xfs_log_recover.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_trace.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  53. xlog_recover_item_t *item);
  54. #if defined(DEBUG)
  55. STATIC void xlog_recover_check_summary(xlog_t *);
  56. #else
  57. #define xlog_recover_check_summary(log)
  58. #endif
  59. /*
  60. * Sector aligned buffer routines for buffer create/read/write/access
  61. */
  62. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  63. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  64. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  65. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  66. xfs_buf_t *
  67. xlog_get_bp(
  68. xlog_t *log,
  69. int nbblks)
  70. {
  71. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  72. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  73. XFS_ERROR_REPORT("xlog_get_bp(1)",
  74. XFS_ERRLEVEL_HIGH, log->l_mp);
  75. return NULL;
  76. }
  77. if (log->l_sectbb_log) {
  78. if (nbblks > 1)
  79. nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  80. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  81. }
  82. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  83. }
  84. void
  85. xlog_put_bp(
  86. xfs_buf_t *bp)
  87. {
  88. xfs_buf_free(bp);
  89. }
  90. STATIC xfs_caddr_t
  91. xlog_align(
  92. xlog_t *log,
  93. xfs_daddr_t blk_no,
  94. int nbblks,
  95. xfs_buf_t *bp)
  96. {
  97. xfs_caddr_t ptr;
  98. if (!log->l_sectbb_log)
  99. return XFS_BUF_PTR(bp);
  100. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  101. ASSERT(XFS_BUF_SIZE(bp) >=
  102. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  103. return ptr;
  104. }
  105. /*
  106. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  107. */
  108. STATIC int
  109. xlog_bread_noalign(
  110. xlog_t *log,
  111. xfs_daddr_t blk_no,
  112. int nbblks,
  113. xfs_buf_t *bp)
  114. {
  115. int error;
  116. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  117. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  118. XFS_ERROR_REPORT("xlog_bread(1)",
  119. XFS_ERRLEVEL_HIGH, log->l_mp);
  120. return EFSCORRUPTED;
  121. }
  122. if (log->l_sectbb_log) {
  123. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  124. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  125. }
  126. ASSERT(nbblks > 0);
  127. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  128. ASSERT(bp);
  129. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  130. XFS_BUF_READ(bp);
  131. XFS_BUF_BUSY(bp);
  132. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  133. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  134. xfsbdstrat(log->l_mp, bp);
  135. error = xfs_iowait(bp);
  136. if (error)
  137. xfs_ioerror_alert("xlog_bread", log->l_mp,
  138. bp, XFS_BUF_ADDR(bp));
  139. return error;
  140. }
  141. STATIC int
  142. xlog_bread(
  143. xlog_t *log,
  144. xfs_daddr_t blk_no,
  145. int nbblks,
  146. xfs_buf_t *bp,
  147. xfs_caddr_t *offset)
  148. {
  149. int error;
  150. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  151. if (error)
  152. return error;
  153. *offset = xlog_align(log, blk_no, nbblks, bp);
  154. return 0;
  155. }
  156. /*
  157. * Write out the buffer at the given block for the given number of blocks.
  158. * The buffer is kept locked across the write and is returned locked.
  159. * This can only be used for synchronous log writes.
  160. */
  161. STATIC int
  162. xlog_bwrite(
  163. xlog_t *log,
  164. xfs_daddr_t blk_no,
  165. int nbblks,
  166. xfs_buf_t *bp)
  167. {
  168. int error;
  169. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  170. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  171. XFS_ERROR_REPORT("xlog_bwrite(1)",
  172. XFS_ERRLEVEL_HIGH, log->l_mp);
  173. return EFSCORRUPTED;
  174. }
  175. if (log->l_sectbb_log) {
  176. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  177. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  178. }
  179. ASSERT(nbblks > 0);
  180. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  181. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  182. XFS_BUF_ZEROFLAGS(bp);
  183. XFS_BUF_BUSY(bp);
  184. XFS_BUF_HOLD(bp);
  185. XFS_BUF_PSEMA(bp, PRIBIO);
  186. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  187. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  188. if ((error = xfs_bwrite(log->l_mp, bp)))
  189. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  190. bp, XFS_BUF_ADDR(bp));
  191. return error;
  192. }
  193. #ifdef DEBUG
  194. /*
  195. * dump debug superblock and log record information
  196. */
  197. STATIC void
  198. xlog_header_check_dump(
  199. xfs_mount_t *mp,
  200. xlog_rec_header_t *head)
  201. {
  202. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  203. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  204. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  205. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  206. }
  207. #else
  208. #define xlog_header_check_dump(mp, head)
  209. #endif
  210. /*
  211. * check log record header for recovery
  212. */
  213. STATIC int
  214. xlog_header_check_recover(
  215. xfs_mount_t *mp,
  216. xlog_rec_header_t *head)
  217. {
  218. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  219. /*
  220. * IRIX doesn't write the h_fmt field and leaves it zeroed
  221. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  222. * a dirty log created in IRIX.
  223. */
  224. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  225. xlog_warn(
  226. "XFS: dirty log written in incompatible format - can't recover");
  227. xlog_header_check_dump(mp, head);
  228. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  229. XFS_ERRLEVEL_HIGH, mp);
  230. return XFS_ERROR(EFSCORRUPTED);
  231. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  232. xlog_warn(
  233. "XFS: dirty log entry has mismatched uuid - can't recover");
  234. xlog_header_check_dump(mp, head);
  235. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  236. XFS_ERRLEVEL_HIGH, mp);
  237. return XFS_ERROR(EFSCORRUPTED);
  238. }
  239. return 0;
  240. }
  241. /*
  242. * read the head block of the log and check the header
  243. */
  244. STATIC int
  245. xlog_header_check_mount(
  246. xfs_mount_t *mp,
  247. xlog_rec_header_t *head)
  248. {
  249. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  250. if (uuid_is_nil(&head->h_fs_uuid)) {
  251. /*
  252. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  253. * h_fs_uuid is nil, we assume this log was last mounted
  254. * by IRIX and continue.
  255. */
  256. xlog_warn("XFS: nil uuid in log - IRIX style log");
  257. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  258. xlog_warn("XFS: log has mismatched uuid - can't recover");
  259. xlog_header_check_dump(mp, head);
  260. XFS_ERROR_REPORT("xlog_header_check_mount",
  261. XFS_ERRLEVEL_HIGH, mp);
  262. return XFS_ERROR(EFSCORRUPTED);
  263. }
  264. return 0;
  265. }
  266. STATIC void
  267. xlog_recover_iodone(
  268. struct xfs_buf *bp)
  269. {
  270. if (XFS_BUF_GETERROR(bp)) {
  271. /*
  272. * We're not going to bother about retrying
  273. * this during recovery. One strike!
  274. */
  275. xfs_ioerror_alert("xlog_recover_iodone",
  276. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  277. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  278. }
  279. bp->b_mount = NULL;
  280. XFS_BUF_CLR_IODONE_FUNC(bp);
  281. xfs_biodone(bp);
  282. }
  283. /*
  284. * This routine finds (to an approximation) the first block in the physical
  285. * log which contains the given cycle. It uses a binary search algorithm.
  286. * Note that the algorithm can not be perfect because the disk will not
  287. * necessarily be perfect.
  288. */
  289. STATIC int
  290. xlog_find_cycle_start(
  291. xlog_t *log,
  292. xfs_buf_t *bp,
  293. xfs_daddr_t first_blk,
  294. xfs_daddr_t *last_blk,
  295. uint cycle)
  296. {
  297. xfs_caddr_t offset;
  298. xfs_daddr_t mid_blk;
  299. uint mid_cycle;
  300. int error;
  301. mid_blk = BLK_AVG(first_blk, *last_blk);
  302. while (mid_blk != first_blk && mid_blk != *last_blk) {
  303. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  304. if (error)
  305. return error;
  306. mid_cycle = xlog_get_cycle(offset);
  307. if (mid_cycle == cycle) {
  308. *last_blk = mid_blk;
  309. /* last_half_cycle == mid_cycle */
  310. } else {
  311. first_blk = mid_blk;
  312. /* first_half_cycle == mid_cycle */
  313. }
  314. mid_blk = BLK_AVG(first_blk, *last_blk);
  315. }
  316. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  317. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  318. return 0;
  319. }
  320. /*
  321. * Check that the range of blocks does not contain the cycle number
  322. * given. The scan needs to occur from front to back and the ptr into the
  323. * region must be updated since a later routine will need to perform another
  324. * test. If the region is completely good, we end up returning the same
  325. * last block number.
  326. *
  327. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  328. * since we don't ever expect logs to get this large.
  329. */
  330. STATIC int
  331. xlog_find_verify_cycle(
  332. xlog_t *log,
  333. xfs_daddr_t start_blk,
  334. int nbblks,
  335. uint stop_on_cycle_no,
  336. xfs_daddr_t *new_blk)
  337. {
  338. xfs_daddr_t i, j;
  339. uint cycle;
  340. xfs_buf_t *bp;
  341. xfs_daddr_t bufblks;
  342. xfs_caddr_t buf = NULL;
  343. int error = 0;
  344. bufblks = 1 << ffs(nbblks);
  345. while (!(bp = xlog_get_bp(log, bufblks))) {
  346. /* can't get enough memory to do everything in one big buffer */
  347. bufblks >>= 1;
  348. if (bufblks <= log->l_sectbb_log)
  349. return ENOMEM;
  350. }
  351. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  352. int bcount;
  353. bcount = min(bufblks, (start_blk + nbblks - i));
  354. error = xlog_bread(log, i, bcount, bp, &buf);
  355. if (error)
  356. goto out;
  357. for (j = 0; j < bcount; j++) {
  358. cycle = xlog_get_cycle(buf);
  359. if (cycle == stop_on_cycle_no) {
  360. *new_blk = i+j;
  361. goto out;
  362. }
  363. buf += BBSIZE;
  364. }
  365. }
  366. *new_blk = -1;
  367. out:
  368. xlog_put_bp(bp);
  369. return error;
  370. }
  371. /*
  372. * Potentially backup over partial log record write.
  373. *
  374. * In the typical case, last_blk is the number of the block directly after
  375. * a good log record. Therefore, we subtract one to get the block number
  376. * of the last block in the given buffer. extra_bblks contains the number
  377. * of blocks we would have read on a previous read. This happens when the
  378. * last log record is split over the end of the physical log.
  379. *
  380. * extra_bblks is the number of blocks potentially verified on a previous
  381. * call to this routine.
  382. */
  383. STATIC int
  384. xlog_find_verify_log_record(
  385. xlog_t *log,
  386. xfs_daddr_t start_blk,
  387. xfs_daddr_t *last_blk,
  388. int extra_bblks)
  389. {
  390. xfs_daddr_t i;
  391. xfs_buf_t *bp;
  392. xfs_caddr_t offset = NULL;
  393. xlog_rec_header_t *head = NULL;
  394. int error = 0;
  395. int smallmem = 0;
  396. int num_blks = *last_blk - start_blk;
  397. int xhdrs;
  398. ASSERT(start_blk != 0 || *last_blk != start_blk);
  399. if (!(bp = xlog_get_bp(log, num_blks))) {
  400. if (!(bp = xlog_get_bp(log, 1)))
  401. return ENOMEM;
  402. smallmem = 1;
  403. } else {
  404. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  405. if (error)
  406. goto out;
  407. offset += ((num_blks - 1) << BBSHIFT);
  408. }
  409. for (i = (*last_blk) - 1; i >= 0; i--) {
  410. if (i < start_blk) {
  411. /* valid log record not found */
  412. xlog_warn(
  413. "XFS: Log inconsistent (didn't find previous header)");
  414. ASSERT(0);
  415. error = XFS_ERROR(EIO);
  416. goto out;
  417. }
  418. if (smallmem) {
  419. error = xlog_bread(log, i, 1, bp, &offset);
  420. if (error)
  421. goto out;
  422. }
  423. head = (xlog_rec_header_t *)offset;
  424. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  425. break;
  426. if (!smallmem)
  427. offset -= BBSIZE;
  428. }
  429. /*
  430. * We hit the beginning of the physical log & still no header. Return
  431. * to caller. If caller can handle a return of -1, then this routine
  432. * will be called again for the end of the physical log.
  433. */
  434. if (i == -1) {
  435. error = -1;
  436. goto out;
  437. }
  438. /*
  439. * We have the final block of the good log (the first block
  440. * of the log record _before_ the head. So we check the uuid.
  441. */
  442. if ((error = xlog_header_check_mount(log->l_mp, head)))
  443. goto out;
  444. /*
  445. * We may have found a log record header before we expected one.
  446. * last_blk will be the 1st block # with a given cycle #. We may end
  447. * up reading an entire log record. In this case, we don't want to
  448. * reset last_blk. Only when last_blk points in the middle of a log
  449. * record do we update last_blk.
  450. */
  451. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  452. uint h_size = be32_to_cpu(head->h_size);
  453. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  454. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  455. xhdrs++;
  456. } else {
  457. xhdrs = 1;
  458. }
  459. if (*last_blk - i + extra_bblks !=
  460. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  461. *last_blk = i;
  462. out:
  463. xlog_put_bp(bp);
  464. return error;
  465. }
  466. /*
  467. * Head is defined to be the point of the log where the next log write
  468. * write could go. This means that incomplete LR writes at the end are
  469. * eliminated when calculating the head. We aren't guaranteed that previous
  470. * LR have complete transactions. We only know that a cycle number of
  471. * current cycle number -1 won't be present in the log if we start writing
  472. * from our current block number.
  473. *
  474. * last_blk contains the block number of the first block with a given
  475. * cycle number.
  476. *
  477. * Return: zero if normal, non-zero if error.
  478. */
  479. STATIC int
  480. xlog_find_head(
  481. xlog_t *log,
  482. xfs_daddr_t *return_head_blk)
  483. {
  484. xfs_buf_t *bp;
  485. xfs_caddr_t offset;
  486. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  487. int num_scan_bblks;
  488. uint first_half_cycle, last_half_cycle;
  489. uint stop_on_cycle;
  490. int error, log_bbnum = log->l_logBBsize;
  491. /* Is the end of the log device zeroed? */
  492. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  493. *return_head_blk = first_blk;
  494. /* Is the whole lot zeroed? */
  495. if (!first_blk) {
  496. /* Linux XFS shouldn't generate totally zeroed logs -
  497. * mkfs etc write a dummy unmount record to a fresh
  498. * log so we can store the uuid in there
  499. */
  500. xlog_warn("XFS: totally zeroed log");
  501. }
  502. return 0;
  503. } else if (error) {
  504. xlog_warn("XFS: empty log check failed");
  505. return error;
  506. }
  507. first_blk = 0; /* get cycle # of 1st block */
  508. bp = xlog_get_bp(log, 1);
  509. if (!bp)
  510. return ENOMEM;
  511. error = xlog_bread(log, 0, 1, bp, &offset);
  512. if (error)
  513. goto bp_err;
  514. first_half_cycle = xlog_get_cycle(offset);
  515. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  516. error = xlog_bread(log, last_blk, 1, bp, &offset);
  517. if (error)
  518. goto bp_err;
  519. last_half_cycle = xlog_get_cycle(offset);
  520. ASSERT(last_half_cycle != 0);
  521. /*
  522. * If the 1st half cycle number is equal to the last half cycle number,
  523. * then the entire log is stamped with the same cycle number. In this
  524. * case, head_blk can't be set to zero (which makes sense). The below
  525. * math doesn't work out properly with head_blk equal to zero. Instead,
  526. * we set it to log_bbnum which is an invalid block number, but this
  527. * value makes the math correct. If head_blk doesn't changed through
  528. * all the tests below, *head_blk is set to zero at the very end rather
  529. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  530. * in a circular file.
  531. */
  532. if (first_half_cycle == last_half_cycle) {
  533. /*
  534. * In this case we believe that the entire log should have
  535. * cycle number last_half_cycle. We need to scan backwards
  536. * from the end verifying that there are no holes still
  537. * containing last_half_cycle - 1. If we find such a hole,
  538. * then the start of that hole will be the new head. The
  539. * simple case looks like
  540. * x | x ... | x - 1 | x
  541. * Another case that fits this picture would be
  542. * x | x + 1 | x ... | x
  543. * In this case the head really is somewhere at the end of the
  544. * log, as one of the latest writes at the beginning was
  545. * incomplete.
  546. * One more case is
  547. * x | x + 1 | x ... | x - 1 | x
  548. * This is really the combination of the above two cases, and
  549. * the head has to end up at the start of the x-1 hole at the
  550. * end of the log.
  551. *
  552. * In the 256k log case, we will read from the beginning to the
  553. * end of the log and search for cycle numbers equal to x-1.
  554. * We don't worry about the x+1 blocks that we encounter,
  555. * because we know that they cannot be the head since the log
  556. * started with x.
  557. */
  558. head_blk = log_bbnum;
  559. stop_on_cycle = last_half_cycle - 1;
  560. } else {
  561. /*
  562. * In this case we want to find the first block with cycle
  563. * number matching last_half_cycle. We expect the log to be
  564. * some variation on
  565. * x + 1 ... | x ...
  566. * The first block with cycle number x (last_half_cycle) will
  567. * be where the new head belongs. First we do a binary search
  568. * for the first occurrence of last_half_cycle. The binary
  569. * search may not be totally accurate, so then we scan back
  570. * from there looking for occurrences of last_half_cycle before
  571. * us. If that backwards scan wraps around the beginning of
  572. * the log, then we look for occurrences of last_half_cycle - 1
  573. * at the end of the log. The cases we're looking for look
  574. * like
  575. * x + 1 ... | x | x + 1 | x ...
  576. * ^ binary search stopped here
  577. * or
  578. * x + 1 ... | x ... | x - 1 | x
  579. * <---------> less than scan distance
  580. */
  581. stop_on_cycle = last_half_cycle;
  582. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  583. &head_blk, last_half_cycle)))
  584. goto bp_err;
  585. }
  586. /*
  587. * Now validate the answer. Scan back some number of maximum possible
  588. * blocks and make sure each one has the expected cycle number. The
  589. * maximum is determined by the total possible amount of buffering
  590. * in the in-core log. The following number can be made tighter if
  591. * we actually look at the block size of the filesystem.
  592. */
  593. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  594. if (head_blk >= num_scan_bblks) {
  595. /*
  596. * We are guaranteed that the entire check can be performed
  597. * in one buffer.
  598. */
  599. start_blk = head_blk - num_scan_bblks;
  600. if ((error = xlog_find_verify_cycle(log,
  601. start_blk, num_scan_bblks,
  602. stop_on_cycle, &new_blk)))
  603. goto bp_err;
  604. if (new_blk != -1)
  605. head_blk = new_blk;
  606. } else { /* need to read 2 parts of log */
  607. /*
  608. * We are going to scan backwards in the log in two parts.
  609. * First we scan the physical end of the log. In this part
  610. * of the log, we are looking for blocks with cycle number
  611. * last_half_cycle - 1.
  612. * If we find one, then we know that the log starts there, as
  613. * we've found a hole that didn't get written in going around
  614. * the end of the physical log. The simple case for this is
  615. * x + 1 ... | x ... | x - 1 | x
  616. * <---------> less than scan distance
  617. * If all of the blocks at the end of the log have cycle number
  618. * last_half_cycle, then we check the blocks at the start of
  619. * the log looking for occurrences of last_half_cycle. If we
  620. * find one, then our current estimate for the location of the
  621. * first occurrence of last_half_cycle is wrong and we move
  622. * back to the hole we've found. This case looks like
  623. * x + 1 ... | x | x + 1 | x ...
  624. * ^ binary search stopped here
  625. * Another case we need to handle that only occurs in 256k
  626. * logs is
  627. * x + 1 ... | x ... | x+1 | x ...
  628. * ^ binary search stops here
  629. * In a 256k log, the scan at the end of the log will see the
  630. * x + 1 blocks. We need to skip past those since that is
  631. * certainly not the head of the log. By searching for
  632. * last_half_cycle-1 we accomplish that.
  633. */
  634. start_blk = log_bbnum - num_scan_bblks + head_blk;
  635. ASSERT(head_blk <= INT_MAX &&
  636. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  637. if ((error = xlog_find_verify_cycle(log, start_blk,
  638. num_scan_bblks - (int)head_blk,
  639. (stop_on_cycle - 1), &new_blk)))
  640. goto bp_err;
  641. if (new_blk != -1) {
  642. head_blk = new_blk;
  643. goto bad_blk;
  644. }
  645. /*
  646. * Scan beginning of log now. The last part of the physical
  647. * log is good. This scan needs to verify that it doesn't find
  648. * the last_half_cycle.
  649. */
  650. start_blk = 0;
  651. ASSERT(head_blk <= INT_MAX);
  652. if ((error = xlog_find_verify_cycle(log,
  653. start_blk, (int)head_blk,
  654. stop_on_cycle, &new_blk)))
  655. goto bp_err;
  656. if (new_blk != -1)
  657. head_blk = new_blk;
  658. }
  659. bad_blk:
  660. /*
  661. * Now we need to make sure head_blk is not pointing to a block in
  662. * the middle of a log record.
  663. */
  664. num_scan_bblks = XLOG_REC_SHIFT(log);
  665. if (head_blk >= num_scan_bblks) {
  666. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  667. /* start ptr at last block ptr before head_blk */
  668. if ((error = xlog_find_verify_log_record(log, start_blk,
  669. &head_blk, 0)) == -1) {
  670. error = XFS_ERROR(EIO);
  671. goto bp_err;
  672. } else if (error)
  673. goto bp_err;
  674. } else {
  675. start_blk = 0;
  676. ASSERT(head_blk <= INT_MAX);
  677. if ((error = xlog_find_verify_log_record(log, start_blk,
  678. &head_blk, 0)) == -1) {
  679. /* We hit the beginning of the log during our search */
  680. start_blk = log_bbnum - num_scan_bblks + head_blk;
  681. new_blk = log_bbnum;
  682. ASSERT(start_blk <= INT_MAX &&
  683. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  684. ASSERT(head_blk <= INT_MAX);
  685. if ((error = xlog_find_verify_log_record(log,
  686. start_blk, &new_blk,
  687. (int)head_blk)) == -1) {
  688. error = XFS_ERROR(EIO);
  689. goto bp_err;
  690. } else if (error)
  691. goto bp_err;
  692. if (new_blk != log_bbnum)
  693. head_blk = new_blk;
  694. } else if (error)
  695. goto bp_err;
  696. }
  697. xlog_put_bp(bp);
  698. if (head_blk == log_bbnum)
  699. *return_head_blk = 0;
  700. else
  701. *return_head_blk = head_blk;
  702. /*
  703. * When returning here, we have a good block number. Bad block
  704. * means that during a previous crash, we didn't have a clean break
  705. * from cycle number N to cycle number N-1. In this case, we need
  706. * to find the first block with cycle number N-1.
  707. */
  708. return 0;
  709. bp_err:
  710. xlog_put_bp(bp);
  711. if (error)
  712. xlog_warn("XFS: failed to find log head");
  713. return error;
  714. }
  715. /*
  716. * Find the sync block number or the tail of the log.
  717. *
  718. * This will be the block number of the last record to have its
  719. * associated buffers synced to disk. Every log record header has
  720. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  721. * to get a sync block number. The only concern is to figure out which
  722. * log record header to believe.
  723. *
  724. * The following algorithm uses the log record header with the largest
  725. * lsn. The entire log record does not need to be valid. We only care
  726. * that the header is valid.
  727. *
  728. * We could speed up search by using current head_blk buffer, but it is not
  729. * available.
  730. */
  731. int
  732. xlog_find_tail(
  733. xlog_t *log,
  734. xfs_daddr_t *head_blk,
  735. xfs_daddr_t *tail_blk)
  736. {
  737. xlog_rec_header_t *rhead;
  738. xlog_op_header_t *op_head;
  739. xfs_caddr_t offset = NULL;
  740. xfs_buf_t *bp;
  741. int error, i, found;
  742. xfs_daddr_t umount_data_blk;
  743. xfs_daddr_t after_umount_blk;
  744. xfs_lsn_t tail_lsn;
  745. int hblks;
  746. found = 0;
  747. /*
  748. * Find previous log record
  749. */
  750. if ((error = xlog_find_head(log, head_blk)))
  751. return error;
  752. bp = xlog_get_bp(log, 1);
  753. if (!bp)
  754. return ENOMEM;
  755. if (*head_blk == 0) { /* special case */
  756. error = xlog_bread(log, 0, 1, bp, &offset);
  757. if (error)
  758. goto bread_err;
  759. if (xlog_get_cycle(offset) == 0) {
  760. *tail_blk = 0;
  761. /* leave all other log inited values alone */
  762. goto exit;
  763. }
  764. }
  765. /*
  766. * Search backwards looking for log record header block
  767. */
  768. ASSERT(*head_blk < INT_MAX);
  769. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  770. error = xlog_bread(log, i, 1, bp, &offset);
  771. if (error)
  772. goto bread_err;
  773. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  774. found = 1;
  775. break;
  776. }
  777. }
  778. /*
  779. * If we haven't found the log record header block, start looking
  780. * again from the end of the physical log. XXXmiken: There should be
  781. * a check here to make sure we didn't search more than N blocks in
  782. * the previous code.
  783. */
  784. if (!found) {
  785. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  786. error = xlog_bread(log, i, 1, bp, &offset);
  787. if (error)
  788. goto bread_err;
  789. if (XLOG_HEADER_MAGIC_NUM ==
  790. be32_to_cpu(*(__be32 *)offset)) {
  791. found = 2;
  792. break;
  793. }
  794. }
  795. }
  796. if (!found) {
  797. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  798. ASSERT(0);
  799. return XFS_ERROR(EIO);
  800. }
  801. /* find blk_no of tail of log */
  802. rhead = (xlog_rec_header_t *)offset;
  803. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  804. /*
  805. * Reset log values according to the state of the log when we
  806. * crashed. In the case where head_blk == 0, we bump curr_cycle
  807. * one because the next write starts a new cycle rather than
  808. * continuing the cycle of the last good log record. At this
  809. * point we have guaranteed that all partial log records have been
  810. * accounted for. Therefore, we know that the last good log record
  811. * written was complete and ended exactly on the end boundary
  812. * of the physical log.
  813. */
  814. log->l_prev_block = i;
  815. log->l_curr_block = (int)*head_blk;
  816. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  817. if (found == 2)
  818. log->l_curr_cycle++;
  819. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  820. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  821. log->l_grant_reserve_cycle = log->l_curr_cycle;
  822. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  823. log->l_grant_write_cycle = log->l_curr_cycle;
  824. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  825. /*
  826. * Look for unmount record. If we find it, then we know there
  827. * was a clean unmount. Since 'i' could be the last block in
  828. * the physical log, we convert to a log block before comparing
  829. * to the head_blk.
  830. *
  831. * Save the current tail lsn to use to pass to
  832. * xlog_clear_stale_blocks() below. We won't want to clear the
  833. * unmount record if there is one, so we pass the lsn of the
  834. * unmount record rather than the block after it.
  835. */
  836. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  837. int h_size = be32_to_cpu(rhead->h_size);
  838. int h_version = be32_to_cpu(rhead->h_version);
  839. if ((h_version & XLOG_VERSION_2) &&
  840. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  841. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  842. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  843. hblks++;
  844. } else {
  845. hblks = 1;
  846. }
  847. } else {
  848. hblks = 1;
  849. }
  850. after_umount_blk = (i + hblks + (int)
  851. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  852. tail_lsn = log->l_tail_lsn;
  853. if (*head_blk == after_umount_blk &&
  854. be32_to_cpu(rhead->h_num_logops) == 1) {
  855. umount_data_blk = (i + hblks) % log->l_logBBsize;
  856. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  857. if (error)
  858. goto bread_err;
  859. op_head = (xlog_op_header_t *)offset;
  860. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  861. /*
  862. * Set tail and last sync so that newly written
  863. * log records will point recovery to after the
  864. * current unmount record.
  865. */
  866. log->l_tail_lsn =
  867. xlog_assign_lsn(log->l_curr_cycle,
  868. after_umount_blk);
  869. log->l_last_sync_lsn =
  870. xlog_assign_lsn(log->l_curr_cycle,
  871. after_umount_blk);
  872. *tail_blk = after_umount_blk;
  873. /*
  874. * Note that the unmount was clean. If the unmount
  875. * was not clean, we need to know this to rebuild the
  876. * superblock counters from the perag headers if we
  877. * have a filesystem using non-persistent counters.
  878. */
  879. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  880. }
  881. }
  882. /*
  883. * Make sure that there are no blocks in front of the head
  884. * with the same cycle number as the head. This can happen
  885. * because we allow multiple outstanding log writes concurrently,
  886. * and the later writes might make it out before earlier ones.
  887. *
  888. * We use the lsn from before modifying it so that we'll never
  889. * overwrite the unmount record after a clean unmount.
  890. *
  891. * Do this only if we are going to recover the filesystem
  892. *
  893. * NOTE: This used to say "if (!readonly)"
  894. * However on Linux, we can & do recover a read-only filesystem.
  895. * We only skip recovery if NORECOVERY is specified on mount,
  896. * in which case we would not be here.
  897. *
  898. * But... if the -device- itself is readonly, just skip this.
  899. * We can't recover this device anyway, so it won't matter.
  900. */
  901. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  902. error = xlog_clear_stale_blocks(log, tail_lsn);
  903. }
  904. bread_err:
  905. exit:
  906. xlog_put_bp(bp);
  907. if (error)
  908. xlog_warn("XFS: failed to locate log tail");
  909. return error;
  910. }
  911. /*
  912. * Is the log zeroed at all?
  913. *
  914. * The last binary search should be changed to perform an X block read
  915. * once X becomes small enough. You can then search linearly through
  916. * the X blocks. This will cut down on the number of reads we need to do.
  917. *
  918. * If the log is partially zeroed, this routine will pass back the blkno
  919. * of the first block with cycle number 0. It won't have a complete LR
  920. * preceding it.
  921. *
  922. * Return:
  923. * 0 => the log is completely written to
  924. * -1 => use *blk_no as the first block of the log
  925. * >0 => error has occurred
  926. */
  927. STATIC int
  928. xlog_find_zeroed(
  929. xlog_t *log,
  930. xfs_daddr_t *blk_no)
  931. {
  932. xfs_buf_t *bp;
  933. xfs_caddr_t offset;
  934. uint first_cycle, last_cycle;
  935. xfs_daddr_t new_blk, last_blk, start_blk;
  936. xfs_daddr_t num_scan_bblks;
  937. int error, log_bbnum = log->l_logBBsize;
  938. *blk_no = 0;
  939. /* check totally zeroed log */
  940. bp = xlog_get_bp(log, 1);
  941. if (!bp)
  942. return ENOMEM;
  943. error = xlog_bread(log, 0, 1, bp, &offset);
  944. if (error)
  945. goto bp_err;
  946. first_cycle = xlog_get_cycle(offset);
  947. if (first_cycle == 0) { /* completely zeroed log */
  948. *blk_no = 0;
  949. xlog_put_bp(bp);
  950. return -1;
  951. }
  952. /* check partially zeroed log */
  953. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  954. if (error)
  955. goto bp_err;
  956. last_cycle = xlog_get_cycle(offset);
  957. if (last_cycle != 0) { /* log completely written to */
  958. xlog_put_bp(bp);
  959. return 0;
  960. } else if (first_cycle != 1) {
  961. /*
  962. * If the cycle of the last block is zero, the cycle of
  963. * the first block must be 1. If it's not, maybe we're
  964. * not looking at a log... Bail out.
  965. */
  966. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  967. return XFS_ERROR(EINVAL);
  968. }
  969. /* we have a partially zeroed log */
  970. last_blk = log_bbnum-1;
  971. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  972. goto bp_err;
  973. /*
  974. * Validate the answer. Because there is no way to guarantee that
  975. * the entire log is made up of log records which are the same size,
  976. * we scan over the defined maximum blocks. At this point, the maximum
  977. * is not chosen to mean anything special. XXXmiken
  978. */
  979. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  980. ASSERT(num_scan_bblks <= INT_MAX);
  981. if (last_blk < num_scan_bblks)
  982. num_scan_bblks = last_blk;
  983. start_blk = last_blk - num_scan_bblks;
  984. /*
  985. * We search for any instances of cycle number 0 that occur before
  986. * our current estimate of the head. What we're trying to detect is
  987. * 1 ... | 0 | 1 | 0...
  988. * ^ binary search ends here
  989. */
  990. if ((error = xlog_find_verify_cycle(log, start_blk,
  991. (int)num_scan_bblks, 0, &new_blk)))
  992. goto bp_err;
  993. if (new_blk != -1)
  994. last_blk = new_blk;
  995. /*
  996. * Potentially backup over partial log record write. We don't need
  997. * to search the end of the log because we know it is zero.
  998. */
  999. if ((error = xlog_find_verify_log_record(log, start_blk,
  1000. &last_blk, 0)) == -1) {
  1001. error = XFS_ERROR(EIO);
  1002. goto bp_err;
  1003. } else if (error)
  1004. goto bp_err;
  1005. *blk_no = last_blk;
  1006. bp_err:
  1007. xlog_put_bp(bp);
  1008. if (error)
  1009. return error;
  1010. return -1;
  1011. }
  1012. /*
  1013. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1014. * to initialize a buffer full of empty log record headers and write
  1015. * them into the log.
  1016. */
  1017. STATIC void
  1018. xlog_add_record(
  1019. xlog_t *log,
  1020. xfs_caddr_t buf,
  1021. int cycle,
  1022. int block,
  1023. int tail_cycle,
  1024. int tail_block)
  1025. {
  1026. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1027. memset(buf, 0, BBSIZE);
  1028. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1029. recp->h_cycle = cpu_to_be32(cycle);
  1030. recp->h_version = cpu_to_be32(
  1031. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1032. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1033. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1034. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1035. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1036. }
  1037. STATIC int
  1038. xlog_write_log_records(
  1039. xlog_t *log,
  1040. int cycle,
  1041. int start_block,
  1042. int blocks,
  1043. int tail_cycle,
  1044. int tail_block)
  1045. {
  1046. xfs_caddr_t offset;
  1047. xfs_buf_t *bp;
  1048. int balign, ealign;
  1049. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1050. int end_block = start_block + blocks;
  1051. int bufblks;
  1052. int error = 0;
  1053. int i, j = 0;
  1054. bufblks = 1 << ffs(blocks);
  1055. while (!(bp = xlog_get_bp(log, bufblks))) {
  1056. bufblks >>= 1;
  1057. if (bufblks <= log->l_sectbb_log)
  1058. return ENOMEM;
  1059. }
  1060. /* We may need to do a read at the start to fill in part of
  1061. * the buffer in the starting sector not covered by the first
  1062. * write below.
  1063. */
  1064. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1065. if (balign != start_block) {
  1066. error = xlog_bread_noalign(log, start_block, 1, bp);
  1067. if (error)
  1068. goto out_put_bp;
  1069. j = start_block - balign;
  1070. }
  1071. for (i = start_block; i < end_block; i += bufblks) {
  1072. int bcount, endcount;
  1073. bcount = min(bufblks, end_block - start_block);
  1074. endcount = bcount - j;
  1075. /* We may need to do a read at the end to fill in part of
  1076. * the buffer in the final sector not covered by the write.
  1077. * If this is the same sector as the above read, skip it.
  1078. */
  1079. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1080. if (j == 0 && (start_block + endcount > ealign)) {
  1081. offset = XFS_BUF_PTR(bp);
  1082. balign = BBTOB(ealign - start_block);
  1083. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1084. BBTOB(sectbb));
  1085. if (error)
  1086. break;
  1087. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1088. if (error)
  1089. break;
  1090. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1091. if (error)
  1092. break;
  1093. }
  1094. offset = xlog_align(log, start_block, endcount, bp);
  1095. for (; j < endcount; j++) {
  1096. xlog_add_record(log, offset, cycle, i+j,
  1097. tail_cycle, tail_block);
  1098. offset += BBSIZE;
  1099. }
  1100. error = xlog_bwrite(log, start_block, endcount, bp);
  1101. if (error)
  1102. break;
  1103. start_block += endcount;
  1104. j = 0;
  1105. }
  1106. out_put_bp:
  1107. xlog_put_bp(bp);
  1108. return error;
  1109. }
  1110. /*
  1111. * This routine is called to blow away any incomplete log writes out
  1112. * in front of the log head. We do this so that we won't become confused
  1113. * if we come up, write only a little bit more, and then crash again.
  1114. * If we leave the partial log records out there, this situation could
  1115. * cause us to think those partial writes are valid blocks since they
  1116. * have the current cycle number. We get rid of them by overwriting them
  1117. * with empty log records with the old cycle number rather than the
  1118. * current one.
  1119. *
  1120. * The tail lsn is passed in rather than taken from
  1121. * the log so that we will not write over the unmount record after a
  1122. * clean unmount in a 512 block log. Doing so would leave the log without
  1123. * any valid log records in it until a new one was written. If we crashed
  1124. * during that time we would not be able to recover.
  1125. */
  1126. STATIC int
  1127. xlog_clear_stale_blocks(
  1128. xlog_t *log,
  1129. xfs_lsn_t tail_lsn)
  1130. {
  1131. int tail_cycle, head_cycle;
  1132. int tail_block, head_block;
  1133. int tail_distance, max_distance;
  1134. int distance;
  1135. int error;
  1136. tail_cycle = CYCLE_LSN(tail_lsn);
  1137. tail_block = BLOCK_LSN(tail_lsn);
  1138. head_cycle = log->l_curr_cycle;
  1139. head_block = log->l_curr_block;
  1140. /*
  1141. * Figure out the distance between the new head of the log
  1142. * and the tail. We want to write over any blocks beyond the
  1143. * head that we may have written just before the crash, but
  1144. * we don't want to overwrite the tail of the log.
  1145. */
  1146. if (head_cycle == tail_cycle) {
  1147. /*
  1148. * The tail is behind the head in the physical log,
  1149. * so the distance from the head to the tail is the
  1150. * distance from the head to the end of the log plus
  1151. * the distance from the beginning of the log to the
  1152. * tail.
  1153. */
  1154. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1155. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1156. XFS_ERRLEVEL_LOW, log->l_mp);
  1157. return XFS_ERROR(EFSCORRUPTED);
  1158. }
  1159. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1160. } else {
  1161. /*
  1162. * The head is behind the tail in the physical log,
  1163. * so the distance from the head to the tail is just
  1164. * the tail block minus the head block.
  1165. */
  1166. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1167. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1168. XFS_ERRLEVEL_LOW, log->l_mp);
  1169. return XFS_ERROR(EFSCORRUPTED);
  1170. }
  1171. tail_distance = tail_block - head_block;
  1172. }
  1173. /*
  1174. * If the head is right up against the tail, we can't clear
  1175. * anything.
  1176. */
  1177. if (tail_distance <= 0) {
  1178. ASSERT(tail_distance == 0);
  1179. return 0;
  1180. }
  1181. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1182. /*
  1183. * Take the smaller of the maximum amount of outstanding I/O
  1184. * we could have and the distance to the tail to clear out.
  1185. * We take the smaller so that we don't overwrite the tail and
  1186. * we don't waste all day writing from the head to the tail
  1187. * for no reason.
  1188. */
  1189. max_distance = MIN(max_distance, tail_distance);
  1190. if ((head_block + max_distance) <= log->l_logBBsize) {
  1191. /*
  1192. * We can stomp all the blocks we need to without
  1193. * wrapping around the end of the log. Just do it
  1194. * in a single write. Use the cycle number of the
  1195. * current cycle minus one so that the log will look like:
  1196. * n ... | n - 1 ...
  1197. */
  1198. error = xlog_write_log_records(log, (head_cycle - 1),
  1199. head_block, max_distance, tail_cycle,
  1200. tail_block);
  1201. if (error)
  1202. return error;
  1203. } else {
  1204. /*
  1205. * We need to wrap around the end of the physical log in
  1206. * order to clear all the blocks. Do it in two separate
  1207. * I/Os. The first write should be from the head to the
  1208. * end of the physical log, and it should use the current
  1209. * cycle number minus one just like above.
  1210. */
  1211. distance = log->l_logBBsize - head_block;
  1212. error = xlog_write_log_records(log, (head_cycle - 1),
  1213. head_block, distance, tail_cycle,
  1214. tail_block);
  1215. if (error)
  1216. return error;
  1217. /*
  1218. * Now write the blocks at the start of the physical log.
  1219. * This writes the remainder of the blocks we want to clear.
  1220. * It uses the current cycle number since we're now on the
  1221. * same cycle as the head so that we get:
  1222. * n ... n ... | n - 1 ...
  1223. * ^^^^^ blocks we're writing
  1224. */
  1225. distance = max_distance - (log->l_logBBsize - head_block);
  1226. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1227. tail_cycle, tail_block);
  1228. if (error)
  1229. return error;
  1230. }
  1231. return 0;
  1232. }
  1233. /******************************************************************************
  1234. *
  1235. * Log recover routines
  1236. *
  1237. ******************************************************************************
  1238. */
  1239. STATIC xlog_recover_t *
  1240. xlog_recover_find_tid(
  1241. xlog_recover_t *q,
  1242. xlog_tid_t tid)
  1243. {
  1244. xlog_recover_t *p = q;
  1245. while (p != NULL) {
  1246. if (p->r_log_tid == tid)
  1247. break;
  1248. p = p->r_next;
  1249. }
  1250. return p;
  1251. }
  1252. STATIC void
  1253. xlog_recover_put_hashq(
  1254. xlog_recover_t **q,
  1255. xlog_recover_t *trans)
  1256. {
  1257. trans->r_next = *q;
  1258. *q = trans;
  1259. }
  1260. STATIC void
  1261. xlog_recover_add_item(
  1262. xlog_recover_item_t **itemq)
  1263. {
  1264. xlog_recover_item_t *item;
  1265. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1266. xlog_recover_insert_item_backq(itemq, item);
  1267. }
  1268. STATIC int
  1269. xlog_recover_add_to_cont_trans(
  1270. xlog_recover_t *trans,
  1271. xfs_caddr_t dp,
  1272. int len)
  1273. {
  1274. xlog_recover_item_t *item;
  1275. xfs_caddr_t ptr, old_ptr;
  1276. int old_len;
  1277. item = trans->r_itemq;
  1278. if (item == NULL) {
  1279. /* finish copying rest of trans header */
  1280. xlog_recover_add_item(&trans->r_itemq);
  1281. ptr = (xfs_caddr_t) &trans->r_theader +
  1282. sizeof(xfs_trans_header_t) - len;
  1283. memcpy(ptr, dp, len); /* d, s, l */
  1284. return 0;
  1285. }
  1286. item = item->ri_prev;
  1287. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1288. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1289. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1290. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1291. item->ri_buf[item->ri_cnt-1].i_len += len;
  1292. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1293. return 0;
  1294. }
  1295. /*
  1296. * The next region to add is the start of a new region. It could be
  1297. * a whole region or it could be the first part of a new region. Because
  1298. * of this, the assumption here is that the type and size fields of all
  1299. * format structures fit into the first 32 bits of the structure.
  1300. *
  1301. * This works because all regions must be 32 bit aligned. Therefore, we
  1302. * either have both fields or we have neither field. In the case we have
  1303. * neither field, the data part of the region is zero length. We only have
  1304. * a log_op_header and can throw away the header since a new one will appear
  1305. * later. If we have at least 4 bytes, then we can determine how many regions
  1306. * will appear in the current log item.
  1307. */
  1308. STATIC int
  1309. xlog_recover_add_to_trans(
  1310. xlog_recover_t *trans,
  1311. xfs_caddr_t dp,
  1312. int len)
  1313. {
  1314. xfs_inode_log_format_t *in_f; /* any will do */
  1315. xlog_recover_item_t *item;
  1316. xfs_caddr_t ptr;
  1317. if (!len)
  1318. return 0;
  1319. item = trans->r_itemq;
  1320. if (item == NULL) {
  1321. /* we need to catch log corruptions here */
  1322. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1323. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1324. "bad header magic number");
  1325. ASSERT(0);
  1326. return XFS_ERROR(EIO);
  1327. }
  1328. if (len == sizeof(xfs_trans_header_t))
  1329. xlog_recover_add_item(&trans->r_itemq);
  1330. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1331. return 0;
  1332. }
  1333. ptr = kmem_alloc(len, KM_SLEEP);
  1334. memcpy(ptr, dp, len);
  1335. in_f = (xfs_inode_log_format_t *)ptr;
  1336. if (item->ri_prev->ri_total != 0 &&
  1337. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1338. xlog_recover_add_item(&trans->r_itemq);
  1339. }
  1340. item = trans->r_itemq;
  1341. item = item->ri_prev;
  1342. if (item->ri_total == 0) { /* first region to be added */
  1343. if (in_f->ilf_size == 0 ||
  1344. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1345. xlog_warn(
  1346. "XFS: bad number of regions (%d) in inode log format",
  1347. in_f->ilf_size);
  1348. ASSERT(0);
  1349. return XFS_ERROR(EIO);
  1350. }
  1351. item->ri_total = in_f->ilf_size;
  1352. item->ri_buf =
  1353. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1354. KM_SLEEP);
  1355. }
  1356. ASSERT(item->ri_total > item->ri_cnt);
  1357. /* Description region is ri_buf[0] */
  1358. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1359. item->ri_buf[item->ri_cnt].i_len = len;
  1360. item->ri_cnt++;
  1361. return 0;
  1362. }
  1363. STATIC void
  1364. xlog_recover_new_tid(
  1365. xlog_recover_t **q,
  1366. xlog_tid_t tid,
  1367. xfs_lsn_t lsn)
  1368. {
  1369. xlog_recover_t *trans;
  1370. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1371. trans->r_log_tid = tid;
  1372. trans->r_lsn = lsn;
  1373. xlog_recover_put_hashq(q, trans);
  1374. }
  1375. STATIC int
  1376. xlog_recover_unlink_tid(
  1377. xlog_recover_t **q,
  1378. xlog_recover_t *trans)
  1379. {
  1380. xlog_recover_t *tp;
  1381. int found = 0;
  1382. ASSERT(trans != NULL);
  1383. if (trans == *q) {
  1384. *q = (*q)->r_next;
  1385. } else {
  1386. tp = *q;
  1387. while (tp) {
  1388. if (tp->r_next == trans) {
  1389. found = 1;
  1390. break;
  1391. }
  1392. tp = tp->r_next;
  1393. }
  1394. if (!found) {
  1395. xlog_warn(
  1396. "XFS: xlog_recover_unlink_tid: trans not found");
  1397. ASSERT(0);
  1398. return XFS_ERROR(EIO);
  1399. }
  1400. tp->r_next = tp->r_next->r_next;
  1401. }
  1402. return 0;
  1403. }
  1404. STATIC void
  1405. xlog_recover_insert_item_backq(
  1406. xlog_recover_item_t **q,
  1407. xlog_recover_item_t *item)
  1408. {
  1409. if (*q == NULL) {
  1410. item->ri_prev = item->ri_next = item;
  1411. *q = item;
  1412. } else {
  1413. item->ri_next = *q;
  1414. item->ri_prev = (*q)->ri_prev;
  1415. (*q)->ri_prev = item;
  1416. item->ri_prev->ri_next = item;
  1417. }
  1418. }
  1419. STATIC void
  1420. xlog_recover_insert_item_frontq(
  1421. xlog_recover_item_t **q,
  1422. xlog_recover_item_t *item)
  1423. {
  1424. xlog_recover_insert_item_backq(q, item);
  1425. *q = item;
  1426. }
  1427. STATIC int
  1428. xlog_recover_reorder_trans(
  1429. xlog_recover_t *trans)
  1430. {
  1431. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1432. xfs_buf_log_format_t *buf_f;
  1433. ushort flags = 0;
  1434. first_item = itemq = trans->r_itemq;
  1435. trans->r_itemq = NULL;
  1436. do {
  1437. itemq_next = itemq->ri_next;
  1438. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1439. switch (ITEM_TYPE(itemq)) {
  1440. case XFS_LI_BUF:
  1441. flags = buf_f->blf_flags;
  1442. if (!(flags & XFS_BLI_CANCEL)) {
  1443. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1444. itemq);
  1445. break;
  1446. }
  1447. case XFS_LI_INODE:
  1448. case XFS_LI_DQUOT:
  1449. case XFS_LI_QUOTAOFF:
  1450. case XFS_LI_EFD:
  1451. case XFS_LI_EFI:
  1452. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1453. break;
  1454. default:
  1455. xlog_warn(
  1456. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1457. ASSERT(0);
  1458. return XFS_ERROR(EIO);
  1459. }
  1460. itemq = itemq_next;
  1461. } while (first_item != itemq);
  1462. return 0;
  1463. }
  1464. /*
  1465. * Build up the table of buf cancel records so that we don't replay
  1466. * cancelled data in the second pass. For buffer records that are
  1467. * not cancel records, there is nothing to do here so we just return.
  1468. *
  1469. * If we get a cancel record which is already in the table, this indicates
  1470. * that the buffer was cancelled multiple times. In order to ensure
  1471. * that during pass 2 we keep the record in the table until we reach its
  1472. * last occurrence in the log, we keep a reference count in the cancel
  1473. * record in the table to tell us how many times we expect to see this
  1474. * record during the second pass.
  1475. */
  1476. STATIC void
  1477. xlog_recover_do_buffer_pass1(
  1478. xlog_t *log,
  1479. xfs_buf_log_format_t *buf_f)
  1480. {
  1481. xfs_buf_cancel_t *bcp;
  1482. xfs_buf_cancel_t *nextp;
  1483. xfs_buf_cancel_t *prevp;
  1484. xfs_buf_cancel_t **bucket;
  1485. xfs_daddr_t blkno = 0;
  1486. uint len = 0;
  1487. ushort flags = 0;
  1488. switch (buf_f->blf_type) {
  1489. case XFS_LI_BUF:
  1490. blkno = buf_f->blf_blkno;
  1491. len = buf_f->blf_len;
  1492. flags = buf_f->blf_flags;
  1493. break;
  1494. }
  1495. /*
  1496. * If this isn't a cancel buffer item, then just return.
  1497. */
  1498. if (!(flags & XFS_BLI_CANCEL))
  1499. return;
  1500. /*
  1501. * Insert an xfs_buf_cancel record into the hash table of
  1502. * them. If there is already an identical record, bump
  1503. * its reference count.
  1504. */
  1505. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1506. XLOG_BC_TABLE_SIZE];
  1507. /*
  1508. * If the hash bucket is empty then just insert a new record into
  1509. * the bucket.
  1510. */
  1511. if (*bucket == NULL) {
  1512. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1513. KM_SLEEP);
  1514. bcp->bc_blkno = blkno;
  1515. bcp->bc_len = len;
  1516. bcp->bc_refcount = 1;
  1517. bcp->bc_next = NULL;
  1518. *bucket = bcp;
  1519. return;
  1520. }
  1521. /*
  1522. * The hash bucket is not empty, so search for duplicates of our
  1523. * record. If we find one them just bump its refcount. If not
  1524. * then add us at the end of the list.
  1525. */
  1526. prevp = NULL;
  1527. nextp = *bucket;
  1528. while (nextp != NULL) {
  1529. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1530. nextp->bc_refcount++;
  1531. return;
  1532. }
  1533. prevp = nextp;
  1534. nextp = nextp->bc_next;
  1535. }
  1536. ASSERT(prevp != NULL);
  1537. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1538. KM_SLEEP);
  1539. bcp->bc_blkno = blkno;
  1540. bcp->bc_len = len;
  1541. bcp->bc_refcount = 1;
  1542. bcp->bc_next = NULL;
  1543. prevp->bc_next = bcp;
  1544. }
  1545. /*
  1546. * Check to see whether the buffer being recovered has a corresponding
  1547. * entry in the buffer cancel record table. If it does then return 1
  1548. * so that it will be cancelled, otherwise return 0. If the buffer is
  1549. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1550. * the refcount on the entry in the table and remove it from the table
  1551. * if this is the last reference.
  1552. *
  1553. * We remove the cancel record from the table when we encounter its
  1554. * last occurrence in the log so that if the same buffer is re-used
  1555. * again after its last cancellation we actually replay the changes
  1556. * made at that point.
  1557. */
  1558. STATIC int
  1559. xlog_check_buffer_cancelled(
  1560. xlog_t *log,
  1561. xfs_daddr_t blkno,
  1562. uint len,
  1563. ushort flags)
  1564. {
  1565. xfs_buf_cancel_t *bcp;
  1566. xfs_buf_cancel_t *prevp;
  1567. xfs_buf_cancel_t **bucket;
  1568. if (log->l_buf_cancel_table == NULL) {
  1569. /*
  1570. * There is nothing in the table built in pass one,
  1571. * so this buffer must not be cancelled.
  1572. */
  1573. ASSERT(!(flags & XFS_BLI_CANCEL));
  1574. return 0;
  1575. }
  1576. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1577. XLOG_BC_TABLE_SIZE];
  1578. bcp = *bucket;
  1579. if (bcp == NULL) {
  1580. /*
  1581. * There is no corresponding entry in the table built
  1582. * in pass one, so this buffer has not been cancelled.
  1583. */
  1584. ASSERT(!(flags & XFS_BLI_CANCEL));
  1585. return 0;
  1586. }
  1587. /*
  1588. * Search for an entry in the buffer cancel table that
  1589. * matches our buffer.
  1590. */
  1591. prevp = NULL;
  1592. while (bcp != NULL) {
  1593. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1594. /*
  1595. * We've go a match, so return 1 so that the
  1596. * recovery of this buffer is cancelled.
  1597. * If this buffer is actually a buffer cancel
  1598. * log item, then decrement the refcount on the
  1599. * one in the table and remove it if this is the
  1600. * last reference.
  1601. */
  1602. if (flags & XFS_BLI_CANCEL) {
  1603. bcp->bc_refcount--;
  1604. if (bcp->bc_refcount == 0) {
  1605. if (prevp == NULL) {
  1606. *bucket = bcp->bc_next;
  1607. } else {
  1608. prevp->bc_next = bcp->bc_next;
  1609. }
  1610. kmem_free(bcp);
  1611. }
  1612. }
  1613. return 1;
  1614. }
  1615. prevp = bcp;
  1616. bcp = bcp->bc_next;
  1617. }
  1618. /*
  1619. * We didn't find a corresponding entry in the table, so
  1620. * return 0 so that the buffer is NOT cancelled.
  1621. */
  1622. ASSERT(!(flags & XFS_BLI_CANCEL));
  1623. return 0;
  1624. }
  1625. STATIC int
  1626. xlog_recover_do_buffer_pass2(
  1627. xlog_t *log,
  1628. xfs_buf_log_format_t *buf_f)
  1629. {
  1630. xfs_daddr_t blkno = 0;
  1631. ushort flags = 0;
  1632. uint len = 0;
  1633. switch (buf_f->blf_type) {
  1634. case XFS_LI_BUF:
  1635. blkno = buf_f->blf_blkno;
  1636. flags = buf_f->blf_flags;
  1637. len = buf_f->blf_len;
  1638. break;
  1639. }
  1640. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1641. }
  1642. /*
  1643. * Perform recovery for a buffer full of inodes. In these buffers,
  1644. * the only data which should be recovered is that which corresponds
  1645. * to the di_next_unlinked pointers in the on disk inode structures.
  1646. * The rest of the data for the inodes is always logged through the
  1647. * inodes themselves rather than the inode buffer and is recovered
  1648. * in xlog_recover_do_inode_trans().
  1649. *
  1650. * The only time when buffers full of inodes are fully recovered is
  1651. * when the buffer is full of newly allocated inodes. In this case
  1652. * the buffer will not be marked as an inode buffer and so will be
  1653. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1654. */
  1655. STATIC int
  1656. xlog_recover_do_inode_buffer(
  1657. xfs_mount_t *mp,
  1658. xlog_recover_item_t *item,
  1659. xfs_buf_t *bp,
  1660. xfs_buf_log_format_t *buf_f)
  1661. {
  1662. int i;
  1663. int item_index;
  1664. int bit;
  1665. int nbits;
  1666. int reg_buf_offset;
  1667. int reg_buf_bytes;
  1668. int next_unlinked_offset;
  1669. int inodes_per_buf;
  1670. xfs_agino_t *logged_nextp;
  1671. xfs_agino_t *buffer_nextp;
  1672. unsigned int *data_map = NULL;
  1673. unsigned int map_size = 0;
  1674. switch (buf_f->blf_type) {
  1675. case XFS_LI_BUF:
  1676. data_map = buf_f->blf_data_map;
  1677. map_size = buf_f->blf_map_size;
  1678. break;
  1679. }
  1680. /*
  1681. * Set the variables corresponding to the current region to
  1682. * 0 so that we'll initialize them on the first pass through
  1683. * the loop.
  1684. */
  1685. reg_buf_offset = 0;
  1686. reg_buf_bytes = 0;
  1687. bit = 0;
  1688. nbits = 0;
  1689. item_index = 0;
  1690. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1691. for (i = 0; i < inodes_per_buf; i++) {
  1692. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1693. offsetof(xfs_dinode_t, di_next_unlinked);
  1694. while (next_unlinked_offset >=
  1695. (reg_buf_offset + reg_buf_bytes)) {
  1696. /*
  1697. * The next di_next_unlinked field is beyond
  1698. * the current logged region. Find the next
  1699. * logged region that contains or is beyond
  1700. * the current di_next_unlinked field.
  1701. */
  1702. bit += nbits;
  1703. bit = xfs_next_bit(data_map, map_size, bit);
  1704. /*
  1705. * If there are no more logged regions in the
  1706. * buffer, then we're done.
  1707. */
  1708. if (bit == -1) {
  1709. return 0;
  1710. }
  1711. nbits = xfs_contig_bits(data_map, map_size,
  1712. bit);
  1713. ASSERT(nbits > 0);
  1714. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1715. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1716. item_index++;
  1717. }
  1718. /*
  1719. * If the current logged region starts after the current
  1720. * di_next_unlinked field, then move on to the next
  1721. * di_next_unlinked field.
  1722. */
  1723. if (next_unlinked_offset < reg_buf_offset) {
  1724. continue;
  1725. }
  1726. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1727. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1728. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1729. /*
  1730. * The current logged region contains a copy of the
  1731. * current di_next_unlinked field. Extract its value
  1732. * and copy it to the buffer copy.
  1733. */
  1734. logged_nextp = (xfs_agino_t *)
  1735. ((char *)(item->ri_buf[item_index].i_addr) +
  1736. (next_unlinked_offset - reg_buf_offset));
  1737. if (unlikely(*logged_nextp == 0)) {
  1738. xfs_fs_cmn_err(CE_ALERT, mp,
  1739. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1740. item, bp);
  1741. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1742. XFS_ERRLEVEL_LOW, mp);
  1743. return XFS_ERROR(EFSCORRUPTED);
  1744. }
  1745. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1746. next_unlinked_offset);
  1747. *buffer_nextp = *logged_nextp;
  1748. }
  1749. return 0;
  1750. }
  1751. /*
  1752. * Perform a 'normal' buffer recovery. Each logged region of the
  1753. * buffer should be copied over the corresponding region in the
  1754. * given buffer. The bitmap in the buf log format structure indicates
  1755. * where to place the logged data.
  1756. */
  1757. /*ARGSUSED*/
  1758. STATIC void
  1759. xlog_recover_do_reg_buffer(
  1760. xlog_recover_item_t *item,
  1761. xfs_buf_t *bp,
  1762. xfs_buf_log_format_t *buf_f)
  1763. {
  1764. int i;
  1765. int bit;
  1766. int nbits;
  1767. unsigned int *data_map = NULL;
  1768. unsigned int map_size = 0;
  1769. int error;
  1770. switch (buf_f->blf_type) {
  1771. case XFS_LI_BUF:
  1772. data_map = buf_f->blf_data_map;
  1773. map_size = buf_f->blf_map_size;
  1774. break;
  1775. }
  1776. bit = 0;
  1777. i = 1; /* 0 is the buf format structure */
  1778. while (1) {
  1779. bit = xfs_next_bit(data_map, map_size, bit);
  1780. if (bit == -1)
  1781. break;
  1782. nbits = xfs_contig_bits(data_map, map_size, bit);
  1783. ASSERT(nbits > 0);
  1784. ASSERT(item->ri_buf[i].i_addr != NULL);
  1785. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1786. ASSERT(XFS_BUF_COUNT(bp) >=
  1787. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1788. /*
  1789. * Do a sanity check if this is a dquot buffer. Just checking
  1790. * the first dquot in the buffer should do. XXXThis is
  1791. * probably a good thing to do for other buf types also.
  1792. */
  1793. error = 0;
  1794. if (buf_f->blf_flags &
  1795. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1796. if (item->ri_buf[i].i_addr == NULL) {
  1797. cmn_err(CE_ALERT,
  1798. "XFS: NULL dquot in %s.", __func__);
  1799. goto next;
  1800. }
  1801. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1802. cmn_err(CE_ALERT,
  1803. "XFS: dquot too small (%d) in %s.",
  1804. item->ri_buf[i].i_len, __func__);
  1805. goto next;
  1806. }
  1807. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1808. item->ri_buf[i].i_addr,
  1809. -1, 0, XFS_QMOPT_DOWARN,
  1810. "dquot_buf_recover");
  1811. if (error)
  1812. goto next;
  1813. }
  1814. memcpy(xfs_buf_offset(bp,
  1815. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1816. item->ri_buf[i].i_addr, /* source */
  1817. nbits<<XFS_BLI_SHIFT); /* length */
  1818. next:
  1819. i++;
  1820. bit += nbits;
  1821. }
  1822. /* Shouldn't be any more regions */
  1823. ASSERT(i == item->ri_total);
  1824. }
  1825. /*
  1826. * Do some primitive error checking on ondisk dquot data structures.
  1827. */
  1828. int
  1829. xfs_qm_dqcheck(
  1830. xfs_disk_dquot_t *ddq,
  1831. xfs_dqid_t id,
  1832. uint type, /* used only when IO_dorepair is true */
  1833. uint flags,
  1834. char *str)
  1835. {
  1836. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1837. int errs = 0;
  1838. /*
  1839. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1840. * 1. If we crash while deleting the quotainode(s), and those blks got
  1841. * used for user data. This is because we take the path of regular
  1842. * file deletion; however, the size field of quotainodes is never
  1843. * updated, so all the tricks that we play in itruncate_finish
  1844. * don't quite matter.
  1845. *
  1846. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1847. * But the allocation will be replayed so we'll end up with an
  1848. * uninitialized quota block.
  1849. *
  1850. * This is all fine; things are still consistent, and we haven't lost
  1851. * any quota information. Just don't complain about bad dquot blks.
  1852. */
  1853. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1854. if (flags & XFS_QMOPT_DOWARN)
  1855. cmn_err(CE_ALERT,
  1856. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1857. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1858. errs++;
  1859. }
  1860. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1861. if (flags & XFS_QMOPT_DOWARN)
  1862. cmn_err(CE_ALERT,
  1863. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1864. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1865. errs++;
  1866. }
  1867. if (ddq->d_flags != XFS_DQ_USER &&
  1868. ddq->d_flags != XFS_DQ_PROJ &&
  1869. ddq->d_flags != XFS_DQ_GROUP) {
  1870. if (flags & XFS_QMOPT_DOWARN)
  1871. cmn_err(CE_ALERT,
  1872. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1873. str, id, ddq->d_flags);
  1874. errs++;
  1875. }
  1876. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1877. if (flags & XFS_QMOPT_DOWARN)
  1878. cmn_err(CE_ALERT,
  1879. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1880. "0x%x expected, found id 0x%x",
  1881. str, ddq, id, be32_to_cpu(ddq->d_id));
  1882. errs++;
  1883. }
  1884. if (!errs && ddq->d_id) {
  1885. if (ddq->d_blk_softlimit &&
  1886. be64_to_cpu(ddq->d_bcount) >=
  1887. be64_to_cpu(ddq->d_blk_softlimit)) {
  1888. if (!ddq->d_btimer) {
  1889. if (flags & XFS_QMOPT_DOWARN)
  1890. cmn_err(CE_ALERT,
  1891. "%s : Dquot ID 0x%x (0x%p) "
  1892. "BLK TIMER NOT STARTED",
  1893. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1894. errs++;
  1895. }
  1896. }
  1897. if (ddq->d_ino_softlimit &&
  1898. be64_to_cpu(ddq->d_icount) >=
  1899. be64_to_cpu(ddq->d_ino_softlimit)) {
  1900. if (!ddq->d_itimer) {
  1901. if (flags & XFS_QMOPT_DOWARN)
  1902. cmn_err(CE_ALERT,
  1903. "%s : Dquot ID 0x%x (0x%p) "
  1904. "INODE TIMER NOT STARTED",
  1905. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1906. errs++;
  1907. }
  1908. }
  1909. if (ddq->d_rtb_softlimit &&
  1910. be64_to_cpu(ddq->d_rtbcount) >=
  1911. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1912. if (!ddq->d_rtbtimer) {
  1913. if (flags & XFS_QMOPT_DOWARN)
  1914. cmn_err(CE_ALERT,
  1915. "%s : Dquot ID 0x%x (0x%p) "
  1916. "RTBLK TIMER NOT STARTED",
  1917. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1918. errs++;
  1919. }
  1920. }
  1921. }
  1922. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1923. return errs;
  1924. if (flags & XFS_QMOPT_DOWARN)
  1925. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1926. /*
  1927. * Typically, a repair is only requested by quotacheck.
  1928. */
  1929. ASSERT(id != -1);
  1930. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1931. memset(d, 0, sizeof(xfs_dqblk_t));
  1932. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1933. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1934. d->dd_diskdq.d_flags = type;
  1935. d->dd_diskdq.d_id = cpu_to_be32(id);
  1936. return errs;
  1937. }
  1938. /*
  1939. * Perform a dquot buffer recovery.
  1940. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1941. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1942. * Else, treat it as a regular buffer and do recovery.
  1943. */
  1944. STATIC void
  1945. xlog_recover_do_dquot_buffer(
  1946. xfs_mount_t *mp,
  1947. xlog_t *log,
  1948. xlog_recover_item_t *item,
  1949. xfs_buf_t *bp,
  1950. xfs_buf_log_format_t *buf_f)
  1951. {
  1952. uint type;
  1953. /*
  1954. * Filesystems are required to send in quota flags at mount time.
  1955. */
  1956. if (mp->m_qflags == 0) {
  1957. return;
  1958. }
  1959. type = 0;
  1960. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1961. type |= XFS_DQ_USER;
  1962. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1963. type |= XFS_DQ_PROJ;
  1964. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1965. type |= XFS_DQ_GROUP;
  1966. /*
  1967. * This type of quotas was turned off, so ignore this buffer
  1968. */
  1969. if (log->l_quotaoffs_flag & type)
  1970. return;
  1971. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1972. }
  1973. /*
  1974. * This routine replays a modification made to a buffer at runtime.
  1975. * There are actually two types of buffer, regular and inode, which
  1976. * are handled differently. Inode buffers are handled differently
  1977. * in that we only recover a specific set of data from them, namely
  1978. * the inode di_next_unlinked fields. This is because all other inode
  1979. * data is actually logged via inode records and any data we replay
  1980. * here which overlaps that may be stale.
  1981. *
  1982. * When meta-data buffers are freed at run time we log a buffer item
  1983. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1984. * of the buffer in the log should not be replayed at recovery time.
  1985. * This is so that if the blocks covered by the buffer are reused for
  1986. * file data before we crash we don't end up replaying old, freed
  1987. * meta-data into a user's file.
  1988. *
  1989. * To handle the cancellation of buffer log items, we make two passes
  1990. * over the log during recovery. During the first we build a table of
  1991. * those buffers which have been cancelled, and during the second we
  1992. * only replay those buffers which do not have corresponding cancel
  1993. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1994. * for more details on the implementation of the table of cancel records.
  1995. */
  1996. STATIC int
  1997. xlog_recover_do_buffer_trans(
  1998. xlog_t *log,
  1999. xlog_recover_item_t *item,
  2000. int pass)
  2001. {
  2002. xfs_buf_log_format_t *buf_f;
  2003. xfs_mount_t *mp;
  2004. xfs_buf_t *bp;
  2005. int error;
  2006. int cancel;
  2007. xfs_daddr_t blkno;
  2008. int len;
  2009. ushort flags;
  2010. uint buf_flags;
  2011. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  2012. if (pass == XLOG_RECOVER_PASS1) {
  2013. /*
  2014. * In this pass we're only looking for buf items
  2015. * with the XFS_BLI_CANCEL bit set.
  2016. */
  2017. xlog_recover_do_buffer_pass1(log, buf_f);
  2018. return 0;
  2019. } else {
  2020. /*
  2021. * In this pass we want to recover all the buffers
  2022. * which have not been cancelled and are not
  2023. * cancellation buffers themselves. The routine
  2024. * we call here will tell us whether or not to
  2025. * continue with the replay of this buffer.
  2026. */
  2027. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  2028. if (cancel) {
  2029. return 0;
  2030. }
  2031. }
  2032. switch (buf_f->blf_type) {
  2033. case XFS_LI_BUF:
  2034. blkno = buf_f->blf_blkno;
  2035. len = buf_f->blf_len;
  2036. flags = buf_f->blf_flags;
  2037. break;
  2038. default:
  2039. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2040. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2041. buf_f->blf_type, log->l_mp->m_logname ?
  2042. log->l_mp->m_logname : "internal");
  2043. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2044. XFS_ERRLEVEL_LOW, log->l_mp);
  2045. return XFS_ERROR(EFSCORRUPTED);
  2046. }
  2047. mp = log->l_mp;
  2048. buf_flags = XFS_BUF_LOCK;
  2049. if (!(flags & XFS_BLI_INODE_BUF))
  2050. buf_flags |= XFS_BUF_MAPPED;
  2051. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
  2052. if (XFS_BUF_ISERROR(bp)) {
  2053. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2054. bp, blkno);
  2055. error = XFS_BUF_GETERROR(bp);
  2056. xfs_buf_relse(bp);
  2057. return error;
  2058. }
  2059. error = 0;
  2060. if (flags & XFS_BLI_INODE_BUF) {
  2061. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2062. } else if (flags &
  2063. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2064. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2065. } else {
  2066. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2067. }
  2068. if (error)
  2069. return XFS_ERROR(error);
  2070. /*
  2071. * Perform delayed write on the buffer. Asynchronous writes will be
  2072. * slower when taking into account all the buffers to be flushed.
  2073. *
  2074. * Also make sure that only inode buffers with good sizes stay in
  2075. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2076. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2077. * buffers in the log can be a different size if the log was generated
  2078. * by an older kernel using unclustered inode buffers or a newer kernel
  2079. * running with a different inode cluster size. Regardless, if the
  2080. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2081. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2082. * the buffer out of the buffer cache so that the buffer won't
  2083. * overlap with future reads of those inodes.
  2084. */
  2085. if (XFS_DINODE_MAGIC ==
  2086. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2087. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2088. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2089. XFS_BUF_STALE(bp);
  2090. error = xfs_bwrite(mp, bp);
  2091. } else {
  2092. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2093. bp->b_mount = mp;
  2094. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2095. xfs_bdwrite(mp, bp);
  2096. }
  2097. return (error);
  2098. }
  2099. STATIC int
  2100. xlog_recover_do_inode_trans(
  2101. xlog_t *log,
  2102. xlog_recover_item_t *item,
  2103. int pass)
  2104. {
  2105. xfs_inode_log_format_t *in_f;
  2106. xfs_mount_t *mp;
  2107. xfs_buf_t *bp;
  2108. xfs_dinode_t *dip;
  2109. xfs_ino_t ino;
  2110. int len;
  2111. xfs_caddr_t src;
  2112. xfs_caddr_t dest;
  2113. int error;
  2114. int attr_index;
  2115. uint fields;
  2116. xfs_icdinode_t *dicp;
  2117. int need_free = 0;
  2118. if (pass == XLOG_RECOVER_PASS1) {
  2119. return 0;
  2120. }
  2121. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2122. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2123. } else {
  2124. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2125. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2126. need_free = 1;
  2127. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2128. if (error)
  2129. goto error;
  2130. }
  2131. ino = in_f->ilf_ino;
  2132. mp = log->l_mp;
  2133. /*
  2134. * Inode buffers can be freed, look out for it,
  2135. * and do not replay the inode.
  2136. */
  2137. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2138. in_f->ilf_len, 0)) {
  2139. error = 0;
  2140. goto error;
  2141. }
  2142. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2143. XFS_BUF_LOCK);
  2144. if (XFS_BUF_ISERROR(bp)) {
  2145. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2146. bp, in_f->ilf_blkno);
  2147. error = XFS_BUF_GETERROR(bp);
  2148. xfs_buf_relse(bp);
  2149. goto error;
  2150. }
  2151. error = 0;
  2152. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2153. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2154. /*
  2155. * Make sure the place we're flushing out to really looks
  2156. * like an inode!
  2157. */
  2158. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2159. xfs_buf_relse(bp);
  2160. xfs_fs_cmn_err(CE_ALERT, mp,
  2161. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2162. dip, bp, ino);
  2163. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2164. XFS_ERRLEVEL_LOW, mp);
  2165. error = EFSCORRUPTED;
  2166. goto error;
  2167. }
  2168. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2169. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2170. xfs_buf_relse(bp);
  2171. xfs_fs_cmn_err(CE_ALERT, mp,
  2172. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2173. item, ino);
  2174. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2175. XFS_ERRLEVEL_LOW, mp);
  2176. error = EFSCORRUPTED;
  2177. goto error;
  2178. }
  2179. /* Skip replay when the on disk inode is newer than the log one */
  2180. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2181. /*
  2182. * Deal with the wrap case, DI_MAX_FLUSH is less
  2183. * than smaller numbers
  2184. */
  2185. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2186. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2187. /* do nothing */
  2188. } else {
  2189. xfs_buf_relse(bp);
  2190. error = 0;
  2191. goto error;
  2192. }
  2193. }
  2194. /* Take the opportunity to reset the flush iteration count */
  2195. dicp->di_flushiter = 0;
  2196. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2197. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2198. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2199. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2200. XFS_ERRLEVEL_LOW, mp, dicp);
  2201. xfs_buf_relse(bp);
  2202. xfs_fs_cmn_err(CE_ALERT, mp,
  2203. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2204. item, dip, bp, ino);
  2205. error = EFSCORRUPTED;
  2206. goto error;
  2207. }
  2208. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2209. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2210. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2211. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2212. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2213. XFS_ERRLEVEL_LOW, mp, dicp);
  2214. xfs_buf_relse(bp);
  2215. xfs_fs_cmn_err(CE_ALERT, mp,
  2216. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2217. item, dip, bp, ino);
  2218. error = EFSCORRUPTED;
  2219. goto error;
  2220. }
  2221. }
  2222. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2223. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2224. XFS_ERRLEVEL_LOW, mp, dicp);
  2225. xfs_buf_relse(bp);
  2226. xfs_fs_cmn_err(CE_ALERT, mp,
  2227. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2228. item, dip, bp, ino,
  2229. dicp->di_nextents + dicp->di_anextents,
  2230. dicp->di_nblocks);
  2231. error = EFSCORRUPTED;
  2232. goto error;
  2233. }
  2234. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2235. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2236. XFS_ERRLEVEL_LOW, mp, dicp);
  2237. xfs_buf_relse(bp);
  2238. xfs_fs_cmn_err(CE_ALERT, mp,
  2239. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2240. item, dip, bp, ino, dicp->di_forkoff);
  2241. error = EFSCORRUPTED;
  2242. goto error;
  2243. }
  2244. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2245. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2246. XFS_ERRLEVEL_LOW, mp, dicp);
  2247. xfs_buf_relse(bp);
  2248. xfs_fs_cmn_err(CE_ALERT, mp,
  2249. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2250. item->ri_buf[1].i_len, item);
  2251. error = EFSCORRUPTED;
  2252. goto error;
  2253. }
  2254. /* The core is in in-core format */
  2255. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2256. /* the rest is in on-disk format */
  2257. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2258. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2259. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2260. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2261. }
  2262. fields = in_f->ilf_fields;
  2263. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2264. case XFS_ILOG_DEV:
  2265. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2266. break;
  2267. case XFS_ILOG_UUID:
  2268. memcpy(XFS_DFORK_DPTR(dip),
  2269. &in_f->ilf_u.ilfu_uuid,
  2270. sizeof(uuid_t));
  2271. break;
  2272. }
  2273. if (in_f->ilf_size == 2)
  2274. goto write_inode_buffer;
  2275. len = item->ri_buf[2].i_len;
  2276. src = item->ri_buf[2].i_addr;
  2277. ASSERT(in_f->ilf_size <= 4);
  2278. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2279. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2280. (len == in_f->ilf_dsize));
  2281. switch (fields & XFS_ILOG_DFORK) {
  2282. case XFS_ILOG_DDATA:
  2283. case XFS_ILOG_DEXT:
  2284. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2285. break;
  2286. case XFS_ILOG_DBROOT:
  2287. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2288. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2289. XFS_DFORK_DSIZE(dip, mp));
  2290. break;
  2291. default:
  2292. /*
  2293. * There are no data fork flags set.
  2294. */
  2295. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2296. break;
  2297. }
  2298. /*
  2299. * If we logged any attribute data, recover it. There may or
  2300. * may not have been any other non-core data logged in this
  2301. * transaction.
  2302. */
  2303. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2304. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2305. attr_index = 3;
  2306. } else {
  2307. attr_index = 2;
  2308. }
  2309. len = item->ri_buf[attr_index].i_len;
  2310. src = item->ri_buf[attr_index].i_addr;
  2311. ASSERT(len == in_f->ilf_asize);
  2312. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2313. case XFS_ILOG_ADATA:
  2314. case XFS_ILOG_AEXT:
  2315. dest = XFS_DFORK_APTR(dip);
  2316. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2317. memcpy(dest, src, len);
  2318. break;
  2319. case XFS_ILOG_ABROOT:
  2320. dest = XFS_DFORK_APTR(dip);
  2321. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2322. len, (xfs_bmdr_block_t*)dest,
  2323. XFS_DFORK_ASIZE(dip, mp));
  2324. break;
  2325. default:
  2326. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2327. ASSERT(0);
  2328. xfs_buf_relse(bp);
  2329. error = EIO;
  2330. goto error;
  2331. }
  2332. }
  2333. write_inode_buffer:
  2334. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2335. bp->b_mount = mp;
  2336. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2337. xfs_bdwrite(mp, bp);
  2338. error:
  2339. if (need_free)
  2340. kmem_free(in_f);
  2341. return XFS_ERROR(error);
  2342. }
  2343. /*
  2344. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2345. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2346. * of that type.
  2347. */
  2348. STATIC int
  2349. xlog_recover_do_quotaoff_trans(
  2350. xlog_t *log,
  2351. xlog_recover_item_t *item,
  2352. int pass)
  2353. {
  2354. xfs_qoff_logformat_t *qoff_f;
  2355. if (pass == XLOG_RECOVER_PASS2) {
  2356. return (0);
  2357. }
  2358. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2359. ASSERT(qoff_f);
  2360. /*
  2361. * The logitem format's flag tells us if this was user quotaoff,
  2362. * group/project quotaoff or both.
  2363. */
  2364. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2365. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2366. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2367. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2368. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2369. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2370. return (0);
  2371. }
  2372. /*
  2373. * Recover a dquot record
  2374. */
  2375. STATIC int
  2376. xlog_recover_do_dquot_trans(
  2377. xlog_t *log,
  2378. xlog_recover_item_t *item,
  2379. int pass)
  2380. {
  2381. xfs_mount_t *mp;
  2382. xfs_buf_t *bp;
  2383. struct xfs_disk_dquot *ddq, *recddq;
  2384. int error;
  2385. xfs_dq_logformat_t *dq_f;
  2386. uint type;
  2387. if (pass == XLOG_RECOVER_PASS1) {
  2388. return 0;
  2389. }
  2390. mp = log->l_mp;
  2391. /*
  2392. * Filesystems are required to send in quota flags at mount time.
  2393. */
  2394. if (mp->m_qflags == 0)
  2395. return (0);
  2396. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2397. if (item->ri_buf[1].i_addr == NULL) {
  2398. cmn_err(CE_ALERT,
  2399. "XFS: NULL dquot in %s.", __func__);
  2400. return XFS_ERROR(EIO);
  2401. }
  2402. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2403. cmn_err(CE_ALERT,
  2404. "XFS: dquot too small (%d) in %s.",
  2405. item->ri_buf[1].i_len, __func__);
  2406. return XFS_ERROR(EIO);
  2407. }
  2408. /*
  2409. * This type of quotas was turned off, so ignore this record.
  2410. */
  2411. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2412. ASSERT(type);
  2413. if (log->l_quotaoffs_flag & type)
  2414. return (0);
  2415. /*
  2416. * At this point we know that quota was _not_ turned off.
  2417. * Since the mount flags are not indicating to us otherwise, this
  2418. * must mean that quota is on, and the dquot needs to be replayed.
  2419. * Remember that we may not have fully recovered the superblock yet,
  2420. * so we can't do the usual trick of looking at the SB quota bits.
  2421. *
  2422. * The other possibility, of course, is that the quota subsystem was
  2423. * removed since the last mount - ENOSYS.
  2424. */
  2425. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2426. ASSERT(dq_f);
  2427. if ((error = xfs_qm_dqcheck(recddq,
  2428. dq_f->qlf_id,
  2429. 0, XFS_QMOPT_DOWARN,
  2430. "xlog_recover_do_dquot_trans (log copy)"))) {
  2431. return XFS_ERROR(EIO);
  2432. }
  2433. ASSERT(dq_f->qlf_len == 1);
  2434. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2435. dq_f->qlf_blkno,
  2436. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2437. 0, &bp);
  2438. if (error) {
  2439. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2440. bp, dq_f->qlf_blkno);
  2441. return error;
  2442. }
  2443. ASSERT(bp);
  2444. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2445. /*
  2446. * At least the magic num portion should be on disk because this
  2447. * was among a chunk of dquots created earlier, and we did some
  2448. * minimal initialization then.
  2449. */
  2450. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2451. "xlog_recover_do_dquot_trans")) {
  2452. xfs_buf_relse(bp);
  2453. return XFS_ERROR(EIO);
  2454. }
  2455. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2456. ASSERT(dq_f->qlf_size == 2);
  2457. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2458. bp->b_mount = mp;
  2459. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2460. xfs_bdwrite(mp, bp);
  2461. return (0);
  2462. }
  2463. /*
  2464. * This routine is called to create an in-core extent free intent
  2465. * item from the efi format structure which was logged on disk.
  2466. * It allocates an in-core efi, copies the extents from the format
  2467. * structure into it, and adds the efi to the AIL with the given
  2468. * LSN.
  2469. */
  2470. STATIC int
  2471. xlog_recover_do_efi_trans(
  2472. xlog_t *log,
  2473. xlog_recover_item_t *item,
  2474. xfs_lsn_t lsn,
  2475. int pass)
  2476. {
  2477. int error;
  2478. xfs_mount_t *mp;
  2479. xfs_efi_log_item_t *efip;
  2480. xfs_efi_log_format_t *efi_formatp;
  2481. if (pass == XLOG_RECOVER_PASS1) {
  2482. return 0;
  2483. }
  2484. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2485. mp = log->l_mp;
  2486. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2487. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2488. &(efip->efi_format)))) {
  2489. xfs_efi_item_free(efip);
  2490. return error;
  2491. }
  2492. efip->efi_next_extent = efi_formatp->efi_nextents;
  2493. efip->efi_flags |= XFS_EFI_COMMITTED;
  2494. spin_lock(&log->l_ailp->xa_lock);
  2495. /*
  2496. * xfs_trans_ail_update() drops the AIL lock.
  2497. */
  2498. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2499. return 0;
  2500. }
  2501. /*
  2502. * This routine is called when an efd format structure is found in
  2503. * a committed transaction in the log. It's purpose is to cancel
  2504. * the corresponding efi if it was still in the log. To do this
  2505. * it searches the AIL for the efi with an id equal to that in the
  2506. * efd format structure. If we find it, we remove the efi from the
  2507. * AIL and free it.
  2508. */
  2509. STATIC void
  2510. xlog_recover_do_efd_trans(
  2511. xlog_t *log,
  2512. xlog_recover_item_t *item,
  2513. int pass)
  2514. {
  2515. xfs_efd_log_format_t *efd_formatp;
  2516. xfs_efi_log_item_t *efip = NULL;
  2517. xfs_log_item_t *lip;
  2518. __uint64_t efi_id;
  2519. struct xfs_ail_cursor cur;
  2520. struct xfs_ail *ailp = log->l_ailp;
  2521. if (pass == XLOG_RECOVER_PASS1) {
  2522. return;
  2523. }
  2524. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2525. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2526. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2527. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2528. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2529. efi_id = efd_formatp->efd_efi_id;
  2530. /*
  2531. * Search for the efi with the id in the efd format structure
  2532. * in the AIL.
  2533. */
  2534. spin_lock(&ailp->xa_lock);
  2535. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2536. while (lip != NULL) {
  2537. if (lip->li_type == XFS_LI_EFI) {
  2538. efip = (xfs_efi_log_item_t *)lip;
  2539. if (efip->efi_format.efi_id == efi_id) {
  2540. /*
  2541. * xfs_trans_ail_delete() drops the
  2542. * AIL lock.
  2543. */
  2544. xfs_trans_ail_delete(ailp, lip);
  2545. xfs_efi_item_free(efip);
  2546. spin_lock(&ailp->xa_lock);
  2547. break;
  2548. }
  2549. }
  2550. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2551. }
  2552. xfs_trans_ail_cursor_done(ailp, &cur);
  2553. spin_unlock(&ailp->xa_lock);
  2554. }
  2555. /*
  2556. * Perform the transaction
  2557. *
  2558. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2559. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2560. */
  2561. STATIC int
  2562. xlog_recover_do_trans(
  2563. xlog_t *log,
  2564. xlog_recover_t *trans,
  2565. int pass)
  2566. {
  2567. int error = 0;
  2568. xlog_recover_item_t *item, *first_item;
  2569. error = xlog_recover_reorder_trans(trans);
  2570. if (error)
  2571. return error;
  2572. first_item = item = trans->r_itemq;
  2573. do {
  2574. switch (ITEM_TYPE(item)) {
  2575. case XFS_LI_BUF:
  2576. error = xlog_recover_do_buffer_trans(log, item, pass);
  2577. break;
  2578. case XFS_LI_INODE:
  2579. error = xlog_recover_do_inode_trans(log, item, pass);
  2580. break;
  2581. case XFS_LI_EFI:
  2582. error = xlog_recover_do_efi_trans(log, item,
  2583. trans->r_lsn, pass);
  2584. break;
  2585. case XFS_LI_EFD:
  2586. xlog_recover_do_efd_trans(log, item, pass);
  2587. error = 0;
  2588. break;
  2589. case XFS_LI_DQUOT:
  2590. error = xlog_recover_do_dquot_trans(log, item, pass);
  2591. break;
  2592. case XFS_LI_QUOTAOFF:
  2593. error = xlog_recover_do_quotaoff_trans(log, item,
  2594. pass);
  2595. break;
  2596. default:
  2597. xlog_warn(
  2598. "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
  2599. ASSERT(0);
  2600. error = XFS_ERROR(EIO);
  2601. break;
  2602. }
  2603. if (error)
  2604. return error;
  2605. item = item->ri_next;
  2606. } while (first_item != item);
  2607. return 0;
  2608. }
  2609. /*
  2610. * Free up any resources allocated by the transaction
  2611. *
  2612. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2613. */
  2614. STATIC void
  2615. xlog_recover_free_trans(
  2616. xlog_recover_t *trans)
  2617. {
  2618. xlog_recover_item_t *first_item, *item, *free_item;
  2619. int i;
  2620. item = first_item = trans->r_itemq;
  2621. do {
  2622. free_item = item;
  2623. item = item->ri_next;
  2624. /* Free the regions in the item. */
  2625. for (i = 0; i < free_item->ri_cnt; i++) {
  2626. kmem_free(free_item->ri_buf[i].i_addr);
  2627. }
  2628. /* Free the item itself */
  2629. kmem_free(free_item->ri_buf);
  2630. kmem_free(free_item);
  2631. } while (first_item != item);
  2632. /* Free the transaction recover structure */
  2633. kmem_free(trans);
  2634. }
  2635. STATIC int
  2636. xlog_recover_commit_trans(
  2637. xlog_t *log,
  2638. xlog_recover_t **q,
  2639. xlog_recover_t *trans,
  2640. int pass)
  2641. {
  2642. int error;
  2643. if ((error = xlog_recover_unlink_tid(q, trans)))
  2644. return error;
  2645. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2646. return error;
  2647. xlog_recover_free_trans(trans); /* no error */
  2648. return 0;
  2649. }
  2650. STATIC int
  2651. xlog_recover_unmount_trans(
  2652. xlog_recover_t *trans)
  2653. {
  2654. /* Do nothing now */
  2655. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2656. return 0;
  2657. }
  2658. /*
  2659. * There are two valid states of the r_state field. 0 indicates that the
  2660. * transaction structure is in a normal state. We have either seen the
  2661. * start of the transaction or the last operation we added was not a partial
  2662. * operation. If the last operation we added to the transaction was a
  2663. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2664. *
  2665. * NOTE: skip LRs with 0 data length.
  2666. */
  2667. STATIC int
  2668. xlog_recover_process_data(
  2669. xlog_t *log,
  2670. xlog_recover_t *rhash[],
  2671. xlog_rec_header_t *rhead,
  2672. xfs_caddr_t dp,
  2673. int pass)
  2674. {
  2675. xfs_caddr_t lp;
  2676. int num_logops;
  2677. xlog_op_header_t *ohead;
  2678. xlog_recover_t *trans;
  2679. xlog_tid_t tid;
  2680. int error;
  2681. unsigned long hash;
  2682. uint flags;
  2683. lp = dp + be32_to_cpu(rhead->h_len);
  2684. num_logops = be32_to_cpu(rhead->h_num_logops);
  2685. /* check the log format matches our own - else we can't recover */
  2686. if (xlog_header_check_recover(log->l_mp, rhead))
  2687. return (XFS_ERROR(EIO));
  2688. while ((dp < lp) && num_logops) {
  2689. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2690. ohead = (xlog_op_header_t *)dp;
  2691. dp += sizeof(xlog_op_header_t);
  2692. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2693. ohead->oh_clientid != XFS_LOG) {
  2694. xlog_warn(
  2695. "XFS: xlog_recover_process_data: bad clientid");
  2696. ASSERT(0);
  2697. return (XFS_ERROR(EIO));
  2698. }
  2699. tid = be32_to_cpu(ohead->oh_tid);
  2700. hash = XLOG_RHASH(tid);
  2701. trans = xlog_recover_find_tid(rhash[hash], tid);
  2702. if (trans == NULL) { /* not found; add new tid */
  2703. if (ohead->oh_flags & XLOG_START_TRANS)
  2704. xlog_recover_new_tid(&rhash[hash], tid,
  2705. be64_to_cpu(rhead->h_lsn));
  2706. } else {
  2707. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2708. xlog_warn(
  2709. "XFS: xlog_recover_process_data: bad length");
  2710. WARN_ON(1);
  2711. return (XFS_ERROR(EIO));
  2712. }
  2713. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2714. if (flags & XLOG_WAS_CONT_TRANS)
  2715. flags &= ~XLOG_CONTINUE_TRANS;
  2716. switch (flags) {
  2717. case XLOG_COMMIT_TRANS:
  2718. error = xlog_recover_commit_trans(log,
  2719. &rhash[hash], trans, pass);
  2720. break;
  2721. case XLOG_UNMOUNT_TRANS:
  2722. error = xlog_recover_unmount_trans(trans);
  2723. break;
  2724. case XLOG_WAS_CONT_TRANS:
  2725. error = xlog_recover_add_to_cont_trans(trans,
  2726. dp, be32_to_cpu(ohead->oh_len));
  2727. break;
  2728. case XLOG_START_TRANS:
  2729. xlog_warn(
  2730. "XFS: xlog_recover_process_data: bad transaction");
  2731. ASSERT(0);
  2732. error = XFS_ERROR(EIO);
  2733. break;
  2734. case 0:
  2735. case XLOG_CONTINUE_TRANS:
  2736. error = xlog_recover_add_to_trans(trans,
  2737. dp, be32_to_cpu(ohead->oh_len));
  2738. break;
  2739. default:
  2740. xlog_warn(
  2741. "XFS: xlog_recover_process_data: bad flag");
  2742. ASSERT(0);
  2743. error = XFS_ERROR(EIO);
  2744. break;
  2745. }
  2746. if (error)
  2747. return error;
  2748. }
  2749. dp += be32_to_cpu(ohead->oh_len);
  2750. num_logops--;
  2751. }
  2752. return 0;
  2753. }
  2754. /*
  2755. * Process an extent free intent item that was recovered from
  2756. * the log. We need to free the extents that it describes.
  2757. */
  2758. STATIC int
  2759. xlog_recover_process_efi(
  2760. xfs_mount_t *mp,
  2761. xfs_efi_log_item_t *efip)
  2762. {
  2763. xfs_efd_log_item_t *efdp;
  2764. xfs_trans_t *tp;
  2765. int i;
  2766. int error = 0;
  2767. xfs_extent_t *extp;
  2768. xfs_fsblock_t startblock_fsb;
  2769. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2770. /*
  2771. * First check the validity of the extents described by the
  2772. * EFI. If any are bad, then assume that all are bad and
  2773. * just toss the EFI.
  2774. */
  2775. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2776. extp = &(efip->efi_format.efi_extents[i]);
  2777. startblock_fsb = XFS_BB_TO_FSB(mp,
  2778. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2779. if ((startblock_fsb == 0) ||
  2780. (extp->ext_len == 0) ||
  2781. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2782. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2783. /*
  2784. * This will pull the EFI from the AIL and
  2785. * free the memory associated with it.
  2786. */
  2787. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2788. return XFS_ERROR(EIO);
  2789. }
  2790. }
  2791. tp = xfs_trans_alloc(mp, 0);
  2792. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2793. if (error)
  2794. goto abort_error;
  2795. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2796. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2797. extp = &(efip->efi_format.efi_extents[i]);
  2798. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2799. if (error)
  2800. goto abort_error;
  2801. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2802. extp->ext_len);
  2803. }
  2804. efip->efi_flags |= XFS_EFI_RECOVERED;
  2805. error = xfs_trans_commit(tp, 0);
  2806. return error;
  2807. abort_error:
  2808. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2809. return error;
  2810. }
  2811. /*
  2812. * When this is called, all of the EFIs which did not have
  2813. * corresponding EFDs should be in the AIL. What we do now
  2814. * is free the extents associated with each one.
  2815. *
  2816. * Since we process the EFIs in normal transactions, they
  2817. * will be removed at some point after the commit. This prevents
  2818. * us from just walking down the list processing each one.
  2819. * We'll use a flag in the EFI to skip those that we've already
  2820. * processed and use the AIL iteration mechanism's generation
  2821. * count to try to speed this up at least a bit.
  2822. *
  2823. * When we start, we know that the EFIs are the only things in
  2824. * the AIL. As we process them, however, other items are added
  2825. * to the AIL. Since everything added to the AIL must come after
  2826. * everything already in the AIL, we stop processing as soon as
  2827. * we see something other than an EFI in the AIL.
  2828. */
  2829. STATIC int
  2830. xlog_recover_process_efis(
  2831. xlog_t *log)
  2832. {
  2833. xfs_log_item_t *lip;
  2834. xfs_efi_log_item_t *efip;
  2835. int error = 0;
  2836. struct xfs_ail_cursor cur;
  2837. struct xfs_ail *ailp;
  2838. ailp = log->l_ailp;
  2839. spin_lock(&ailp->xa_lock);
  2840. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2841. while (lip != NULL) {
  2842. /*
  2843. * We're done when we see something other than an EFI.
  2844. * There should be no EFIs left in the AIL now.
  2845. */
  2846. if (lip->li_type != XFS_LI_EFI) {
  2847. #ifdef DEBUG
  2848. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2849. ASSERT(lip->li_type != XFS_LI_EFI);
  2850. #endif
  2851. break;
  2852. }
  2853. /*
  2854. * Skip EFIs that we've already processed.
  2855. */
  2856. efip = (xfs_efi_log_item_t *)lip;
  2857. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2858. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2859. continue;
  2860. }
  2861. spin_unlock(&ailp->xa_lock);
  2862. error = xlog_recover_process_efi(log->l_mp, efip);
  2863. spin_lock(&ailp->xa_lock);
  2864. if (error)
  2865. goto out;
  2866. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2867. }
  2868. out:
  2869. xfs_trans_ail_cursor_done(ailp, &cur);
  2870. spin_unlock(&ailp->xa_lock);
  2871. return error;
  2872. }
  2873. /*
  2874. * This routine performs a transaction to null out a bad inode pointer
  2875. * in an agi unlinked inode hash bucket.
  2876. */
  2877. STATIC void
  2878. xlog_recover_clear_agi_bucket(
  2879. xfs_mount_t *mp,
  2880. xfs_agnumber_t agno,
  2881. int bucket)
  2882. {
  2883. xfs_trans_t *tp;
  2884. xfs_agi_t *agi;
  2885. xfs_buf_t *agibp;
  2886. int offset;
  2887. int error;
  2888. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2889. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2890. 0, 0, 0);
  2891. if (error)
  2892. goto out_abort;
  2893. error = xfs_read_agi(mp, tp, agno, &agibp);
  2894. if (error)
  2895. goto out_abort;
  2896. agi = XFS_BUF_TO_AGI(agibp);
  2897. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2898. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2899. (sizeof(xfs_agino_t) * bucket);
  2900. xfs_trans_log_buf(tp, agibp, offset,
  2901. (offset + sizeof(xfs_agino_t) - 1));
  2902. error = xfs_trans_commit(tp, 0);
  2903. if (error)
  2904. goto out_error;
  2905. return;
  2906. out_abort:
  2907. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2908. out_error:
  2909. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2910. "failed to clear agi %d. Continuing.", agno);
  2911. return;
  2912. }
  2913. STATIC xfs_agino_t
  2914. xlog_recover_process_one_iunlink(
  2915. struct xfs_mount *mp,
  2916. xfs_agnumber_t agno,
  2917. xfs_agino_t agino,
  2918. int bucket)
  2919. {
  2920. struct xfs_buf *ibp;
  2921. struct xfs_dinode *dip;
  2922. struct xfs_inode *ip;
  2923. xfs_ino_t ino;
  2924. int error;
  2925. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2926. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2927. if (error)
  2928. goto fail;
  2929. /*
  2930. * Get the on disk inode to find the next inode in the bucket.
  2931. */
  2932. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2933. if (error)
  2934. goto fail_iput;
  2935. ASSERT(ip->i_d.di_nlink == 0);
  2936. ASSERT(ip->i_d.di_mode != 0);
  2937. /* setup for the next pass */
  2938. agino = be32_to_cpu(dip->di_next_unlinked);
  2939. xfs_buf_relse(ibp);
  2940. /*
  2941. * Prevent any DMAPI event from being sent when the reference on
  2942. * the inode is dropped.
  2943. */
  2944. ip->i_d.di_dmevmask = 0;
  2945. IRELE(ip);
  2946. return agino;
  2947. fail_iput:
  2948. IRELE(ip);
  2949. fail:
  2950. /*
  2951. * We can't read in the inode this bucket points to, or this inode
  2952. * is messed up. Just ditch this bucket of inodes. We will lose
  2953. * some inodes and space, but at least we won't hang.
  2954. *
  2955. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2956. * clear the inode pointer in the bucket.
  2957. */
  2958. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2959. return NULLAGINO;
  2960. }
  2961. /*
  2962. * xlog_iunlink_recover
  2963. *
  2964. * This is called during recovery to process any inodes which
  2965. * we unlinked but not freed when the system crashed. These
  2966. * inodes will be on the lists in the AGI blocks. What we do
  2967. * here is scan all the AGIs and fully truncate and free any
  2968. * inodes found on the lists. Each inode is removed from the
  2969. * lists when it has been fully truncated and is freed. The
  2970. * freeing of the inode and its removal from the list must be
  2971. * atomic.
  2972. */
  2973. STATIC void
  2974. xlog_recover_process_iunlinks(
  2975. xlog_t *log)
  2976. {
  2977. xfs_mount_t *mp;
  2978. xfs_agnumber_t agno;
  2979. xfs_agi_t *agi;
  2980. xfs_buf_t *agibp;
  2981. xfs_agino_t agino;
  2982. int bucket;
  2983. int error;
  2984. uint mp_dmevmask;
  2985. mp = log->l_mp;
  2986. /*
  2987. * Prevent any DMAPI event from being sent while in this function.
  2988. */
  2989. mp_dmevmask = mp->m_dmevmask;
  2990. mp->m_dmevmask = 0;
  2991. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2992. /*
  2993. * Find the agi for this ag.
  2994. */
  2995. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2996. if (error) {
  2997. /*
  2998. * AGI is b0rked. Don't process it.
  2999. *
  3000. * We should probably mark the filesystem as corrupt
  3001. * after we've recovered all the ag's we can....
  3002. */
  3003. continue;
  3004. }
  3005. agi = XFS_BUF_TO_AGI(agibp);
  3006. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3007. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3008. while (agino != NULLAGINO) {
  3009. /*
  3010. * Release the agi buffer so that it can
  3011. * be acquired in the normal course of the
  3012. * transaction to truncate and free the inode.
  3013. */
  3014. xfs_buf_relse(agibp);
  3015. agino = xlog_recover_process_one_iunlink(mp,
  3016. agno, agino, bucket);
  3017. /*
  3018. * Reacquire the agibuffer and continue around
  3019. * the loop. This should never fail as we know
  3020. * the buffer was good earlier on.
  3021. */
  3022. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3023. ASSERT(error == 0);
  3024. agi = XFS_BUF_TO_AGI(agibp);
  3025. }
  3026. }
  3027. /*
  3028. * Release the buffer for the current agi so we can
  3029. * go on to the next one.
  3030. */
  3031. xfs_buf_relse(agibp);
  3032. }
  3033. mp->m_dmevmask = mp_dmevmask;
  3034. }
  3035. #ifdef DEBUG
  3036. STATIC void
  3037. xlog_pack_data_checksum(
  3038. xlog_t *log,
  3039. xlog_in_core_t *iclog,
  3040. int size)
  3041. {
  3042. int i;
  3043. __be32 *up;
  3044. uint chksum = 0;
  3045. up = (__be32 *)iclog->ic_datap;
  3046. /* divide length by 4 to get # words */
  3047. for (i = 0; i < (size >> 2); i++) {
  3048. chksum ^= be32_to_cpu(*up);
  3049. up++;
  3050. }
  3051. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3052. }
  3053. #else
  3054. #define xlog_pack_data_checksum(log, iclog, size)
  3055. #endif
  3056. /*
  3057. * Stamp cycle number in every block
  3058. */
  3059. void
  3060. xlog_pack_data(
  3061. xlog_t *log,
  3062. xlog_in_core_t *iclog,
  3063. int roundoff)
  3064. {
  3065. int i, j, k;
  3066. int size = iclog->ic_offset + roundoff;
  3067. __be32 cycle_lsn;
  3068. xfs_caddr_t dp;
  3069. xlog_pack_data_checksum(log, iclog, size);
  3070. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3071. dp = iclog->ic_datap;
  3072. for (i = 0; i < BTOBB(size) &&
  3073. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3074. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3075. *(__be32 *)dp = cycle_lsn;
  3076. dp += BBSIZE;
  3077. }
  3078. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3079. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3080. for ( ; i < BTOBB(size); i++) {
  3081. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3082. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3083. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3084. *(__be32 *)dp = cycle_lsn;
  3085. dp += BBSIZE;
  3086. }
  3087. for (i = 1; i < log->l_iclog_heads; i++) {
  3088. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3089. }
  3090. }
  3091. }
  3092. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3093. STATIC void
  3094. xlog_unpack_data_checksum(
  3095. xlog_rec_header_t *rhead,
  3096. xfs_caddr_t dp,
  3097. xlog_t *log)
  3098. {
  3099. __be32 *up = (__be32 *)dp;
  3100. uint chksum = 0;
  3101. int i;
  3102. /* divide length by 4 to get # words */
  3103. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3104. chksum ^= be32_to_cpu(*up);
  3105. up++;
  3106. }
  3107. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3108. if (rhead->h_chksum ||
  3109. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3110. cmn_err(CE_DEBUG,
  3111. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3112. be32_to_cpu(rhead->h_chksum), chksum);
  3113. cmn_err(CE_DEBUG,
  3114. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3115. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3116. cmn_err(CE_DEBUG,
  3117. "XFS: LogR this is a LogV2 filesystem\n");
  3118. }
  3119. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3120. }
  3121. }
  3122. }
  3123. #else
  3124. #define xlog_unpack_data_checksum(rhead, dp, log)
  3125. #endif
  3126. STATIC void
  3127. xlog_unpack_data(
  3128. xlog_rec_header_t *rhead,
  3129. xfs_caddr_t dp,
  3130. xlog_t *log)
  3131. {
  3132. int i, j, k;
  3133. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3134. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3135. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3136. dp += BBSIZE;
  3137. }
  3138. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3139. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3140. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3141. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3142. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3143. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3144. dp += BBSIZE;
  3145. }
  3146. }
  3147. xlog_unpack_data_checksum(rhead, dp, log);
  3148. }
  3149. STATIC int
  3150. xlog_valid_rec_header(
  3151. xlog_t *log,
  3152. xlog_rec_header_t *rhead,
  3153. xfs_daddr_t blkno)
  3154. {
  3155. int hlen;
  3156. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3157. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3158. XFS_ERRLEVEL_LOW, log->l_mp);
  3159. return XFS_ERROR(EFSCORRUPTED);
  3160. }
  3161. if (unlikely(
  3162. (!rhead->h_version ||
  3163. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3164. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3165. __func__, be32_to_cpu(rhead->h_version));
  3166. return XFS_ERROR(EIO);
  3167. }
  3168. /* LR body must have data or it wouldn't have been written */
  3169. hlen = be32_to_cpu(rhead->h_len);
  3170. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3171. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3172. XFS_ERRLEVEL_LOW, log->l_mp);
  3173. return XFS_ERROR(EFSCORRUPTED);
  3174. }
  3175. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3176. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3177. XFS_ERRLEVEL_LOW, log->l_mp);
  3178. return XFS_ERROR(EFSCORRUPTED);
  3179. }
  3180. return 0;
  3181. }
  3182. /*
  3183. * Read the log from tail to head and process the log records found.
  3184. * Handle the two cases where the tail and head are in the same cycle
  3185. * and where the active portion of the log wraps around the end of
  3186. * the physical log separately. The pass parameter is passed through
  3187. * to the routines called to process the data and is not looked at
  3188. * here.
  3189. */
  3190. STATIC int
  3191. xlog_do_recovery_pass(
  3192. xlog_t *log,
  3193. xfs_daddr_t head_blk,
  3194. xfs_daddr_t tail_blk,
  3195. int pass)
  3196. {
  3197. xlog_rec_header_t *rhead;
  3198. xfs_daddr_t blk_no;
  3199. xfs_caddr_t offset;
  3200. xfs_buf_t *hbp, *dbp;
  3201. int error = 0, h_size;
  3202. int bblks, split_bblks;
  3203. int hblks, split_hblks, wrapped_hblks;
  3204. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3205. ASSERT(head_blk != tail_blk);
  3206. /*
  3207. * Read the header of the tail block and get the iclog buffer size from
  3208. * h_size. Use this to tell how many sectors make up the log header.
  3209. */
  3210. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3211. /*
  3212. * When using variable length iclogs, read first sector of
  3213. * iclog header and extract the header size from it. Get a
  3214. * new hbp that is the correct size.
  3215. */
  3216. hbp = xlog_get_bp(log, 1);
  3217. if (!hbp)
  3218. return ENOMEM;
  3219. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3220. if (error)
  3221. goto bread_err1;
  3222. rhead = (xlog_rec_header_t *)offset;
  3223. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3224. if (error)
  3225. goto bread_err1;
  3226. h_size = be32_to_cpu(rhead->h_size);
  3227. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3228. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3229. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3230. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3231. hblks++;
  3232. xlog_put_bp(hbp);
  3233. hbp = xlog_get_bp(log, hblks);
  3234. } else {
  3235. hblks = 1;
  3236. }
  3237. } else {
  3238. ASSERT(log->l_sectbb_log == 0);
  3239. hblks = 1;
  3240. hbp = xlog_get_bp(log, 1);
  3241. h_size = XLOG_BIG_RECORD_BSIZE;
  3242. }
  3243. if (!hbp)
  3244. return ENOMEM;
  3245. dbp = xlog_get_bp(log, BTOBB(h_size));
  3246. if (!dbp) {
  3247. xlog_put_bp(hbp);
  3248. return ENOMEM;
  3249. }
  3250. memset(rhash, 0, sizeof(rhash));
  3251. if (tail_blk <= head_blk) {
  3252. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3253. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3254. if (error)
  3255. goto bread_err2;
  3256. rhead = (xlog_rec_header_t *)offset;
  3257. error = xlog_valid_rec_header(log, rhead, blk_no);
  3258. if (error)
  3259. goto bread_err2;
  3260. /* blocks in data section */
  3261. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3262. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3263. &offset);
  3264. if (error)
  3265. goto bread_err2;
  3266. xlog_unpack_data(rhead, offset, log);
  3267. if ((error = xlog_recover_process_data(log,
  3268. rhash, rhead, offset, pass)))
  3269. goto bread_err2;
  3270. blk_no += bblks + hblks;
  3271. }
  3272. } else {
  3273. /*
  3274. * Perform recovery around the end of the physical log.
  3275. * When the head is not on the same cycle number as the tail,
  3276. * we can't do a sequential recovery as above.
  3277. */
  3278. blk_no = tail_blk;
  3279. while (blk_no < log->l_logBBsize) {
  3280. /*
  3281. * Check for header wrapping around physical end-of-log
  3282. */
  3283. offset = XFS_BUF_PTR(hbp);
  3284. split_hblks = 0;
  3285. wrapped_hblks = 0;
  3286. if (blk_no + hblks <= log->l_logBBsize) {
  3287. /* Read header in one read */
  3288. error = xlog_bread(log, blk_no, hblks, hbp,
  3289. &offset);
  3290. if (error)
  3291. goto bread_err2;
  3292. } else {
  3293. /* This LR is split across physical log end */
  3294. if (blk_no != log->l_logBBsize) {
  3295. /* some data before physical log end */
  3296. ASSERT(blk_no <= INT_MAX);
  3297. split_hblks = log->l_logBBsize - (int)blk_no;
  3298. ASSERT(split_hblks > 0);
  3299. error = xlog_bread(log, blk_no,
  3300. split_hblks, hbp,
  3301. &offset);
  3302. if (error)
  3303. goto bread_err2;
  3304. }
  3305. /*
  3306. * Note: this black magic still works with
  3307. * large sector sizes (non-512) only because:
  3308. * - we increased the buffer size originally
  3309. * by 1 sector giving us enough extra space
  3310. * for the second read;
  3311. * - the log start is guaranteed to be sector
  3312. * aligned;
  3313. * - we read the log end (LR header start)
  3314. * _first_, then the log start (LR header end)
  3315. * - order is important.
  3316. */
  3317. wrapped_hblks = hblks - split_hblks;
  3318. error = XFS_BUF_SET_PTR(hbp,
  3319. offset + BBTOB(split_hblks),
  3320. BBTOB(hblks - split_hblks));
  3321. if (error)
  3322. goto bread_err2;
  3323. error = xlog_bread_noalign(log, 0,
  3324. wrapped_hblks, hbp);
  3325. if (error)
  3326. goto bread_err2;
  3327. error = XFS_BUF_SET_PTR(hbp, offset,
  3328. BBTOB(hblks));
  3329. if (error)
  3330. goto bread_err2;
  3331. }
  3332. rhead = (xlog_rec_header_t *)offset;
  3333. error = xlog_valid_rec_header(log, rhead,
  3334. split_hblks ? blk_no : 0);
  3335. if (error)
  3336. goto bread_err2;
  3337. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3338. blk_no += hblks;
  3339. /* Read in data for log record */
  3340. if (blk_no + bblks <= log->l_logBBsize) {
  3341. error = xlog_bread(log, blk_no, bblks, dbp,
  3342. &offset);
  3343. if (error)
  3344. goto bread_err2;
  3345. } else {
  3346. /* This log record is split across the
  3347. * physical end of log */
  3348. offset = XFS_BUF_PTR(dbp);
  3349. split_bblks = 0;
  3350. if (blk_no != log->l_logBBsize) {
  3351. /* some data is before the physical
  3352. * end of log */
  3353. ASSERT(!wrapped_hblks);
  3354. ASSERT(blk_no <= INT_MAX);
  3355. split_bblks =
  3356. log->l_logBBsize - (int)blk_no;
  3357. ASSERT(split_bblks > 0);
  3358. error = xlog_bread(log, blk_no,
  3359. split_bblks, dbp,
  3360. &offset);
  3361. if (error)
  3362. goto bread_err2;
  3363. }
  3364. /*
  3365. * Note: this black magic still works with
  3366. * large sector sizes (non-512) only because:
  3367. * - we increased the buffer size originally
  3368. * by 1 sector giving us enough extra space
  3369. * for the second read;
  3370. * - the log start is guaranteed to be sector
  3371. * aligned;
  3372. * - we read the log end (LR header start)
  3373. * _first_, then the log start (LR header end)
  3374. * - order is important.
  3375. */
  3376. error = XFS_BUF_SET_PTR(dbp,
  3377. offset + BBTOB(split_bblks),
  3378. BBTOB(bblks - split_bblks));
  3379. if (error)
  3380. goto bread_err2;
  3381. error = xlog_bread_noalign(log, wrapped_hblks,
  3382. bblks - split_bblks,
  3383. dbp);
  3384. if (error)
  3385. goto bread_err2;
  3386. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3387. if (error)
  3388. goto bread_err2;
  3389. }
  3390. xlog_unpack_data(rhead, offset, log);
  3391. if ((error = xlog_recover_process_data(log, rhash,
  3392. rhead, offset, pass)))
  3393. goto bread_err2;
  3394. blk_no += bblks;
  3395. }
  3396. ASSERT(blk_no >= log->l_logBBsize);
  3397. blk_no -= log->l_logBBsize;
  3398. /* read first part of physical log */
  3399. while (blk_no < head_blk) {
  3400. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3401. if (error)
  3402. goto bread_err2;
  3403. rhead = (xlog_rec_header_t *)offset;
  3404. error = xlog_valid_rec_header(log, rhead, blk_no);
  3405. if (error)
  3406. goto bread_err2;
  3407. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3408. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3409. &offset);
  3410. if (error)
  3411. goto bread_err2;
  3412. xlog_unpack_data(rhead, offset, log);
  3413. if ((error = xlog_recover_process_data(log, rhash,
  3414. rhead, offset, pass)))
  3415. goto bread_err2;
  3416. blk_no += bblks + hblks;
  3417. }
  3418. }
  3419. bread_err2:
  3420. xlog_put_bp(dbp);
  3421. bread_err1:
  3422. xlog_put_bp(hbp);
  3423. return error;
  3424. }
  3425. /*
  3426. * Do the recovery of the log. We actually do this in two phases.
  3427. * The two passes are necessary in order to implement the function
  3428. * of cancelling a record written into the log. The first pass
  3429. * determines those things which have been cancelled, and the
  3430. * second pass replays log items normally except for those which
  3431. * have been cancelled. The handling of the replay and cancellations
  3432. * takes place in the log item type specific routines.
  3433. *
  3434. * The table of items which have cancel records in the log is allocated
  3435. * and freed at this level, since only here do we know when all of
  3436. * the log recovery has been completed.
  3437. */
  3438. STATIC int
  3439. xlog_do_log_recovery(
  3440. xlog_t *log,
  3441. xfs_daddr_t head_blk,
  3442. xfs_daddr_t tail_blk)
  3443. {
  3444. int error;
  3445. ASSERT(head_blk != tail_blk);
  3446. /*
  3447. * First do a pass to find all of the cancelled buf log items.
  3448. * Store them in the buf_cancel_table for use in the second pass.
  3449. */
  3450. log->l_buf_cancel_table =
  3451. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3452. sizeof(xfs_buf_cancel_t*),
  3453. KM_SLEEP);
  3454. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3455. XLOG_RECOVER_PASS1);
  3456. if (error != 0) {
  3457. kmem_free(log->l_buf_cancel_table);
  3458. log->l_buf_cancel_table = NULL;
  3459. return error;
  3460. }
  3461. /*
  3462. * Then do a second pass to actually recover the items in the log.
  3463. * When it is complete free the table of buf cancel items.
  3464. */
  3465. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3466. XLOG_RECOVER_PASS2);
  3467. #ifdef DEBUG
  3468. if (!error) {
  3469. int i;
  3470. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3471. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3472. }
  3473. #endif /* DEBUG */
  3474. kmem_free(log->l_buf_cancel_table);
  3475. log->l_buf_cancel_table = NULL;
  3476. return error;
  3477. }
  3478. /*
  3479. * Do the actual recovery
  3480. */
  3481. STATIC int
  3482. xlog_do_recover(
  3483. xlog_t *log,
  3484. xfs_daddr_t head_blk,
  3485. xfs_daddr_t tail_blk)
  3486. {
  3487. int error;
  3488. xfs_buf_t *bp;
  3489. xfs_sb_t *sbp;
  3490. /*
  3491. * First replay the images in the log.
  3492. */
  3493. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3494. if (error) {
  3495. return error;
  3496. }
  3497. XFS_bflush(log->l_mp->m_ddev_targp);
  3498. /*
  3499. * If IO errors happened during recovery, bail out.
  3500. */
  3501. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3502. return (EIO);
  3503. }
  3504. /*
  3505. * We now update the tail_lsn since much of the recovery has completed
  3506. * and there may be space available to use. If there were no extent
  3507. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3508. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3509. * lsn of the last known good LR on disk. If there are extent frees
  3510. * or iunlinks they will have some entries in the AIL; so we look at
  3511. * the AIL to determine how to set the tail_lsn.
  3512. */
  3513. xlog_assign_tail_lsn(log->l_mp);
  3514. /*
  3515. * Now that we've finished replaying all buffer and inode
  3516. * updates, re-read in the superblock.
  3517. */
  3518. bp = xfs_getsb(log->l_mp, 0);
  3519. XFS_BUF_UNDONE(bp);
  3520. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3521. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3522. XFS_BUF_READ(bp);
  3523. XFS_BUF_UNASYNC(bp);
  3524. xfsbdstrat(log->l_mp, bp);
  3525. error = xfs_iowait(bp);
  3526. if (error) {
  3527. xfs_ioerror_alert("xlog_do_recover",
  3528. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3529. ASSERT(0);
  3530. xfs_buf_relse(bp);
  3531. return error;
  3532. }
  3533. /* Convert superblock from on-disk format */
  3534. sbp = &log->l_mp->m_sb;
  3535. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3536. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3537. ASSERT(xfs_sb_good_version(sbp));
  3538. xfs_buf_relse(bp);
  3539. /* We've re-read the superblock so re-initialize per-cpu counters */
  3540. xfs_icsb_reinit_counters(log->l_mp);
  3541. xlog_recover_check_summary(log);
  3542. /* Normal transactions can now occur */
  3543. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3544. return 0;
  3545. }
  3546. /*
  3547. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3548. *
  3549. * Return error or zero.
  3550. */
  3551. int
  3552. xlog_recover(
  3553. xlog_t *log)
  3554. {
  3555. xfs_daddr_t head_blk, tail_blk;
  3556. int error;
  3557. /* find the tail of the log */
  3558. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3559. return error;
  3560. if (tail_blk != head_blk) {
  3561. /* There used to be a comment here:
  3562. *
  3563. * disallow recovery on read-only mounts. note -- mount
  3564. * checks for ENOSPC and turns it into an intelligent
  3565. * error message.
  3566. * ...but this is no longer true. Now, unless you specify
  3567. * NORECOVERY (in which case this function would never be
  3568. * called), we just go ahead and recover. We do this all
  3569. * under the vfs layer, so we can get away with it unless
  3570. * the device itself is read-only, in which case we fail.
  3571. */
  3572. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3573. return error;
  3574. }
  3575. cmn_err(CE_NOTE,
  3576. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3577. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3578. log->l_mp->m_logname : "internal");
  3579. error = xlog_do_recover(log, head_blk, tail_blk);
  3580. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3581. }
  3582. return error;
  3583. }
  3584. /*
  3585. * In the first part of recovery we replay inodes and buffers and build
  3586. * up the list of extent free items which need to be processed. Here
  3587. * we process the extent free items and clean up the on disk unlinked
  3588. * inode lists. This is separated from the first part of recovery so
  3589. * that the root and real-time bitmap inodes can be read in from disk in
  3590. * between the two stages. This is necessary so that we can free space
  3591. * in the real-time portion of the file system.
  3592. */
  3593. int
  3594. xlog_recover_finish(
  3595. xlog_t *log)
  3596. {
  3597. /*
  3598. * Now we're ready to do the transactions needed for the
  3599. * rest of recovery. Start with completing all the extent
  3600. * free intent records and then process the unlinked inode
  3601. * lists. At this point, we essentially run in normal mode
  3602. * except that we're still performing recovery actions
  3603. * rather than accepting new requests.
  3604. */
  3605. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3606. int error;
  3607. error = xlog_recover_process_efis(log);
  3608. if (error) {
  3609. cmn_err(CE_ALERT,
  3610. "Failed to recover EFIs on filesystem: %s",
  3611. log->l_mp->m_fsname);
  3612. return error;
  3613. }
  3614. /*
  3615. * Sync the log to get all the EFIs out of the AIL.
  3616. * This isn't absolutely necessary, but it helps in
  3617. * case the unlink transactions would have problems
  3618. * pushing the EFIs out of the way.
  3619. */
  3620. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3621. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3622. xlog_recover_process_iunlinks(log);
  3623. xlog_recover_check_summary(log);
  3624. cmn_err(CE_NOTE,
  3625. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3626. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3627. log->l_mp->m_logname : "internal");
  3628. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3629. } else {
  3630. cmn_err(CE_DEBUG,
  3631. "!Ending clean XFS mount for filesystem: %s\n",
  3632. log->l_mp->m_fsname);
  3633. }
  3634. return 0;
  3635. }
  3636. #if defined(DEBUG)
  3637. /*
  3638. * Read all of the agf and agi counters and check that they
  3639. * are consistent with the superblock counters.
  3640. */
  3641. void
  3642. xlog_recover_check_summary(
  3643. xlog_t *log)
  3644. {
  3645. xfs_mount_t *mp;
  3646. xfs_agf_t *agfp;
  3647. xfs_buf_t *agfbp;
  3648. xfs_buf_t *agibp;
  3649. xfs_buf_t *sbbp;
  3650. #ifdef XFS_LOUD_RECOVERY
  3651. xfs_sb_t *sbp;
  3652. #endif
  3653. xfs_agnumber_t agno;
  3654. __uint64_t freeblks;
  3655. __uint64_t itotal;
  3656. __uint64_t ifree;
  3657. int error;
  3658. mp = log->l_mp;
  3659. freeblks = 0LL;
  3660. itotal = 0LL;
  3661. ifree = 0LL;
  3662. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3663. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3664. if (error) {
  3665. xfs_fs_cmn_err(CE_ALERT, mp,
  3666. "xlog_recover_check_summary(agf)"
  3667. "agf read failed agno %d error %d",
  3668. agno, error);
  3669. } else {
  3670. agfp = XFS_BUF_TO_AGF(agfbp);
  3671. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3672. be32_to_cpu(agfp->agf_flcount);
  3673. xfs_buf_relse(agfbp);
  3674. }
  3675. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3676. if (!error) {
  3677. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3678. itotal += be32_to_cpu(agi->agi_count);
  3679. ifree += be32_to_cpu(agi->agi_freecount);
  3680. xfs_buf_relse(agibp);
  3681. }
  3682. }
  3683. sbbp = xfs_getsb(mp, 0);
  3684. #ifdef XFS_LOUD_RECOVERY
  3685. sbp = &mp->m_sb;
  3686. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3687. cmn_err(CE_NOTE,
  3688. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3689. sbp->sb_icount, itotal);
  3690. cmn_err(CE_NOTE,
  3691. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3692. sbp->sb_ifree, ifree);
  3693. cmn_err(CE_NOTE,
  3694. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3695. sbp->sb_fdblocks, freeblks);
  3696. #if 0
  3697. /*
  3698. * This is turned off until I account for the allocation
  3699. * btree blocks which live in free space.
  3700. */
  3701. ASSERT(sbp->sb_icount == itotal);
  3702. ASSERT(sbp->sb_ifree == ifree);
  3703. ASSERT(sbp->sb_fdblocks == freeblks);
  3704. #endif
  3705. #endif
  3706. xfs_buf_relse(sbbp);
  3707. }
  3708. #endif /* DEBUG */