swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <asm/io.h>
  31. #include <asm/dma.h>
  32. #include <asm/scatterlist.h>
  33. #include <linux/init.h>
  34. #include <linux/bootmem.h>
  35. #include <linux/iommu-helper.h>
  36. #define OFFSET(val,align) ((unsigned long) \
  37. ( (val) & ( (align) - 1)))
  38. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  39. /*
  40. * Minimum IO TLB size to bother booting with. Systems with mainly
  41. * 64bit capable cards will only lightly use the swiotlb. If we can't
  42. * allocate a contiguous 1MB, we're probably in trouble anyway.
  43. */
  44. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  45. /*
  46. * Enumeration for sync targets
  47. */
  48. enum dma_sync_target {
  49. SYNC_FOR_CPU = 0,
  50. SYNC_FOR_DEVICE = 1,
  51. };
  52. int swiotlb_force;
  53. /*
  54. * Used to do a quick range check in unmap_single and
  55. * sync_single_*, to see if the memory was in fact allocated by this
  56. * API.
  57. */
  58. static char *io_tlb_start, *io_tlb_end;
  59. /*
  60. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  61. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  62. */
  63. static unsigned long io_tlb_nslabs;
  64. /*
  65. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  66. */
  67. static unsigned long io_tlb_overflow = 32*1024;
  68. void *io_tlb_overflow_buffer;
  69. /*
  70. * This is a free list describing the number of free entries available from
  71. * each index
  72. */
  73. static unsigned int *io_tlb_list;
  74. static unsigned int io_tlb_index;
  75. /*
  76. * We need to save away the original address corresponding to a mapped entry
  77. * for the sync operations.
  78. */
  79. static phys_addr_t *io_tlb_orig_addr;
  80. /*
  81. * Protect the above data structures in the map and unmap calls
  82. */
  83. static DEFINE_SPINLOCK(io_tlb_lock);
  84. static int late_alloc;
  85. static int __init
  86. setup_io_tlb_npages(char *str)
  87. {
  88. if (isdigit(*str)) {
  89. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  90. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  91. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  92. }
  93. if (*str == ',')
  94. ++str;
  95. if (!strcmp(str, "force"))
  96. swiotlb_force = 1;
  97. return 1;
  98. }
  99. __setup("swiotlb=", setup_io_tlb_npages);
  100. /* make io_tlb_overflow tunable too? */
  101. /* Note that this doesn't work with highmem page */
  102. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  103. volatile void *address)
  104. {
  105. return phys_to_dma(hwdev, virt_to_phys(address));
  106. }
  107. void swiotlb_print_info(void)
  108. {
  109. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  110. phys_addr_t pstart, pend;
  111. pstart = virt_to_phys(io_tlb_start);
  112. pend = virt_to_phys(io_tlb_end);
  113. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  114. bytes >> 20, io_tlb_start, io_tlb_end);
  115. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  116. (unsigned long long)pstart,
  117. (unsigned long long)pend);
  118. }
  119. /*
  120. * Statically reserve bounce buffer space and initialize bounce buffer data
  121. * structures for the software IO TLB used to implement the DMA API.
  122. */
  123. void __init
  124. swiotlb_init_with_default_size(size_t default_size, int verbose)
  125. {
  126. unsigned long i, bytes;
  127. if (!io_tlb_nslabs) {
  128. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  129. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  130. }
  131. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  132. /*
  133. * Get IO TLB memory from the low pages
  134. */
  135. io_tlb_start = alloc_bootmem_low_pages(bytes);
  136. if (!io_tlb_start)
  137. panic("Cannot allocate SWIOTLB buffer");
  138. io_tlb_end = io_tlb_start + bytes;
  139. /*
  140. * Allocate and initialize the free list array. This array is used
  141. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  142. * between io_tlb_start and io_tlb_end.
  143. */
  144. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  145. for (i = 0; i < io_tlb_nslabs; i++)
  146. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  147. io_tlb_index = 0;
  148. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  149. /*
  150. * Get the overflow emergency buffer
  151. */
  152. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  153. if (!io_tlb_overflow_buffer)
  154. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  155. if (verbose)
  156. swiotlb_print_info();
  157. }
  158. void __init
  159. swiotlb_init(int verbose)
  160. {
  161. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  162. }
  163. /*
  164. * Systems with larger DMA zones (those that don't support ISA) can
  165. * initialize the swiotlb later using the slab allocator if needed.
  166. * This should be just like above, but with some error catching.
  167. */
  168. int
  169. swiotlb_late_init_with_default_size(size_t default_size)
  170. {
  171. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  172. unsigned int order;
  173. if (!io_tlb_nslabs) {
  174. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  175. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  176. }
  177. /*
  178. * Get IO TLB memory from the low pages
  179. */
  180. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  181. io_tlb_nslabs = SLABS_PER_PAGE << order;
  182. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  183. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  184. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  185. order);
  186. if (io_tlb_start)
  187. break;
  188. order--;
  189. }
  190. if (!io_tlb_start)
  191. goto cleanup1;
  192. if (order != get_order(bytes)) {
  193. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  194. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  195. io_tlb_nslabs = SLABS_PER_PAGE << order;
  196. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  197. }
  198. io_tlb_end = io_tlb_start + bytes;
  199. memset(io_tlb_start, 0, bytes);
  200. /*
  201. * Allocate and initialize the free list array. This array is used
  202. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  203. * between io_tlb_start and io_tlb_end.
  204. */
  205. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  206. get_order(io_tlb_nslabs * sizeof(int)));
  207. if (!io_tlb_list)
  208. goto cleanup2;
  209. for (i = 0; i < io_tlb_nslabs; i++)
  210. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  211. io_tlb_index = 0;
  212. io_tlb_orig_addr = (phys_addr_t *)
  213. __get_free_pages(GFP_KERNEL,
  214. get_order(io_tlb_nslabs *
  215. sizeof(phys_addr_t)));
  216. if (!io_tlb_orig_addr)
  217. goto cleanup3;
  218. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  219. /*
  220. * Get the overflow emergency buffer
  221. */
  222. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  223. get_order(io_tlb_overflow));
  224. if (!io_tlb_overflow_buffer)
  225. goto cleanup4;
  226. swiotlb_print_info();
  227. late_alloc = 1;
  228. return 0;
  229. cleanup4:
  230. free_pages((unsigned long)io_tlb_orig_addr,
  231. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  232. io_tlb_orig_addr = NULL;
  233. cleanup3:
  234. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  235. sizeof(int)));
  236. io_tlb_list = NULL;
  237. cleanup2:
  238. io_tlb_end = NULL;
  239. free_pages((unsigned long)io_tlb_start, order);
  240. io_tlb_start = NULL;
  241. cleanup1:
  242. io_tlb_nslabs = req_nslabs;
  243. return -ENOMEM;
  244. }
  245. void __init swiotlb_free(void)
  246. {
  247. if (!io_tlb_overflow_buffer)
  248. return;
  249. if (late_alloc) {
  250. free_pages((unsigned long)io_tlb_overflow_buffer,
  251. get_order(io_tlb_overflow));
  252. free_pages((unsigned long)io_tlb_orig_addr,
  253. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  254. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  255. sizeof(int)));
  256. free_pages((unsigned long)io_tlb_start,
  257. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  258. } else {
  259. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  260. io_tlb_overflow);
  261. free_bootmem_late(__pa(io_tlb_orig_addr),
  262. io_tlb_nslabs * sizeof(phys_addr_t));
  263. free_bootmem_late(__pa(io_tlb_list),
  264. io_tlb_nslabs * sizeof(int));
  265. free_bootmem_late(__pa(io_tlb_start),
  266. io_tlb_nslabs << IO_TLB_SHIFT);
  267. }
  268. }
  269. static int is_swiotlb_buffer(phys_addr_t paddr)
  270. {
  271. return paddr >= virt_to_phys(io_tlb_start) &&
  272. paddr < virt_to_phys(io_tlb_end);
  273. }
  274. /*
  275. * Bounce: copy the swiotlb buffer back to the original dma location
  276. */
  277. static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  278. enum dma_data_direction dir)
  279. {
  280. unsigned long pfn = PFN_DOWN(phys);
  281. if (PageHighMem(pfn_to_page(pfn))) {
  282. /* The buffer does not have a mapping. Map it in and copy */
  283. unsigned int offset = phys & ~PAGE_MASK;
  284. char *buffer;
  285. unsigned int sz = 0;
  286. unsigned long flags;
  287. while (size) {
  288. sz = min_t(size_t, PAGE_SIZE - offset, size);
  289. local_irq_save(flags);
  290. buffer = kmap_atomic(pfn_to_page(pfn),
  291. KM_BOUNCE_READ);
  292. if (dir == DMA_TO_DEVICE)
  293. memcpy(dma_addr, buffer + offset, sz);
  294. else
  295. memcpy(buffer + offset, dma_addr, sz);
  296. kunmap_atomic(buffer, KM_BOUNCE_READ);
  297. local_irq_restore(flags);
  298. size -= sz;
  299. pfn++;
  300. dma_addr += sz;
  301. offset = 0;
  302. }
  303. } else {
  304. if (dir == DMA_TO_DEVICE)
  305. memcpy(dma_addr, phys_to_virt(phys), size);
  306. else
  307. memcpy(phys_to_virt(phys), dma_addr, size);
  308. }
  309. }
  310. /*
  311. * Allocates bounce buffer and returns its kernel virtual address.
  312. */
  313. static void *
  314. map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
  315. {
  316. unsigned long flags;
  317. char *dma_addr;
  318. unsigned int nslots, stride, index, wrap;
  319. int i;
  320. unsigned long start_dma_addr;
  321. unsigned long mask;
  322. unsigned long offset_slots;
  323. unsigned long max_slots;
  324. mask = dma_get_seg_boundary(hwdev);
  325. start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
  326. offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  327. /*
  328. * Carefully handle integer overflow which can occur when mask == ~0UL.
  329. */
  330. max_slots = mask + 1
  331. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  332. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  333. /*
  334. * For mappings greater than a page, we limit the stride (and
  335. * hence alignment) to a page size.
  336. */
  337. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  338. if (size > PAGE_SIZE)
  339. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  340. else
  341. stride = 1;
  342. BUG_ON(!nslots);
  343. /*
  344. * Find suitable number of IO TLB entries size that will fit this
  345. * request and allocate a buffer from that IO TLB pool.
  346. */
  347. spin_lock_irqsave(&io_tlb_lock, flags);
  348. index = ALIGN(io_tlb_index, stride);
  349. if (index >= io_tlb_nslabs)
  350. index = 0;
  351. wrap = index;
  352. do {
  353. while (iommu_is_span_boundary(index, nslots, offset_slots,
  354. max_slots)) {
  355. index += stride;
  356. if (index >= io_tlb_nslabs)
  357. index = 0;
  358. if (index == wrap)
  359. goto not_found;
  360. }
  361. /*
  362. * If we find a slot that indicates we have 'nslots' number of
  363. * contiguous buffers, we allocate the buffers from that slot
  364. * and mark the entries as '0' indicating unavailable.
  365. */
  366. if (io_tlb_list[index] >= nslots) {
  367. int count = 0;
  368. for (i = index; i < (int) (index + nslots); i++)
  369. io_tlb_list[i] = 0;
  370. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  371. io_tlb_list[i] = ++count;
  372. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  373. /*
  374. * Update the indices to avoid searching in the next
  375. * round.
  376. */
  377. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  378. ? (index + nslots) : 0);
  379. goto found;
  380. }
  381. index += stride;
  382. if (index >= io_tlb_nslabs)
  383. index = 0;
  384. } while (index != wrap);
  385. not_found:
  386. spin_unlock_irqrestore(&io_tlb_lock, flags);
  387. return NULL;
  388. found:
  389. spin_unlock_irqrestore(&io_tlb_lock, flags);
  390. /*
  391. * Save away the mapping from the original address to the DMA address.
  392. * This is needed when we sync the memory. Then we sync the buffer if
  393. * needed.
  394. */
  395. for (i = 0; i < nslots; i++)
  396. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  397. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  398. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  399. return dma_addr;
  400. }
  401. /*
  402. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  403. */
  404. static void
  405. do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  406. {
  407. unsigned long flags;
  408. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  409. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  410. phys_addr_t phys = io_tlb_orig_addr[index];
  411. /*
  412. * First, sync the memory before unmapping the entry
  413. */
  414. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  415. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  416. /*
  417. * Return the buffer to the free list by setting the corresponding
  418. * entries to indicate the number of contiguous entries available.
  419. * While returning the entries to the free list, we merge the entries
  420. * with slots below and above the pool being returned.
  421. */
  422. spin_lock_irqsave(&io_tlb_lock, flags);
  423. {
  424. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  425. io_tlb_list[index + nslots] : 0);
  426. /*
  427. * Step 1: return the slots to the free list, merging the
  428. * slots with superceeding slots
  429. */
  430. for (i = index + nslots - 1; i >= index; i--)
  431. io_tlb_list[i] = ++count;
  432. /*
  433. * Step 2: merge the returned slots with the preceding slots,
  434. * if available (non zero)
  435. */
  436. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  437. io_tlb_list[i] = ++count;
  438. }
  439. spin_unlock_irqrestore(&io_tlb_lock, flags);
  440. }
  441. static void
  442. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  443. int dir, int target)
  444. {
  445. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  446. phys_addr_t phys = io_tlb_orig_addr[index];
  447. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  448. switch (target) {
  449. case SYNC_FOR_CPU:
  450. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  451. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  452. else
  453. BUG_ON(dir != DMA_TO_DEVICE);
  454. break;
  455. case SYNC_FOR_DEVICE:
  456. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  457. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  458. else
  459. BUG_ON(dir != DMA_FROM_DEVICE);
  460. break;
  461. default:
  462. BUG();
  463. }
  464. }
  465. void *
  466. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  467. dma_addr_t *dma_handle, gfp_t flags)
  468. {
  469. dma_addr_t dev_addr;
  470. void *ret;
  471. int order = get_order(size);
  472. u64 dma_mask = DMA_BIT_MASK(32);
  473. if (hwdev && hwdev->coherent_dma_mask)
  474. dma_mask = hwdev->coherent_dma_mask;
  475. ret = (void *)__get_free_pages(flags, order);
  476. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  477. /*
  478. * The allocated memory isn't reachable by the device.
  479. */
  480. free_pages((unsigned long) ret, order);
  481. ret = NULL;
  482. }
  483. if (!ret) {
  484. /*
  485. * We are either out of memory or the device can't DMA
  486. * to GFP_DMA memory; fall back on map_single(), which
  487. * will grab memory from the lowest available address range.
  488. */
  489. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  490. if (!ret)
  491. return NULL;
  492. }
  493. memset(ret, 0, size);
  494. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  495. /* Confirm address can be DMA'd by device */
  496. if (dev_addr + size - 1 > dma_mask) {
  497. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  498. (unsigned long long)dma_mask,
  499. (unsigned long long)dev_addr);
  500. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  501. do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  502. return NULL;
  503. }
  504. *dma_handle = dev_addr;
  505. return ret;
  506. }
  507. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  508. void
  509. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  510. dma_addr_t dev_addr)
  511. {
  512. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  513. WARN_ON(irqs_disabled());
  514. if (!is_swiotlb_buffer(paddr))
  515. free_pages((unsigned long)vaddr, get_order(size));
  516. else
  517. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  518. do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  519. }
  520. EXPORT_SYMBOL(swiotlb_free_coherent);
  521. static void
  522. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  523. {
  524. /*
  525. * Ran out of IOMMU space for this operation. This is very bad.
  526. * Unfortunately the drivers cannot handle this operation properly.
  527. * unless they check for dma_mapping_error (most don't)
  528. * When the mapping is small enough return a static buffer to limit
  529. * the damage, or panic when the transfer is too big.
  530. */
  531. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  532. "device %s\n", size, dev ? dev_name(dev) : "?");
  533. if (size <= io_tlb_overflow || !do_panic)
  534. return;
  535. if (dir == DMA_BIDIRECTIONAL)
  536. panic("DMA: Random memory could be DMA accessed\n");
  537. if (dir == DMA_FROM_DEVICE)
  538. panic("DMA: Random memory could be DMA written\n");
  539. if (dir == DMA_TO_DEVICE)
  540. panic("DMA: Random memory could be DMA read\n");
  541. }
  542. /*
  543. * Map a single buffer of the indicated size for DMA in streaming mode. The
  544. * physical address to use is returned.
  545. *
  546. * Once the device is given the dma address, the device owns this memory until
  547. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  548. */
  549. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  550. unsigned long offset, size_t size,
  551. enum dma_data_direction dir,
  552. struct dma_attrs *attrs)
  553. {
  554. phys_addr_t phys = page_to_phys(page) + offset;
  555. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  556. void *map;
  557. BUG_ON(dir == DMA_NONE);
  558. /*
  559. * If the address happens to be in the device's DMA window,
  560. * we can safely return the device addr and not worry about bounce
  561. * buffering it.
  562. */
  563. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  564. return dev_addr;
  565. /*
  566. * Oh well, have to allocate and map a bounce buffer.
  567. */
  568. map = map_single(dev, phys, size, dir);
  569. if (!map) {
  570. swiotlb_full(dev, size, dir, 1);
  571. map = io_tlb_overflow_buffer;
  572. }
  573. dev_addr = swiotlb_virt_to_bus(dev, map);
  574. /*
  575. * Ensure that the address returned is DMA'ble
  576. */
  577. if (!dma_capable(dev, dev_addr, size))
  578. panic("map_single: bounce buffer is not DMA'ble");
  579. return dev_addr;
  580. }
  581. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  582. /*
  583. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  584. * match what was provided for in a previous swiotlb_map_page call. All
  585. * other usages are undefined.
  586. *
  587. * After this call, reads by the cpu to the buffer are guaranteed to see
  588. * whatever the device wrote there.
  589. */
  590. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  591. size_t size, int dir)
  592. {
  593. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  594. BUG_ON(dir == DMA_NONE);
  595. if (is_swiotlb_buffer(paddr)) {
  596. do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  597. return;
  598. }
  599. if (dir != DMA_FROM_DEVICE)
  600. return;
  601. /*
  602. * phys_to_virt doesn't work with hihgmem page but we could
  603. * call dma_mark_clean() with hihgmem page here. However, we
  604. * are fine since dma_mark_clean() is null on POWERPC. We can
  605. * make dma_mark_clean() take a physical address if necessary.
  606. */
  607. dma_mark_clean(phys_to_virt(paddr), size);
  608. }
  609. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  610. size_t size, enum dma_data_direction dir,
  611. struct dma_attrs *attrs)
  612. {
  613. unmap_single(hwdev, dev_addr, size, dir);
  614. }
  615. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  616. /*
  617. * Make physical memory consistent for a single streaming mode DMA translation
  618. * after a transfer.
  619. *
  620. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  621. * using the cpu, yet do not wish to teardown the dma mapping, you must
  622. * call this function before doing so. At the next point you give the dma
  623. * address back to the card, you must first perform a
  624. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  625. */
  626. static void
  627. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  628. size_t size, int dir, int target)
  629. {
  630. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  631. BUG_ON(dir == DMA_NONE);
  632. if (is_swiotlb_buffer(paddr)) {
  633. sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
  634. return;
  635. }
  636. if (dir != DMA_FROM_DEVICE)
  637. return;
  638. dma_mark_clean(phys_to_virt(paddr), size);
  639. }
  640. void
  641. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  642. size_t size, enum dma_data_direction dir)
  643. {
  644. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  645. }
  646. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  647. void
  648. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  649. size_t size, enum dma_data_direction dir)
  650. {
  651. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  652. }
  653. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  654. /*
  655. * Same as above, but for a sub-range of the mapping.
  656. */
  657. static void
  658. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  659. unsigned long offset, size_t size,
  660. int dir, int target)
  661. {
  662. swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
  663. }
  664. void
  665. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  666. unsigned long offset, size_t size,
  667. enum dma_data_direction dir)
  668. {
  669. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  670. SYNC_FOR_CPU);
  671. }
  672. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  673. void
  674. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  675. unsigned long offset, size_t size,
  676. enum dma_data_direction dir)
  677. {
  678. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  679. SYNC_FOR_DEVICE);
  680. }
  681. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  682. /*
  683. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  684. * This is the scatter-gather version of the above swiotlb_map_page
  685. * interface. Here the scatter gather list elements are each tagged with the
  686. * appropriate dma address and length. They are obtained via
  687. * sg_dma_{address,length}(SG).
  688. *
  689. * NOTE: An implementation may be able to use a smaller number of
  690. * DMA address/length pairs than there are SG table elements.
  691. * (for example via virtual mapping capabilities)
  692. * The routine returns the number of addr/length pairs actually
  693. * used, at most nents.
  694. *
  695. * Device ownership issues as mentioned above for swiotlb_map_page are the
  696. * same here.
  697. */
  698. int
  699. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  700. enum dma_data_direction dir, struct dma_attrs *attrs)
  701. {
  702. struct scatterlist *sg;
  703. int i;
  704. BUG_ON(dir == DMA_NONE);
  705. for_each_sg(sgl, sg, nelems, i) {
  706. phys_addr_t paddr = sg_phys(sg);
  707. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  708. if (swiotlb_force ||
  709. !dma_capable(hwdev, dev_addr, sg->length)) {
  710. void *map = map_single(hwdev, sg_phys(sg),
  711. sg->length, dir);
  712. if (!map) {
  713. /* Don't panic here, we expect map_sg users
  714. to do proper error handling. */
  715. swiotlb_full(hwdev, sg->length, dir, 0);
  716. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  717. attrs);
  718. sgl[0].dma_length = 0;
  719. return 0;
  720. }
  721. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  722. } else
  723. sg->dma_address = dev_addr;
  724. sg->dma_length = sg->length;
  725. }
  726. return nelems;
  727. }
  728. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  729. int
  730. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  731. int dir)
  732. {
  733. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  734. }
  735. EXPORT_SYMBOL(swiotlb_map_sg);
  736. /*
  737. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  738. * concerning calls here are the same as for swiotlb_unmap_page() above.
  739. */
  740. void
  741. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  742. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  743. {
  744. struct scatterlist *sg;
  745. int i;
  746. BUG_ON(dir == DMA_NONE);
  747. for_each_sg(sgl, sg, nelems, i)
  748. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  749. }
  750. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  751. void
  752. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  753. int dir)
  754. {
  755. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  756. }
  757. EXPORT_SYMBOL(swiotlb_unmap_sg);
  758. /*
  759. * Make physical memory consistent for a set of streaming mode DMA translations
  760. * after a transfer.
  761. *
  762. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  763. * and usage.
  764. */
  765. static void
  766. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  767. int nelems, int dir, int target)
  768. {
  769. struct scatterlist *sg;
  770. int i;
  771. for_each_sg(sgl, sg, nelems, i)
  772. swiotlb_sync_single(hwdev, sg->dma_address,
  773. sg->dma_length, dir, target);
  774. }
  775. void
  776. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  777. int nelems, enum dma_data_direction dir)
  778. {
  779. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  780. }
  781. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  782. void
  783. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  784. int nelems, enum dma_data_direction dir)
  785. {
  786. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  787. }
  788. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  789. int
  790. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  791. {
  792. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  793. }
  794. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  795. /*
  796. * Return whether the given device DMA address mask can be supported
  797. * properly. For example, if your device can only drive the low 24-bits
  798. * during bus mastering, then you would pass 0x00ffffff as the mask to
  799. * this function.
  800. */
  801. int
  802. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  803. {
  804. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  805. }
  806. EXPORT_SYMBOL(swiotlb_dma_supported);