exit.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/unistd.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/mmu_context.h>
  56. #include "cred-internals.h"
  57. static void exit_mm(struct task_struct * tsk);
  58. static void __unhash_process(struct task_struct *p)
  59. {
  60. nr_threads--;
  61. detach_pid(p, PIDTYPE_PID);
  62. if (thread_group_leader(p)) {
  63. detach_pid(p, PIDTYPE_PGID);
  64. detach_pid(p, PIDTYPE_SID);
  65. list_del_rcu(&p->tasks);
  66. list_del_init(&p->sibling);
  67. __get_cpu_var(process_counts)--;
  68. }
  69. list_del_rcu(&p->thread_group);
  70. }
  71. /*
  72. * This function expects the tasklist_lock write-locked.
  73. */
  74. static void __exit_signal(struct task_struct *tsk)
  75. {
  76. struct signal_struct *sig = tsk->signal;
  77. struct sighand_struct *sighand;
  78. BUG_ON(!sig);
  79. BUG_ON(!atomic_read(&sig->count));
  80. sighand = rcu_dereference(tsk->sighand);
  81. spin_lock(&sighand->siglock);
  82. posix_cpu_timers_exit(tsk);
  83. if (atomic_dec_and_test(&sig->count))
  84. posix_cpu_timers_exit_group(tsk);
  85. else {
  86. /*
  87. * If there is any task waiting for the group exit
  88. * then notify it:
  89. */
  90. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  91. wake_up_process(sig->group_exit_task);
  92. if (tsk == sig->curr_target)
  93. sig->curr_target = next_thread(tsk);
  94. /*
  95. * Accumulate here the counters for all threads but the
  96. * group leader as they die, so they can be added into
  97. * the process-wide totals when those are taken.
  98. * The group leader stays around as a zombie as long
  99. * as there are other threads. When it gets reaped,
  100. * the exit.c code will add its counts into these totals.
  101. * We won't ever get here for the group leader, since it
  102. * will have been the last reference on the signal_struct.
  103. */
  104. sig->utime = cputime_add(sig->utime, tsk->utime);
  105. sig->stime = cputime_add(sig->stime, tsk->stime);
  106. sig->gtime = cputime_add(sig->gtime, tsk->gtime);
  107. sig->min_flt += tsk->min_flt;
  108. sig->maj_flt += tsk->maj_flt;
  109. sig->nvcsw += tsk->nvcsw;
  110. sig->nivcsw += tsk->nivcsw;
  111. sig->inblock += task_io_get_inblock(tsk);
  112. sig->oublock += task_io_get_oublock(tsk);
  113. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  114. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  115. sig = NULL; /* Marker for below. */
  116. }
  117. __unhash_process(tsk);
  118. /*
  119. * Do this under ->siglock, we can race with another thread
  120. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  121. */
  122. flush_sigqueue(&tsk->pending);
  123. tsk->signal = NULL;
  124. tsk->sighand = NULL;
  125. spin_unlock(&sighand->siglock);
  126. __cleanup_sighand(sighand);
  127. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  128. if (sig) {
  129. flush_sigqueue(&sig->shared_pending);
  130. taskstats_tgid_free(sig);
  131. /*
  132. * Make sure ->signal can't go away under rq->lock,
  133. * see account_group_exec_runtime().
  134. */
  135. task_rq_unlock_wait(tsk);
  136. __cleanup_signal(sig);
  137. }
  138. }
  139. static void delayed_put_task_struct(struct rcu_head *rhp)
  140. {
  141. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  142. #ifdef CONFIG_PERF_EVENTS
  143. WARN_ON_ONCE(tsk->perf_event_ctxp);
  144. #endif
  145. trace_sched_process_free(tsk);
  146. put_task_struct(tsk);
  147. }
  148. void release_task(struct task_struct * p)
  149. {
  150. struct task_struct *leader;
  151. int zap_leader;
  152. repeat:
  153. tracehook_prepare_release_task(p);
  154. /* don't need to get the RCU readlock here - the process is dead and
  155. * can't be modifying its own credentials */
  156. atomic_dec(&__task_cred(p)->user->processes);
  157. proc_flush_task(p);
  158. write_lock_irq(&tasklist_lock);
  159. tracehook_finish_release_task(p);
  160. __exit_signal(p);
  161. /*
  162. * If we are the last non-leader member of the thread
  163. * group, and the leader is zombie, then notify the
  164. * group leader's parent process. (if it wants notification.)
  165. */
  166. zap_leader = 0;
  167. leader = p->group_leader;
  168. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  169. BUG_ON(task_detached(leader));
  170. do_notify_parent(leader, leader->exit_signal);
  171. /*
  172. * If we were the last child thread and the leader has
  173. * exited already, and the leader's parent ignores SIGCHLD,
  174. * then we are the one who should release the leader.
  175. *
  176. * do_notify_parent() will have marked it self-reaping in
  177. * that case.
  178. */
  179. zap_leader = task_detached(leader);
  180. /*
  181. * This maintains the invariant that release_task()
  182. * only runs on a task in EXIT_DEAD, just for sanity.
  183. */
  184. if (zap_leader)
  185. leader->exit_state = EXIT_DEAD;
  186. }
  187. write_unlock_irq(&tasklist_lock);
  188. release_thread(p);
  189. call_rcu(&p->rcu, delayed_put_task_struct);
  190. p = leader;
  191. if (unlikely(zap_leader))
  192. goto repeat;
  193. }
  194. /*
  195. * This checks not only the pgrp, but falls back on the pid if no
  196. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  197. * without this...
  198. *
  199. * The caller must hold rcu lock or the tasklist lock.
  200. */
  201. struct pid *session_of_pgrp(struct pid *pgrp)
  202. {
  203. struct task_struct *p;
  204. struct pid *sid = NULL;
  205. p = pid_task(pgrp, PIDTYPE_PGID);
  206. if (p == NULL)
  207. p = pid_task(pgrp, PIDTYPE_PID);
  208. if (p != NULL)
  209. sid = task_session(p);
  210. return sid;
  211. }
  212. /*
  213. * Determine if a process group is "orphaned", according to the POSIX
  214. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  215. * by terminal-generated stop signals. Newly orphaned process groups are
  216. * to receive a SIGHUP and a SIGCONT.
  217. *
  218. * "I ask you, have you ever known what it is to be an orphan?"
  219. */
  220. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  221. {
  222. struct task_struct *p;
  223. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  224. if ((p == ignored_task) ||
  225. (p->exit_state && thread_group_empty(p)) ||
  226. is_global_init(p->real_parent))
  227. continue;
  228. if (task_pgrp(p->real_parent) != pgrp &&
  229. task_session(p->real_parent) == task_session(p))
  230. return 0;
  231. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  232. return 1;
  233. }
  234. int is_current_pgrp_orphaned(void)
  235. {
  236. int retval;
  237. read_lock(&tasklist_lock);
  238. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  239. read_unlock(&tasklist_lock);
  240. return retval;
  241. }
  242. static int has_stopped_jobs(struct pid *pgrp)
  243. {
  244. int retval = 0;
  245. struct task_struct *p;
  246. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  247. if (!task_is_stopped(p))
  248. continue;
  249. retval = 1;
  250. break;
  251. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  252. return retval;
  253. }
  254. /*
  255. * Check to see if any process groups have become orphaned as
  256. * a result of our exiting, and if they have any stopped jobs,
  257. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  258. */
  259. static void
  260. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  261. {
  262. struct pid *pgrp = task_pgrp(tsk);
  263. struct task_struct *ignored_task = tsk;
  264. if (!parent)
  265. /* exit: our father is in a different pgrp than
  266. * we are and we were the only connection outside.
  267. */
  268. parent = tsk->real_parent;
  269. else
  270. /* reparent: our child is in a different pgrp than
  271. * we are, and it was the only connection outside.
  272. */
  273. ignored_task = NULL;
  274. if (task_pgrp(parent) != pgrp &&
  275. task_session(parent) == task_session(tsk) &&
  276. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  277. has_stopped_jobs(pgrp)) {
  278. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  279. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  280. }
  281. }
  282. /**
  283. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  284. *
  285. * If a kernel thread is launched as a result of a system call, or if
  286. * it ever exits, it should generally reparent itself to kthreadd so it
  287. * isn't in the way of other processes and is correctly cleaned up on exit.
  288. *
  289. * The various task state such as scheduling policy and priority may have
  290. * been inherited from a user process, so we reset them to sane values here.
  291. *
  292. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  293. */
  294. static void reparent_to_kthreadd(void)
  295. {
  296. write_lock_irq(&tasklist_lock);
  297. ptrace_unlink(current);
  298. /* Reparent to init */
  299. current->real_parent = current->parent = kthreadd_task;
  300. list_move_tail(&current->sibling, &current->real_parent->children);
  301. /* Set the exit signal to SIGCHLD so we signal init on exit */
  302. current->exit_signal = SIGCHLD;
  303. if (task_nice(current) < 0)
  304. set_user_nice(current, 0);
  305. /* cpus_allowed? */
  306. /* rt_priority? */
  307. /* signals? */
  308. memcpy(current->signal->rlim, init_task.signal->rlim,
  309. sizeof(current->signal->rlim));
  310. atomic_inc(&init_cred.usage);
  311. commit_creds(&init_cred);
  312. write_unlock_irq(&tasklist_lock);
  313. }
  314. void __set_special_pids(struct pid *pid)
  315. {
  316. struct task_struct *curr = current->group_leader;
  317. if (task_session(curr) != pid)
  318. change_pid(curr, PIDTYPE_SID, pid);
  319. if (task_pgrp(curr) != pid)
  320. change_pid(curr, PIDTYPE_PGID, pid);
  321. }
  322. static void set_special_pids(struct pid *pid)
  323. {
  324. write_lock_irq(&tasklist_lock);
  325. __set_special_pids(pid);
  326. write_unlock_irq(&tasklist_lock);
  327. }
  328. /*
  329. * Let kernel threads use this to say that they allow a certain signal.
  330. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  331. */
  332. int allow_signal(int sig)
  333. {
  334. if (!valid_signal(sig) || sig < 1)
  335. return -EINVAL;
  336. spin_lock_irq(&current->sighand->siglock);
  337. /* This is only needed for daemonize()'ed kthreads */
  338. sigdelset(&current->blocked, sig);
  339. /*
  340. * Kernel threads handle their own signals. Let the signal code
  341. * know it'll be handled, so that they don't get converted to
  342. * SIGKILL or just silently dropped.
  343. */
  344. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  345. recalc_sigpending();
  346. spin_unlock_irq(&current->sighand->siglock);
  347. return 0;
  348. }
  349. EXPORT_SYMBOL(allow_signal);
  350. int disallow_signal(int sig)
  351. {
  352. if (!valid_signal(sig) || sig < 1)
  353. return -EINVAL;
  354. spin_lock_irq(&current->sighand->siglock);
  355. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  356. recalc_sigpending();
  357. spin_unlock_irq(&current->sighand->siglock);
  358. return 0;
  359. }
  360. EXPORT_SYMBOL(disallow_signal);
  361. /*
  362. * Put all the gunge required to become a kernel thread without
  363. * attached user resources in one place where it belongs.
  364. */
  365. void daemonize(const char *name, ...)
  366. {
  367. va_list args;
  368. sigset_t blocked;
  369. va_start(args, name);
  370. vsnprintf(current->comm, sizeof(current->comm), name, args);
  371. va_end(args);
  372. /*
  373. * If we were started as result of loading a module, close all of the
  374. * user space pages. We don't need them, and if we didn't close them
  375. * they would be locked into memory.
  376. */
  377. exit_mm(current);
  378. /*
  379. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  380. * or suspend transition begins right now.
  381. */
  382. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  383. if (current->nsproxy != &init_nsproxy) {
  384. get_nsproxy(&init_nsproxy);
  385. switch_task_namespaces(current, &init_nsproxy);
  386. }
  387. set_special_pids(&init_struct_pid);
  388. proc_clear_tty(current);
  389. /* Block and flush all signals */
  390. sigfillset(&blocked);
  391. sigprocmask(SIG_BLOCK, &blocked, NULL);
  392. flush_signals(current);
  393. /* Become as one with the init task */
  394. daemonize_fs_struct();
  395. exit_files(current);
  396. current->files = init_task.files;
  397. atomic_inc(&current->files->count);
  398. reparent_to_kthreadd();
  399. }
  400. EXPORT_SYMBOL(daemonize);
  401. static void close_files(struct files_struct * files)
  402. {
  403. int i, j;
  404. struct fdtable *fdt;
  405. j = 0;
  406. /*
  407. * It is safe to dereference the fd table without RCU or
  408. * ->file_lock because this is the last reference to the
  409. * files structure.
  410. */
  411. fdt = files_fdtable(files);
  412. for (;;) {
  413. unsigned long set;
  414. i = j * __NFDBITS;
  415. if (i >= fdt->max_fds)
  416. break;
  417. set = fdt->open_fds->fds_bits[j++];
  418. while (set) {
  419. if (set & 1) {
  420. struct file * file = xchg(&fdt->fd[i], NULL);
  421. if (file) {
  422. filp_close(file, files);
  423. cond_resched();
  424. }
  425. }
  426. i++;
  427. set >>= 1;
  428. }
  429. }
  430. }
  431. struct files_struct *get_files_struct(struct task_struct *task)
  432. {
  433. struct files_struct *files;
  434. task_lock(task);
  435. files = task->files;
  436. if (files)
  437. atomic_inc(&files->count);
  438. task_unlock(task);
  439. return files;
  440. }
  441. void put_files_struct(struct files_struct *files)
  442. {
  443. struct fdtable *fdt;
  444. if (atomic_dec_and_test(&files->count)) {
  445. close_files(files);
  446. /*
  447. * Free the fd and fdset arrays if we expanded them.
  448. * If the fdtable was embedded, pass files for freeing
  449. * at the end of the RCU grace period. Otherwise,
  450. * you can free files immediately.
  451. */
  452. fdt = files_fdtable(files);
  453. if (fdt != &files->fdtab)
  454. kmem_cache_free(files_cachep, files);
  455. free_fdtable(fdt);
  456. }
  457. }
  458. void reset_files_struct(struct files_struct *files)
  459. {
  460. struct task_struct *tsk = current;
  461. struct files_struct *old;
  462. old = tsk->files;
  463. task_lock(tsk);
  464. tsk->files = files;
  465. task_unlock(tsk);
  466. put_files_struct(old);
  467. }
  468. void exit_files(struct task_struct *tsk)
  469. {
  470. struct files_struct * files = tsk->files;
  471. if (files) {
  472. task_lock(tsk);
  473. tsk->files = NULL;
  474. task_unlock(tsk);
  475. put_files_struct(files);
  476. }
  477. }
  478. #ifdef CONFIG_MM_OWNER
  479. /*
  480. * Task p is exiting and it owned mm, lets find a new owner for it
  481. */
  482. static inline int
  483. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  484. {
  485. /*
  486. * If there are other users of the mm and the owner (us) is exiting
  487. * we need to find a new owner to take on the responsibility.
  488. */
  489. if (atomic_read(&mm->mm_users) <= 1)
  490. return 0;
  491. if (mm->owner != p)
  492. return 0;
  493. return 1;
  494. }
  495. void mm_update_next_owner(struct mm_struct *mm)
  496. {
  497. struct task_struct *c, *g, *p = current;
  498. retry:
  499. if (!mm_need_new_owner(mm, p))
  500. return;
  501. read_lock(&tasklist_lock);
  502. /*
  503. * Search in the children
  504. */
  505. list_for_each_entry(c, &p->children, sibling) {
  506. if (c->mm == mm)
  507. goto assign_new_owner;
  508. }
  509. /*
  510. * Search in the siblings
  511. */
  512. list_for_each_entry(c, &p->real_parent->children, sibling) {
  513. if (c->mm == mm)
  514. goto assign_new_owner;
  515. }
  516. /*
  517. * Search through everything else. We should not get
  518. * here often
  519. */
  520. do_each_thread(g, c) {
  521. if (c->mm == mm)
  522. goto assign_new_owner;
  523. } while_each_thread(g, c);
  524. read_unlock(&tasklist_lock);
  525. /*
  526. * We found no owner yet mm_users > 1: this implies that we are
  527. * most likely racing with swapoff (try_to_unuse()) or /proc or
  528. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  529. */
  530. mm->owner = NULL;
  531. return;
  532. assign_new_owner:
  533. BUG_ON(c == p);
  534. get_task_struct(c);
  535. /*
  536. * The task_lock protects c->mm from changing.
  537. * We always want mm->owner->mm == mm
  538. */
  539. task_lock(c);
  540. /*
  541. * Delay read_unlock() till we have the task_lock()
  542. * to ensure that c does not slip away underneath us
  543. */
  544. read_unlock(&tasklist_lock);
  545. if (c->mm != mm) {
  546. task_unlock(c);
  547. put_task_struct(c);
  548. goto retry;
  549. }
  550. mm->owner = c;
  551. task_unlock(c);
  552. put_task_struct(c);
  553. }
  554. #endif /* CONFIG_MM_OWNER */
  555. /*
  556. * Turn us into a lazy TLB process if we
  557. * aren't already..
  558. */
  559. static void exit_mm(struct task_struct * tsk)
  560. {
  561. struct mm_struct *mm = tsk->mm;
  562. struct core_state *core_state;
  563. mm_release(tsk, mm);
  564. if (!mm)
  565. return;
  566. /*
  567. * Serialize with any possible pending coredump.
  568. * We must hold mmap_sem around checking core_state
  569. * and clearing tsk->mm. The core-inducing thread
  570. * will increment ->nr_threads for each thread in the
  571. * group with ->mm != NULL.
  572. */
  573. down_read(&mm->mmap_sem);
  574. core_state = mm->core_state;
  575. if (core_state) {
  576. struct core_thread self;
  577. up_read(&mm->mmap_sem);
  578. self.task = tsk;
  579. self.next = xchg(&core_state->dumper.next, &self);
  580. /*
  581. * Implies mb(), the result of xchg() must be visible
  582. * to core_state->dumper.
  583. */
  584. if (atomic_dec_and_test(&core_state->nr_threads))
  585. complete(&core_state->startup);
  586. for (;;) {
  587. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  588. if (!self.task) /* see coredump_finish() */
  589. break;
  590. schedule();
  591. }
  592. __set_task_state(tsk, TASK_RUNNING);
  593. down_read(&mm->mmap_sem);
  594. }
  595. atomic_inc(&mm->mm_count);
  596. BUG_ON(mm != tsk->active_mm);
  597. /* more a memory barrier than a real lock */
  598. task_lock(tsk);
  599. tsk->mm = NULL;
  600. up_read(&mm->mmap_sem);
  601. enter_lazy_tlb(mm, current);
  602. /* We don't want this task to be frozen prematurely */
  603. clear_freeze_flag(tsk);
  604. task_unlock(tsk);
  605. mm_update_next_owner(mm);
  606. mmput(mm);
  607. }
  608. /*
  609. * When we die, we re-parent all our children.
  610. * Try to give them to another thread in our thread
  611. * group, and if no such member exists, give it to
  612. * the child reaper process (ie "init") in our pid
  613. * space.
  614. */
  615. static struct task_struct *find_new_reaper(struct task_struct *father)
  616. {
  617. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  618. struct task_struct *thread;
  619. thread = father;
  620. while_each_thread(father, thread) {
  621. if (thread->flags & PF_EXITING)
  622. continue;
  623. if (unlikely(pid_ns->child_reaper == father))
  624. pid_ns->child_reaper = thread;
  625. return thread;
  626. }
  627. if (unlikely(pid_ns->child_reaper == father)) {
  628. write_unlock_irq(&tasklist_lock);
  629. if (unlikely(pid_ns == &init_pid_ns))
  630. panic("Attempted to kill init!");
  631. zap_pid_ns_processes(pid_ns);
  632. write_lock_irq(&tasklist_lock);
  633. /*
  634. * We can not clear ->child_reaper or leave it alone.
  635. * There may by stealth EXIT_DEAD tasks on ->children,
  636. * forget_original_parent() must move them somewhere.
  637. */
  638. pid_ns->child_reaper = init_pid_ns.child_reaper;
  639. }
  640. return pid_ns->child_reaper;
  641. }
  642. /*
  643. * Any that need to be release_task'd are put on the @dead list.
  644. */
  645. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  646. struct list_head *dead)
  647. {
  648. list_move_tail(&p->sibling, &p->real_parent->children);
  649. if (task_detached(p))
  650. return;
  651. /*
  652. * If this is a threaded reparent there is no need to
  653. * notify anyone anything has happened.
  654. */
  655. if (same_thread_group(p->real_parent, father))
  656. return;
  657. /* We don't want people slaying init. */
  658. p->exit_signal = SIGCHLD;
  659. /* If it has exited notify the new parent about this child's death. */
  660. if (!task_ptrace(p) &&
  661. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  662. do_notify_parent(p, p->exit_signal);
  663. if (task_detached(p)) {
  664. p->exit_state = EXIT_DEAD;
  665. list_move_tail(&p->sibling, dead);
  666. }
  667. }
  668. kill_orphaned_pgrp(p, father);
  669. }
  670. static void forget_original_parent(struct task_struct *father)
  671. {
  672. struct task_struct *p, *n, *reaper;
  673. LIST_HEAD(dead_children);
  674. exit_ptrace(father);
  675. write_lock_irq(&tasklist_lock);
  676. reaper = find_new_reaper(father);
  677. list_for_each_entry_safe(p, n, &father->children, sibling) {
  678. struct task_struct *t = p;
  679. do {
  680. t->real_parent = reaper;
  681. if (t->parent == father) {
  682. BUG_ON(task_ptrace(t));
  683. t->parent = t->real_parent;
  684. }
  685. if (t->pdeath_signal)
  686. group_send_sig_info(t->pdeath_signal,
  687. SEND_SIG_NOINFO, t);
  688. } while_each_thread(p, t);
  689. reparent_leader(father, p, &dead_children);
  690. }
  691. write_unlock_irq(&tasklist_lock);
  692. BUG_ON(!list_empty(&father->children));
  693. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  694. list_del_init(&p->sibling);
  695. release_task(p);
  696. }
  697. }
  698. /*
  699. * Send signals to all our closest relatives so that they know
  700. * to properly mourn us..
  701. */
  702. static void exit_notify(struct task_struct *tsk, int group_dead)
  703. {
  704. int signal;
  705. void *cookie;
  706. /*
  707. * This does two things:
  708. *
  709. * A. Make init inherit all the child processes
  710. * B. Check to see if any process groups have become orphaned
  711. * as a result of our exiting, and if they have any stopped
  712. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  713. */
  714. forget_original_parent(tsk);
  715. exit_task_namespaces(tsk);
  716. write_lock_irq(&tasklist_lock);
  717. if (group_dead)
  718. kill_orphaned_pgrp(tsk->group_leader, NULL);
  719. /* Let father know we died
  720. *
  721. * Thread signals are configurable, but you aren't going to use
  722. * that to send signals to arbitary processes.
  723. * That stops right now.
  724. *
  725. * If the parent exec id doesn't match the exec id we saved
  726. * when we started then we know the parent has changed security
  727. * domain.
  728. *
  729. * If our self_exec id doesn't match our parent_exec_id then
  730. * we have changed execution domain as these two values started
  731. * the same after a fork.
  732. */
  733. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  734. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  735. tsk->self_exec_id != tsk->parent_exec_id))
  736. tsk->exit_signal = SIGCHLD;
  737. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  738. if (signal >= 0)
  739. signal = do_notify_parent(tsk, signal);
  740. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  741. /* mt-exec, de_thread() is waiting for us */
  742. if (thread_group_leader(tsk) &&
  743. tsk->signal->group_exit_task &&
  744. tsk->signal->notify_count < 0)
  745. wake_up_process(tsk->signal->group_exit_task);
  746. write_unlock_irq(&tasklist_lock);
  747. tracehook_report_death(tsk, signal, cookie, group_dead);
  748. /* If the process is dead, release it - nobody will wait for it */
  749. if (signal == DEATH_REAP)
  750. release_task(tsk);
  751. }
  752. #ifdef CONFIG_DEBUG_STACK_USAGE
  753. static void check_stack_usage(void)
  754. {
  755. static DEFINE_SPINLOCK(low_water_lock);
  756. static int lowest_to_date = THREAD_SIZE;
  757. unsigned long free;
  758. free = stack_not_used(current);
  759. if (free >= lowest_to_date)
  760. return;
  761. spin_lock(&low_water_lock);
  762. if (free < lowest_to_date) {
  763. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  764. "left\n",
  765. current->comm, free);
  766. lowest_to_date = free;
  767. }
  768. spin_unlock(&low_water_lock);
  769. }
  770. #else
  771. static inline void check_stack_usage(void) {}
  772. #endif
  773. NORET_TYPE void do_exit(long code)
  774. {
  775. struct task_struct *tsk = current;
  776. int group_dead;
  777. profile_task_exit(tsk);
  778. WARN_ON(atomic_read(&tsk->fs_excl));
  779. if (unlikely(in_interrupt()))
  780. panic("Aiee, killing interrupt handler!");
  781. if (unlikely(!tsk->pid))
  782. panic("Attempted to kill the idle task!");
  783. tracehook_report_exit(&code);
  784. validate_creds_for_do_exit(tsk);
  785. /*
  786. * We're taking recursive faults here in do_exit. Safest is to just
  787. * leave this task alone and wait for reboot.
  788. */
  789. if (unlikely(tsk->flags & PF_EXITING)) {
  790. printk(KERN_ALERT
  791. "Fixing recursive fault but reboot is needed!\n");
  792. /*
  793. * We can do this unlocked here. The futex code uses
  794. * this flag just to verify whether the pi state
  795. * cleanup has been done or not. In the worst case it
  796. * loops once more. We pretend that the cleanup was
  797. * done as there is no way to return. Either the
  798. * OWNER_DIED bit is set by now or we push the blocked
  799. * task into the wait for ever nirwana as well.
  800. */
  801. tsk->flags |= PF_EXITPIDONE;
  802. set_current_state(TASK_UNINTERRUPTIBLE);
  803. schedule();
  804. }
  805. exit_irq_thread();
  806. exit_signals(tsk); /* sets PF_EXITING */
  807. /*
  808. * tsk->flags are checked in the futex code to protect against
  809. * an exiting task cleaning up the robust pi futexes.
  810. */
  811. smp_mb();
  812. raw_spin_unlock_wait(&tsk->pi_lock);
  813. if (unlikely(in_atomic()))
  814. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  815. current->comm, task_pid_nr(current),
  816. preempt_count());
  817. acct_update_integrals(tsk);
  818. group_dead = atomic_dec_and_test(&tsk->signal->live);
  819. if (group_dead) {
  820. hrtimer_cancel(&tsk->signal->real_timer);
  821. exit_itimers(tsk->signal);
  822. if (tsk->mm)
  823. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  824. }
  825. acct_collect(code, group_dead);
  826. if (group_dead)
  827. tty_audit_exit();
  828. if (unlikely(tsk->audit_context))
  829. audit_free(tsk);
  830. tsk->exit_code = code;
  831. taskstats_exit(tsk, group_dead);
  832. exit_mm(tsk);
  833. if (group_dead)
  834. acct_process();
  835. trace_sched_process_exit(tsk);
  836. exit_sem(tsk);
  837. exit_files(tsk);
  838. exit_fs(tsk);
  839. check_stack_usage();
  840. exit_thread();
  841. cgroup_exit(tsk, 1);
  842. if (group_dead)
  843. disassociate_ctty(1);
  844. module_put(task_thread_info(tsk)->exec_domain->module);
  845. proc_exit_connector(tsk);
  846. /*
  847. * FIXME: do that only when needed, using sched_exit tracepoint
  848. */
  849. flush_ptrace_hw_breakpoint(tsk);
  850. /*
  851. * Flush inherited counters to the parent - before the parent
  852. * gets woken up by child-exit notifications.
  853. */
  854. perf_event_exit_task(tsk);
  855. exit_notify(tsk, group_dead);
  856. #ifdef CONFIG_NUMA
  857. mpol_put(tsk->mempolicy);
  858. tsk->mempolicy = NULL;
  859. #endif
  860. #ifdef CONFIG_FUTEX
  861. if (unlikely(current->pi_state_cache))
  862. kfree(current->pi_state_cache);
  863. #endif
  864. /*
  865. * Make sure we are holding no locks:
  866. */
  867. debug_check_no_locks_held(tsk);
  868. /*
  869. * We can do this unlocked here. The futex code uses this flag
  870. * just to verify whether the pi state cleanup has been done
  871. * or not. In the worst case it loops once more.
  872. */
  873. tsk->flags |= PF_EXITPIDONE;
  874. if (tsk->io_context)
  875. exit_io_context(tsk);
  876. if (tsk->splice_pipe)
  877. __free_pipe_info(tsk->splice_pipe);
  878. validate_creds_for_do_exit(tsk);
  879. preempt_disable();
  880. exit_rcu();
  881. /* causes final put_task_struct in finish_task_switch(). */
  882. tsk->state = TASK_DEAD;
  883. schedule();
  884. BUG();
  885. /* Avoid "noreturn function does return". */
  886. for (;;)
  887. cpu_relax(); /* For when BUG is null */
  888. }
  889. EXPORT_SYMBOL_GPL(do_exit);
  890. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  891. {
  892. if (comp)
  893. complete(comp);
  894. do_exit(code);
  895. }
  896. EXPORT_SYMBOL(complete_and_exit);
  897. SYSCALL_DEFINE1(exit, int, error_code)
  898. {
  899. do_exit((error_code&0xff)<<8);
  900. }
  901. /*
  902. * Take down every thread in the group. This is called by fatal signals
  903. * as well as by sys_exit_group (below).
  904. */
  905. NORET_TYPE void
  906. do_group_exit(int exit_code)
  907. {
  908. struct signal_struct *sig = current->signal;
  909. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  910. if (signal_group_exit(sig))
  911. exit_code = sig->group_exit_code;
  912. else if (!thread_group_empty(current)) {
  913. struct sighand_struct *const sighand = current->sighand;
  914. spin_lock_irq(&sighand->siglock);
  915. if (signal_group_exit(sig))
  916. /* Another thread got here before we took the lock. */
  917. exit_code = sig->group_exit_code;
  918. else {
  919. sig->group_exit_code = exit_code;
  920. sig->flags = SIGNAL_GROUP_EXIT;
  921. zap_other_threads(current);
  922. }
  923. spin_unlock_irq(&sighand->siglock);
  924. }
  925. do_exit(exit_code);
  926. /* NOTREACHED */
  927. }
  928. /*
  929. * this kills every thread in the thread group. Note that any externally
  930. * wait4()-ing process will get the correct exit code - even if this
  931. * thread is not the thread group leader.
  932. */
  933. SYSCALL_DEFINE1(exit_group, int, error_code)
  934. {
  935. do_group_exit((error_code & 0xff) << 8);
  936. /* NOTREACHED */
  937. return 0;
  938. }
  939. struct wait_opts {
  940. enum pid_type wo_type;
  941. int wo_flags;
  942. struct pid *wo_pid;
  943. struct siginfo __user *wo_info;
  944. int __user *wo_stat;
  945. struct rusage __user *wo_rusage;
  946. wait_queue_t child_wait;
  947. int notask_error;
  948. };
  949. static inline
  950. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  951. {
  952. if (type != PIDTYPE_PID)
  953. task = task->group_leader;
  954. return task->pids[type].pid;
  955. }
  956. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  957. {
  958. return wo->wo_type == PIDTYPE_MAX ||
  959. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  960. }
  961. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  962. {
  963. if (!eligible_pid(wo, p))
  964. return 0;
  965. /* Wait for all children (clone and not) if __WALL is set;
  966. * otherwise, wait for clone children *only* if __WCLONE is
  967. * set; otherwise, wait for non-clone children *only*. (Note:
  968. * A "clone" child here is one that reports to its parent
  969. * using a signal other than SIGCHLD.) */
  970. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  971. && !(wo->wo_flags & __WALL))
  972. return 0;
  973. return 1;
  974. }
  975. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  976. pid_t pid, uid_t uid, int why, int status)
  977. {
  978. struct siginfo __user *infop;
  979. int retval = wo->wo_rusage
  980. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  981. put_task_struct(p);
  982. infop = wo->wo_info;
  983. if (infop) {
  984. if (!retval)
  985. retval = put_user(SIGCHLD, &infop->si_signo);
  986. if (!retval)
  987. retval = put_user(0, &infop->si_errno);
  988. if (!retval)
  989. retval = put_user((short)why, &infop->si_code);
  990. if (!retval)
  991. retval = put_user(pid, &infop->si_pid);
  992. if (!retval)
  993. retval = put_user(uid, &infop->si_uid);
  994. if (!retval)
  995. retval = put_user(status, &infop->si_status);
  996. }
  997. if (!retval)
  998. retval = pid;
  999. return retval;
  1000. }
  1001. /*
  1002. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  1003. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1004. * the lock and this task is uninteresting. If we return nonzero, we have
  1005. * released the lock and the system call should return.
  1006. */
  1007. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1008. {
  1009. unsigned long state;
  1010. int retval, status, traced;
  1011. pid_t pid = task_pid_vnr(p);
  1012. uid_t uid = __task_cred(p)->uid;
  1013. struct siginfo __user *infop;
  1014. if (!likely(wo->wo_flags & WEXITED))
  1015. return 0;
  1016. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1017. int exit_code = p->exit_code;
  1018. int why, status;
  1019. get_task_struct(p);
  1020. read_unlock(&tasklist_lock);
  1021. if ((exit_code & 0x7f) == 0) {
  1022. why = CLD_EXITED;
  1023. status = exit_code >> 8;
  1024. } else {
  1025. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1026. status = exit_code & 0x7f;
  1027. }
  1028. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1029. }
  1030. /*
  1031. * Try to move the task's state to DEAD
  1032. * only one thread is allowed to do this:
  1033. */
  1034. state = xchg(&p->exit_state, EXIT_DEAD);
  1035. if (state != EXIT_ZOMBIE) {
  1036. BUG_ON(state != EXIT_DEAD);
  1037. return 0;
  1038. }
  1039. traced = ptrace_reparented(p);
  1040. /*
  1041. * It can be ptraced but not reparented, check
  1042. * !task_detached() to filter out sub-threads.
  1043. */
  1044. if (likely(!traced) && likely(!task_detached(p))) {
  1045. struct signal_struct *psig;
  1046. struct signal_struct *sig;
  1047. unsigned long maxrss;
  1048. cputime_t tgutime, tgstime;
  1049. /*
  1050. * The resource counters for the group leader are in its
  1051. * own task_struct. Those for dead threads in the group
  1052. * are in its signal_struct, as are those for the child
  1053. * processes it has previously reaped. All these
  1054. * accumulate in the parent's signal_struct c* fields.
  1055. *
  1056. * We don't bother to take a lock here to protect these
  1057. * p->signal fields, because they are only touched by
  1058. * __exit_signal, which runs with tasklist_lock
  1059. * write-locked anyway, and so is excluded here. We do
  1060. * need to protect the access to parent->signal fields,
  1061. * as other threads in the parent group can be right
  1062. * here reaping other children at the same time.
  1063. *
  1064. * We use thread_group_times() to get times for the thread
  1065. * group, which consolidates times for all threads in the
  1066. * group including the group leader.
  1067. */
  1068. thread_group_times(p, &tgutime, &tgstime);
  1069. spin_lock_irq(&p->real_parent->sighand->siglock);
  1070. psig = p->real_parent->signal;
  1071. sig = p->signal;
  1072. psig->cutime =
  1073. cputime_add(psig->cutime,
  1074. cputime_add(tgutime,
  1075. sig->cutime));
  1076. psig->cstime =
  1077. cputime_add(psig->cstime,
  1078. cputime_add(tgstime,
  1079. sig->cstime));
  1080. psig->cgtime =
  1081. cputime_add(psig->cgtime,
  1082. cputime_add(p->gtime,
  1083. cputime_add(sig->gtime,
  1084. sig->cgtime)));
  1085. psig->cmin_flt +=
  1086. p->min_flt + sig->min_flt + sig->cmin_flt;
  1087. psig->cmaj_flt +=
  1088. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1089. psig->cnvcsw +=
  1090. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1091. psig->cnivcsw +=
  1092. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1093. psig->cinblock +=
  1094. task_io_get_inblock(p) +
  1095. sig->inblock + sig->cinblock;
  1096. psig->coublock +=
  1097. task_io_get_oublock(p) +
  1098. sig->oublock + sig->coublock;
  1099. maxrss = max(sig->maxrss, sig->cmaxrss);
  1100. if (psig->cmaxrss < maxrss)
  1101. psig->cmaxrss = maxrss;
  1102. task_io_accounting_add(&psig->ioac, &p->ioac);
  1103. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1104. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1105. }
  1106. /*
  1107. * Now we are sure this task is interesting, and no other
  1108. * thread can reap it because we set its state to EXIT_DEAD.
  1109. */
  1110. read_unlock(&tasklist_lock);
  1111. retval = wo->wo_rusage
  1112. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1113. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1114. ? p->signal->group_exit_code : p->exit_code;
  1115. if (!retval && wo->wo_stat)
  1116. retval = put_user(status, wo->wo_stat);
  1117. infop = wo->wo_info;
  1118. if (!retval && infop)
  1119. retval = put_user(SIGCHLD, &infop->si_signo);
  1120. if (!retval && infop)
  1121. retval = put_user(0, &infop->si_errno);
  1122. if (!retval && infop) {
  1123. int why;
  1124. if ((status & 0x7f) == 0) {
  1125. why = CLD_EXITED;
  1126. status >>= 8;
  1127. } else {
  1128. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1129. status &= 0x7f;
  1130. }
  1131. retval = put_user((short)why, &infop->si_code);
  1132. if (!retval)
  1133. retval = put_user(status, &infop->si_status);
  1134. }
  1135. if (!retval && infop)
  1136. retval = put_user(pid, &infop->si_pid);
  1137. if (!retval && infop)
  1138. retval = put_user(uid, &infop->si_uid);
  1139. if (!retval)
  1140. retval = pid;
  1141. if (traced) {
  1142. write_lock_irq(&tasklist_lock);
  1143. /* We dropped tasklist, ptracer could die and untrace */
  1144. ptrace_unlink(p);
  1145. /*
  1146. * If this is not a detached task, notify the parent.
  1147. * If it's still not detached after that, don't release
  1148. * it now.
  1149. */
  1150. if (!task_detached(p)) {
  1151. do_notify_parent(p, p->exit_signal);
  1152. if (!task_detached(p)) {
  1153. p->exit_state = EXIT_ZOMBIE;
  1154. p = NULL;
  1155. }
  1156. }
  1157. write_unlock_irq(&tasklist_lock);
  1158. }
  1159. if (p != NULL)
  1160. release_task(p);
  1161. return retval;
  1162. }
  1163. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1164. {
  1165. if (ptrace) {
  1166. if (task_is_stopped_or_traced(p))
  1167. return &p->exit_code;
  1168. } else {
  1169. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1170. return &p->signal->group_exit_code;
  1171. }
  1172. return NULL;
  1173. }
  1174. /*
  1175. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1176. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1177. * the lock and this task is uninteresting. If we return nonzero, we have
  1178. * released the lock and the system call should return.
  1179. */
  1180. static int wait_task_stopped(struct wait_opts *wo,
  1181. int ptrace, struct task_struct *p)
  1182. {
  1183. struct siginfo __user *infop;
  1184. int retval, exit_code, *p_code, why;
  1185. uid_t uid = 0; /* unneeded, required by compiler */
  1186. pid_t pid;
  1187. /*
  1188. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1189. */
  1190. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1191. return 0;
  1192. exit_code = 0;
  1193. spin_lock_irq(&p->sighand->siglock);
  1194. p_code = task_stopped_code(p, ptrace);
  1195. if (unlikely(!p_code))
  1196. goto unlock_sig;
  1197. exit_code = *p_code;
  1198. if (!exit_code)
  1199. goto unlock_sig;
  1200. if (!unlikely(wo->wo_flags & WNOWAIT))
  1201. *p_code = 0;
  1202. /* don't need the RCU readlock here as we're holding a spinlock */
  1203. uid = __task_cred(p)->uid;
  1204. unlock_sig:
  1205. spin_unlock_irq(&p->sighand->siglock);
  1206. if (!exit_code)
  1207. return 0;
  1208. /*
  1209. * Now we are pretty sure this task is interesting.
  1210. * Make sure it doesn't get reaped out from under us while we
  1211. * give up the lock and then examine it below. We don't want to
  1212. * keep holding onto the tasklist_lock while we call getrusage and
  1213. * possibly take page faults for user memory.
  1214. */
  1215. get_task_struct(p);
  1216. pid = task_pid_vnr(p);
  1217. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1218. read_unlock(&tasklist_lock);
  1219. if (unlikely(wo->wo_flags & WNOWAIT))
  1220. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1221. retval = wo->wo_rusage
  1222. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1223. if (!retval && wo->wo_stat)
  1224. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1225. infop = wo->wo_info;
  1226. if (!retval && infop)
  1227. retval = put_user(SIGCHLD, &infop->si_signo);
  1228. if (!retval && infop)
  1229. retval = put_user(0, &infop->si_errno);
  1230. if (!retval && infop)
  1231. retval = put_user((short)why, &infop->si_code);
  1232. if (!retval && infop)
  1233. retval = put_user(exit_code, &infop->si_status);
  1234. if (!retval && infop)
  1235. retval = put_user(pid, &infop->si_pid);
  1236. if (!retval && infop)
  1237. retval = put_user(uid, &infop->si_uid);
  1238. if (!retval)
  1239. retval = pid;
  1240. put_task_struct(p);
  1241. BUG_ON(!retval);
  1242. return retval;
  1243. }
  1244. /*
  1245. * Handle do_wait work for one task in a live, non-stopped state.
  1246. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1247. * the lock and this task is uninteresting. If we return nonzero, we have
  1248. * released the lock and the system call should return.
  1249. */
  1250. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1251. {
  1252. int retval;
  1253. pid_t pid;
  1254. uid_t uid;
  1255. if (!unlikely(wo->wo_flags & WCONTINUED))
  1256. return 0;
  1257. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1258. return 0;
  1259. spin_lock_irq(&p->sighand->siglock);
  1260. /* Re-check with the lock held. */
  1261. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1262. spin_unlock_irq(&p->sighand->siglock);
  1263. return 0;
  1264. }
  1265. if (!unlikely(wo->wo_flags & WNOWAIT))
  1266. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1267. uid = __task_cred(p)->uid;
  1268. spin_unlock_irq(&p->sighand->siglock);
  1269. pid = task_pid_vnr(p);
  1270. get_task_struct(p);
  1271. read_unlock(&tasklist_lock);
  1272. if (!wo->wo_info) {
  1273. retval = wo->wo_rusage
  1274. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1275. put_task_struct(p);
  1276. if (!retval && wo->wo_stat)
  1277. retval = put_user(0xffff, wo->wo_stat);
  1278. if (!retval)
  1279. retval = pid;
  1280. } else {
  1281. retval = wait_noreap_copyout(wo, p, pid, uid,
  1282. CLD_CONTINUED, SIGCONT);
  1283. BUG_ON(retval == 0);
  1284. }
  1285. return retval;
  1286. }
  1287. /*
  1288. * Consider @p for a wait by @parent.
  1289. *
  1290. * -ECHILD should be in ->notask_error before the first call.
  1291. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1292. * Returns zero if the search for a child should continue;
  1293. * then ->notask_error is 0 if @p is an eligible child,
  1294. * or another error from security_task_wait(), or still -ECHILD.
  1295. */
  1296. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1297. struct task_struct *p)
  1298. {
  1299. int ret = eligible_child(wo, p);
  1300. if (!ret)
  1301. return ret;
  1302. ret = security_task_wait(p);
  1303. if (unlikely(ret < 0)) {
  1304. /*
  1305. * If we have not yet seen any eligible child,
  1306. * then let this error code replace -ECHILD.
  1307. * A permission error will give the user a clue
  1308. * to look for security policy problems, rather
  1309. * than for mysterious wait bugs.
  1310. */
  1311. if (wo->notask_error)
  1312. wo->notask_error = ret;
  1313. return 0;
  1314. }
  1315. if (likely(!ptrace) && unlikely(task_ptrace(p))) {
  1316. /*
  1317. * This child is hidden by ptrace.
  1318. * We aren't allowed to see it now, but eventually we will.
  1319. */
  1320. wo->notask_error = 0;
  1321. return 0;
  1322. }
  1323. if (p->exit_state == EXIT_DEAD)
  1324. return 0;
  1325. /*
  1326. * We don't reap group leaders with subthreads.
  1327. */
  1328. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1329. return wait_task_zombie(wo, p);
  1330. /*
  1331. * It's stopped or running now, so it might
  1332. * later continue, exit, or stop again.
  1333. */
  1334. wo->notask_error = 0;
  1335. if (task_stopped_code(p, ptrace))
  1336. return wait_task_stopped(wo, ptrace, p);
  1337. return wait_task_continued(wo, p);
  1338. }
  1339. /*
  1340. * Do the work of do_wait() for one thread in the group, @tsk.
  1341. *
  1342. * -ECHILD should be in ->notask_error before the first call.
  1343. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1344. * Returns zero if the search for a child should continue; then
  1345. * ->notask_error is 0 if there were any eligible children,
  1346. * or another error from security_task_wait(), or still -ECHILD.
  1347. */
  1348. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1349. {
  1350. struct task_struct *p;
  1351. list_for_each_entry(p, &tsk->children, sibling) {
  1352. int ret = wait_consider_task(wo, 0, p);
  1353. if (ret)
  1354. return ret;
  1355. }
  1356. return 0;
  1357. }
  1358. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1359. {
  1360. struct task_struct *p;
  1361. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1362. int ret = wait_consider_task(wo, 1, p);
  1363. if (ret)
  1364. return ret;
  1365. }
  1366. return 0;
  1367. }
  1368. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1369. int sync, void *key)
  1370. {
  1371. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1372. child_wait);
  1373. struct task_struct *p = key;
  1374. if (!eligible_pid(wo, p))
  1375. return 0;
  1376. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1377. return 0;
  1378. return default_wake_function(wait, mode, sync, key);
  1379. }
  1380. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1381. {
  1382. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1383. TASK_INTERRUPTIBLE, 1, p);
  1384. }
  1385. static long do_wait(struct wait_opts *wo)
  1386. {
  1387. struct task_struct *tsk;
  1388. int retval;
  1389. trace_sched_process_wait(wo->wo_pid);
  1390. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1391. wo->child_wait.private = current;
  1392. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1393. repeat:
  1394. /*
  1395. * If there is nothing that can match our critiera just get out.
  1396. * We will clear ->notask_error to zero if we see any child that
  1397. * might later match our criteria, even if we are not able to reap
  1398. * it yet.
  1399. */
  1400. wo->notask_error = -ECHILD;
  1401. if ((wo->wo_type < PIDTYPE_MAX) &&
  1402. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1403. goto notask;
  1404. set_current_state(TASK_INTERRUPTIBLE);
  1405. read_lock(&tasklist_lock);
  1406. tsk = current;
  1407. do {
  1408. retval = do_wait_thread(wo, tsk);
  1409. if (retval)
  1410. goto end;
  1411. retval = ptrace_do_wait(wo, tsk);
  1412. if (retval)
  1413. goto end;
  1414. if (wo->wo_flags & __WNOTHREAD)
  1415. break;
  1416. } while_each_thread(current, tsk);
  1417. read_unlock(&tasklist_lock);
  1418. notask:
  1419. retval = wo->notask_error;
  1420. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1421. retval = -ERESTARTSYS;
  1422. if (!signal_pending(current)) {
  1423. schedule();
  1424. goto repeat;
  1425. }
  1426. }
  1427. end:
  1428. __set_current_state(TASK_RUNNING);
  1429. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1430. return retval;
  1431. }
  1432. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1433. infop, int, options, struct rusage __user *, ru)
  1434. {
  1435. struct wait_opts wo;
  1436. struct pid *pid = NULL;
  1437. enum pid_type type;
  1438. long ret;
  1439. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1440. return -EINVAL;
  1441. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1442. return -EINVAL;
  1443. switch (which) {
  1444. case P_ALL:
  1445. type = PIDTYPE_MAX;
  1446. break;
  1447. case P_PID:
  1448. type = PIDTYPE_PID;
  1449. if (upid <= 0)
  1450. return -EINVAL;
  1451. break;
  1452. case P_PGID:
  1453. type = PIDTYPE_PGID;
  1454. if (upid <= 0)
  1455. return -EINVAL;
  1456. break;
  1457. default:
  1458. return -EINVAL;
  1459. }
  1460. if (type < PIDTYPE_MAX)
  1461. pid = find_get_pid(upid);
  1462. wo.wo_type = type;
  1463. wo.wo_pid = pid;
  1464. wo.wo_flags = options;
  1465. wo.wo_info = infop;
  1466. wo.wo_stat = NULL;
  1467. wo.wo_rusage = ru;
  1468. ret = do_wait(&wo);
  1469. if (ret > 0) {
  1470. ret = 0;
  1471. } else if (infop) {
  1472. /*
  1473. * For a WNOHANG return, clear out all the fields
  1474. * we would set so the user can easily tell the
  1475. * difference.
  1476. */
  1477. if (!ret)
  1478. ret = put_user(0, &infop->si_signo);
  1479. if (!ret)
  1480. ret = put_user(0, &infop->si_errno);
  1481. if (!ret)
  1482. ret = put_user(0, &infop->si_code);
  1483. if (!ret)
  1484. ret = put_user(0, &infop->si_pid);
  1485. if (!ret)
  1486. ret = put_user(0, &infop->si_uid);
  1487. if (!ret)
  1488. ret = put_user(0, &infop->si_status);
  1489. }
  1490. put_pid(pid);
  1491. /* avoid REGPARM breakage on x86: */
  1492. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1493. return ret;
  1494. }
  1495. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1496. int, options, struct rusage __user *, ru)
  1497. {
  1498. struct wait_opts wo;
  1499. struct pid *pid = NULL;
  1500. enum pid_type type;
  1501. long ret;
  1502. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1503. __WNOTHREAD|__WCLONE|__WALL))
  1504. return -EINVAL;
  1505. if (upid == -1)
  1506. type = PIDTYPE_MAX;
  1507. else if (upid < 0) {
  1508. type = PIDTYPE_PGID;
  1509. pid = find_get_pid(-upid);
  1510. } else if (upid == 0) {
  1511. type = PIDTYPE_PGID;
  1512. pid = get_task_pid(current, PIDTYPE_PGID);
  1513. } else /* upid > 0 */ {
  1514. type = PIDTYPE_PID;
  1515. pid = find_get_pid(upid);
  1516. }
  1517. wo.wo_type = type;
  1518. wo.wo_pid = pid;
  1519. wo.wo_flags = options | WEXITED;
  1520. wo.wo_info = NULL;
  1521. wo.wo_stat = stat_addr;
  1522. wo.wo_rusage = ru;
  1523. ret = do_wait(&wo);
  1524. put_pid(pid);
  1525. /* avoid REGPARM breakage on x86: */
  1526. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1527. return ret;
  1528. }
  1529. #ifdef __ARCH_WANT_SYS_WAITPID
  1530. /*
  1531. * sys_waitpid() remains for compatibility. waitpid() should be
  1532. * implemented by calling sys_wait4() from libc.a.
  1533. */
  1534. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1535. {
  1536. return sys_wait4(pid, stat_addr, options, NULL);
  1537. }
  1538. #endif