(page_table);
  2412. if (unlikely(anon_vma_prepare(vma)))
  2413. goto oom;
  2414. page = alloc_zeroed_user_highpage_movable(vma, address);
  2415. if (!page)
  2416. goto oom;
  2417. __SetPageUptodate(page);
  2418. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2419. goto oom_free_page;
  2420. entry = mk_pte(page, vma->vm_page_prot);
  2421. if (vma->vm_flags & VM_WRITE)
  2422. entry = pte_mkwrite(pte_mkdirty(entry));
  2423. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2424. if (!pte_none(*page_table))
  2425. goto release;
  2426. inc_mm_counter(mm, anon_rss);
  2427. page_add_new_anon_rmap(page, vma, address);
  2428. setpte:
  2429. set_pte_at(mm, address, page_table, entry);
  2430. /* No need to invalidate - it was non-present before */
  2431. update_mmu_cache(vma, address, entry);
  2432. unlock:
  2433. pte_unmap_unlock(page_table, ptl);
  2434. return 0;
  2435. release:
  2436. mem_cgroup_uncharge_page(page);
  2437. page_cache_release(page);
  2438. goto unlock;
  2439. oom_free_page:
  2440. page_cache_release(page);
  2441. oom:
  2442. return VM_FAULT_OOM;
  2443. }
  2444. /*
  2445. * __do_fault() tries to create a new page mapping. It aggressively
  2446. * tries to share with existing pages, but makes a separate copy if
  2447. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2448. * the next page fault.
  2449. *
  2450. * As this is called only for pages that do not currently exist, we
  2451. * do not need to flush old virtual caches or the TLB.
  2452. *
  2453. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2454. * but allow concurrent faults), and pte neither mapped nor locked.
  2455. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2456. */
  2457. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2458. unsigned long address, pmd_t *pmd,
  2459. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2460. {
  2461. pte_t *page_table;
  2462. spinlock_t *ptl;
  2463. struct page *page;
  2464. pte_t entry;
  2465. int anon = 0;
  2466. int charged = 0;
  2467. struct page *dirty_page = NULL;
  2468. struct vm_fault vmf;
  2469. int ret;
  2470. int page_mkwrite = 0;
  2471. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2472. vmf.pgoff = pgoff;
  2473. vmf.flags = flags;
  2474. vmf.page = NULL;
  2475. ret = vma->vm_ops->fault(vma, &vmf);
  2476. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2477. return ret;
  2478. if (unlikely(PageHWPoison(vmf.page))) {
  2479. if (ret & VM_FAULT_LOCKED)
  2480. unlock_page(vmf.page);
  2481. return VM_FAULT_HWPOISON;
  2482. }
  2483. /*
  2484. * For consistency in subsequent calls, make the faulted page always
  2485. * locked.
  2486. */
  2487. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2488. lock_page(vmf.page);
  2489. else
  2490. VM_BUG_ON(!PageLocked(vmf.page));
  2491. /*
  2492. * Should we do an early C-O-W break?
  2493. */
  2494. page = vmf.page;
  2495. if (flags & FAULT_FLAG_WRITE) {
  2496. if (!(vma->vm_flags & VM_SHARED)) {
  2497. anon = 1;
  2498. if (unlikely(anon_vma_prepare(vma))) {
  2499. ret = VM_FAULT_OOM;
  2500. goto out;
  2501. }
  2502. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2503. vma, address);
  2504. if (!page) {
  2505. ret = VM_FAULT_OOM;
  2506. goto out;
  2507. }
  2508. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2509. ret = VM_FAULT_OOM;
  2510. page_cache_release(page);
  2511. goto out;
  2512. }
  2513. charged = 1;
  2514. /*
  2515. * Don't let another task, with possibly unlocked vma,
  2516. * keep the mlocked page.
  2517. */
  2518. if (vma->vm_flags & VM_LOCKED)
  2519. clear_page_mlock(vmf.page);
  2520. copy_user_highpage(page, vmf.page, address, vma);
  2521. __SetPageUptodate(page);
  2522. } else {
  2523. /*
  2524. * If the page will be shareable, see if the backing
  2525. * address space wants to know that the page is about
  2526. * to become writable
  2527. */
  2528. if (vma->vm_ops->page_mkwrite) {
  2529. int tmp;
  2530. unlock_page(page);
  2531. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2532. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2533. if (unlikely(tmp &
  2534. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2535. ret = tmp;
  2536. goto unwritable_page;
  2537. }
  2538. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2539. lock_page(page);
  2540. if (!page->mapping) {
  2541. ret = 0; /* retry the fault */
  2542. unlock_page(page);
  2543. goto unwritable_page;
  2544. }
  2545. } else
  2546. VM_BUG_ON(!PageLocked(page));
  2547. page_mkwrite = 1;
  2548. }
  2549. }
  2550. }
  2551. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2552. /*
  2553. * This silly early PAGE_DIRTY setting removes a race
  2554. * due to the bad i386 page protection. But it's valid
  2555. * for other architectures too.
  2556. *
  2557. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2558. * an exclusive copy of the page, or this is a shared mapping,
  2559. * so we can make it writable and dirty to avoid having to
  2560. * handle that later.
  2561. */
  2562. /* Only go through if we didn't race with anybody else... */
  2563. if (likely(pte_same(*page_table, orig_pte))) {
  2564. flush_icache_page(vma, page);
  2565. entry = mk_pte(page, vma->vm_page_prot);
  2566. if (flags & FAULT_FLAG_WRITE)
  2567. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2568. if (anon) {
  2569. inc_mm_counter(mm, anon_rss);
  2570. page_add_new_anon_rmap(page, vma, address);
  2571. } else {
  2572. inc_mm_counter(mm, file_rss);
  2573. page_add_file_rmap(page);
  2574. if (flags & FAULT_FLAG_WRITE) {
  2575. dirty_page = page;
  2576. get_page(dirty_page);
  2577. }
  2578. }
  2579. set_pte_at(mm, address, page_table, entry);
  2580. /* no need to invalidate: a not-present page won't be cached */
  2581. update_mmu_cache(vma, address, entry);
  2582. } else {
  2583. if (charged)
  2584. mem_cgroup_uncharge_page(page);
  2585. if (anon)
  2586. page_cache_release(page);
  2587. else
  2588. anon = 1; /* no anon but release faulted_page */
  2589. }
  2590. pte_unmap_unlock(page_table, ptl);
  2591. out:
  2592. if (dirty_page) {
  2593. struct address_space *mapping = page->mapping;
  2594. if (set_page_dirty(dirty_page))
  2595. page_mkwrite = 1;
  2596. unlock_page(dirty_page);
  2597. put_page(dirty_page);
  2598. if (page_mkwrite && mapping) {
  2599. /*
  2600. * Some device drivers do not set page.mapping but still
  2601. * dirty their pages
  2602. */
  2603. balance_dirty_pages_ratelimited(mapping);
  2604. }
  2605. /* file_update_time outside page_lock */
  2606. if (vma->vm_file)
  2607. file_update_time(vma->vm_file);
  2608. } else {
  2609. unlock_page(vmf.page);
  2610. if (anon)
  2611. page_cache_release(vmf.page);
  2612. }
  2613. return ret;
  2614. unwritable_page:
  2615. page_cache_release(page);
  2616. return ret;
  2617. }
  2618. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2619. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2620. unsigned int flags, pte_t orig_pte)
  2621. {
  2622. pgoff_t pgoff = (((address & PAGE_MASK)
  2623. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2624. pte_unmap(page_table);
  2625. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2626. }
  2627. /*
  2628. * Fault of a previously existing named mapping. Repopulate the pte
  2629. * from the encoded file_pte if possible. This enables swappable
  2630. * nonlinear vmas.
  2631. *
  2632. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2633. * but allow concurrent faults), and pte mapped but not yet locked.
  2634. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2635. */
  2636. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2637. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2638. unsigned int flags, pte_t orig_pte)
  2639. {
  2640. pgoff_t pgoff;
  2641. flags |= FAULT_FLAG_NONLINEAR;
  2642. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2643. return 0;
  2644. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2645. /*
  2646. * Page table corrupted: show pte and kill process.
  2647. */
  2648. print_bad_pte(vma, address, orig_pte, NULL);
  2649. return VM_FAULT_SIGBUS;
  2650. }
  2651. pgoff = pte_to_pgoff(orig_pte);
  2652. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2653. }
  2654. /*
  2655. * These routines also need to handle stuff like marking pages dirty
  2656. * and/or accessed for architectures that don't do it in hardware (most
  2657. * RISC architectures). The early dirtying is also good on the i386.
  2658. *
  2659. * There is also a hook called "update_mmu_cache()" that architectures
  2660. * with external mmu caches can use to update those (ie the Sparc or
  2661. * PowerPC hashed page tables that act as extended TLBs).
  2662. *
  2663. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2664. * but allow concurrent faults), and pte mapped but not yet locked.
  2665. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2666. */
  2667. static inline int handle_pte_fault(struct mm_struct *mm,
  2668. struct vm_area_struct *vma, unsigned long address,
  2669. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2670. {
  2671. pte_t entry;
  2672. spinlock_t *ptl;
  2673. entry = *pte;
  2674. if (!pte_present(entry)) {
  2675. if (pte_none(entry)) {
  2676. if (vma->vm_ops) {
  2677. if (likely(vma->vm_ops->fault))
  2678. return do_linear_fault(mm, vma, address,
  2679. pte, pmd, flags, entry);
  2680. }
  2681. return do_anonymous_page(mm, vma, address,
  2682. pte, pmd, flags);
  2683. }
  2684. if (pte_file(entry))
  2685. return do_nonlinear_fault(mm, vma, address,
  2686. pte, pmd, flags, entry);
  2687. return do_swap_page(mm, vma, address,
  2688. pte, pmd, flags, entry);
  2689. }
  2690. ptl = pte_lockptr(mm, pmd);
  2691. spin_lock(ptl);
  2692. if (unlikely(!pte_same(*pte, entry)))
  2693. goto unlock;
  2694. if (flags & FAULT_FLAG_WRITE) {
  2695. if (!pte_write(entry))
  2696. return do_wp_page(mm, vma, address,
  2697. pte, pmd, ptl, entry);
  2698. entry = pte_mkdirty(entry);
  2699. }
  2700. entry = pte_mkyoung(entry);
  2701. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2702. update_mmu_cache(vma, address, entry);
  2703. } else {
  2704. /*
  2705. * This is needed only for protection faults but the arch code
  2706. * is not yet telling us if this is a protection fault or not.
  2707. * This still avoids useless tlb flushes for .text page faults
  2708. * with threads.
  2709. */
  2710. if (flags & FAULT_FLAG_WRITE)
  2711. flush_tlb_page(vma, address);
  2712. }
  2713. unlock:
  2714. pte_unmap_unlock(pte, ptl);
  2715. return 0;
  2716. }
  2717. /*
  2718. * By the time we get here, we already hold the mm semaphore
  2719. */
  2720. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2721. unsigned long address, unsigned int flags)
  2722. {
  2723. pgd_t *pgd;
  2724. pud_t *pud;
  2725. pmd_t *pmd;
  2726. pte_t *pte;
  2727. __set_current_state(TASK_RUNNING);
  2728. count_vm_event(PGFAULT);
  2729. if (unlikely(is_vm_hugetlb_page(vma)))
  2730. return hugetlb_fault(mm, vma, address, flags);
  2731. pgd = pgd_offset(mm, address);
  2732. pud = pud_alloc(mm, pgd, address);
  2733. if (!pud)
  2734. return VM_FAULT_OOM;
  2735. pmd = pmd_alloc(mm, pud, address);
  2736. if (!pmd)
  2737. return VM_FAULT_OOM;
  2738. pte = pte_alloc_map(mm, pmd, address);
  2739. if (!pte)
  2740. return VM_FAULT_OOM;
  2741. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2742. }
  2743. #ifndef __PAGETABLE_PUD_FOLDED
  2744. /*
  2745. * Allocate page upper directory.
  2746. * We've already handled the fast-path in-line.
  2747. */
  2748. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2749. {
  2750. pud_t *new = pud_alloc_one(mm, address);
  2751. if (!new)
  2752. return -ENOMEM;
  2753. smp_wmb(); /* See comment in __pte_alloc */
  2754. spin_lock(&mm->page_table_lock);
  2755. if (pgd_present(*pgd)) /* Another has populated it */
  2756. pud_free(mm, new);
  2757. else
  2758. pgd_populate(mm, pgd, new);
  2759. spin_unlock(&mm->page_table_lock);
  2760. return 0;
  2761. }
  2762. #endif /* __PAGETABLE_PUD_FOLDED */
  2763. #ifndef __PAGETABLE_PMD_FOLDED
  2764. /*
  2765. * Allocate page middle directory.
  2766. * We've already handled the fast-path in-line.
  2767. */
  2768. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2769. {
  2770. pmd_t *new = pmd_alloc_one(mm, address);
  2771. if (!new)
  2772. return -ENOMEM;
  2773. smp_wmb(); /* See comment in __pte_alloc */
  2774. spin_lock(&mm->page_table_lock);
  2775. #ifndef __ARCH_HAS_4LEVEL_HACK
  2776. if (pud_present(*pud)) /* Another has populated it */
  2777. pmd_free(mm, new);
  2778. else
  2779. pud_populate(mm, pud, new);
  2780. #else
  2781. if (pgd_present(*pud)) /* Another has populated it */
  2782. pmd_free(mm, new);
  2783. else
  2784. pgd_populate(mm, pud, new);
  2785. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2786. spin_unlock(&mm->page_table_lock);
  2787. return 0;
  2788. }
  2789. #endif /* __PAGETABLE_PMD_FOLDED */
  2790. int make_pages_present(unsigned long addr, unsigned long end)
  2791. {
  2792. int ret, len, write;
  2793. struct vm_area_struct * vma;
  2794. vma = find_vma(current->mm, addr);
  2795. if (!vma)
  2796. return -ENOMEM;
  2797. write = (vma->vm_flags & VM_WRITE) != 0;
  2798. BUG_ON(addr >= end);
  2799. BUG_ON(end > vma->vm_end);
  2800. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2801. ret = get_user_pages(current, current->mm, addr,
  2802. len, write, 0, NULL, NULL);
  2803. if (ret < 0)
  2804. return ret;
  2805. return ret == len ? 0 : -EFAULT;
  2806. }
  2807. #if !defined(__HAVE_ARCH_GATE_AREA)
  2808. #if defined(AT_SYSINFO_EHDR)
  2809. static struct vm_area_struct gate_vma;
  2810. static int __init gate_vma_init(void)
  2811. {
  2812. gate_vma.vm_mm = NULL;
  2813. gate_vma.vm_start = FIXADDR_USER_START;
  2814. gate_vma.vm_end = FIXADDR_USER_END;
  2815. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2816. gate_vma.vm_page_prot = __P101;
  2817. /*
  2818. * Make sure the vDSO gets into every core dump.
  2819. * Dumping its contents makes post-mortem fully interpretable later
  2820. * without matching up the same kernel and hardware config to see
  2821. * what PC values meant.
  2822. */
  2823. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2824. return 0;
  2825. }
  2826. __initcall(gate_vma_init);
  2827. #endif
  2828. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2829. {
  2830. #ifdef AT_SYSINFO_EHDR
  2831. return &gate_vma;
  2832. #else
  2833. return NULL;
  2834. #endif
  2835. }
  2836. int in_gate_area_no_task(unsigned long addr)
  2837. {
  2838. #ifdef AT_SYSINFO_EHDR
  2839. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2840. return 1;
  2841. #endif
  2842. return 0;
  2843. }
  2844. #endif /* __HAVE_ARCH_GATE_AREA */
  2845. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2846. pte_t **ptepp, spinlock_t **ptlp)
  2847. {
  2848. pgd_t *pgd;
  2849. pud_t *pud;
  2850. pmd_t *pmd;
  2851. pte_t *ptep;
  2852. pgd = pgd_offset(mm, address);
  2853. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2854. goto out;
  2855. pud = pud_offset(pgd, address);
  2856. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2857. goto out;
  2858. pmd = pmd_offset(pud, address);
  2859. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2860. goto out;
  2861. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2862. if (pmd_huge(*pmd))
  2863. goto out;
  2864. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2865. if (!ptep)
  2866. goto out;
  2867. if (!pte_present(*ptep))
  2868. goto unlock;
  2869. *ptepp = ptep;
  2870. return 0;
  2871. unlock:
  2872. pte_unmap_unlock(ptep, *ptlp);
  2873. out:
  2874. return -EINVAL;
  2875. }
  2876. /**
  2877. * follow_pfn - look up PFN at a user virtual address
  2878. * @vma: memory mapping
  2879. * @address: user virtual address
  2880. * @pfn: location to store found PFN
  2881. *
  2882. * Only IO mappings and raw PFN mappings are allowed.
  2883. *
  2884. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2885. */
  2886. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2887. unsigned long *pfn)
  2888. {
  2889. int ret = -EINVAL;
  2890. spinlock_t *ptl;
  2891. pte_t *ptep;
  2892. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2893. return ret;
  2894. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2895. if (ret)
  2896. return ret;
  2897. *pfn = pte_pfn(*ptep);
  2898. pte_unmap_unlock(ptep, ptl);
  2899. return 0;
  2900. }
  2901. EXPORT_SYMBOL(follow_pfn);
  2902. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2903. int follow_phys(struct vm_area_struct *vma,
  2904. unsigned long address, unsigned int flags,
  2905. unsigned long *prot, resource_size_t *phys)
  2906. {
  2907. int ret = -EINVAL;
  2908. pte_t *ptep, pte;
  2909. spinlock_t *ptl;
  2910. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2911. goto out;
  2912. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2913. goto out;
  2914. pte = *ptep;
  2915. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2916. goto unlock;
  2917. *prot = pgprot_val(pte_pgprot(pte));
  2918. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2919. ret = 0;
  2920. unlock:
  2921. pte_unmap_unlock(ptep, ptl);
  2922. out:
  2923. return ret;
  2924. }
  2925. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2926. void *buf, int len, int write)
  2927. {
  2928. resource_size_t phys_addr;
  2929. unsigned long prot = 0;
  2930. void __iomem *maddr;
  2931. int offset = addr & (PAGE_SIZE-1);
  2932. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2933. return -EINVAL;
  2934. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2935. if (write)
  2936. memcpy_toio(maddr + offset, buf, len);
  2937. else
  2938. memcpy_fromio(buf, maddr + offset, len);
  2939. iounmap(maddr);
  2940. return len;
  2941. }
  2942. #endif
  2943. /*
  2944. * Access another process' address space.
  2945. * Source/target buffer must be kernel space,
  2946. * Do not walk the page table directly, use get_user_pages
  2947. */
  2948. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2949. {
  2950. struct mm_struct *mm;
  2951. struct vm_area_struct *vma;
  2952. void *old_buf = buf;
  2953. mm = get_task_mm(tsk);
  2954. if (!mm)
  2955. return 0;
  2956. down_read(&mm->mmap_sem);
  2957. /* ignore errors, just check how much was successfully transferred */
  2958. while (len) {
  2959. int bytes, ret, offset;
  2960. void *maddr;
  2961. struct page *page = NULL;
  2962. ret = get_user_pages(tsk, mm, addr, 1,
  2963. write, 1, &page, &vma);
  2964. if (ret <= 0) {
  2965. /*
  2966. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2967. * we can access using slightly different code.
  2968. */
  2969. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2970. vma = find_vma(mm, addr);
  2971. if (!vma)
  2972. break;
  2973. if (vma->vm_ops && vma->vm_ops->access)
  2974. ret = vma->vm_ops->access(vma, addr, buf,
  2975. len, write);
  2976. if (ret <= 0)
  2977. #endif
  2978. break;
  2979. bytes = ret;
  2980. } else {
  2981. bytes = len;
  2982. offset = addr & (PAGE_SIZE-1);
  2983. if (bytes > PAGE_SIZE-offset)
  2984. bytes = PAGE_SIZE-offset;
  2985. maddr = kmap(page);
  2986. if (write) {
  2987. copy_to_user_page(vma, page, addr,
  2988. maddr + offset, buf, bytes);
  2989. set_page_dirty_lock(page);
  2990. } else {
  2991. copy_from_user_page(vma, page, addr,
  2992. buf, maddr + offset, bytes);
  2993. }
  2994. kunmap(page);
  2995. page_cache_release(page);
  2996. }
  2997. len -= bytes;
  2998. buf += bytes;
  2999. addr += bytes;
  3000. }
  3001. up_read(&mm->mmap_sem);
  3002. mmput(mm);
  3003. return buf - old_buf;
  3004. }
  3005. /*
  3006. * Print the name of a VMA.
  3007. */
  3008. void print_vma_addr(char *prefix, unsigned long ip)
  3009. {
  3010. struct mm_struct *mm = current->mm;
  3011. struct vm_area_struct *vma;
  3012. /*
  3013. * Do not print if we are in atomic
  3014. * contexts (in exception stacks, etc.):
  3015. */
  3016. if (preempt_count())
  3017. return;
  3018. down_read(&mm->mmap_sem);
  3019. vma = find_vma(mm, ip);
  3020. if (vma && vma->vm_file) {
  3021. struct file *f = vma->vm_file;
  3022. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3023. if (buf) {
  3024. char *p, *s;
  3025. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3026. if (IS_ERR(p))
  3027. p = "?";
  3028. s = strrchr(p, '/');
  3029. if (s)
  3030. p = s+1;
  3031. printk("%s%s[%lx+%lx]", prefix, p,
  3032. vma->vm_start,
  3033. vma->vm_end - vma->vm_start);
  3034. free_page((unsigned long)buf);
  3035. }
  3036. }
  3037. up_read(&current->mm->mmap_sem);
  3038. }
  3039. #ifdef CONFIG_PROVE_LOCKING
  3040. void might_fault(void)
  3041. {
  3042. /*
  3043. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3044. * holding the mmap_sem, this is safe because kernel memory doesn't
  3045. * get paged out, therefore we'll never actually fault, and the
  3046. * below annotations will generate false positives.
  3047. */
  3048. if (segment_eq(get_fs(), KERNEL_DS))
  3049. return;
  3050. might_sleep();
  3051. /*
  3052. * it would be nicer only to annotate paths which are not under
  3053. * pagefault_disable, however that requires a larger audit and
  3054. * providing helpers like get_user_atomic.
  3055. */
  3056. if (!in_atomic() && current->mm)
  3057. might_lock_read(&current->mm->mmap_sem);
  3058. }
  3059. EXPORT_SYMBOL(might_fault);
  3060. #endif