segment.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include "nilfs.h"
  35. #include "btnode.h"
  36. #include "page.h"
  37. #include "segment.h"
  38. #include "sufile.h"
  39. #include "cpfile.h"
  40. #include "ifile.h"
  41. #include "segbuf.h"
  42. /*
  43. * Segment constructor
  44. */
  45. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  46. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  47. appended in collection retry loop */
  48. /* Construction mode */
  49. enum {
  50. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  51. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  52. a logical segment without a super root */
  53. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  54. creating a checkpoint */
  55. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  56. a checkpoint */
  57. };
  58. /* Stage numbers of dirty block collection */
  59. enum {
  60. NILFS_ST_INIT = 0,
  61. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  62. NILFS_ST_FILE,
  63. NILFS_ST_IFILE,
  64. NILFS_ST_CPFILE,
  65. NILFS_ST_SUFILE,
  66. NILFS_ST_DAT,
  67. NILFS_ST_SR, /* Super root */
  68. NILFS_ST_DSYNC, /* Data sync blocks */
  69. NILFS_ST_DONE,
  70. };
  71. /* State flags of collection */
  72. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  73. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  74. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  75. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  76. /* Operations depending on the construction mode and file type */
  77. struct nilfs_sc_operations {
  78. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  79. struct inode *);
  80. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  81. struct inode *);
  82. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  83. struct inode *);
  84. void (*write_data_binfo)(struct nilfs_sc_info *,
  85. struct nilfs_segsum_pointer *,
  86. union nilfs_binfo *);
  87. void (*write_node_binfo)(struct nilfs_sc_info *,
  88. struct nilfs_segsum_pointer *,
  89. union nilfs_binfo *);
  90. };
  91. /*
  92. * Other definitions
  93. */
  94. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  95. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  96. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  97. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  98. int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. /*
  108. * Transaction
  109. */
  110. static struct kmem_cache *nilfs_transaction_cachep;
  111. /**
  112. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  113. *
  114. * nilfs_init_transaction_cache() creates a slab cache for the struct
  115. * nilfs_transaction_info.
  116. *
  117. * Return Value: On success, it returns 0. On error, one of the following
  118. * negative error code is returned.
  119. *
  120. * %-ENOMEM - Insufficient memory available.
  121. */
  122. int nilfs_init_transaction_cache(void)
  123. {
  124. nilfs_transaction_cachep =
  125. kmem_cache_create("nilfs2_transaction_cache",
  126. sizeof(struct nilfs_transaction_info),
  127. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  128. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  129. }
  130. /**
  131. * nilfs_detroy_transaction_cache - destroy the cache for transaction info
  132. *
  133. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  134. * nilfs_transaction_info.
  135. */
  136. void nilfs_destroy_transaction_cache(void)
  137. {
  138. kmem_cache_destroy(nilfs_transaction_cachep);
  139. }
  140. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  141. {
  142. struct nilfs_transaction_info *cur_ti = current->journal_info;
  143. void *save = NULL;
  144. if (cur_ti) {
  145. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  146. return ++cur_ti->ti_count;
  147. else {
  148. /*
  149. * If journal_info field is occupied by other FS,
  150. * it is saved and will be restored on
  151. * nilfs_transaction_commit().
  152. */
  153. printk(KERN_WARNING
  154. "NILFS warning: journal info from a different "
  155. "FS\n");
  156. save = current->journal_info;
  157. }
  158. }
  159. if (!ti) {
  160. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  161. if (!ti)
  162. return -ENOMEM;
  163. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  164. } else {
  165. ti->ti_flags = 0;
  166. }
  167. ti->ti_count = 0;
  168. ti->ti_save = save;
  169. ti->ti_magic = NILFS_TI_MAGIC;
  170. current->journal_info = ti;
  171. return 0;
  172. }
  173. /**
  174. * nilfs_transaction_begin - start indivisible file operations.
  175. * @sb: super block
  176. * @ti: nilfs_transaction_info
  177. * @vacancy_check: flags for vacancy rate checks
  178. *
  179. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  180. * the segment semaphore, to make a segment construction and write tasks
  181. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  182. * The region enclosed by these two functions can be nested. To avoid a
  183. * deadlock, the semaphore is only acquired or released in the outermost call.
  184. *
  185. * This function allocates a nilfs_transaction_info struct to keep context
  186. * information on it. It is initialized and hooked onto the current task in
  187. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  188. * instead; othewise a new struct is assigned from a slab.
  189. *
  190. * When @vacancy_check flag is set, this function will check the amount of
  191. * free space, and will wait for the GC to reclaim disk space if low capacity.
  192. *
  193. * Return Value: On success, 0 is returned. On error, one of the following
  194. * negative error code is returned.
  195. *
  196. * %-ENOMEM - Insufficient memory available.
  197. *
  198. * %-ENOSPC - No space left on device
  199. */
  200. int nilfs_transaction_begin(struct super_block *sb,
  201. struct nilfs_transaction_info *ti,
  202. int vacancy_check)
  203. {
  204. struct nilfs_sb_info *sbi;
  205. struct the_nilfs *nilfs;
  206. int ret = nilfs_prepare_segment_lock(ti);
  207. if (unlikely(ret < 0))
  208. return ret;
  209. if (ret > 0)
  210. return 0;
  211. sbi = NILFS_SB(sb);
  212. nilfs = sbi->s_nilfs;
  213. down_read(&nilfs->ns_segctor_sem);
  214. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  215. up_read(&nilfs->ns_segctor_sem);
  216. ret = -ENOSPC;
  217. goto failed;
  218. }
  219. return 0;
  220. failed:
  221. ti = current->journal_info;
  222. current->journal_info = ti->ti_save;
  223. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  224. kmem_cache_free(nilfs_transaction_cachep, ti);
  225. return ret;
  226. }
  227. /**
  228. * nilfs_transaction_commit - commit indivisible file operations.
  229. * @sb: super block
  230. *
  231. * nilfs_transaction_commit() releases the read semaphore which is
  232. * acquired by nilfs_transaction_begin(). This is only performed
  233. * in outermost call of this function. If a commit flag is set,
  234. * nilfs_transaction_commit() sets a timer to start the segment
  235. * constructor. If a sync flag is set, it starts construction
  236. * directly.
  237. */
  238. int nilfs_transaction_commit(struct super_block *sb)
  239. {
  240. struct nilfs_transaction_info *ti = current->journal_info;
  241. struct nilfs_sb_info *sbi;
  242. struct nilfs_sc_info *sci;
  243. int err = 0;
  244. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  245. ti->ti_flags |= NILFS_TI_COMMIT;
  246. if (ti->ti_count > 0) {
  247. ti->ti_count--;
  248. return 0;
  249. }
  250. sbi = NILFS_SB(sb);
  251. sci = NILFS_SC(sbi);
  252. if (sci != NULL) {
  253. if (ti->ti_flags & NILFS_TI_COMMIT)
  254. nilfs_segctor_start_timer(sci);
  255. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  256. sci->sc_watermark)
  257. nilfs_segctor_do_flush(sci, 0);
  258. }
  259. up_read(&sbi->s_nilfs->ns_segctor_sem);
  260. current->journal_info = ti->ti_save;
  261. if (ti->ti_flags & NILFS_TI_SYNC)
  262. err = nilfs_construct_segment(sb);
  263. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  264. kmem_cache_free(nilfs_transaction_cachep, ti);
  265. return err;
  266. }
  267. void nilfs_transaction_abort(struct super_block *sb)
  268. {
  269. struct nilfs_transaction_info *ti = current->journal_info;
  270. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  271. if (ti->ti_count > 0) {
  272. ti->ti_count--;
  273. return;
  274. }
  275. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  276. current->journal_info = ti->ti_save;
  277. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  278. kmem_cache_free(nilfs_transaction_cachep, ti);
  279. }
  280. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  281. {
  282. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  283. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  284. struct the_nilfs *nilfs = sbi->s_nilfs;
  285. if (!sci || !sci->sc_flush_request)
  286. return;
  287. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  288. up_read(&nilfs->ns_segctor_sem);
  289. down_write(&nilfs->ns_segctor_sem);
  290. if (sci->sc_flush_request &&
  291. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. ti->ti_flags |= NILFS_TI_WRITER;
  294. nilfs_segctor_do_immediate_flush(sci);
  295. ti->ti_flags &= ~NILFS_TI_WRITER;
  296. }
  297. downgrade_write(&nilfs->ns_segctor_sem);
  298. }
  299. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  300. struct nilfs_transaction_info *ti,
  301. int gcflag)
  302. {
  303. struct nilfs_transaction_info *cur_ti = current->journal_info;
  304. WARN_ON(cur_ti);
  305. ti->ti_flags = NILFS_TI_WRITER;
  306. ti->ti_count = 0;
  307. ti->ti_save = cur_ti;
  308. ti->ti_magic = NILFS_TI_MAGIC;
  309. INIT_LIST_HEAD(&ti->ti_garbage);
  310. current->journal_info = ti;
  311. for (;;) {
  312. down_write(&sbi->s_nilfs->ns_segctor_sem);
  313. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  314. break;
  315. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  316. up_write(&sbi->s_nilfs->ns_segctor_sem);
  317. yield();
  318. }
  319. if (gcflag)
  320. ti->ti_flags |= NILFS_TI_GC;
  321. }
  322. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  323. {
  324. struct nilfs_transaction_info *ti = current->journal_info;
  325. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  326. BUG_ON(ti->ti_count > 0);
  327. up_write(&sbi->s_nilfs->ns_segctor_sem);
  328. current->journal_info = ti->ti_save;
  329. if (!list_empty(&ti->ti_garbage))
  330. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  331. }
  332. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  333. struct nilfs_segsum_pointer *ssp,
  334. unsigned bytes)
  335. {
  336. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  337. unsigned blocksize = sci->sc_super->s_blocksize;
  338. void *p;
  339. if (unlikely(ssp->offset + bytes > blocksize)) {
  340. ssp->offset = 0;
  341. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  342. &segbuf->sb_segsum_buffers));
  343. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  344. }
  345. p = ssp->bh->b_data + ssp->offset;
  346. ssp->offset += bytes;
  347. return p;
  348. }
  349. /**
  350. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  351. * @sci: nilfs_sc_info
  352. */
  353. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  354. {
  355. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  356. struct buffer_head *sumbh;
  357. unsigned sumbytes;
  358. unsigned flags = 0;
  359. int err;
  360. if (nilfs_doing_gc())
  361. flags = NILFS_SS_GC;
  362. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  363. if (unlikely(err))
  364. return err;
  365. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  366. sumbytes = segbuf->sb_sum.sumbytes;
  367. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  368. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  369. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  370. return 0;
  371. }
  372. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  373. {
  374. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  375. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  376. return -E2BIG; /* The current segment is filled up
  377. (internal code) */
  378. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  379. return nilfs_segctor_reset_segment_buffer(sci);
  380. }
  381. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  382. {
  383. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  384. int err;
  385. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  386. err = nilfs_segctor_feed_segment(sci);
  387. if (err)
  388. return err;
  389. segbuf = sci->sc_curseg;
  390. }
  391. err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
  392. if (likely(!err))
  393. segbuf->sb_sum.flags |= NILFS_SS_SR;
  394. return err;
  395. }
  396. /*
  397. * Functions for making segment summary and payloads
  398. */
  399. static int nilfs_segctor_segsum_block_required(
  400. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  401. unsigned binfo_size)
  402. {
  403. unsigned blocksize = sci->sc_super->s_blocksize;
  404. /* Size of finfo and binfo is enough small against blocksize */
  405. return ssp->offset + binfo_size +
  406. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  407. blocksize;
  408. }
  409. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  410. struct inode *inode)
  411. {
  412. sci->sc_curseg->sb_sum.nfinfo++;
  413. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  414. nilfs_segctor_map_segsum_entry(
  415. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  416. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  417. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  418. /* skip finfo */
  419. }
  420. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  421. struct inode *inode)
  422. {
  423. struct nilfs_finfo *finfo;
  424. struct nilfs_inode_info *ii;
  425. struct nilfs_segment_buffer *segbuf;
  426. if (sci->sc_blk_cnt == 0)
  427. return;
  428. ii = NILFS_I(inode);
  429. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  430. sizeof(*finfo));
  431. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  432. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  433. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  434. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  435. segbuf = sci->sc_curseg;
  436. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  437. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  438. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  439. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  440. }
  441. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  442. struct buffer_head *bh,
  443. struct inode *inode,
  444. unsigned binfo_size)
  445. {
  446. struct nilfs_segment_buffer *segbuf;
  447. int required, err = 0;
  448. retry:
  449. segbuf = sci->sc_curseg;
  450. required = nilfs_segctor_segsum_block_required(
  451. sci, &sci->sc_binfo_ptr, binfo_size);
  452. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  453. nilfs_segctor_end_finfo(sci, inode);
  454. err = nilfs_segctor_feed_segment(sci);
  455. if (err)
  456. return err;
  457. goto retry;
  458. }
  459. if (unlikely(required)) {
  460. err = nilfs_segbuf_extend_segsum(segbuf);
  461. if (unlikely(err))
  462. goto failed;
  463. }
  464. if (sci->sc_blk_cnt == 0)
  465. nilfs_segctor_begin_finfo(sci, inode);
  466. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  467. /* Substitution to vblocknr is delayed until update_blocknr() */
  468. nilfs_segbuf_add_file_buffer(segbuf, bh);
  469. sci->sc_blk_cnt++;
  470. failed:
  471. return err;
  472. }
  473. static int nilfs_handle_bmap_error(int err, const char *fname,
  474. struct inode *inode, struct super_block *sb)
  475. {
  476. if (err == -EINVAL) {
  477. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  478. inode->i_ino);
  479. err = -EIO;
  480. }
  481. return err;
  482. }
  483. /*
  484. * Callback functions that enumerate, mark, and collect dirty blocks
  485. */
  486. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  487. struct buffer_head *bh, struct inode *inode)
  488. {
  489. int err;
  490. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  491. if (unlikely(err < 0))
  492. return nilfs_handle_bmap_error(err, __func__, inode,
  493. sci->sc_super);
  494. err = nilfs_segctor_add_file_block(sci, bh, inode,
  495. sizeof(struct nilfs_binfo_v));
  496. if (!err)
  497. sci->sc_datablk_cnt++;
  498. return err;
  499. }
  500. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  501. struct buffer_head *bh,
  502. struct inode *inode)
  503. {
  504. int err;
  505. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  506. if (unlikely(err < 0))
  507. return nilfs_handle_bmap_error(err, __func__, inode,
  508. sci->sc_super);
  509. return 0;
  510. }
  511. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh,
  513. struct inode *inode)
  514. {
  515. WARN_ON(!buffer_dirty(bh));
  516. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  517. }
  518. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  523. sci, ssp, sizeof(*binfo_v));
  524. *binfo_v = binfo->bi_v;
  525. }
  526. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  531. sci, ssp, sizeof(*vblocknr));
  532. *vblocknr = binfo->bi_v.bi_vblocknr;
  533. }
  534. struct nilfs_sc_operations nilfs_sc_file_ops = {
  535. .collect_data = nilfs_collect_file_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_file_bmap,
  538. .write_data_binfo = nilfs_write_file_data_binfo,
  539. .write_node_binfo = nilfs_write_file_node_binfo,
  540. };
  541. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  542. struct buffer_head *bh, struct inode *inode)
  543. {
  544. int err;
  545. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  546. if (unlikely(err < 0))
  547. return nilfs_handle_bmap_error(err, __func__, inode,
  548. sci->sc_super);
  549. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  550. if (!err)
  551. sci->sc_datablk_cnt++;
  552. return err;
  553. }
  554. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  555. struct buffer_head *bh, struct inode *inode)
  556. {
  557. WARN_ON(!buffer_dirty(bh));
  558. return nilfs_segctor_add_file_block(sci, bh, inode,
  559. sizeof(struct nilfs_binfo_dat));
  560. }
  561. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  562. struct nilfs_segsum_pointer *ssp,
  563. union nilfs_binfo *binfo)
  564. {
  565. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  566. sizeof(*blkoff));
  567. *blkoff = binfo->bi_dat.bi_blkoff;
  568. }
  569. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  570. struct nilfs_segsum_pointer *ssp,
  571. union nilfs_binfo *binfo)
  572. {
  573. struct nilfs_binfo_dat *binfo_dat =
  574. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  575. *binfo_dat = binfo->bi_dat;
  576. }
  577. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  578. .collect_data = nilfs_collect_dat_data,
  579. .collect_node = nilfs_collect_file_node,
  580. .collect_bmap = nilfs_collect_dat_bmap,
  581. .write_data_binfo = nilfs_write_dat_data_binfo,
  582. .write_node_binfo = nilfs_write_dat_node_binfo,
  583. };
  584. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  585. .collect_data = nilfs_collect_file_data,
  586. .collect_node = NULL,
  587. .collect_bmap = NULL,
  588. .write_data_binfo = nilfs_write_file_data_binfo,
  589. .write_node_binfo = NULL,
  590. };
  591. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  592. struct list_head *listp,
  593. size_t nlimit,
  594. loff_t start, loff_t end)
  595. {
  596. struct address_space *mapping = inode->i_mapping;
  597. struct pagevec pvec;
  598. pgoff_t index = 0, last = ULONG_MAX;
  599. size_t ndirties = 0;
  600. int i;
  601. if (unlikely(start != 0 || end != LLONG_MAX)) {
  602. /*
  603. * A valid range is given for sync-ing data pages. The
  604. * range is rounded to per-page; extra dirty buffers
  605. * may be included if blocksize < pagesize.
  606. */
  607. index = start >> PAGE_SHIFT;
  608. last = end >> PAGE_SHIFT;
  609. }
  610. pagevec_init(&pvec, 0);
  611. repeat:
  612. if (unlikely(index > last) ||
  613. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  614. min_t(pgoff_t, last - index,
  615. PAGEVEC_SIZE - 1) + 1))
  616. return ndirties;
  617. for (i = 0; i < pagevec_count(&pvec); i++) {
  618. struct buffer_head *bh, *head;
  619. struct page *page = pvec.pages[i];
  620. if (unlikely(page->index > last))
  621. break;
  622. if (mapping->host) {
  623. lock_page(page);
  624. if (!page_has_buffers(page))
  625. create_empty_buffers(page,
  626. 1 << inode->i_blkbits, 0);
  627. unlock_page(page);
  628. }
  629. bh = head = page_buffers(page);
  630. do {
  631. if (!buffer_dirty(bh))
  632. continue;
  633. get_bh(bh);
  634. list_add_tail(&bh->b_assoc_buffers, listp);
  635. ndirties++;
  636. if (unlikely(ndirties >= nlimit)) {
  637. pagevec_release(&pvec);
  638. cond_resched();
  639. return ndirties;
  640. }
  641. } while (bh = bh->b_this_page, bh != head);
  642. }
  643. pagevec_release(&pvec);
  644. cond_resched();
  645. goto repeat;
  646. }
  647. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  648. struct list_head *listp)
  649. {
  650. struct nilfs_inode_info *ii = NILFS_I(inode);
  651. struct address_space *mapping = &ii->i_btnode_cache;
  652. struct pagevec pvec;
  653. struct buffer_head *bh, *head;
  654. unsigned int i;
  655. pgoff_t index = 0;
  656. pagevec_init(&pvec, 0);
  657. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  658. PAGEVEC_SIZE)) {
  659. for (i = 0; i < pagevec_count(&pvec); i++) {
  660. bh = head = page_buffers(pvec.pages[i]);
  661. do {
  662. if (buffer_dirty(bh)) {
  663. get_bh(bh);
  664. list_add_tail(&bh->b_assoc_buffers,
  665. listp);
  666. }
  667. bh = bh->b_this_page;
  668. } while (bh != head);
  669. }
  670. pagevec_release(&pvec);
  671. cond_resched();
  672. }
  673. }
  674. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  675. struct list_head *head, int force)
  676. {
  677. struct nilfs_inode_info *ii, *n;
  678. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  679. unsigned nv = 0;
  680. while (!list_empty(head)) {
  681. spin_lock(&sbi->s_inode_lock);
  682. list_for_each_entry_safe(ii, n, head, i_dirty) {
  683. list_del_init(&ii->i_dirty);
  684. if (force) {
  685. if (unlikely(ii->i_bh)) {
  686. brelse(ii->i_bh);
  687. ii->i_bh = NULL;
  688. }
  689. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  690. set_bit(NILFS_I_QUEUED, &ii->i_state);
  691. list_add_tail(&ii->i_dirty,
  692. &sbi->s_dirty_files);
  693. continue;
  694. }
  695. ivec[nv++] = ii;
  696. if (nv == SC_N_INODEVEC)
  697. break;
  698. }
  699. spin_unlock(&sbi->s_inode_lock);
  700. for (pii = ivec; nv > 0; pii++, nv--)
  701. iput(&(*pii)->vfs_inode);
  702. }
  703. }
  704. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  705. {
  706. struct the_nilfs *nilfs = sbi->s_nilfs;
  707. int ret = 0;
  708. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  709. ret++;
  710. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  711. ret++;
  712. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  713. ret++;
  714. if (ret || nilfs_doing_gc())
  715. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  716. ret++;
  717. return ret;
  718. }
  719. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  720. {
  721. return list_empty(&sci->sc_dirty_files) &&
  722. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  723. sci->sc_nfreesegs == 0 &&
  724. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  725. }
  726. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  727. {
  728. struct nilfs_sb_info *sbi = sci->sc_sbi;
  729. int ret = 0;
  730. if (nilfs_test_metadata_dirty(sbi))
  731. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  732. spin_lock(&sbi->s_inode_lock);
  733. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  734. ret++;
  735. spin_unlock(&sbi->s_inode_lock);
  736. return ret;
  737. }
  738. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  739. {
  740. struct nilfs_sb_info *sbi = sci->sc_sbi;
  741. struct the_nilfs *nilfs = sbi->s_nilfs;
  742. nilfs_mdt_clear_dirty(sbi->s_ifile);
  743. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  744. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  745. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  746. }
  747. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  748. {
  749. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  750. struct buffer_head *bh_cp;
  751. struct nilfs_checkpoint *raw_cp;
  752. int err;
  753. /* XXX: this interface will be changed */
  754. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  755. &raw_cp, &bh_cp);
  756. if (likely(!err)) {
  757. /* The following code is duplicated with cpfile. But, it is
  758. needed to collect the checkpoint even if it was not newly
  759. created */
  760. nilfs_mdt_mark_buffer_dirty(bh_cp);
  761. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  762. nilfs_cpfile_put_checkpoint(
  763. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  764. } else
  765. WARN_ON(err == -EINVAL || err == -ENOENT);
  766. return err;
  767. }
  768. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  769. {
  770. struct nilfs_sb_info *sbi = sci->sc_sbi;
  771. struct the_nilfs *nilfs = sbi->s_nilfs;
  772. struct buffer_head *bh_cp;
  773. struct nilfs_checkpoint *raw_cp;
  774. int err;
  775. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  776. &raw_cp, &bh_cp);
  777. if (unlikely(err)) {
  778. WARN_ON(err == -EINVAL || err == -ENOENT);
  779. goto failed_ibh;
  780. }
  781. raw_cp->cp_snapshot_list.ssl_next = 0;
  782. raw_cp->cp_snapshot_list.ssl_prev = 0;
  783. raw_cp->cp_inodes_count =
  784. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  785. raw_cp->cp_blocks_count =
  786. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  787. raw_cp->cp_nblk_inc =
  788. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  789. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  790. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  791. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  792. nilfs_checkpoint_clear_minor(raw_cp);
  793. else
  794. nilfs_checkpoint_set_minor(raw_cp);
  795. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  796. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  797. return 0;
  798. failed_ibh:
  799. return err;
  800. }
  801. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  802. struct nilfs_inode_info *ii)
  803. {
  804. struct buffer_head *ibh;
  805. struct nilfs_inode *raw_inode;
  806. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  807. ibh = ii->i_bh;
  808. BUG_ON(!ibh);
  809. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  810. ibh);
  811. nilfs_bmap_write(ii->i_bmap, raw_inode);
  812. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  813. }
  814. }
  815. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  816. struct inode *ifile)
  817. {
  818. struct nilfs_inode_info *ii;
  819. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  820. nilfs_fill_in_file_bmap(ifile, ii);
  821. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  822. }
  823. }
  824. /*
  825. * CRC calculation routines
  826. */
  827. static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
  828. {
  829. struct nilfs_super_root *raw_sr =
  830. (struct nilfs_super_root *)bh_sr->b_data;
  831. u32 crc;
  832. crc = crc32_le(seed,
  833. (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
  834. NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
  835. raw_sr->sr_sum = cpu_to_le32(crc);
  836. }
  837. static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
  838. u32 seed)
  839. {
  840. struct nilfs_segment_buffer *segbuf;
  841. if (sci->sc_super_root)
  842. nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
  843. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  844. nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
  845. nilfs_segbuf_fill_in_data_crc(segbuf, seed);
  846. }
  847. }
  848. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  849. struct the_nilfs *nilfs)
  850. {
  851. struct buffer_head *bh_sr = sci->sc_super_root;
  852. struct nilfs_super_root *raw_sr =
  853. (struct nilfs_super_root *)bh_sr->b_data;
  854. unsigned isz = nilfs->ns_inode_size;
  855. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  856. raw_sr->sr_nongc_ctime
  857. = cpu_to_le64(nilfs_doing_gc() ?
  858. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  859. raw_sr->sr_flags = 0;
  860. nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
  861. NILFS_SR_DAT_OFFSET(isz), 1);
  862. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  863. NILFS_SR_CPFILE_OFFSET(isz), 1);
  864. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  865. NILFS_SR_SUFILE_OFFSET(isz), 1);
  866. }
  867. static void nilfs_redirty_inodes(struct list_head *head)
  868. {
  869. struct nilfs_inode_info *ii;
  870. list_for_each_entry(ii, head, i_dirty) {
  871. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  872. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  873. }
  874. }
  875. static void nilfs_drop_collected_inodes(struct list_head *head)
  876. {
  877. struct nilfs_inode_info *ii;
  878. list_for_each_entry(ii, head, i_dirty) {
  879. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  880. continue;
  881. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  882. set_bit(NILFS_I_UPDATED, &ii->i_state);
  883. }
  884. }
  885. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  886. struct inode *inode,
  887. struct list_head *listp,
  888. int (*collect)(struct nilfs_sc_info *,
  889. struct buffer_head *,
  890. struct inode *))
  891. {
  892. struct buffer_head *bh, *n;
  893. int err = 0;
  894. if (collect) {
  895. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  896. list_del_init(&bh->b_assoc_buffers);
  897. err = collect(sci, bh, inode);
  898. brelse(bh);
  899. if (unlikely(err))
  900. goto dispose_buffers;
  901. }
  902. return 0;
  903. }
  904. dispose_buffers:
  905. while (!list_empty(listp)) {
  906. bh = list_entry(listp->next, struct buffer_head,
  907. b_assoc_buffers);
  908. list_del_init(&bh->b_assoc_buffers);
  909. brelse(bh);
  910. }
  911. return err;
  912. }
  913. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  914. {
  915. /* Remaining number of blocks within segment buffer */
  916. return sci->sc_segbuf_nblocks -
  917. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  918. }
  919. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  920. struct inode *inode,
  921. struct nilfs_sc_operations *sc_ops)
  922. {
  923. LIST_HEAD(data_buffers);
  924. LIST_HEAD(node_buffers);
  925. int err;
  926. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  927. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  928. n = nilfs_lookup_dirty_data_buffers(
  929. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  930. if (n > rest) {
  931. err = nilfs_segctor_apply_buffers(
  932. sci, inode, &data_buffers,
  933. sc_ops->collect_data);
  934. BUG_ON(!err); /* always receive -E2BIG or true error */
  935. goto break_or_fail;
  936. }
  937. }
  938. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  939. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  940. err = nilfs_segctor_apply_buffers(
  941. sci, inode, &data_buffers, sc_ops->collect_data);
  942. if (unlikely(err)) {
  943. /* dispose node list */
  944. nilfs_segctor_apply_buffers(
  945. sci, inode, &node_buffers, NULL);
  946. goto break_or_fail;
  947. }
  948. sci->sc_stage.flags |= NILFS_CF_NODE;
  949. }
  950. /* Collect node */
  951. err = nilfs_segctor_apply_buffers(
  952. sci, inode, &node_buffers, sc_ops->collect_node);
  953. if (unlikely(err))
  954. goto break_or_fail;
  955. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  956. err = nilfs_segctor_apply_buffers(
  957. sci, inode, &node_buffers, sc_ops->collect_bmap);
  958. if (unlikely(err))
  959. goto break_or_fail;
  960. nilfs_segctor_end_finfo(sci, inode);
  961. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  962. break_or_fail:
  963. return err;
  964. }
  965. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  966. struct inode *inode)
  967. {
  968. LIST_HEAD(data_buffers);
  969. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  970. int err;
  971. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  972. sci->sc_dsync_start,
  973. sci->sc_dsync_end);
  974. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  975. nilfs_collect_file_data);
  976. if (!err) {
  977. nilfs_segctor_end_finfo(sci, inode);
  978. BUG_ON(n > rest);
  979. /* always receive -E2BIG or true error if n > rest */
  980. }
  981. return err;
  982. }
  983. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  984. {
  985. struct nilfs_sb_info *sbi = sci->sc_sbi;
  986. struct the_nilfs *nilfs = sbi->s_nilfs;
  987. struct list_head *head;
  988. struct nilfs_inode_info *ii;
  989. size_t ndone;
  990. int err = 0;
  991. switch (sci->sc_stage.scnt) {
  992. case NILFS_ST_INIT:
  993. /* Pre-processes */
  994. sci->sc_stage.flags = 0;
  995. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  996. sci->sc_nblk_inc = 0;
  997. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  998. if (mode == SC_LSEG_DSYNC) {
  999. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  1000. goto dsync_mode;
  1001. }
  1002. }
  1003. sci->sc_stage.dirty_file_ptr = NULL;
  1004. sci->sc_stage.gc_inode_ptr = NULL;
  1005. if (mode == SC_FLUSH_DAT) {
  1006. sci->sc_stage.scnt = NILFS_ST_DAT;
  1007. goto dat_stage;
  1008. }
  1009. sci->sc_stage.scnt++; /* Fall through */
  1010. case NILFS_ST_GC:
  1011. if (nilfs_doing_gc()) {
  1012. head = &sci->sc_gc_inodes;
  1013. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1014. head, i_dirty);
  1015. list_for_each_entry_continue(ii, head, i_dirty) {
  1016. err = nilfs_segctor_scan_file(
  1017. sci, &ii->vfs_inode,
  1018. &nilfs_sc_file_ops);
  1019. if (unlikely(err)) {
  1020. sci->sc_stage.gc_inode_ptr = list_entry(
  1021. ii->i_dirty.prev,
  1022. struct nilfs_inode_info,
  1023. i_dirty);
  1024. goto break_or_fail;
  1025. }
  1026. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1027. }
  1028. sci->sc_stage.gc_inode_ptr = NULL;
  1029. }
  1030. sci->sc_stage.scnt++; /* Fall through */
  1031. case NILFS_ST_FILE:
  1032. head = &sci->sc_dirty_files;
  1033. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1034. i_dirty);
  1035. list_for_each_entry_continue(ii, head, i_dirty) {
  1036. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1037. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1038. &nilfs_sc_file_ops);
  1039. if (unlikely(err)) {
  1040. sci->sc_stage.dirty_file_ptr =
  1041. list_entry(ii->i_dirty.prev,
  1042. struct nilfs_inode_info,
  1043. i_dirty);
  1044. goto break_or_fail;
  1045. }
  1046. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1047. /* XXX: required ? */
  1048. }
  1049. sci->sc_stage.dirty_file_ptr = NULL;
  1050. if (mode == SC_FLUSH_FILE) {
  1051. sci->sc_stage.scnt = NILFS_ST_DONE;
  1052. return 0;
  1053. }
  1054. sci->sc_stage.scnt++;
  1055. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1056. /* Fall through */
  1057. case NILFS_ST_IFILE:
  1058. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1059. &nilfs_sc_file_ops);
  1060. if (unlikely(err))
  1061. break;
  1062. sci->sc_stage.scnt++;
  1063. /* Creating a checkpoint */
  1064. err = nilfs_segctor_create_checkpoint(sci);
  1065. if (unlikely(err))
  1066. break;
  1067. /* Fall through */
  1068. case NILFS_ST_CPFILE:
  1069. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1070. &nilfs_sc_file_ops);
  1071. if (unlikely(err))
  1072. break;
  1073. sci->sc_stage.scnt++; /* Fall through */
  1074. case NILFS_ST_SUFILE:
  1075. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1076. sci->sc_nfreesegs, &ndone);
  1077. if (unlikely(err)) {
  1078. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1079. sci->sc_freesegs, ndone,
  1080. NULL);
  1081. break;
  1082. }
  1083. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1084. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1085. &nilfs_sc_file_ops);
  1086. if (unlikely(err))
  1087. break;
  1088. sci->sc_stage.scnt++; /* Fall through */
  1089. case NILFS_ST_DAT:
  1090. dat_stage:
  1091. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1092. &nilfs_sc_dat_ops);
  1093. if (unlikely(err))
  1094. break;
  1095. if (mode == SC_FLUSH_DAT) {
  1096. sci->sc_stage.scnt = NILFS_ST_DONE;
  1097. return 0;
  1098. }
  1099. sci->sc_stage.scnt++; /* Fall through */
  1100. case NILFS_ST_SR:
  1101. if (mode == SC_LSEG_SR) {
  1102. /* Appending a super root */
  1103. err = nilfs_segctor_add_super_root(sci);
  1104. if (unlikely(err))
  1105. break;
  1106. }
  1107. /* End of a logical segment */
  1108. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1109. sci->sc_stage.scnt = NILFS_ST_DONE;
  1110. return 0;
  1111. case NILFS_ST_DSYNC:
  1112. dsync_mode:
  1113. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1114. ii = sci->sc_dsync_inode;
  1115. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1116. break;
  1117. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1118. if (unlikely(err))
  1119. break;
  1120. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1121. sci->sc_stage.scnt = NILFS_ST_DONE;
  1122. return 0;
  1123. case NILFS_ST_DONE:
  1124. return 0;
  1125. default:
  1126. BUG();
  1127. }
  1128. break_or_fail:
  1129. return err;
  1130. }
  1131. /**
  1132. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1133. * @sci: nilfs_sc_info
  1134. * @nilfs: nilfs object
  1135. */
  1136. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1137. struct the_nilfs *nilfs)
  1138. {
  1139. struct nilfs_segment_buffer *segbuf, *prev;
  1140. __u64 nextnum;
  1141. int err, alloc = 0;
  1142. segbuf = nilfs_segbuf_new(sci->sc_super);
  1143. if (unlikely(!segbuf))
  1144. return -ENOMEM;
  1145. if (list_empty(&sci->sc_write_logs)) {
  1146. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1147. nilfs->ns_pseg_offset, nilfs);
  1148. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1149. nilfs_shift_to_next_segment(nilfs);
  1150. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1151. }
  1152. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1153. nextnum = nilfs->ns_nextnum;
  1154. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1155. /* Start from the head of a new full segment */
  1156. alloc++;
  1157. } else {
  1158. /* Continue logs */
  1159. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1160. nilfs_segbuf_map_cont(segbuf, prev);
  1161. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1162. nextnum = prev->sb_nextnum;
  1163. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1164. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1165. segbuf->sb_sum.seg_seq++;
  1166. alloc++;
  1167. }
  1168. }
  1169. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1170. if (err)
  1171. goto failed;
  1172. if (alloc) {
  1173. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1174. if (err)
  1175. goto failed;
  1176. }
  1177. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1178. BUG_ON(!list_empty(&sci->sc_segbufs));
  1179. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1180. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1181. return 0;
  1182. failed:
  1183. nilfs_segbuf_free(segbuf);
  1184. return err;
  1185. }
  1186. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1187. struct the_nilfs *nilfs, int nadd)
  1188. {
  1189. struct nilfs_segment_buffer *segbuf, *prev;
  1190. struct inode *sufile = nilfs->ns_sufile;
  1191. __u64 nextnextnum;
  1192. LIST_HEAD(list);
  1193. int err, ret, i;
  1194. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1195. /*
  1196. * Since the segment specified with nextnum might be allocated during
  1197. * the previous construction, the buffer including its segusage may
  1198. * not be dirty. The following call ensures that the buffer is dirty
  1199. * and will pin the buffer on memory until the sufile is written.
  1200. */
  1201. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1202. if (unlikely(err))
  1203. return err;
  1204. for (i = 0; i < nadd; i++) {
  1205. /* extend segment info */
  1206. err = -ENOMEM;
  1207. segbuf = nilfs_segbuf_new(sci->sc_super);
  1208. if (unlikely(!segbuf))
  1209. goto failed;
  1210. /* map this buffer to region of segment on-disk */
  1211. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1212. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1213. /* allocate the next next full segment */
  1214. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1215. if (unlikely(err))
  1216. goto failed_segbuf;
  1217. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1218. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1219. list_add_tail(&segbuf->sb_list, &list);
  1220. prev = segbuf;
  1221. }
  1222. list_splice_tail(&list, &sci->sc_segbufs);
  1223. return 0;
  1224. failed_segbuf:
  1225. nilfs_segbuf_free(segbuf);
  1226. failed:
  1227. list_for_each_entry(segbuf, &list, sb_list) {
  1228. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1229. WARN_ON(ret); /* never fails */
  1230. }
  1231. nilfs_destroy_logs(&list);
  1232. return err;
  1233. }
  1234. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1235. struct the_nilfs *nilfs)
  1236. {
  1237. struct nilfs_segment_buffer *segbuf, *prev;
  1238. struct inode *sufile = nilfs->ns_sufile;
  1239. int ret;
  1240. segbuf = NILFS_FIRST_SEGBUF(logs);
  1241. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1242. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1243. WARN_ON(ret); /* never fails */
  1244. }
  1245. if (atomic_read(&segbuf->sb_err)) {
  1246. /* Case 1: The first segment failed */
  1247. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1248. /* Case 1a: Partial segment appended into an existing
  1249. segment */
  1250. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1251. segbuf->sb_fseg_end);
  1252. else /* Case 1b: New full segment */
  1253. set_nilfs_discontinued(nilfs);
  1254. }
  1255. prev = segbuf;
  1256. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1257. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1258. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1259. WARN_ON(ret); /* never fails */
  1260. }
  1261. if (atomic_read(&segbuf->sb_err) &&
  1262. segbuf->sb_segnum != nilfs->ns_nextnum)
  1263. /* Case 2: extended segment (!= next) failed */
  1264. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1265. prev = segbuf;
  1266. }
  1267. }
  1268. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1269. struct inode *sufile)
  1270. {
  1271. struct nilfs_segment_buffer *segbuf;
  1272. unsigned long live_blocks;
  1273. int ret;
  1274. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1275. live_blocks = segbuf->sb_sum.nblocks +
  1276. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1277. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1278. live_blocks,
  1279. sci->sc_seg_ctime);
  1280. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1281. }
  1282. }
  1283. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1284. {
  1285. struct nilfs_segment_buffer *segbuf;
  1286. int ret;
  1287. segbuf = NILFS_FIRST_SEGBUF(logs);
  1288. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1289. segbuf->sb_pseg_start -
  1290. segbuf->sb_fseg_start, 0);
  1291. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1292. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1293. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1294. 0, 0);
  1295. WARN_ON(ret); /* always succeed */
  1296. }
  1297. }
  1298. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1299. struct nilfs_segment_buffer *last,
  1300. struct inode *sufile)
  1301. {
  1302. struct nilfs_segment_buffer *segbuf = last;
  1303. int ret;
  1304. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1305. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1306. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1307. WARN_ON(ret);
  1308. }
  1309. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1310. }
  1311. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1312. struct the_nilfs *nilfs, int mode)
  1313. {
  1314. struct nilfs_cstage prev_stage = sci->sc_stage;
  1315. int err, nadd = 1;
  1316. /* Collection retry loop */
  1317. for (;;) {
  1318. sci->sc_super_root = NULL;
  1319. sci->sc_nblk_this_inc = 0;
  1320. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1321. err = nilfs_segctor_reset_segment_buffer(sci);
  1322. if (unlikely(err))
  1323. goto failed;
  1324. err = nilfs_segctor_collect_blocks(sci, mode);
  1325. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1326. if (!err)
  1327. break;
  1328. if (unlikely(err != -E2BIG))
  1329. goto failed;
  1330. /* The current segment is filled up */
  1331. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1332. break;
  1333. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1334. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1335. sci->sc_freesegs,
  1336. sci->sc_nfreesegs,
  1337. NULL);
  1338. WARN_ON(err); /* do not happen */
  1339. }
  1340. nilfs_clear_logs(&sci->sc_segbufs);
  1341. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1342. if (unlikely(err))
  1343. return err;
  1344. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1345. sci->sc_stage = prev_stage;
  1346. }
  1347. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1348. return 0;
  1349. failed:
  1350. return err;
  1351. }
  1352. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1353. struct buffer_head *new_bh)
  1354. {
  1355. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1356. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1357. /* The caller must release old_bh */
  1358. }
  1359. static int
  1360. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1361. struct nilfs_segment_buffer *segbuf,
  1362. int mode)
  1363. {
  1364. struct inode *inode = NULL;
  1365. sector_t blocknr;
  1366. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1367. unsigned long nblocks = 0, ndatablk = 0;
  1368. struct nilfs_sc_operations *sc_op = NULL;
  1369. struct nilfs_segsum_pointer ssp;
  1370. struct nilfs_finfo *finfo = NULL;
  1371. union nilfs_binfo binfo;
  1372. struct buffer_head *bh, *bh_org;
  1373. ino_t ino = 0;
  1374. int err = 0;
  1375. if (!nfinfo)
  1376. goto out;
  1377. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1378. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1379. ssp.offset = sizeof(struct nilfs_segment_summary);
  1380. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1381. if (bh == sci->sc_super_root)
  1382. break;
  1383. if (!finfo) {
  1384. finfo = nilfs_segctor_map_segsum_entry(
  1385. sci, &ssp, sizeof(*finfo));
  1386. ino = le64_to_cpu(finfo->fi_ino);
  1387. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1388. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1389. if (buffer_nilfs_node(bh))
  1390. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1391. else
  1392. inode = NILFS_AS_I(bh->b_page->mapping);
  1393. if (mode == SC_LSEG_DSYNC)
  1394. sc_op = &nilfs_sc_dsync_ops;
  1395. else if (ino == NILFS_DAT_INO)
  1396. sc_op = &nilfs_sc_dat_ops;
  1397. else /* file blocks */
  1398. sc_op = &nilfs_sc_file_ops;
  1399. }
  1400. bh_org = bh;
  1401. get_bh(bh_org);
  1402. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1403. &binfo);
  1404. if (bh != bh_org)
  1405. nilfs_list_replace_buffer(bh_org, bh);
  1406. brelse(bh_org);
  1407. if (unlikely(err))
  1408. goto failed_bmap;
  1409. if (ndatablk > 0)
  1410. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1411. else
  1412. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1413. blocknr++;
  1414. if (--nblocks == 0) {
  1415. finfo = NULL;
  1416. if (--nfinfo == 0)
  1417. break;
  1418. } else if (ndatablk > 0)
  1419. ndatablk--;
  1420. }
  1421. out:
  1422. return 0;
  1423. failed_bmap:
  1424. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1425. return err;
  1426. }
  1427. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1428. {
  1429. struct nilfs_segment_buffer *segbuf;
  1430. int err;
  1431. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1432. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1433. if (unlikely(err))
  1434. return err;
  1435. nilfs_segbuf_fill_in_segsum(segbuf);
  1436. }
  1437. return 0;
  1438. }
  1439. static int
  1440. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1441. {
  1442. struct page *clone_page;
  1443. struct buffer_head *bh, *head, *bh2;
  1444. void *kaddr;
  1445. bh = head = page_buffers(page);
  1446. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1447. if (unlikely(!clone_page))
  1448. return -ENOMEM;
  1449. bh2 = page_buffers(clone_page);
  1450. kaddr = kmap_atomic(page, KM_USER0);
  1451. do {
  1452. if (list_empty(&bh->b_assoc_buffers))
  1453. continue;
  1454. get_bh(bh2);
  1455. page_cache_get(clone_page); /* for each bh */
  1456. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1457. bh2->b_blocknr = bh->b_blocknr;
  1458. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1459. list_add_tail(&bh->b_assoc_buffers, out);
  1460. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1461. kunmap_atomic(kaddr, KM_USER0);
  1462. if (!TestSetPageWriteback(clone_page))
  1463. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1464. unlock_page(clone_page);
  1465. return 0;
  1466. }
  1467. static int nilfs_test_page_to_be_frozen(struct page *page)
  1468. {
  1469. struct address_space *mapping = page->mapping;
  1470. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1471. return 0;
  1472. if (page_mapped(page)) {
  1473. ClearPageChecked(page);
  1474. return 1;
  1475. }
  1476. return PageChecked(page);
  1477. }
  1478. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1479. {
  1480. if (!page || PageWriteback(page))
  1481. /* For split b-tree node pages, this function may be called
  1482. twice. We ignore the 2nd or later calls by this check. */
  1483. return 0;
  1484. lock_page(page);
  1485. clear_page_dirty_for_io(page);
  1486. set_page_writeback(page);
  1487. unlock_page(page);
  1488. if (nilfs_test_page_to_be_frozen(page)) {
  1489. int err = nilfs_copy_replace_page_buffers(page, out);
  1490. if (unlikely(err))
  1491. return err;
  1492. }
  1493. return 0;
  1494. }
  1495. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1496. struct page **failed_page)
  1497. {
  1498. struct nilfs_segment_buffer *segbuf;
  1499. struct page *bd_page = NULL, *fs_page = NULL;
  1500. struct list_head *list = &sci->sc_copied_buffers;
  1501. int err;
  1502. *failed_page = NULL;
  1503. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1504. struct buffer_head *bh;
  1505. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1506. b_assoc_buffers) {
  1507. if (bh->b_page != bd_page) {
  1508. if (bd_page) {
  1509. lock_page(bd_page);
  1510. clear_page_dirty_for_io(bd_page);
  1511. set_page_writeback(bd_page);
  1512. unlock_page(bd_page);
  1513. }
  1514. bd_page = bh->b_page;
  1515. }
  1516. }
  1517. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1518. b_assoc_buffers) {
  1519. if (bh == sci->sc_super_root) {
  1520. if (bh->b_page != bd_page) {
  1521. lock_page(bd_page);
  1522. clear_page_dirty_for_io(bd_page);
  1523. set_page_writeback(bd_page);
  1524. unlock_page(bd_page);
  1525. bd_page = bh->b_page;
  1526. }
  1527. break;
  1528. }
  1529. if (bh->b_page != fs_page) {
  1530. err = nilfs_begin_page_io(fs_page, list);
  1531. if (unlikely(err)) {
  1532. *failed_page = fs_page;
  1533. goto out;
  1534. }
  1535. fs_page = bh->b_page;
  1536. }
  1537. }
  1538. }
  1539. if (bd_page) {
  1540. lock_page(bd_page);
  1541. clear_page_dirty_for_io(bd_page);
  1542. set_page_writeback(bd_page);
  1543. unlock_page(bd_page);
  1544. }
  1545. err = nilfs_begin_page_io(fs_page, list);
  1546. if (unlikely(err))
  1547. *failed_page = fs_page;
  1548. out:
  1549. return err;
  1550. }
  1551. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1552. struct the_nilfs *nilfs)
  1553. {
  1554. struct nilfs_segment_buffer *segbuf;
  1555. int ret = 0;
  1556. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1557. ret = nilfs_segbuf_write(segbuf, nilfs);
  1558. if (ret)
  1559. break;
  1560. }
  1561. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1562. return ret;
  1563. }
  1564. static void __nilfs_end_page_io(struct page *page, int err)
  1565. {
  1566. if (!err) {
  1567. if (!nilfs_page_buffers_clean(page))
  1568. __set_page_dirty_nobuffers(page);
  1569. ClearPageError(page);
  1570. } else {
  1571. __set_page_dirty_nobuffers(page);
  1572. SetPageError(page);
  1573. }
  1574. if (buffer_nilfs_allocated(page_buffers(page))) {
  1575. if (TestClearPageWriteback(page))
  1576. dec_zone_page_state(page, NR_WRITEBACK);
  1577. } else
  1578. end_page_writeback(page);
  1579. }
  1580. static void nilfs_end_page_io(struct page *page, int err)
  1581. {
  1582. if (!page)
  1583. return;
  1584. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1585. /*
  1586. * For b-tree node pages, this function may be called twice
  1587. * or more because they might be split in a segment.
  1588. */
  1589. if (PageDirty(page)) {
  1590. /*
  1591. * For pages holding split b-tree node buffers, dirty
  1592. * flag on the buffers may be cleared discretely.
  1593. * In that case, the page is once redirtied for
  1594. * remaining buffers, and it must be cancelled if
  1595. * all the buffers get cleaned later.
  1596. */
  1597. lock_page(page);
  1598. if (nilfs_page_buffers_clean(page))
  1599. __nilfs_clear_page_dirty(page);
  1600. unlock_page(page);
  1601. }
  1602. return;
  1603. }
  1604. __nilfs_end_page_io(page, err);
  1605. }
  1606. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1607. {
  1608. struct buffer_head *bh, *head;
  1609. struct page *page;
  1610. while (!list_empty(list)) {
  1611. bh = list_entry(list->next, struct buffer_head,
  1612. b_assoc_buffers);
  1613. page = bh->b_page;
  1614. page_cache_get(page);
  1615. head = bh = page_buffers(page);
  1616. do {
  1617. if (!list_empty(&bh->b_assoc_buffers)) {
  1618. list_del_init(&bh->b_assoc_buffers);
  1619. if (!err) {
  1620. set_buffer_uptodate(bh);
  1621. clear_buffer_dirty(bh);
  1622. clear_buffer_nilfs_volatile(bh);
  1623. }
  1624. brelse(bh); /* for b_assoc_buffers */
  1625. }
  1626. } while ((bh = bh->b_this_page) != head);
  1627. __nilfs_end_page_io(page, err);
  1628. page_cache_release(page);
  1629. }
  1630. }
  1631. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1632. struct buffer_head *bh_sr, int err)
  1633. {
  1634. struct nilfs_segment_buffer *segbuf;
  1635. struct page *bd_page = NULL, *fs_page = NULL;
  1636. struct buffer_head *bh;
  1637. if (list_empty(logs))
  1638. return;
  1639. list_for_each_entry(segbuf, logs, sb_list) {
  1640. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1641. b_assoc_buffers) {
  1642. if (bh->b_page != bd_page) {
  1643. if (bd_page)
  1644. end_page_writeback(bd_page);
  1645. bd_page = bh->b_page;
  1646. }
  1647. }
  1648. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1649. b_assoc_buffers) {
  1650. if (bh == bh_sr) {
  1651. if (bh->b_page != bd_page) {
  1652. end_page_writeback(bd_page);
  1653. bd_page = bh->b_page;
  1654. }
  1655. break;
  1656. }
  1657. if (bh->b_page != fs_page) {
  1658. nilfs_end_page_io(fs_page, err);
  1659. if (fs_page && fs_page == failed_page)
  1660. return;
  1661. fs_page = bh->b_page;
  1662. }
  1663. }
  1664. }
  1665. if (bd_page)
  1666. end_page_writeback(bd_page);
  1667. nilfs_end_page_io(fs_page, err);
  1668. }
  1669. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1670. struct the_nilfs *nilfs, int err)
  1671. {
  1672. LIST_HEAD(logs);
  1673. int ret;
  1674. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1675. ret = nilfs_wait_on_logs(&logs);
  1676. if (ret)
  1677. nilfs_abort_logs(&logs, NULL, sci->sc_super_root, ret);
  1678. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1679. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1680. nilfs_free_incomplete_logs(&logs, nilfs);
  1681. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1682. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1683. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1684. sci->sc_freesegs,
  1685. sci->sc_nfreesegs,
  1686. NULL);
  1687. WARN_ON(ret); /* do not happen */
  1688. }
  1689. nilfs_destroy_logs(&logs);
  1690. sci->sc_super_root = NULL;
  1691. }
  1692. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1693. struct nilfs_segment_buffer *segbuf)
  1694. {
  1695. nilfs->ns_segnum = segbuf->sb_segnum;
  1696. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1697. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1698. + segbuf->sb_sum.nblocks;
  1699. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1700. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1701. }
  1702. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1703. {
  1704. struct nilfs_segment_buffer *segbuf;
  1705. struct page *bd_page = NULL, *fs_page = NULL;
  1706. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1707. struct the_nilfs *nilfs = sbi->s_nilfs;
  1708. int update_sr = (sci->sc_super_root != NULL);
  1709. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1710. struct buffer_head *bh;
  1711. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1712. b_assoc_buffers) {
  1713. set_buffer_uptodate(bh);
  1714. clear_buffer_dirty(bh);
  1715. if (bh->b_page != bd_page) {
  1716. if (bd_page)
  1717. end_page_writeback(bd_page);
  1718. bd_page = bh->b_page;
  1719. }
  1720. }
  1721. /*
  1722. * We assume that the buffers which belong to the same page
  1723. * continue over the buffer list.
  1724. * Under this assumption, the last BHs of pages is
  1725. * identifiable by the discontinuity of bh->b_page
  1726. * (page != fs_page).
  1727. *
  1728. * For B-tree node blocks, however, this assumption is not
  1729. * guaranteed. The cleanup code of B-tree node pages needs
  1730. * special care.
  1731. */
  1732. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1733. b_assoc_buffers) {
  1734. set_buffer_uptodate(bh);
  1735. clear_buffer_dirty(bh);
  1736. clear_buffer_nilfs_volatile(bh);
  1737. if (bh == sci->sc_super_root) {
  1738. if (bh->b_page != bd_page) {
  1739. end_page_writeback(bd_page);
  1740. bd_page = bh->b_page;
  1741. }
  1742. break;
  1743. }
  1744. if (bh->b_page != fs_page) {
  1745. nilfs_end_page_io(fs_page, 0);
  1746. fs_page = bh->b_page;
  1747. }
  1748. }
  1749. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1750. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1751. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1752. sci->sc_lseg_stime = jiffies;
  1753. }
  1754. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1755. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1756. }
  1757. }
  1758. /*
  1759. * Since pages may continue over multiple segment buffers,
  1760. * end of the last page must be checked outside of the loop.
  1761. */
  1762. if (bd_page)
  1763. end_page_writeback(bd_page);
  1764. nilfs_end_page_io(fs_page, 0);
  1765. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1766. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1767. if (nilfs_doing_gc()) {
  1768. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1769. if (update_sr)
  1770. nilfs_commit_gcdat_inode(nilfs);
  1771. } else
  1772. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1773. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1774. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1775. nilfs_set_next_segment(nilfs, segbuf);
  1776. if (update_sr) {
  1777. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1778. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1779. sbi->s_super->s_dirt = 1;
  1780. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1781. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1782. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1783. nilfs_segctor_clear_metadata_dirty(sci);
  1784. } else
  1785. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1786. }
  1787. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1788. {
  1789. int ret;
  1790. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1791. if (!ret) {
  1792. nilfs_segctor_complete_write(sci);
  1793. nilfs_destroy_logs(&sci->sc_write_logs);
  1794. }
  1795. return ret;
  1796. }
  1797. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1798. struct nilfs_sb_info *sbi)
  1799. {
  1800. struct nilfs_inode_info *ii, *n;
  1801. __u64 cno = sbi->s_nilfs->ns_cno;
  1802. spin_lock(&sbi->s_inode_lock);
  1803. retry:
  1804. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1805. if (!ii->i_bh) {
  1806. struct buffer_head *ibh;
  1807. int err;
  1808. spin_unlock(&sbi->s_inode_lock);
  1809. err = nilfs_ifile_get_inode_block(
  1810. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1811. if (unlikely(err)) {
  1812. nilfs_warning(sbi->s_super, __func__,
  1813. "failed to get inode block.\n");
  1814. return err;
  1815. }
  1816. nilfs_mdt_mark_buffer_dirty(ibh);
  1817. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1818. spin_lock(&sbi->s_inode_lock);
  1819. if (likely(!ii->i_bh))
  1820. ii->i_bh = ibh;
  1821. else
  1822. brelse(ibh);
  1823. goto retry;
  1824. }
  1825. ii->i_cno = cno;
  1826. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1827. set_bit(NILFS_I_BUSY, &ii->i_state);
  1828. list_del(&ii->i_dirty);
  1829. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1830. }
  1831. spin_unlock(&sbi->s_inode_lock);
  1832. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1833. return 0;
  1834. }
  1835. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1836. struct nilfs_sb_info *sbi)
  1837. {
  1838. struct nilfs_transaction_info *ti = current->journal_info;
  1839. struct nilfs_inode_info *ii, *n;
  1840. __u64 cno = sbi->s_nilfs->ns_cno;
  1841. spin_lock(&sbi->s_inode_lock);
  1842. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1843. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1844. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1845. /* The current checkpoint number (=nilfs->ns_cno) is
  1846. changed between check-in and check-out only if the
  1847. super root is written out. So, we can update i_cno
  1848. for the inodes that remain in the dirty list. */
  1849. ii->i_cno = cno;
  1850. continue;
  1851. }
  1852. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1853. brelse(ii->i_bh);
  1854. ii->i_bh = NULL;
  1855. list_del(&ii->i_dirty);
  1856. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1857. }
  1858. spin_unlock(&sbi->s_inode_lock);
  1859. }
  1860. /*
  1861. * Main procedure of segment constructor
  1862. */
  1863. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1864. {
  1865. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1866. struct the_nilfs *nilfs = sbi->s_nilfs;
  1867. struct page *failed_page;
  1868. int err, has_sr = 0;
  1869. sci->sc_stage.scnt = NILFS_ST_INIT;
  1870. err = nilfs_segctor_check_in_files(sci, sbi);
  1871. if (unlikely(err))
  1872. goto out;
  1873. if (nilfs_test_metadata_dirty(sbi))
  1874. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1875. if (nilfs_segctor_clean(sci))
  1876. goto out;
  1877. do {
  1878. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1879. err = nilfs_segctor_begin_construction(sci, nilfs);
  1880. if (unlikely(err))
  1881. goto out;
  1882. /* Update time stamp */
  1883. sci->sc_seg_ctime = get_seconds();
  1884. err = nilfs_segctor_collect(sci, nilfs, mode);
  1885. if (unlikely(err))
  1886. goto failed;
  1887. has_sr = (sci->sc_super_root != NULL);
  1888. /* Avoid empty segment */
  1889. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1890. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  1891. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1892. goto out;
  1893. }
  1894. err = nilfs_segctor_assign(sci, mode);
  1895. if (unlikely(err))
  1896. goto failed;
  1897. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1898. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1899. if (has_sr) {
  1900. err = nilfs_segctor_fill_in_checkpoint(sci);
  1901. if (unlikely(err))
  1902. goto failed_to_write;
  1903. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1904. }
  1905. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1906. /* Write partial segments */
  1907. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1908. if (err) {
  1909. nilfs_abort_logs(&sci->sc_segbufs, failed_page,
  1910. sci->sc_super_root, err);
  1911. goto failed_to_write;
  1912. }
  1913. nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
  1914. err = nilfs_segctor_write(sci, nilfs);
  1915. if (unlikely(err))
  1916. goto failed_to_write;
  1917. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1918. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1919. /*
  1920. * At this point, we avoid double buffering
  1921. * for blocksize < pagesize because page dirty
  1922. * flag is turned off during write and dirty
  1923. * buffers are not properly collected for
  1924. * pages crossing over segments.
  1925. */
  1926. err = nilfs_segctor_wait(sci);
  1927. if (err)
  1928. goto failed_to_write;
  1929. }
  1930. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1931. sci->sc_super_root = NULL;
  1932. out:
  1933. nilfs_segctor_check_out_files(sci, sbi);
  1934. return err;
  1935. failed_to_write:
  1936. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1937. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1938. failed:
  1939. if (nilfs_doing_gc())
  1940. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1941. nilfs_segctor_abort_construction(sci, nilfs, err);
  1942. goto out;
  1943. }
  1944. /**
  1945. * nilfs_secgtor_start_timer - set timer of background write
  1946. * @sci: nilfs_sc_info
  1947. *
  1948. * If the timer has already been set, it ignores the new request.
  1949. * This function MUST be called within a section locking the segment
  1950. * semaphore.
  1951. */
  1952. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1953. {
  1954. spin_lock(&sci->sc_state_lock);
  1955. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1956. sci->sc_timer->expires = jiffies + sci->sc_interval;
  1957. add_timer(sci->sc_timer);
  1958. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1959. }
  1960. spin_unlock(&sci->sc_state_lock);
  1961. }
  1962. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1963. {
  1964. spin_lock(&sci->sc_state_lock);
  1965. if (!(sci->sc_flush_request & (1 << bn))) {
  1966. unsigned long prev_req = sci->sc_flush_request;
  1967. sci->sc_flush_request |= (1 << bn);
  1968. if (!prev_req)
  1969. wake_up(&sci->sc_wait_daemon);
  1970. }
  1971. spin_unlock(&sci->sc_state_lock);
  1972. }
  1973. /**
  1974. * nilfs_flush_segment - trigger a segment construction for resource control
  1975. * @sb: super block
  1976. * @ino: inode number of the file to be flushed out.
  1977. */
  1978. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1979. {
  1980. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1981. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1982. if (!sci || nilfs_doing_construction())
  1983. return;
  1984. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1985. /* assign bit 0 to data files */
  1986. }
  1987. struct nilfs_segctor_wait_request {
  1988. wait_queue_t wq;
  1989. __u32 seq;
  1990. int err;
  1991. atomic_t done;
  1992. };
  1993. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1994. {
  1995. struct nilfs_segctor_wait_request wait_req;
  1996. int err = 0;
  1997. spin_lock(&sci->sc_state_lock);
  1998. init_wait(&wait_req.wq);
  1999. wait_req.err = 0;
  2000. atomic_set(&wait_req.done, 0);
  2001. wait_req.seq = ++sci->sc_seq_request;
  2002. spin_unlock(&sci->sc_state_lock);
  2003. init_waitqueue_entry(&wait_req.wq, current);
  2004. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  2005. set_current_state(TASK_INTERRUPTIBLE);
  2006. wake_up(&sci->sc_wait_daemon);
  2007. for (;;) {
  2008. if (atomic_read(&wait_req.done)) {
  2009. err = wait_req.err;
  2010. break;
  2011. }
  2012. if (!signal_pending(current)) {
  2013. schedule();
  2014. continue;
  2015. }
  2016. err = -ERESTARTSYS;
  2017. break;
  2018. }
  2019. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  2020. return err;
  2021. }
  2022. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  2023. {
  2024. struct nilfs_segctor_wait_request *wrq, *n;
  2025. unsigned long flags;
  2026. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  2027. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  2028. wq.task_list) {
  2029. if (!atomic_read(&wrq->done) &&
  2030. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2031. wrq->err = err;
  2032. atomic_set(&wrq->done, 1);
  2033. }
  2034. if (atomic_read(&wrq->done)) {
  2035. wrq->wq.func(&wrq->wq,
  2036. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2037. 0, NULL);
  2038. }
  2039. }
  2040. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2041. }
  2042. /**
  2043. * nilfs_construct_segment - construct a logical segment
  2044. * @sb: super block
  2045. *
  2046. * Return Value: On success, 0 is retured. On errors, one of the following
  2047. * negative error code is returned.
  2048. *
  2049. * %-EROFS - Read only filesystem.
  2050. *
  2051. * %-EIO - I/O error
  2052. *
  2053. * %-ENOSPC - No space left on device (only in a panic state).
  2054. *
  2055. * %-ERESTARTSYS - Interrupted.
  2056. *
  2057. * %-ENOMEM - Insufficient memory available.
  2058. */
  2059. int nilfs_construct_segment(struct super_block *sb)
  2060. {
  2061. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2062. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2063. struct nilfs_transaction_info *ti;
  2064. int err;
  2065. if (!sci)
  2066. return -EROFS;
  2067. /* A call inside transactions causes a deadlock. */
  2068. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2069. err = nilfs_segctor_sync(sci);
  2070. return err;
  2071. }
  2072. /**
  2073. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2074. * @sb: super block
  2075. * @inode: inode whose data blocks should be written out
  2076. * @start: start byte offset
  2077. * @end: end byte offset (inclusive)
  2078. *
  2079. * Return Value: On success, 0 is retured. On errors, one of the following
  2080. * negative error code is returned.
  2081. *
  2082. * %-EROFS - Read only filesystem.
  2083. *
  2084. * %-EIO - I/O error
  2085. *
  2086. * %-ENOSPC - No space left on device (only in a panic state).
  2087. *
  2088. * %-ERESTARTSYS - Interrupted.
  2089. *
  2090. * %-ENOMEM - Insufficient memory available.
  2091. */
  2092. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2093. loff_t start, loff_t end)
  2094. {
  2095. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2096. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2097. struct nilfs_inode_info *ii;
  2098. struct nilfs_transaction_info ti;
  2099. int err = 0;
  2100. if (!sci)
  2101. return -EROFS;
  2102. nilfs_transaction_lock(sbi, &ti, 0);
  2103. ii = NILFS_I(inode);
  2104. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2105. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2106. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2107. nilfs_discontinued(sbi->s_nilfs)) {
  2108. nilfs_transaction_unlock(sbi);
  2109. err = nilfs_segctor_sync(sci);
  2110. return err;
  2111. }
  2112. spin_lock(&sbi->s_inode_lock);
  2113. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2114. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2115. spin_unlock(&sbi->s_inode_lock);
  2116. nilfs_transaction_unlock(sbi);
  2117. return 0;
  2118. }
  2119. spin_unlock(&sbi->s_inode_lock);
  2120. sci->sc_dsync_inode = ii;
  2121. sci->sc_dsync_start = start;
  2122. sci->sc_dsync_end = end;
  2123. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2124. nilfs_transaction_unlock(sbi);
  2125. return err;
  2126. }
  2127. struct nilfs_segctor_req {
  2128. int mode;
  2129. __u32 seq_accepted;
  2130. int sc_err; /* construction failure */
  2131. int sb_err; /* super block writeback failure */
  2132. };
  2133. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2134. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2135. static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
  2136. struct nilfs_segctor_req *req)
  2137. {
  2138. req->sc_err = req->sb_err = 0;
  2139. spin_lock(&sci->sc_state_lock);
  2140. req->seq_accepted = sci->sc_seq_request;
  2141. spin_unlock(&sci->sc_state_lock);
  2142. if (sci->sc_timer)
  2143. del_timer_sync(sci->sc_timer);
  2144. }
  2145. static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
  2146. struct nilfs_segctor_req *req)
  2147. {
  2148. /* Clear requests (even when the construction failed) */
  2149. spin_lock(&sci->sc_state_lock);
  2150. if (req->mode == SC_LSEG_SR) {
  2151. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2152. sci->sc_seq_done = req->seq_accepted;
  2153. nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
  2154. sci->sc_flush_request = 0;
  2155. } else {
  2156. if (req->mode == SC_FLUSH_FILE)
  2157. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2158. else if (req->mode == SC_FLUSH_DAT)
  2159. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2160. /* re-enable timer if checkpoint creation was not done */
  2161. if (sci->sc_timer && (sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2162. time_before(jiffies, sci->sc_timer->expires))
  2163. add_timer(sci->sc_timer);
  2164. }
  2165. spin_unlock(&sci->sc_state_lock);
  2166. }
  2167. static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
  2168. struct nilfs_segctor_req *req)
  2169. {
  2170. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2171. struct the_nilfs *nilfs = sbi->s_nilfs;
  2172. int err = 0;
  2173. if (nilfs_discontinued(nilfs))
  2174. req->mode = SC_LSEG_SR;
  2175. if (!nilfs_segctor_confirm(sci)) {
  2176. err = nilfs_segctor_do_construct(sci, req->mode);
  2177. req->sc_err = err;
  2178. }
  2179. if (likely(!err)) {
  2180. if (req->mode != SC_FLUSH_DAT)
  2181. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2182. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2183. nilfs_discontinued(nilfs)) {
  2184. down_write(&nilfs->ns_sem);
  2185. req->sb_err = nilfs_commit_super(sbi,
  2186. nilfs_altsb_need_update(nilfs));
  2187. up_write(&nilfs->ns_sem);
  2188. }
  2189. }
  2190. return err;
  2191. }
  2192. static void nilfs_construction_timeout(unsigned long data)
  2193. {
  2194. struct task_struct *p = (struct task_struct *)data;
  2195. wake_up_process(p);
  2196. }
  2197. static void
  2198. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2199. {
  2200. struct nilfs_inode_info *ii, *n;
  2201. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2202. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2203. continue;
  2204. hlist_del_init(&ii->vfs_inode.i_hash);
  2205. list_del_init(&ii->i_dirty);
  2206. nilfs_clear_gcinode(&ii->vfs_inode);
  2207. }
  2208. }
  2209. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2210. void **kbufs)
  2211. {
  2212. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2213. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2214. struct the_nilfs *nilfs = sbi->s_nilfs;
  2215. struct nilfs_transaction_info ti;
  2216. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2217. int err;
  2218. if (unlikely(!sci))
  2219. return -EROFS;
  2220. nilfs_transaction_lock(sbi, &ti, 1);
  2221. err = nilfs_init_gcdat_inode(nilfs);
  2222. if (unlikely(err))
  2223. goto out_unlock;
  2224. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2225. if (unlikely(err))
  2226. goto out_unlock;
  2227. sci->sc_freesegs = kbufs[4];
  2228. sci->sc_nfreesegs = argv[4].v_nmembs;
  2229. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2230. for (;;) {
  2231. nilfs_segctor_accept(sci, &req);
  2232. err = nilfs_segctor_construct(sci, &req);
  2233. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2234. nilfs_segctor_notify(sci, &req);
  2235. if (likely(!err))
  2236. break;
  2237. nilfs_warning(sb, __func__,
  2238. "segment construction failed. (err=%d)", err);
  2239. set_current_state(TASK_INTERRUPTIBLE);
  2240. schedule_timeout(sci->sc_interval);
  2241. }
  2242. out_unlock:
  2243. sci->sc_freesegs = NULL;
  2244. sci->sc_nfreesegs = 0;
  2245. nilfs_clear_gcdat_inode(nilfs);
  2246. nilfs_transaction_unlock(sbi);
  2247. return err;
  2248. }
  2249. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2250. {
  2251. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2252. struct nilfs_transaction_info ti;
  2253. struct nilfs_segctor_req req = { .mode = mode };
  2254. nilfs_transaction_lock(sbi, &ti, 0);
  2255. nilfs_segctor_accept(sci, &req);
  2256. nilfs_segctor_construct(sci, &req);
  2257. nilfs_segctor_notify(sci, &req);
  2258. /*
  2259. * Unclosed segment should be retried. We do this using sc_timer.
  2260. * Timeout of sc_timer will invoke complete construction which leads
  2261. * to close the current logical segment.
  2262. */
  2263. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2264. nilfs_segctor_start_timer(sci);
  2265. nilfs_transaction_unlock(sbi);
  2266. }
  2267. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2268. {
  2269. int mode = 0;
  2270. int err;
  2271. spin_lock(&sci->sc_state_lock);
  2272. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2273. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2274. spin_unlock(&sci->sc_state_lock);
  2275. if (mode) {
  2276. err = nilfs_segctor_do_construct(sci, mode);
  2277. spin_lock(&sci->sc_state_lock);
  2278. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2279. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2280. spin_unlock(&sci->sc_state_lock);
  2281. }
  2282. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2283. }
  2284. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2285. {
  2286. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2287. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2288. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2289. return SC_FLUSH_FILE;
  2290. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2291. return SC_FLUSH_DAT;
  2292. }
  2293. return SC_LSEG_SR;
  2294. }
  2295. /**
  2296. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2297. * @arg: pointer to a struct nilfs_sc_info.
  2298. *
  2299. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2300. * to execute segment constructions.
  2301. */
  2302. static int nilfs_segctor_thread(void *arg)
  2303. {
  2304. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2305. struct timer_list timer;
  2306. int timeout = 0;
  2307. init_timer(&timer);
  2308. timer.data = (unsigned long)current;
  2309. timer.function = nilfs_construction_timeout;
  2310. sci->sc_timer = &timer;
  2311. /* start sync. */
  2312. sci->sc_task = current;
  2313. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2314. printk(KERN_INFO
  2315. "segctord starting. Construction interval = %lu seconds, "
  2316. "CP frequency < %lu seconds\n",
  2317. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2318. spin_lock(&sci->sc_state_lock);
  2319. loop:
  2320. for (;;) {
  2321. int mode;
  2322. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2323. goto end_thread;
  2324. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2325. mode = SC_LSEG_SR;
  2326. else if (!sci->sc_flush_request)
  2327. break;
  2328. else
  2329. mode = nilfs_segctor_flush_mode(sci);
  2330. spin_unlock(&sci->sc_state_lock);
  2331. nilfs_segctor_thread_construct(sci, mode);
  2332. spin_lock(&sci->sc_state_lock);
  2333. timeout = 0;
  2334. }
  2335. if (freezing(current)) {
  2336. spin_unlock(&sci->sc_state_lock);
  2337. refrigerator();
  2338. spin_lock(&sci->sc_state_lock);
  2339. } else {
  2340. DEFINE_WAIT(wait);
  2341. int should_sleep = 1;
  2342. struct the_nilfs *nilfs;
  2343. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2344. TASK_INTERRUPTIBLE);
  2345. if (sci->sc_seq_request != sci->sc_seq_done)
  2346. should_sleep = 0;
  2347. else if (sci->sc_flush_request)
  2348. should_sleep = 0;
  2349. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2350. should_sleep = time_before(jiffies,
  2351. sci->sc_timer->expires);
  2352. if (should_sleep) {
  2353. spin_unlock(&sci->sc_state_lock);
  2354. schedule();
  2355. spin_lock(&sci->sc_state_lock);
  2356. }
  2357. finish_wait(&sci->sc_wait_daemon, &wait);
  2358. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2359. time_after_eq(jiffies, sci->sc_timer->expires));
  2360. nilfs = sci->sc_sbi->s_nilfs;
  2361. if (sci->sc_super->s_dirt && nilfs_sb_need_update(nilfs))
  2362. set_nilfs_discontinued(nilfs);
  2363. }
  2364. goto loop;
  2365. end_thread:
  2366. spin_unlock(&sci->sc_state_lock);
  2367. del_timer_sync(sci->sc_timer);
  2368. sci->sc_timer = NULL;
  2369. /* end sync. */
  2370. sci->sc_task = NULL;
  2371. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2372. return 0;
  2373. }
  2374. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2375. {
  2376. struct task_struct *t;
  2377. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2378. if (IS_ERR(t)) {
  2379. int err = PTR_ERR(t);
  2380. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2381. err);
  2382. return err;
  2383. }
  2384. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2385. return 0;
  2386. }
  2387. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2388. {
  2389. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2390. while (sci->sc_task) {
  2391. wake_up(&sci->sc_wait_daemon);
  2392. spin_unlock(&sci->sc_state_lock);
  2393. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2394. spin_lock(&sci->sc_state_lock);
  2395. }
  2396. }
  2397. static int nilfs_segctor_init(struct nilfs_sc_info *sci)
  2398. {
  2399. sci->sc_seq_done = sci->sc_seq_request;
  2400. return nilfs_segctor_start_thread(sci);
  2401. }
  2402. /*
  2403. * Setup & clean-up functions
  2404. */
  2405. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2406. {
  2407. struct nilfs_sc_info *sci;
  2408. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2409. if (!sci)
  2410. return NULL;
  2411. sci->sc_sbi = sbi;
  2412. sci->sc_super = sbi->s_super;
  2413. init_waitqueue_head(&sci->sc_wait_request);
  2414. init_waitqueue_head(&sci->sc_wait_daemon);
  2415. init_waitqueue_head(&sci->sc_wait_task);
  2416. spin_lock_init(&sci->sc_state_lock);
  2417. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2418. INIT_LIST_HEAD(&sci->sc_segbufs);
  2419. INIT_LIST_HEAD(&sci->sc_write_logs);
  2420. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2421. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2422. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2423. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2424. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2425. if (sbi->s_interval)
  2426. sci->sc_interval = sbi->s_interval;
  2427. if (sbi->s_watermark)
  2428. sci->sc_watermark = sbi->s_watermark;
  2429. return sci;
  2430. }
  2431. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2432. {
  2433. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2434. /* The segctord thread was stopped and its timer was removed.
  2435. But some tasks remain. */
  2436. do {
  2437. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2438. struct nilfs_transaction_info ti;
  2439. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2440. nilfs_transaction_lock(sbi, &ti, 0);
  2441. nilfs_segctor_accept(sci, &req);
  2442. ret = nilfs_segctor_construct(sci, &req);
  2443. nilfs_segctor_notify(sci, &req);
  2444. nilfs_transaction_unlock(sbi);
  2445. } while (ret && retrycount-- > 0);
  2446. }
  2447. /**
  2448. * nilfs_segctor_destroy - destroy the segment constructor.
  2449. * @sci: nilfs_sc_info
  2450. *
  2451. * nilfs_segctor_destroy() kills the segctord thread and frees
  2452. * the nilfs_sc_info struct.
  2453. * Caller must hold the segment semaphore.
  2454. */
  2455. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2456. {
  2457. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2458. int flag;
  2459. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2460. spin_lock(&sci->sc_state_lock);
  2461. nilfs_segctor_kill_thread(sci);
  2462. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2463. || sci->sc_seq_request != sci->sc_seq_done);
  2464. spin_unlock(&sci->sc_state_lock);
  2465. if (flag || nilfs_segctor_confirm(sci))
  2466. nilfs_segctor_write_out(sci);
  2467. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2468. if (!list_empty(&sci->sc_dirty_files)) {
  2469. nilfs_warning(sbi->s_super, __func__,
  2470. "dirty file(s) after the final construction\n");
  2471. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2472. }
  2473. WARN_ON(!list_empty(&sci->sc_segbufs));
  2474. WARN_ON(!list_empty(&sci->sc_write_logs));
  2475. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2476. kfree(sci);
  2477. }
  2478. /**
  2479. * nilfs_attach_segment_constructor - attach a segment constructor
  2480. * @sbi: nilfs_sb_info
  2481. *
  2482. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2483. * initilizes it, and starts the segment constructor.
  2484. *
  2485. * Return Value: On success, 0 is returned. On error, one of the following
  2486. * negative error code is returned.
  2487. *
  2488. * %-ENOMEM - Insufficient memory available.
  2489. */
  2490. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2491. {
  2492. struct the_nilfs *nilfs = sbi->s_nilfs;
  2493. int err;
  2494. /* Each field of nilfs_segctor is cleared through the initialization
  2495. of super-block info */
  2496. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2497. if (!sbi->s_sc_info)
  2498. return -ENOMEM;
  2499. nilfs_attach_writer(nilfs, sbi);
  2500. err = nilfs_segctor_init(NILFS_SC(sbi));
  2501. if (err) {
  2502. nilfs_detach_writer(nilfs, sbi);
  2503. kfree(sbi->s_sc_info);
  2504. sbi->s_sc_info = NULL;
  2505. }
  2506. return err;
  2507. }
  2508. /**
  2509. * nilfs_detach_segment_constructor - destroy the segment constructor
  2510. * @sbi: nilfs_sb_info
  2511. *
  2512. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2513. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2514. */
  2515. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2516. {
  2517. struct the_nilfs *nilfs = sbi->s_nilfs;
  2518. LIST_HEAD(garbage_list);
  2519. down_write(&nilfs->ns_segctor_sem);
  2520. if (NILFS_SC(sbi)) {
  2521. nilfs_segctor_destroy(NILFS_SC(sbi));
  2522. sbi->s_sc_info = NULL;
  2523. }
  2524. /* Force to free the list of dirty files */
  2525. spin_lock(&sbi->s_inode_lock);
  2526. if (!list_empty(&sbi->s_dirty_files)) {
  2527. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2528. nilfs_warning(sbi->s_super, __func__,
  2529. "Non empty dirty list after the last "
  2530. "segment construction\n");
  2531. }
  2532. spin_unlock(&sbi->s_inode_lock);
  2533. up_write(&nilfs->ns_segctor_sem);
  2534. nilfs_dispose_list(sbi, &garbage_list, 1);
  2535. nilfs_detach_writer(nilfs, sbi);
  2536. }