fork.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/tracehook.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/ksm.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/blkdev.h>
  61. #include <linux/fs_struct.h>
  62. #include <linux/magic.h>
  63. #include <linux/perf_event.h>
  64. #include <linux/posix-timers.h>
  65. #include <linux/user-return-notifier.h>
  66. #include <asm/pgtable.h>
  67. #include <asm/pgalloc.h>
  68. #include <asm/uaccess.h>
  69. #include <asm/mmu_context.h>
  70. #include <asm/cacheflush.h>
  71. #include <asm/tlbflush.h>
  72. #include <trace/events/sched.h>
  73. /*
  74. * Protected counters by write_lock_irq(&tasklist_lock)
  75. */
  76. unsigned long total_forks; /* Handle normal Linux uptimes. */
  77. int nr_threads; /* The idle threads do not count.. */
  78. int max_threads; /* tunable limit on nr_threads */
  79. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  80. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  81. int nr_processes(void)
  82. {
  83. int cpu;
  84. int total = 0;
  85. for_each_possible_cpu(cpu)
  86. total += per_cpu(process_counts, cpu);
  87. return total;
  88. }
  89. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  90. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  91. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  92. static struct kmem_cache *task_struct_cachep;
  93. #endif
  94. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  95. static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
  96. {
  97. #ifdef CONFIG_DEBUG_STACK_USAGE
  98. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  99. #else
  100. gfp_t mask = GFP_KERNEL;
  101. #endif
  102. return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
  103. }
  104. static inline void free_thread_info(struct thread_info *ti)
  105. {
  106. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  107. }
  108. #endif
  109. /* SLAB cache for signal_struct structures (tsk->signal) */
  110. static struct kmem_cache *signal_cachep;
  111. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  112. struct kmem_cache *sighand_cachep;
  113. /* SLAB cache for files_struct structures (tsk->files) */
  114. struct kmem_cache *files_cachep;
  115. /* SLAB cache for fs_struct structures (tsk->fs) */
  116. struct kmem_cache *fs_cachep;
  117. /* SLAB cache for vm_area_struct structures */
  118. struct kmem_cache *vm_area_cachep;
  119. /* SLAB cache for mm_struct structures (tsk->mm) */
  120. static struct kmem_cache *mm_cachep;
  121. static void account_kernel_stack(struct thread_info *ti, int account)
  122. {
  123. struct zone *zone = page_zone(virt_to_page(ti));
  124. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  125. }
  126. void free_task(struct task_struct *tsk)
  127. {
  128. prop_local_destroy_single(&tsk->dirties);
  129. account_kernel_stack(tsk->stack, -1);
  130. free_thread_info(tsk->stack);
  131. rt_mutex_debug_task_free(tsk);
  132. ftrace_graph_exit_task(tsk);
  133. free_task_struct(tsk);
  134. }
  135. EXPORT_SYMBOL(free_task);
  136. void __put_task_struct(struct task_struct *tsk)
  137. {
  138. WARN_ON(!tsk->exit_state);
  139. WARN_ON(atomic_read(&tsk->usage));
  140. WARN_ON(tsk == current);
  141. exit_creds(tsk);
  142. delayacct_tsk_free(tsk);
  143. if (!profile_handoff_task(tsk))
  144. free_task(tsk);
  145. }
  146. /*
  147. * macro override instead of weak attribute alias, to workaround
  148. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  149. */
  150. #ifndef arch_task_cache_init
  151. #define arch_task_cache_init()
  152. #endif
  153. void __init fork_init(unsigned long mempages)
  154. {
  155. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  156. #ifndef ARCH_MIN_TASKALIGN
  157. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  158. #endif
  159. /* create a slab on which task_structs can be allocated */
  160. task_struct_cachep =
  161. kmem_cache_create("task_struct", sizeof(struct task_struct),
  162. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  163. #endif
  164. /* do the arch specific task caches init */
  165. arch_task_cache_init();
  166. /*
  167. * The default maximum number of threads is set to a safe
  168. * value: the thread structures can take up at most half
  169. * of memory.
  170. */
  171. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  172. /*
  173. * we need to allow at least 20 threads to boot a system
  174. */
  175. if(max_threads < 20)
  176. max_threads = 20;
  177. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  178. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  179. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  180. init_task.signal->rlim[RLIMIT_NPROC];
  181. }
  182. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  183. struct task_struct *src)
  184. {
  185. *dst = *src;
  186. return 0;
  187. }
  188. static struct task_struct *dup_task_struct(struct task_struct *orig)
  189. {
  190. struct task_struct *tsk;
  191. struct thread_info *ti;
  192. unsigned long *stackend;
  193. int err;
  194. prepare_to_copy(orig);
  195. tsk = alloc_task_struct();
  196. if (!tsk)
  197. return NULL;
  198. ti = alloc_thread_info(tsk);
  199. if (!ti) {
  200. free_task_struct(tsk);
  201. return NULL;
  202. }
  203. err = arch_dup_task_struct(tsk, orig);
  204. if (err)
  205. goto out;
  206. tsk->stack = ti;
  207. err = prop_local_init_single(&tsk->dirties);
  208. if (err)
  209. goto out;
  210. setup_thread_stack(tsk, orig);
  211. clear_user_return_notifier(tsk);
  212. stackend = end_of_stack(tsk);
  213. *stackend = STACK_END_MAGIC; /* for overflow detection */
  214. #ifdef CONFIG_CC_STACKPROTECTOR
  215. tsk->stack_canary = get_random_int();
  216. #endif
  217. /* One for us, one for whoever does the "release_task()" (usually parent) */
  218. atomic_set(&tsk->usage,2);
  219. atomic_set(&tsk->fs_excl, 0);
  220. #ifdef CONFIG_BLK_DEV_IO_TRACE
  221. tsk->btrace_seq = 0;
  222. #endif
  223. tsk->splice_pipe = NULL;
  224. account_kernel_stack(ti, 1);
  225. return tsk;
  226. out:
  227. free_thread_info(ti);
  228. free_task_struct(tsk);
  229. return NULL;
  230. }
  231. #ifdef CONFIG_MMU
  232. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  233. {
  234. struct vm_area_struct *mpnt, *tmp, **pprev;
  235. struct rb_node **rb_link, *rb_parent;
  236. int retval;
  237. unsigned long charge;
  238. struct mempolicy *pol;
  239. down_write(&oldmm->mmap_sem);
  240. flush_cache_dup_mm(oldmm);
  241. /*
  242. * Not linked in yet - no deadlock potential:
  243. */
  244. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  245. mm->locked_vm = 0;
  246. mm->mmap = NULL;
  247. mm->mmap_cache = NULL;
  248. mm->free_area_cache = oldmm->mmap_base;
  249. mm->cached_hole_size = ~0UL;
  250. mm->map_count = 0;
  251. cpumask_clear(mm_cpumask(mm));
  252. mm->mm_rb = RB_ROOT;
  253. rb_link = &mm->mm_rb.rb_node;
  254. rb_parent = NULL;
  255. pprev = &mm->mmap;
  256. retval = ksm_fork(mm, oldmm);
  257. if (retval)
  258. goto out;
  259. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  260. struct file *file;
  261. if (mpnt->vm_flags & VM_DONTCOPY) {
  262. long pages = vma_pages(mpnt);
  263. mm->total_vm -= pages;
  264. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  265. -pages);
  266. continue;
  267. }
  268. charge = 0;
  269. if (mpnt->vm_flags & VM_ACCOUNT) {
  270. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  271. if (security_vm_enough_memory(len))
  272. goto fail_nomem;
  273. charge = len;
  274. }
  275. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  276. if (!tmp)
  277. goto fail_nomem;
  278. *tmp = *mpnt;
  279. pol = mpol_dup(vma_policy(mpnt));
  280. retval = PTR_ERR(pol);
  281. if (IS_ERR(pol))
  282. goto fail_nomem_policy;
  283. vma_set_policy(tmp, pol);
  284. tmp->vm_flags &= ~VM_LOCKED;
  285. tmp->vm_mm = mm;
  286. tmp->vm_next = NULL;
  287. anon_vma_link(tmp);
  288. file = tmp->vm_file;
  289. if (file) {
  290. struct inode *inode = file->f_path.dentry->d_inode;
  291. struct address_space *mapping = file->f_mapping;
  292. get_file(file);
  293. if (tmp->vm_flags & VM_DENYWRITE)
  294. atomic_dec(&inode->i_writecount);
  295. spin_lock(&mapping->i_mmap_lock);
  296. if (tmp->vm_flags & VM_SHARED)
  297. mapping->i_mmap_writable++;
  298. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  299. flush_dcache_mmap_lock(mapping);
  300. /* insert tmp into the share list, just after mpnt */
  301. vma_prio_tree_add(tmp, mpnt);
  302. flush_dcache_mmap_unlock(mapping);
  303. spin_unlock(&mapping->i_mmap_lock);
  304. }
  305. /*
  306. * Clear hugetlb-related page reserves for children. This only
  307. * affects MAP_PRIVATE mappings. Faults generated by the child
  308. * are not guaranteed to succeed, even if read-only
  309. */
  310. if (is_vm_hugetlb_page(tmp))
  311. reset_vma_resv_huge_pages(tmp);
  312. /*
  313. * Link in the new vma and copy the page table entries.
  314. */
  315. *pprev = tmp;
  316. pprev = &tmp->vm_next;
  317. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  318. rb_link = &tmp->vm_rb.rb_right;
  319. rb_parent = &tmp->vm_rb;
  320. mm->map_count++;
  321. retval = copy_page_range(mm, oldmm, mpnt);
  322. if (tmp->vm_ops && tmp->vm_ops->open)
  323. tmp->vm_ops->open(tmp);
  324. if (retval)
  325. goto out;
  326. }
  327. /* a new mm has just been created */
  328. arch_dup_mmap(oldmm, mm);
  329. retval = 0;
  330. out:
  331. up_write(&mm->mmap_sem);
  332. flush_tlb_mm(oldmm);
  333. up_write(&oldmm->mmap_sem);
  334. return retval;
  335. fail_nomem_policy:
  336. kmem_cache_free(vm_area_cachep, tmp);
  337. fail_nomem:
  338. retval = -ENOMEM;
  339. vm_unacct_memory(charge);
  340. goto out;
  341. }
  342. static inline int mm_alloc_pgd(struct mm_struct * mm)
  343. {
  344. mm->pgd = pgd_alloc(mm);
  345. if (unlikely(!mm->pgd))
  346. return -ENOMEM;
  347. return 0;
  348. }
  349. static inline void mm_free_pgd(struct mm_struct * mm)
  350. {
  351. pgd_free(mm, mm->pgd);
  352. }
  353. #else
  354. #define dup_mmap(mm, oldmm) (0)
  355. #define mm_alloc_pgd(mm) (0)
  356. #define mm_free_pgd(mm)
  357. #endif /* CONFIG_MMU */
  358. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  359. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  360. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  361. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  362. static int __init coredump_filter_setup(char *s)
  363. {
  364. default_dump_filter =
  365. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  366. MMF_DUMP_FILTER_MASK;
  367. return 1;
  368. }
  369. __setup("coredump_filter=", coredump_filter_setup);
  370. #include <linux/init_task.h>
  371. static void mm_init_aio(struct mm_struct *mm)
  372. {
  373. #ifdef CONFIG_AIO
  374. spin_lock_init(&mm->ioctx_lock);
  375. INIT_HLIST_HEAD(&mm->ioctx_list);
  376. #endif
  377. }
  378. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  379. {
  380. atomic_set(&mm->mm_users, 1);
  381. atomic_set(&mm->mm_count, 1);
  382. init_rwsem(&mm->mmap_sem);
  383. INIT_LIST_HEAD(&mm->mmlist);
  384. mm->flags = (current->mm) ?
  385. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  386. mm->core_state = NULL;
  387. mm->nr_ptes = 0;
  388. set_mm_counter(mm, file_rss, 0);
  389. set_mm_counter(mm, anon_rss, 0);
  390. spin_lock_init(&mm->page_table_lock);
  391. mm->free_area_cache = TASK_UNMAPPED_BASE;
  392. mm->cached_hole_size = ~0UL;
  393. mm_init_aio(mm);
  394. mm_init_owner(mm, p);
  395. if (likely(!mm_alloc_pgd(mm))) {
  396. mm->def_flags = 0;
  397. mmu_notifier_mm_init(mm);
  398. return mm;
  399. }
  400. free_mm(mm);
  401. return NULL;
  402. }
  403. /*
  404. * Allocate and initialize an mm_struct.
  405. */
  406. struct mm_struct * mm_alloc(void)
  407. {
  408. struct mm_struct * mm;
  409. mm = allocate_mm();
  410. if (mm) {
  411. memset(mm, 0, sizeof(*mm));
  412. mm = mm_init(mm, current);
  413. }
  414. return mm;
  415. }
  416. /*
  417. * Called when the last reference to the mm
  418. * is dropped: either by a lazy thread or by
  419. * mmput. Free the page directory and the mm.
  420. */
  421. void __mmdrop(struct mm_struct *mm)
  422. {
  423. BUG_ON(mm == &init_mm);
  424. mm_free_pgd(mm);
  425. destroy_context(mm);
  426. mmu_notifier_mm_destroy(mm);
  427. free_mm(mm);
  428. }
  429. EXPORT_SYMBOL_GPL(__mmdrop);
  430. /*
  431. * Decrement the use count and release all resources for an mm.
  432. */
  433. void mmput(struct mm_struct *mm)
  434. {
  435. might_sleep();
  436. if (atomic_dec_and_test(&mm->mm_users)) {
  437. exit_aio(mm);
  438. ksm_exit(mm);
  439. exit_mmap(mm);
  440. set_mm_exe_file(mm, NULL);
  441. if (!list_empty(&mm->mmlist)) {
  442. spin_lock(&mmlist_lock);
  443. list_del(&mm->mmlist);
  444. spin_unlock(&mmlist_lock);
  445. }
  446. put_swap_token(mm);
  447. if (mm->binfmt)
  448. module_put(mm->binfmt->module);
  449. mmdrop(mm);
  450. }
  451. }
  452. EXPORT_SYMBOL_GPL(mmput);
  453. /**
  454. * get_task_mm - acquire a reference to the task's mm
  455. *
  456. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  457. * this kernel workthread has transiently adopted a user mm with use_mm,
  458. * to do its AIO) is not set and if so returns a reference to it, after
  459. * bumping up the use count. User must release the mm via mmput()
  460. * after use. Typically used by /proc and ptrace.
  461. */
  462. struct mm_struct *get_task_mm(struct task_struct *task)
  463. {
  464. struct mm_struct *mm;
  465. task_lock(task);
  466. mm = task->mm;
  467. if (mm) {
  468. if (task->flags & PF_KTHREAD)
  469. mm = NULL;
  470. else
  471. atomic_inc(&mm->mm_users);
  472. }
  473. task_unlock(task);
  474. return mm;
  475. }
  476. EXPORT_SYMBOL_GPL(get_task_mm);
  477. /* Please note the differences between mmput and mm_release.
  478. * mmput is called whenever we stop holding onto a mm_struct,
  479. * error success whatever.
  480. *
  481. * mm_release is called after a mm_struct has been removed
  482. * from the current process.
  483. *
  484. * This difference is important for error handling, when we
  485. * only half set up a mm_struct for a new process and need to restore
  486. * the old one. Because we mmput the new mm_struct before
  487. * restoring the old one. . .
  488. * Eric Biederman 10 January 1998
  489. */
  490. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  491. {
  492. struct completion *vfork_done = tsk->vfork_done;
  493. /* Get rid of any futexes when releasing the mm */
  494. #ifdef CONFIG_FUTEX
  495. if (unlikely(tsk->robust_list)) {
  496. exit_robust_list(tsk);
  497. tsk->robust_list = NULL;
  498. }
  499. #ifdef CONFIG_COMPAT
  500. if (unlikely(tsk->compat_robust_list)) {
  501. compat_exit_robust_list(tsk);
  502. tsk->compat_robust_list = NULL;
  503. }
  504. #endif
  505. if (unlikely(!list_empty(&tsk->pi_state_list)))
  506. exit_pi_state_list(tsk);
  507. #endif
  508. /* Get rid of any cached register state */
  509. deactivate_mm(tsk, mm);
  510. /* notify parent sleeping on vfork() */
  511. if (vfork_done) {
  512. tsk->vfork_done = NULL;
  513. complete(vfork_done);
  514. }
  515. /*
  516. * If we're exiting normally, clear a user-space tid field if
  517. * requested. We leave this alone when dying by signal, to leave
  518. * the value intact in a core dump, and to save the unnecessary
  519. * trouble otherwise. Userland only wants this done for a sys_exit.
  520. */
  521. if (tsk->clear_child_tid) {
  522. if (!(tsk->flags & PF_SIGNALED) &&
  523. atomic_read(&mm->mm_users) > 1) {
  524. /*
  525. * We don't check the error code - if userspace has
  526. * not set up a proper pointer then tough luck.
  527. */
  528. put_user(0, tsk->clear_child_tid);
  529. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  530. 1, NULL, NULL, 0);
  531. }
  532. tsk->clear_child_tid = NULL;
  533. }
  534. }
  535. /*
  536. * Allocate a new mm structure and copy contents from the
  537. * mm structure of the passed in task structure.
  538. */
  539. struct mm_struct *dup_mm(struct task_struct *tsk)
  540. {
  541. struct mm_struct *mm, *oldmm = current->mm;
  542. int err;
  543. if (!oldmm)
  544. return NULL;
  545. mm = allocate_mm();
  546. if (!mm)
  547. goto fail_nomem;
  548. memcpy(mm, oldmm, sizeof(*mm));
  549. /* Initializing for Swap token stuff */
  550. mm->token_priority = 0;
  551. mm->last_interval = 0;
  552. if (!mm_init(mm, tsk))
  553. goto fail_nomem;
  554. if (init_new_context(tsk, mm))
  555. goto fail_nocontext;
  556. dup_mm_exe_file(oldmm, mm);
  557. err = dup_mmap(mm, oldmm);
  558. if (err)
  559. goto free_pt;
  560. mm->hiwater_rss = get_mm_rss(mm);
  561. mm->hiwater_vm = mm->total_vm;
  562. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  563. goto free_pt;
  564. return mm;
  565. free_pt:
  566. /* don't put binfmt in mmput, we haven't got module yet */
  567. mm->binfmt = NULL;
  568. mmput(mm);
  569. fail_nomem:
  570. return NULL;
  571. fail_nocontext:
  572. /*
  573. * If init_new_context() failed, we cannot use mmput() to free the mm
  574. * because it calls destroy_context()
  575. */
  576. mm_free_pgd(mm);
  577. free_mm(mm);
  578. return NULL;
  579. }
  580. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  581. {
  582. struct mm_struct * mm, *oldmm;
  583. int retval;
  584. tsk->min_flt = tsk->maj_flt = 0;
  585. tsk->nvcsw = tsk->nivcsw = 0;
  586. #ifdef CONFIG_DETECT_HUNG_TASK
  587. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  588. #endif
  589. tsk->mm = NULL;
  590. tsk->active_mm = NULL;
  591. /*
  592. * Are we cloning a kernel thread?
  593. *
  594. * We need to steal a active VM for that..
  595. */
  596. oldmm = current->mm;
  597. if (!oldmm)
  598. return 0;
  599. if (clone_flags & CLONE_VM) {
  600. atomic_inc(&oldmm->mm_users);
  601. mm = oldmm;
  602. goto good_mm;
  603. }
  604. retval = -ENOMEM;
  605. mm = dup_mm(tsk);
  606. if (!mm)
  607. goto fail_nomem;
  608. good_mm:
  609. /* Initializing for Swap token stuff */
  610. mm->token_priority = 0;
  611. mm->last_interval = 0;
  612. tsk->mm = mm;
  613. tsk->active_mm = mm;
  614. return 0;
  615. fail_nomem:
  616. return retval;
  617. }
  618. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  619. {
  620. struct fs_struct *fs = current->fs;
  621. if (clone_flags & CLONE_FS) {
  622. /* tsk->fs is already what we want */
  623. write_lock(&fs->lock);
  624. if (fs->in_exec) {
  625. write_unlock(&fs->lock);
  626. return -EAGAIN;
  627. }
  628. fs->users++;
  629. write_unlock(&fs->lock);
  630. return 0;
  631. }
  632. tsk->fs = copy_fs_struct(fs);
  633. if (!tsk->fs)
  634. return -ENOMEM;
  635. return 0;
  636. }
  637. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  638. {
  639. struct files_struct *oldf, *newf;
  640. int error = 0;
  641. /*
  642. * A background process may not have any files ...
  643. */
  644. oldf = current->files;
  645. if (!oldf)
  646. goto out;
  647. if (clone_flags & CLONE_FILES) {
  648. atomic_inc(&oldf->count);
  649. goto out;
  650. }
  651. newf = dup_fd(oldf, &error);
  652. if (!newf)
  653. goto out;
  654. tsk->files = newf;
  655. error = 0;
  656. out:
  657. return error;
  658. }
  659. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  660. {
  661. #ifdef CONFIG_BLOCK
  662. struct io_context *ioc = current->io_context;
  663. if (!ioc)
  664. return 0;
  665. /*
  666. * Share io context with parent, if CLONE_IO is set
  667. */
  668. if (clone_flags & CLONE_IO) {
  669. tsk->io_context = ioc_task_link(ioc);
  670. if (unlikely(!tsk->io_context))
  671. return -ENOMEM;
  672. } else if (ioprio_valid(ioc->ioprio)) {
  673. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  674. if (unlikely(!tsk->io_context))
  675. return -ENOMEM;
  676. tsk->io_context->ioprio = ioc->ioprio;
  677. }
  678. #endif
  679. return 0;
  680. }
  681. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  682. {
  683. struct sighand_struct *sig;
  684. if (clone_flags & CLONE_SIGHAND) {
  685. atomic_inc(&current->sighand->count);
  686. return 0;
  687. }
  688. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  689. rcu_assign_pointer(tsk->sighand, sig);
  690. if (!sig)
  691. return -ENOMEM;
  692. atomic_set(&sig->count, 1);
  693. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  694. return 0;
  695. }
  696. void __cleanup_sighand(struct sighand_struct *sighand)
  697. {
  698. if (atomic_dec_and_test(&sighand->count))
  699. kmem_cache_free(sighand_cachep, sighand);
  700. }
  701. /*
  702. * Initialize POSIX timer handling for a thread group.
  703. */
  704. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  705. {
  706. /* Thread group counters. */
  707. thread_group_cputime_init(sig);
  708. /* Expiration times and increments. */
  709. sig->it[CPUCLOCK_PROF].expires = cputime_zero;
  710. sig->it[CPUCLOCK_PROF].incr = cputime_zero;
  711. sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
  712. sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
  713. /* Cached expiration times. */
  714. sig->cputime_expires.prof_exp = cputime_zero;
  715. sig->cputime_expires.virt_exp = cputime_zero;
  716. sig->cputime_expires.sched_exp = 0;
  717. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  718. sig->cputime_expires.prof_exp =
  719. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  720. sig->cputimer.running = 1;
  721. }
  722. /* The timer lists. */
  723. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  724. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  725. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  726. }
  727. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  728. {
  729. struct signal_struct *sig;
  730. if (clone_flags & CLONE_THREAD)
  731. return 0;
  732. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  733. tsk->signal = sig;
  734. if (!sig)
  735. return -ENOMEM;
  736. atomic_set(&sig->count, 1);
  737. atomic_set(&sig->live, 1);
  738. init_waitqueue_head(&sig->wait_chldexit);
  739. sig->flags = 0;
  740. if (clone_flags & CLONE_NEWPID)
  741. sig->flags |= SIGNAL_UNKILLABLE;
  742. sig->group_exit_code = 0;
  743. sig->group_exit_task = NULL;
  744. sig->group_stop_count = 0;
  745. sig->curr_target = tsk;
  746. init_sigpending(&sig->shared_pending);
  747. INIT_LIST_HEAD(&sig->posix_timers);
  748. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  749. sig->it_real_incr.tv64 = 0;
  750. sig->real_timer.function = it_real_fn;
  751. sig->leader = 0; /* session leadership doesn't inherit */
  752. sig->tty_old_pgrp = NULL;
  753. sig->tty = NULL;
  754. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  755. sig->gtime = cputime_zero;
  756. sig->cgtime = cputime_zero;
  757. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  758. sig->prev_utime = sig->prev_stime = cputime_zero;
  759. #endif
  760. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  761. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  762. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  763. sig->maxrss = sig->cmaxrss = 0;
  764. task_io_accounting_init(&sig->ioac);
  765. sig->sum_sched_runtime = 0;
  766. taskstats_tgid_init(sig);
  767. task_lock(current->group_leader);
  768. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  769. task_unlock(current->group_leader);
  770. posix_cpu_timers_init_group(sig);
  771. acct_init_pacct(&sig->pacct);
  772. tty_audit_fork(sig);
  773. sig->oom_adj = current->signal->oom_adj;
  774. return 0;
  775. }
  776. void __cleanup_signal(struct signal_struct *sig)
  777. {
  778. thread_group_cputime_free(sig);
  779. tty_kref_put(sig->tty);
  780. kmem_cache_free(signal_cachep, sig);
  781. }
  782. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  783. {
  784. unsigned long new_flags = p->flags;
  785. new_flags &= ~PF_SUPERPRIV;
  786. new_flags |= PF_FORKNOEXEC;
  787. new_flags |= PF_STARTING;
  788. p->flags = new_flags;
  789. clear_freeze_flag(p);
  790. }
  791. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  792. {
  793. current->clear_child_tid = tidptr;
  794. return task_pid_vnr(current);
  795. }
  796. static void rt_mutex_init_task(struct task_struct *p)
  797. {
  798. raw_spin_lock_init(&p->pi_lock);
  799. #ifdef CONFIG_RT_MUTEXES
  800. plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
  801. p->pi_blocked_on = NULL;
  802. #endif
  803. }
  804. #ifdef CONFIG_MM_OWNER
  805. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  806. {
  807. mm->owner = p;
  808. }
  809. #endif /* CONFIG_MM_OWNER */
  810. /*
  811. * Initialize POSIX timer handling for a single task.
  812. */
  813. static void posix_cpu_timers_init(struct task_struct *tsk)
  814. {
  815. tsk->cputime_expires.prof_exp = cputime_zero;
  816. tsk->cputime_expires.virt_exp = cputime_zero;
  817. tsk->cputime_expires.sched_exp = 0;
  818. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  819. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  820. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  821. }
  822. /*
  823. * This creates a new process as a copy of the old one,
  824. * but does not actually start it yet.
  825. *
  826. * It copies the registers, and all the appropriate
  827. * parts of the process environment (as per the clone
  828. * flags). The actual kick-off is left to the caller.
  829. */
  830. static struct task_struct *copy_process(unsigned long clone_flags,
  831. unsigned long stack_start,
  832. struct pt_regs *regs,
  833. unsigned long stack_size,
  834. int __user *child_tidptr,
  835. struct pid *pid,
  836. int trace)
  837. {
  838. int retval;
  839. struct task_struct *p;
  840. int cgroup_callbacks_done = 0;
  841. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  842. return ERR_PTR(-EINVAL);
  843. /*
  844. * Thread groups must share signals as well, and detached threads
  845. * can only be started up within the thread group.
  846. */
  847. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  848. return ERR_PTR(-EINVAL);
  849. /*
  850. * Shared signal handlers imply shared VM. By way of the above,
  851. * thread groups also imply shared VM. Blocking this case allows
  852. * for various simplifications in other code.
  853. */
  854. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  855. return ERR_PTR(-EINVAL);
  856. /*
  857. * Siblings of global init remain as zombies on exit since they are
  858. * not reaped by their parent (swapper). To solve this and to avoid
  859. * multi-rooted process trees, prevent global and container-inits
  860. * from creating siblings.
  861. */
  862. if ((clone_flags & CLONE_PARENT) &&
  863. current->signal->flags & SIGNAL_UNKILLABLE)
  864. return ERR_PTR(-EINVAL);
  865. retval = security_task_create(clone_flags);
  866. if (retval)
  867. goto fork_out;
  868. retval = -ENOMEM;
  869. p = dup_task_struct(current);
  870. if (!p)
  871. goto fork_out;
  872. ftrace_graph_init_task(p);
  873. rt_mutex_init_task(p);
  874. #ifdef CONFIG_PROVE_LOCKING
  875. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  876. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  877. #endif
  878. retval = -EAGAIN;
  879. if (atomic_read(&p->real_cred->user->processes) >=
  880. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  881. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  882. p->real_cred->user != INIT_USER)
  883. goto bad_fork_free;
  884. }
  885. retval = copy_creds(p, clone_flags);
  886. if (retval < 0)
  887. goto bad_fork_free;
  888. /*
  889. * If multiple threads are within copy_process(), then this check
  890. * triggers too late. This doesn't hurt, the check is only there
  891. * to stop root fork bombs.
  892. */
  893. retval = -EAGAIN;
  894. if (nr_threads >= max_threads)
  895. goto bad_fork_cleanup_count;
  896. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  897. goto bad_fork_cleanup_count;
  898. p->did_exec = 0;
  899. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  900. copy_flags(clone_flags, p);
  901. INIT_LIST_HEAD(&p->children);
  902. INIT_LIST_HEAD(&p->sibling);
  903. rcu_copy_process(p);
  904. p->vfork_done = NULL;
  905. spin_lock_init(&p->alloc_lock);
  906. init_sigpending(&p->pending);
  907. p->utime = cputime_zero;
  908. p->stime = cputime_zero;
  909. p->gtime = cputime_zero;
  910. p->utimescaled = cputime_zero;
  911. p->stimescaled = cputime_zero;
  912. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  913. p->prev_utime = cputime_zero;
  914. p->prev_stime = cputime_zero;
  915. #endif
  916. p->default_timer_slack_ns = current->timer_slack_ns;
  917. task_io_accounting_init(&p->ioac);
  918. acct_clear_integrals(p);
  919. posix_cpu_timers_init(p);
  920. p->lock_depth = -1; /* -1 = no lock */
  921. do_posix_clock_monotonic_gettime(&p->start_time);
  922. p->real_start_time = p->start_time;
  923. monotonic_to_bootbased(&p->real_start_time);
  924. p->io_context = NULL;
  925. p->audit_context = NULL;
  926. cgroup_fork(p);
  927. #ifdef CONFIG_NUMA
  928. p->mempolicy = mpol_dup(p->mempolicy);
  929. if (IS_ERR(p->mempolicy)) {
  930. retval = PTR_ERR(p->mempolicy);
  931. p->mempolicy = NULL;
  932. goto bad_fork_cleanup_cgroup;
  933. }
  934. mpol_fix_fork_child_flag(p);
  935. #endif
  936. #ifdef CONFIG_TRACE_IRQFLAGS
  937. p->irq_events = 0;
  938. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  939. p->hardirqs_enabled = 1;
  940. #else
  941. p->hardirqs_enabled = 0;
  942. #endif
  943. p->hardirq_enable_ip = 0;
  944. p->hardirq_enable_event = 0;
  945. p->hardirq_disable_ip = _THIS_IP_;
  946. p->hardirq_disable_event = 0;
  947. p->softirqs_enabled = 1;
  948. p->softirq_enable_ip = _THIS_IP_;
  949. p->softirq_enable_event = 0;
  950. p->softirq_disable_ip = 0;
  951. p->softirq_disable_event = 0;
  952. p->hardirq_context = 0;
  953. p->softirq_context = 0;
  954. #endif
  955. #ifdef CONFIG_LOCKDEP
  956. p->lockdep_depth = 0; /* no locks held yet */
  957. p->curr_chain_key = 0;
  958. p->lockdep_recursion = 0;
  959. #endif
  960. #ifdef CONFIG_DEBUG_MUTEXES
  961. p->blocked_on = NULL; /* not blocked yet */
  962. #endif
  963. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  964. p->memcg_batch.do_batch = 0;
  965. p->memcg_batch.memcg = NULL;
  966. #endif
  967. p->bts = NULL;
  968. p->stack_start = stack_start;
  969. /* Perform scheduler related setup. Assign this task to a CPU. */
  970. sched_fork(p, clone_flags);
  971. retval = perf_event_init_task(p);
  972. if (retval)
  973. goto bad_fork_cleanup_policy;
  974. if ((retval = audit_alloc(p)))
  975. goto bad_fork_cleanup_policy;
  976. /* copy all the process information */
  977. if ((retval = copy_semundo(clone_flags, p)))
  978. goto bad_fork_cleanup_audit;
  979. if ((retval = copy_files(clone_flags, p)))
  980. goto bad_fork_cleanup_semundo;
  981. if ((retval = copy_fs(clone_flags, p)))
  982. goto bad_fork_cleanup_files;
  983. if ((retval = copy_sighand(clone_flags, p)))
  984. goto bad_fork_cleanup_fs;
  985. if ((retval = copy_signal(clone_flags, p)))
  986. goto bad_fork_cleanup_sighand;
  987. if ((retval = copy_mm(clone_flags, p)))
  988. goto bad_fork_cleanup_signal;
  989. if ((retval = copy_namespaces(clone_flags, p)))
  990. goto bad_fork_cleanup_mm;
  991. if ((retval = copy_io(clone_flags, p)))
  992. goto bad_fork_cleanup_namespaces;
  993. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  994. if (retval)
  995. goto bad_fork_cleanup_io;
  996. if (pid != &init_struct_pid) {
  997. retval = -ENOMEM;
  998. pid = alloc_pid(p->nsproxy->pid_ns);
  999. if (!pid)
  1000. goto bad_fork_cleanup_io;
  1001. if (clone_flags & CLONE_NEWPID) {
  1002. retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
  1003. if (retval < 0)
  1004. goto bad_fork_free_pid;
  1005. }
  1006. }
  1007. p->pid = pid_nr(pid);
  1008. p->tgid = p->pid;
  1009. if (clone_flags & CLONE_THREAD)
  1010. p->tgid = current->tgid;
  1011. if (current->nsproxy != p->nsproxy) {
  1012. retval = ns_cgroup_clone(p, pid);
  1013. if (retval)
  1014. goto bad_fork_free_pid;
  1015. }
  1016. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1017. /*
  1018. * Clear TID on mm_release()?
  1019. */
  1020. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1021. #ifdef CONFIG_FUTEX
  1022. p->robust_list = NULL;
  1023. #ifdef CONFIG_COMPAT
  1024. p->compat_robust_list = NULL;
  1025. #endif
  1026. INIT_LIST_HEAD(&p->pi_state_list);
  1027. p->pi_state_cache = NULL;
  1028. #endif
  1029. /*
  1030. * sigaltstack should be cleared when sharing the same VM
  1031. */
  1032. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1033. p->sas_ss_sp = p->sas_ss_size = 0;
  1034. /*
  1035. * Syscall tracing and stepping should be turned off in the
  1036. * child regardless of CLONE_PTRACE.
  1037. */
  1038. user_disable_single_step(p);
  1039. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1040. #ifdef TIF_SYSCALL_EMU
  1041. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1042. #endif
  1043. clear_all_latency_tracing(p);
  1044. /* ok, now we should be set up.. */
  1045. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1046. p->pdeath_signal = 0;
  1047. p->exit_state = 0;
  1048. /*
  1049. * Ok, make it visible to the rest of the system.
  1050. * We dont wake it up yet.
  1051. */
  1052. p->group_leader = p;
  1053. INIT_LIST_HEAD(&p->thread_group);
  1054. /* Now that the task is set up, run cgroup callbacks if
  1055. * necessary. We need to run them before the task is visible
  1056. * on the tasklist. */
  1057. cgroup_fork_callbacks(p);
  1058. cgroup_callbacks_done = 1;
  1059. /* Need tasklist lock for parent etc handling! */
  1060. write_lock_irq(&tasklist_lock);
  1061. /*
  1062. * The task hasn't been attached yet, so its cpus_allowed mask will
  1063. * not be changed, nor will its assigned CPU.
  1064. *
  1065. * The cpus_allowed mask of the parent may have changed after it was
  1066. * copied first time - so re-copy it here, then check the child's CPU
  1067. * to ensure it is on a valid CPU (and if not, just force it back to
  1068. * parent's CPU). This avoids alot of nasty races.
  1069. */
  1070. p->cpus_allowed = current->cpus_allowed;
  1071. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1072. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1073. !cpu_online(task_cpu(p))))
  1074. set_task_cpu(p, smp_processor_id());
  1075. /* CLONE_PARENT re-uses the old parent */
  1076. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1077. p->real_parent = current->real_parent;
  1078. p->parent_exec_id = current->parent_exec_id;
  1079. } else {
  1080. p->real_parent = current;
  1081. p->parent_exec_id = current->self_exec_id;
  1082. }
  1083. spin_lock(&current->sighand->siglock);
  1084. /*
  1085. * Process group and session signals need to be delivered to just the
  1086. * parent before the fork or both the parent and the child after the
  1087. * fork. Restart if a signal comes in before we add the new process to
  1088. * it's process group.
  1089. * A fatal signal pending means that current will exit, so the new
  1090. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1091. */
  1092. recalc_sigpending();
  1093. if (signal_pending(current)) {
  1094. spin_unlock(&current->sighand->siglock);
  1095. write_unlock_irq(&tasklist_lock);
  1096. retval = -ERESTARTNOINTR;
  1097. goto bad_fork_free_pid;
  1098. }
  1099. if (clone_flags & CLONE_THREAD) {
  1100. atomic_inc(&current->signal->count);
  1101. atomic_inc(&current->signal->live);
  1102. p->group_leader = current->group_leader;
  1103. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1104. }
  1105. if (likely(p->pid)) {
  1106. tracehook_finish_clone(p, clone_flags, trace);
  1107. if (thread_group_leader(p)) {
  1108. if (clone_flags & CLONE_NEWPID)
  1109. p->nsproxy->pid_ns->child_reaper = p;
  1110. p->signal->leader_pid = pid;
  1111. tty_kref_put(p->signal->tty);
  1112. p->signal->tty = tty_kref_get(current->signal->tty);
  1113. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1114. attach_pid(p, PIDTYPE_SID, task_session(current));
  1115. list_add_tail(&p->sibling, &p->real_parent->children);
  1116. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1117. __get_cpu_var(process_counts)++;
  1118. }
  1119. attach_pid(p, PIDTYPE_PID, pid);
  1120. nr_threads++;
  1121. }
  1122. total_forks++;
  1123. spin_unlock(&current->sighand->siglock);
  1124. write_unlock_irq(&tasklist_lock);
  1125. proc_fork_connector(p);
  1126. cgroup_post_fork(p);
  1127. perf_event_fork(p);
  1128. return p;
  1129. bad_fork_free_pid:
  1130. if (pid != &init_struct_pid)
  1131. free_pid(pid);
  1132. bad_fork_cleanup_io:
  1133. if (p->io_context)
  1134. exit_io_context(p);
  1135. bad_fork_cleanup_namespaces:
  1136. exit_task_namespaces(p);
  1137. bad_fork_cleanup_mm:
  1138. if (p->mm)
  1139. mmput(p->mm);
  1140. bad_fork_cleanup_signal:
  1141. if (!(clone_flags & CLONE_THREAD))
  1142. __cleanup_signal(p->signal);
  1143. bad_fork_cleanup_sighand:
  1144. __cleanup_sighand(p->sighand);
  1145. bad_fork_cleanup_fs:
  1146. exit_fs(p); /* blocking */
  1147. bad_fork_cleanup_files:
  1148. exit_files(p); /* blocking */
  1149. bad_fork_cleanup_semundo:
  1150. exit_sem(p);
  1151. bad_fork_cleanup_audit:
  1152. audit_free(p);
  1153. bad_fork_cleanup_policy:
  1154. perf_event_free_task(p);
  1155. #ifdef CONFIG_NUMA
  1156. mpol_put(p->mempolicy);
  1157. bad_fork_cleanup_cgroup:
  1158. #endif
  1159. cgroup_exit(p, cgroup_callbacks_done);
  1160. delayacct_tsk_free(p);
  1161. module_put(task_thread_info(p)->exec_domain->module);
  1162. bad_fork_cleanup_count:
  1163. atomic_dec(&p->cred->user->processes);
  1164. exit_creds(p);
  1165. bad_fork_free:
  1166. free_task(p);
  1167. fork_out:
  1168. return ERR_PTR(retval);
  1169. }
  1170. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1171. {
  1172. memset(regs, 0, sizeof(struct pt_regs));
  1173. return regs;
  1174. }
  1175. struct task_struct * __cpuinit fork_idle(int cpu)
  1176. {
  1177. struct task_struct *task;
  1178. struct pt_regs regs;
  1179. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1180. &init_struct_pid, 0);
  1181. if (!IS_ERR(task))
  1182. init_idle(task, cpu);
  1183. return task;
  1184. }
  1185. /*
  1186. * Ok, this is the main fork-routine.
  1187. *
  1188. * It copies the process, and if successful kick-starts
  1189. * it and waits for it to finish using the VM if required.
  1190. */
  1191. long do_fork(unsigned long clone_flags,
  1192. unsigned long stack_start,
  1193. struct pt_regs *regs,
  1194. unsigned long stack_size,
  1195. int __user *parent_tidptr,
  1196. int __user *child_tidptr)
  1197. {
  1198. struct task_struct *p;
  1199. int trace = 0;
  1200. long nr;
  1201. /*
  1202. * Do some preliminary argument and permissions checking before we
  1203. * actually start allocating stuff
  1204. */
  1205. if (clone_flags & CLONE_NEWUSER) {
  1206. if (clone_flags & CLONE_THREAD)
  1207. return -EINVAL;
  1208. /* hopefully this check will go away when userns support is
  1209. * complete
  1210. */
  1211. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1212. !capable(CAP_SETGID))
  1213. return -EPERM;
  1214. }
  1215. /*
  1216. * We hope to recycle these flags after 2.6.26
  1217. */
  1218. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1219. static int __read_mostly count = 100;
  1220. if (count > 0 && printk_ratelimit()) {
  1221. char comm[TASK_COMM_LEN];
  1222. count--;
  1223. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1224. "clone flags 0x%lx\n",
  1225. get_task_comm(comm, current),
  1226. clone_flags & CLONE_STOPPED);
  1227. }
  1228. }
  1229. /*
  1230. * When called from kernel_thread, don't do user tracing stuff.
  1231. */
  1232. if (likely(user_mode(regs)))
  1233. trace = tracehook_prepare_clone(clone_flags);
  1234. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1235. child_tidptr, NULL, trace);
  1236. /*
  1237. * Do this prior waking up the new thread - the thread pointer
  1238. * might get invalid after that point, if the thread exits quickly.
  1239. */
  1240. if (!IS_ERR(p)) {
  1241. struct completion vfork;
  1242. trace_sched_process_fork(current, p);
  1243. nr = task_pid_vnr(p);
  1244. if (clone_flags & CLONE_PARENT_SETTID)
  1245. put_user(nr, parent_tidptr);
  1246. if (clone_flags & CLONE_VFORK) {
  1247. p->vfork_done = &vfork;
  1248. init_completion(&vfork);
  1249. }
  1250. audit_finish_fork(p);
  1251. tracehook_report_clone(regs, clone_flags, nr, p);
  1252. /*
  1253. * We set PF_STARTING at creation in case tracing wants to
  1254. * use this to distinguish a fully live task from one that
  1255. * hasn't gotten to tracehook_report_clone() yet. Now we
  1256. * clear it and set the child going.
  1257. */
  1258. p->flags &= ~PF_STARTING;
  1259. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1260. /*
  1261. * We'll start up with an immediate SIGSTOP.
  1262. */
  1263. sigaddset(&p->pending.signal, SIGSTOP);
  1264. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1265. __set_task_state(p, TASK_STOPPED);
  1266. } else {
  1267. wake_up_new_task(p, clone_flags);
  1268. }
  1269. tracehook_report_clone_complete(trace, regs,
  1270. clone_flags, nr, p);
  1271. if (clone_flags & CLONE_VFORK) {
  1272. freezer_do_not_count();
  1273. wait_for_completion(&vfork);
  1274. freezer_count();
  1275. tracehook_report_vfork_done(p, nr);
  1276. }
  1277. } else {
  1278. nr = PTR_ERR(p);
  1279. }
  1280. return nr;
  1281. }
  1282. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1283. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1284. #endif
  1285. static void sighand_ctor(void *data)
  1286. {
  1287. struct sighand_struct *sighand = data;
  1288. spin_lock_init(&sighand->siglock);
  1289. init_waitqueue_head(&sighand->signalfd_wqh);
  1290. }
  1291. void __init proc_caches_init(void)
  1292. {
  1293. sighand_cachep = kmem_cache_create("sighand_cache",
  1294. sizeof(struct sighand_struct), 0,
  1295. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1296. SLAB_NOTRACK, sighand_ctor);
  1297. signal_cachep = kmem_cache_create("signal_cache",
  1298. sizeof(struct signal_struct), 0,
  1299. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1300. files_cachep = kmem_cache_create("files_cache",
  1301. sizeof(struct files_struct), 0,
  1302. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1303. fs_cachep = kmem_cache_create("fs_cache",
  1304. sizeof(struct fs_struct), 0,
  1305. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1306. mm_cachep = kmem_cache_create("mm_struct",
  1307. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1308. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1309. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1310. mmap_init();
  1311. }
  1312. /*
  1313. * Check constraints on flags passed to the unshare system call and
  1314. * force unsharing of additional process context as appropriate.
  1315. */
  1316. static void check_unshare_flags(unsigned long *flags_ptr)
  1317. {
  1318. /*
  1319. * If unsharing a thread from a thread group, must also
  1320. * unshare vm.
  1321. */
  1322. if (*flags_ptr & CLONE_THREAD)
  1323. *flags_ptr |= CLONE_VM;
  1324. /*
  1325. * If unsharing vm, must also unshare signal handlers.
  1326. */
  1327. if (*flags_ptr & CLONE_VM)
  1328. *flags_ptr |= CLONE_SIGHAND;
  1329. /*
  1330. * If unsharing signal handlers and the task was created
  1331. * using CLONE_THREAD, then must unshare the thread
  1332. */
  1333. if ((*flags_ptr & CLONE_SIGHAND) &&
  1334. (atomic_read(&current->signal->count) > 1))
  1335. *flags_ptr |= CLONE_THREAD;
  1336. /*
  1337. * If unsharing namespace, must also unshare filesystem information.
  1338. */
  1339. if (*flags_ptr & CLONE_NEWNS)
  1340. *flags_ptr |= CLONE_FS;
  1341. }
  1342. /*
  1343. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1344. */
  1345. static int unshare_thread(unsigned long unshare_flags)
  1346. {
  1347. if (unshare_flags & CLONE_THREAD)
  1348. return -EINVAL;
  1349. return 0;
  1350. }
  1351. /*
  1352. * Unshare the filesystem structure if it is being shared
  1353. */
  1354. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1355. {
  1356. struct fs_struct *fs = current->fs;
  1357. if (!(unshare_flags & CLONE_FS) || !fs)
  1358. return 0;
  1359. /* don't need lock here; in the worst case we'll do useless copy */
  1360. if (fs->users == 1)
  1361. return 0;
  1362. *new_fsp = copy_fs_struct(fs);
  1363. if (!*new_fsp)
  1364. return -ENOMEM;
  1365. return 0;
  1366. }
  1367. /*
  1368. * Unsharing of sighand is not supported yet
  1369. */
  1370. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1371. {
  1372. struct sighand_struct *sigh = current->sighand;
  1373. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1374. return -EINVAL;
  1375. else
  1376. return 0;
  1377. }
  1378. /*
  1379. * Unshare vm if it is being shared
  1380. */
  1381. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1382. {
  1383. struct mm_struct *mm = current->mm;
  1384. if ((unshare_flags & CLONE_VM) &&
  1385. (mm && atomic_read(&mm->mm_users) > 1)) {
  1386. return -EINVAL;
  1387. }
  1388. return 0;
  1389. }
  1390. /*
  1391. * Unshare file descriptor table if it is being shared
  1392. */
  1393. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1394. {
  1395. struct files_struct *fd = current->files;
  1396. int error = 0;
  1397. if ((unshare_flags & CLONE_FILES) &&
  1398. (fd && atomic_read(&fd->count) > 1)) {
  1399. *new_fdp = dup_fd(fd, &error);
  1400. if (!*new_fdp)
  1401. return error;
  1402. }
  1403. return 0;
  1404. }
  1405. /*
  1406. * unshare allows a process to 'unshare' part of the process
  1407. * context which was originally shared using clone. copy_*
  1408. * functions used by do_fork() cannot be used here directly
  1409. * because they modify an inactive task_struct that is being
  1410. * constructed. Here we are modifying the current, active,
  1411. * task_struct.
  1412. */
  1413. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1414. {
  1415. int err = 0;
  1416. struct fs_struct *fs, *new_fs = NULL;
  1417. struct sighand_struct *new_sigh = NULL;
  1418. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1419. struct files_struct *fd, *new_fd = NULL;
  1420. struct nsproxy *new_nsproxy = NULL;
  1421. int do_sysvsem = 0;
  1422. check_unshare_flags(&unshare_flags);
  1423. /* Return -EINVAL for all unsupported flags */
  1424. err = -EINVAL;
  1425. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1426. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1427. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1428. goto bad_unshare_out;
  1429. /*
  1430. * CLONE_NEWIPC must also detach from the undolist: after switching
  1431. * to a new ipc namespace, the semaphore arrays from the old
  1432. * namespace are unreachable.
  1433. */
  1434. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1435. do_sysvsem = 1;
  1436. if ((err = unshare_thread(unshare_flags)))
  1437. goto bad_unshare_out;
  1438. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1439. goto bad_unshare_cleanup_thread;
  1440. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1441. goto bad_unshare_cleanup_fs;
  1442. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1443. goto bad_unshare_cleanup_sigh;
  1444. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1445. goto bad_unshare_cleanup_vm;
  1446. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1447. new_fs)))
  1448. goto bad_unshare_cleanup_fd;
  1449. if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
  1450. if (do_sysvsem) {
  1451. /*
  1452. * CLONE_SYSVSEM is equivalent to sys_exit().
  1453. */
  1454. exit_sem(current);
  1455. }
  1456. if (new_nsproxy) {
  1457. switch_task_namespaces(current, new_nsproxy);
  1458. new_nsproxy = NULL;
  1459. }
  1460. task_lock(current);
  1461. if (new_fs) {
  1462. fs = current->fs;
  1463. write_lock(&fs->lock);
  1464. current->fs = new_fs;
  1465. if (--fs->users)
  1466. new_fs = NULL;
  1467. else
  1468. new_fs = fs;
  1469. write_unlock(&fs->lock);
  1470. }
  1471. if (new_mm) {
  1472. mm = current->mm;
  1473. active_mm = current->active_mm;
  1474. current->mm = new_mm;
  1475. current->active_mm = new_mm;
  1476. activate_mm(active_mm, new_mm);
  1477. new_mm = mm;
  1478. }
  1479. if (new_fd) {
  1480. fd = current->files;
  1481. current->files = new_fd;
  1482. new_fd = fd;
  1483. }
  1484. task_unlock(current);
  1485. }
  1486. if (new_nsproxy)
  1487. put_nsproxy(new_nsproxy);
  1488. bad_unshare_cleanup_fd:
  1489. if (new_fd)
  1490. put_files_struct(new_fd);
  1491. bad_unshare_cleanup_vm:
  1492. if (new_mm)
  1493. mmput(new_mm);
  1494. bad_unshare_cleanup_sigh:
  1495. if (new_sigh)
  1496. if (atomic_dec_and_test(&new_sigh->count))
  1497. kmem_cache_free(sighand_cachep, new_sigh);
  1498. bad_unshare_cleanup_fs:
  1499. if (new_fs)
  1500. free_fs_struct(new_fs);
  1501. bad_unshare_cleanup_thread:
  1502. bad_unshare_out:
  1503. return err;
  1504. }
  1505. /*
  1506. * Helper to unshare the files of the current task.
  1507. * We don't want to expose copy_files internals to
  1508. * the exec layer of the kernel.
  1509. */
  1510. int unshare_files(struct files_struct **displaced)
  1511. {
  1512. struct task_struct *task = current;
  1513. struct files_struct *copy = NULL;
  1514. int error;
  1515. error = unshare_fd(CLONE_FILES, &copy);
  1516. if (error || !copy) {
  1517. *displaced = NULL;
  1518. return error;
  1519. }
  1520. *displaced = task->files;
  1521. task_lock(task);
  1522. task->files = copy;
  1523. task_unlock(task);
  1524. return 0;
  1525. }