inode.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  155. {
  156. int ret;
  157. jbd_debug(2, "restarting handle %p\n", handle);
  158. /*
  159. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  160. * At this moment, get_block can be called only for blocks inside
  161. * i_size since page cache has been already dropped and writes are
  162. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  163. */
  164. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  165. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  166. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  167. return ret;
  168. }
  169. /*
  170. * Called at the last iput() if i_nlink is zero.
  171. */
  172. void ext3_delete_inode (struct inode * inode)
  173. {
  174. handle_t *handle;
  175. truncate_inode_pages(&inode->i_data, 0);
  176. if (is_bad_inode(inode))
  177. goto no_delete;
  178. handle = start_transaction(inode);
  179. if (IS_ERR(handle)) {
  180. /*
  181. * If we're going to skip the normal cleanup, we still need to
  182. * make sure that the in-core orphan linked list is properly
  183. * cleaned up.
  184. */
  185. ext3_orphan_del(NULL, inode);
  186. goto no_delete;
  187. }
  188. if (IS_SYNC(inode))
  189. handle->h_sync = 1;
  190. inode->i_size = 0;
  191. if (inode->i_blocks)
  192. ext3_truncate(inode);
  193. /*
  194. * Kill off the orphan record which ext3_truncate created.
  195. * AKPM: I think this can be inside the above `if'.
  196. * Note that ext3_orphan_del() has to be able to cope with the
  197. * deletion of a non-existent orphan - this is because we don't
  198. * know if ext3_truncate() actually created an orphan record.
  199. * (Well, we could do this if we need to, but heck - it works)
  200. */
  201. ext3_orphan_del(handle, inode);
  202. EXT3_I(inode)->i_dtime = get_seconds();
  203. /*
  204. * One subtle ordering requirement: if anything has gone wrong
  205. * (transaction abort, IO errors, whatever), then we can still
  206. * do these next steps (the fs will already have been marked as
  207. * having errors), but we can't free the inode if the mark_dirty
  208. * fails.
  209. */
  210. if (ext3_mark_inode_dirty(handle, inode))
  211. /* If that failed, just do the required in-core inode clear. */
  212. clear_inode(inode);
  213. else
  214. ext3_free_inode(handle, inode);
  215. ext3_journal_stop(handle);
  216. return;
  217. no_delete:
  218. clear_inode(inode); /* We must guarantee clearing of inode... */
  219. }
  220. typedef struct {
  221. __le32 *p;
  222. __le32 key;
  223. struct buffer_head *bh;
  224. } Indirect;
  225. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  226. {
  227. p->key = *(p->p = v);
  228. p->bh = bh;
  229. }
  230. static int verify_chain(Indirect *from, Indirect *to)
  231. {
  232. while (from <= to && from->key == *from->p)
  233. from++;
  234. return (from > to);
  235. }
  236. /**
  237. * ext3_block_to_path - parse the block number into array of offsets
  238. * @inode: inode in question (we are only interested in its superblock)
  239. * @i_block: block number to be parsed
  240. * @offsets: array to store the offsets in
  241. * @boundary: set this non-zero if the referred-to block is likely to be
  242. * followed (on disk) by an indirect block.
  243. *
  244. * To store the locations of file's data ext3 uses a data structure common
  245. * for UNIX filesystems - tree of pointers anchored in the inode, with
  246. * data blocks at leaves and indirect blocks in intermediate nodes.
  247. * This function translates the block number into path in that tree -
  248. * return value is the path length and @offsets[n] is the offset of
  249. * pointer to (n+1)th node in the nth one. If @block is out of range
  250. * (negative or too large) warning is printed and zero returned.
  251. *
  252. * Note: function doesn't find node addresses, so no IO is needed. All
  253. * we need to know is the capacity of indirect blocks (taken from the
  254. * inode->i_sb).
  255. */
  256. /*
  257. * Portability note: the last comparison (check that we fit into triple
  258. * indirect block) is spelled differently, because otherwise on an
  259. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  260. * if our filesystem had 8Kb blocks. We might use long long, but that would
  261. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  262. * i_block would have to be negative in the very beginning, so we would not
  263. * get there at all.
  264. */
  265. static int ext3_block_to_path(struct inode *inode,
  266. long i_block, int offsets[4], int *boundary)
  267. {
  268. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  269. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  270. const long direct_blocks = EXT3_NDIR_BLOCKS,
  271. indirect_blocks = ptrs,
  272. double_blocks = (1 << (ptrs_bits * 2));
  273. int n = 0;
  274. int final = 0;
  275. if (i_block < 0) {
  276. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  277. } else if (i_block < direct_blocks) {
  278. offsets[n++] = i_block;
  279. final = direct_blocks;
  280. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  281. offsets[n++] = EXT3_IND_BLOCK;
  282. offsets[n++] = i_block;
  283. final = ptrs;
  284. } else if ((i_block -= indirect_blocks) < double_blocks) {
  285. offsets[n++] = EXT3_DIND_BLOCK;
  286. offsets[n++] = i_block >> ptrs_bits;
  287. offsets[n++] = i_block & (ptrs - 1);
  288. final = ptrs;
  289. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  290. offsets[n++] = EXT3_TIND_BLOCK;
  291. offsets[n++] = i_block >> (ptrs_bits * 2);
  292. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  293. offsets[n++] = i_block & (ptrs - 1);
  294. final = ptrs;
  295. } else {
  296. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  297. }
  298. if (boundary)
  299. *boundary = final - 1 - (i_block & (ptrs - 1));
  300. return n;
  301. }
  302. /**
  303. * ext3_get_branch - read the chain of indirect blocks leading to data
  304. * @inode: inode in question
  305. * @depth: depth of the chain (1 - direct pointer, etc.)
  306. * @offsets: offsets of pointers in inode/indirect blocks
  307. * @chain: place to store the result
  308. * @err: here we store the error value
  309. *
  310. * Function fills the array of triples <key, p, bh> and returns %NULL
  311. * if everything went OK or the pointer to the last filled triple
  312. * (incomplete one) otherwise. Upon the return chain[i].key contains
  313. * the number of (i+1)-th block in the chain (as it is stored in memory,
  314. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  315. * number (it points into struct inode for i==0 and into the bh->b_data
  316. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  317. * block for i>0 and NULL for i==0. In other words, it holds the block
  318. * numbers of the chain, addresses they were taken from (and where we can
  319. * verify that chain did not change) and buffer_heads hosting these
  320. * numbers.
  321. *
  322. * Function stops when it stumbles upon zero pointer (absent block)
  323. * (pointer to last triple returned, *@err == 0)
  324. * or when it gets an IO error reading an indirect block
  325. * (ditto, *@err == -EIO)
  326. * or when it notices that chain had been changed while it was reading
  327. * (ditto, *@err == -EAGAIN)
  328. * or when it reads all @depth-1 indirect blocks successfully and finds
  329. * the whole chain, all way to the data (returns %NULL, *err == 0).
  330. */
  331. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  332. Indirect chain[4], int *err)
  333. {
  334. struct super_block *sb = inode->i_sb;
  335. Indirect *p = chain;
  336. struct buffer_head *bh;
  337. *err = 0;
  338. /* i_data is not going away, no lock needed */
  339. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  340. if (!p->key)
  341. goto no_block;
  342. while (--depth) {
  343. bh = sb_bread(sb, le32_to_cpu(p->key));
  344. if (!bh)
  345. goto failure;
  346. /* Reader: pointers */
  347. if (!verify_chain(chain, p))
  348. goto changed;
  349. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  350. /* Reader: end */
  351. if (!p->key)
  352. goto no_block;
  353. }
  354. return NULL;
  355. changed:
  356. brelse(bh);
  357. *err = -EAGAIN;
  358. goto no_block;
  359. failure:
  360. *err = -EIO;
  361. no_block:
  362. return p;
  363. }
  364. /**
  365. * ext3_find_near - find a place for allocation with sufficient locality
  366. * @inode: owner
  367. * @ind: descriptor of indirect block.
  368. *
  369. * This function returns the preferred place for block allocation.
  370. * It is used when heuristic for sequential allocation fails.
  371. * Rules are:
  372. * + if there is a block to the left of our position - allocate near it.
  373. * + if pointer will live in indirect block - allocate near that block.
  374. * + if pointer will live in inode - allocate in the same
  375. * cylinder group.
  376. *
  377. * In the latter case we colour the starting block by the callers PID to
  378. * prevent it from clashing with concurrent allocations for a different inode
  379. * in the same block group. The PID is used here so that functionally related
  380. * files will be close-by on-disk.
  381. *
  382. * Caller must make sure that @ind is valid and will stay that way.
  383. */
  384. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  385. {
  386. struct ext3_inode_info *ei = EXT3_I(inode);
  387. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  388. __le32 *p;
  389. ext3_fsblk_t bg_start;
  390. ext3_grpblk_t colour;
  391. /* Try to find previous block */
  392. for (p = ind->p - 1; p >= start; p--) {
  393. if (*p)
  394. return le32_to_cpu(*p);
  395. }
  396. /* No such thing, so let's try location of indirect block */
  397. if (ind->bh)
  398. return ind->bh->b_blocknr;
  399. /*
  400. * It is going to be referred to from the inode itself? OK, just put it
  401. * into the same cylinder group then.
  402. */
  403. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  404. colour = (current->pid % 16) *
  405. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  406. return bg_start + colour;
  407. }
  408. /**
  409. * ext3_find_goal - find a preferred place for allocation.
  410. * @inode: owner
  411. * @block: block we want
  412. * @partial: pointer to the last triple within a chain
  413. *
  414. * Normally this function find the preferred place for block allocation,
  415. * returns it.
  416. */
  417. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  418. Indirect *partial)
  419. {
  420. struct ext3_block_alloc_info *block_i;
  421. block_i = EXT3_I(inode)->i_block_alloc_info;
  422. /*
  423. * try the heuristic for sequential allocation,
  424. * failing that at least try to get decent locality.
  425. */
  426. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  427. && (block_i->last_alloc_physical_block != 0)) {
  428. return block_i->last_alloc_physical_block + 1;
  429. }
  430. return ext3_find_near(inode, partial);
  431. }
  432. /**
  433. * ext3_blks_to_allocate: Look up the block map and count the number
  434. * of direct blocks need to be allocated for the given branch.
  435. *
  436. * @branch: chain of indirect blocks
  437. * @k: number of blocks need for indirect blocks
  438. * @blks: number of data blocks to be mapped.
  439. * @blocks_to_boundary: the offset in the indirect block
  440. *
  441. * return the total number of blocks to be allocate, including the
  442. * direct and indirect blocks.
  443. */
  444. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  445. int blocks_to_boundary)
  446. {
  447. unsigned long count = 0;
  448. /*
  449. * Simple case, [t,d]Indirect block(s) has not allocated yet
  450. * then it's clear blocks on that path have not allocated
  451. */
  452. if (k > 0) {
  453. /* right now we don't handle cross boundary allocation */
  454. if (blks < blocks_to_boundary + 1)
  455. count += blks;
  456. else
  457. count += blocks_to_boundary + 1;
  458. return count;
  459. }
  460. count++;
  461. while (count < blks && count <= blocks_to_boundary &&
  462. le32_to_cpu(*(branch[0].p + count)) == 0) {
  463. count++;
  464. }
  465. return count;
  466. }
  467. /**
  468. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  469. * @indirect_blks: the number of blocks need to allocate for indirect
  470. * blocks
  471. *
  472. * @new_blocks: on return it will store the new block numbers for
  473. * the indirect blocks(if needed) and the first direct block,
  474. * @blks: on return it will store the total number of allocated
  475. * direct blocks
  476. */
  477. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  478. ext3_fsblk_t goal, int indirect_blks, int blks,
  479. ext3_fsblk_t new_blocks[4], int *err)
  480. {
  481. int target, i;
  482. unsigned long count = 0;
  483. int index = 0;
  484. ext3_fsblk_t current_block = 0;
  485. int ret = 0;
  486. /*
  487. * Here we try to allocate the requested multiple blocks at once,
  488. * on a best-effort basis.
  489. * To build a branch, we should allocate blocks for
  490. * the indirect blocks(if not allocated yet), and at least
  491. * the first direct block of this branch. That's the
  492. * minimum number of blocks need to allocate(required)
  493. */
  494. target = blks + indirect_blks;
  495. while (1) {
  496. count = target;
  497. /* allocating blocks for indirect blocks and direct blocks */
  498. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  499. if (*err)
  500. goto failed_out;
  501. target -= count;
  502. /* allocate blocks for indirect blocks */
  503. while (index < indirect_blks && count) {
  504. new_blocks[index++] = current_block++;
  505. count--;
  506. }
  507. if (count > 0)
  508. break;
  509. }
  510. /* save the new block number for the first direct block */
  511. new_blocks[index] = current_block;
  512. /* total number of blocks allocated for direct blocks */
  513. ret = count;
  514. *err = 0;
  515. return ret;
  516. failed_out:
  517. for (i = 0; i <index; i++)
  518. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  519. return ret;
  520. }
  521. /**
  522. * ext3_alloc_branch - allocate and set up a chain of blocks.
  523. * @inode: owner
  524. * @indirect_blks: number of allocated indirect blocks
  525. * @blks: number of allocated direct blocks
  526. * @offsets: offsets (in the blocks) to store the pointers to next.
  527. * @branch: place to store the chain in.
  528. *
  529. * This function allocates blocks, zeroes out all but the last one,
  530. * links them into chain and (if we are synchronous) writes them to disk.
  531. * In other words, it prepares a branch that can be spliced onto the
  532. * inode. It stores the information about that chain in the branch[], in
  533. * the same format as ext3_get_branch() would do. We are calling it after
  534. * we had read the existing part of chain and partial points to the last
  535. * triple of that (one with zero ->key). Upon the exit we have the same
  536. * picture as after the successful ext3_get_block(), except that in one
  537. * place chain is disconnected - *branch->p is still zero (we did not
  538. * set the last link), but branch->key contains the number that should
  539. * be placed into *branch->p to fill that gap.
  540. *
  541. * If allocation fails we free all blocks we've allocated (and forget
  542. * their buffer_heads) and return the error value the from failed
  543. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  544. * as described above and return 0.
  545. */
  546. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  547. int indirect_blks, int *blks, ext3_fsblk_t goal,
  548. int *offsets, Indirect *branch)
  549. {
  550. int blocksize = inode->i_sb->s_blocksize;
  551. int i, n = 0;
  552. int err = 0;
  553. struct buffer_head *bh;
  554. int num;
  555. ext3_fsblk_t new_blocks[4];
  556. ext3_fsblk_t current_block;
  557. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  558. *blks, new_blocks, &err);
  559. if (err)
  560. return err;
  561. branch[0].key = cpu_to_le32(new_blocks[0]);
  562. /*
  563. * metadata blocks and data blocks are allocated.
  564. */
  565. for (n = 1; n <= indirect_blks; n++) {
  566. /*
  567. * Get buffer_head for parent block, zero it out
  568. * and set the pointer to new one, then send
  569. * parent to disk.
  570. */
  571. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  572. branch[n].bh = bh;
  573. lock_buffer(bh);
  574. BUFFER_TRACE(bh, "call get_create_access");
  575. err = ext3_journal_get_create_access(handle, bh);
  576. if (err) {
  577. unlock_buffer(bh);
  578. brelse(bh);
  579. goto failed;
  580. }
  581. memset(bh->b_data, 0, blocksize);
  582. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  583. branch[n].key = cpu_to_le32(new_blocks[n]);
  584. *branch[n].p = branch[n].key;
  585. if ( n == indirect_blks) {
  586. current_block = new_blocks[n];
  587. /*
  588. * End of chain, update the last new metablock of
  589. * the chain to point to the new allocated
  590. * data blocks numbers
  591. */
  592. for (i=1; i < num; i++)
  593. *(branch[n].p + i) = cpu_to_le32(++current_block);
  594. }
  595. BUFFER_TRACE(bh, "marking uptodate");
  596. set_buffer_uptodate(bh);
  597. unlock_buffer(bh);
  598. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  599. err = ext3_journal_dirty_metadata(handle, bh);
  600. if (err)
  601. goto failed;
  602. }
  603. *blks = num;
  604. return err;
  605. failed:
  606. /* Allocation failed, free what we already allocated */
  607. for (i = 1; i <= n ; i++) {
  608. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  609. ext3_journal_forget(handle, branch[i].bh);
  610. }
  611. for (i = 0; i <indirect_blks; i++)
  612. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  613. ext3_free_blocks(handle, inode, new_blocks[i], num);
  614. return err;
  615. }
  616. /**
  617. * ext3_splice_branch - splice the allocated branch onto inode.
  618. * @inode: owner
  619. * @block: (logical) number of block we are adding
  620. * @chain: chain of indirect blocks (with a missing link - see
  621. * ext3_alloc_branch)
  622. * @where: location of missing link
  623. * @num: number of indirect blocks we are adding
  624. * @blks: number of direct blocks we are adding
  625. *
  626. * This function fills the missing link and does all housekeeping needed in
  627. * inode (->i_blocks, etc.). In case of success we end up with the full
  628. * chain to new block and return 0.
  629. */
  630. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  631. long block, Indirect *where, int num, int blks)
  632. {
  633. int i;
  634. int err = 0;
  635. struct ext3_block_alloc_info *block_i;
  636. ext3_fsblk_t current_block;
  637. struct ext3_inode_info *ei = EXT3_I(inode);
  638. block_i = ei->i_block_alloc_info;
  639. /*
  640. * If we're splicing into a [td]indirect block (as opposed to the
  641. * inode) then we need to get write access to the [td]indirect block
  642. * before the splice.
  643. */
  644. if (where->bh) {
  645. BUFFER_TRACE(where->bh, "get_write_access");
  646. err = ext3_journal_get_write_access(handle, where->bh);
  647. if (err)
  648. goto err_out;
  649. }
  650. /* That's it */
  651. *where->p = where->key;
  652. /*
  653. * Update the host buffer_head or inode to point to more just allocated
  654. * direct blocks blocks
  655. */
  656. if (num == 0 && blks > 1) {
  657. current_block = le32_to_cpu(where->key) + 1;
  658. for (i = 1; i < blks; i++)
  659. *(where->p + i ) = cpu_to_le32(current_block++);
  660. }
  661. /*
  662. * update the most recently allocated logical & physical block
  663. * in i_block_alloc_info, to assist find the proper goal block for next
  664. * allocation
  665. */
  666. if (block_i) {
  667. block_i->last_alloc_logical_block = block + blks - 1;
  668. block_i->last_alloc_physical_block =
  669. le32_to_cpu(where[num].key) + blks - 1;
  670. }
  671. /* We are done with atomic stuff, now do the rest of housekeeping */
  672. inode->i_ctime = CURRENT_TIME_SEC;
  673. ext3_mark_inode_dirty(handle, inode);
  674. /* ext3_mark_inode_dirty already updated i_sync_tid */
  675. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  676. /* had we spliced it onto indirect block? */
  677. if (where->bh) {
  678. /*
  679. * If we spliced it onto an indirect block, we haven't
  680. * altered the inode. Note however that if it is being spliced
  681. * onto an indirect block at the very end of the file (the
  682. * file is growing) then we *will* alter the inode to reflect
  683. * the new i_size. But that is not done here - it is done in
  684. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  685. */
  686. jbd_debug(5, "splicing indirect only\n");
  687. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  688. err = ext3_journal_dirty_metadata(handle, where->bh);
  689. if (err)
  690. goto err_out;
  691. } else {
  692. /*
  693. * OK, we spliced it into the inode itself on a direct block.
  694. * Inode was dirtied above.
  695. */
  696. jbd_debug(5, "splicing direct\n");
  697. }
  698. return err;
  699. err_out:
  700. for (i = 1; i <= num; i++) {
  701. BUFFER_TRACE(where[i].bh, "call journal_forget");
  702. ext3_journal_forget(handle, where[i].bh);
  703. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  704. }
  705. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  706. return err;
  707. }
  708. /*
  709. * Allocation strategy is simple: if we have to allocate something, we will
  710. * have to go the whole way to leaf. So let's do it before attaching anything
  711. * to tree, set linkage between the newborn blocks, write them if sync is
  712. * required, recheck the path, free and repeat if check fails, otherwise
  713. * set the last missing link (that will protect us from any truncate-generated
  714. * removals - all blocks on the path are immune now) and possibly force the
  715. * write on the parent block.
  716. * That has a nice additional property: no special recovery from the failed
  717. * allocations is needed - we simply release blocks and do not touch anything
  718. * reachable from inode.
  719. *
  720. * `handle' can be NULL if create == 0.
  721. *
  722. * The BKL may not be held on entry here. Be sure to take it early.
  723. * return > 0, # of blocks mapped or allocated.
  724. * return = 0, if plain lookup failed.
  725. * return < 0, error case.
  726. */
  727. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  728. sector_t iblock, unsigned long maxblocks,
  729. struct buffer_head *bh_result,
  730. int create)
  731. {
  732. int err = -EIO;
  733. int offsets[4];
  734. Indirect chain[4];
  735. Indirect *partial;
  736. ext3_fsblk_t goal;
  737. int indirect_blks;
  738. int blocks_to_boundary = 0;
  739. int depth;
  740. struct ext3_inode_info *ei = EXT3_I(inode);
  741. int count = 0;
  742. ext3_fsblk_t first_block = 0;
  743. J_ASSERT(handle != NULL || create == 0);
  744. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  745. if (depth == 0)
  746. goto out;
  747. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  748. /* Simplest case - block found, no allocation needed */
  749. if (!partial) {
  750. first_block = le32_to_cpu(chain[depth - 1].key);
  751. clear_buffer_new(bh_result);
  752. count++;
  753. /*map more blocks*/
  754. while (count < maxblocks && count <= blocks_to_boundary) {
  755. ext3_fsblk_t blk;
  756. if (!verify_chain(chain, chain + depth - 1)) {
  757. /*
  758. * Indirect block might be removed by
  759. * truncate while we were reading it.
  760. * Handling of that case: forget what we've
  761. * got now. Flag the err as EAGAIN, so it
  762. * will reread.
  763. */
  764. err = -EAGAIN;
  765. count = 0;
  766. break;
  767. }
  768. blk = le32_to_cpu(*(chain[depth-1].p + count));
  769. if (blk == first_block + count)
  770. count++;
  771. else
  772. break;
  773. }
  774. if (err != -EAGAIN)
  775. goto got_it;
  776. }
  777. /* Next simple case - plain lookup or failed read of indirect block */
  778. if (!create || err == -EIO)
  779. goto cleanup;
  780. mutex_lock(&ei->truncate_mutex);
  781. /*
  782. * If the indirect block is missing while we are reading
  783. * the chain(ext3_get_branch() returns -EAGAIN err), or
  784. * if the chain has been changed after we grab the semaphore,
  785. * (either because another process truncated this branch, or
  786. * another get_block allocated this branch) re-grab the chain to see if
  787. * the request block has been allocated or not.
  788. *
  789. * Since we already block the truncate/other get_block
  790. * at this point, we will have the current copy of the chain when we
  791. * splice the branch into the tree.
  792. */
  793. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  794. while (partial > chain) {
  795. brelse(partial->bh);
  796. partial--;
  797. }
  798. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  799. if (!partial) {
  800. count++;
  801. mutex_unlock(&ei->truncate_mutex);
  802. if (err)
  803. goto cleanup;
  804. clear_buffer_new(bh_result);
  805. goto got_it;
  806. }
  807. }
  808. /*
  809. * Okay, we need to do block allocation. Lazily initialize the block
  810. * allocation info here if necessary
  811. */
  812. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  813. ext3_init_block_alloc_info(inode);
  814. goal = ext3_find_goal(inode, iblock, partial);
  815. /* the number of blocks need to allocate for [d,t]indirect blocks */
  816. indirect_blks = (chain + depth) - partial - 1;
  817. /*
  818. * Next look up the indirect map to count the totoal number of
  819. * direct blocks to allocate for this branch.
  820. */
  821. count = ext3_blks_to_allocate(partial, indirect_blks,
  822. maxblocks, blocks_to_boundary);
  823. /*
  824. * Block out ext3_truncate while we alter the tree
  825. */
  826. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  827. offsets + (partial - chain), partial);
  828. /*
  829. * The ext3_splice_branch call will free and forget any buffers
  830. * on the new chain if there is a failure, but that risks using
  831. * up transaction credits, especially for bitmaps where the
  832. * credits cannot be returned. Can we handle this somehow? We
  833. * may need to return -EAGAIN upwards in the worst case. --sct
  834. */
  835. if (!err)
  836. err = ext3_splice_branch(handle, inode, iblock,
  837. partial, indirect_blks, count);
  838. mutex_unlock(&ei->truncate_mutex);
  839. if (err)
  840. goto cleanup;
  841. set_buffer_new(bh_result);
  842. got_it:
  843. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  844. if (count > blocks_to_boundary)
  845. set_buffer_boundary(bh_result);
  846. err = count;
  847. /* Clean up and exit */
  848. partial = chain + depth - 1; /* the whole chain */
  849. cleanup:
  850. while (partial > chain) {
  851. BUFFER_TRACE(partial->bh, "call brelse");
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. BUFFER_TRACE(bh_result, "returned");
  856. out:
  857. return err;
  858. }
  859. /* Maximum number of blocks we map for direct IO at once. */
  860. #define DIO_MAX_BLOCKS 4096
  861. /*
  862. * Number of credits we need for writing DIO_MAX_BLOCKS:
  863. * We need sb + group descriptor + bitmap + inode -> 4
  864. * For B blocks with A block pointers per block we need:
  865. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  866. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  867. */
  868. #define DIO_CREDITS 25
  869. static int ext3_get_block(struct inode *inode, sector_t iblock,
  870. struct buffer_head *bh_result, int create)
  871. {
  872. handle_t *handle = ext3_journal_current_handle();
  873. int ret = 0, started = 0;
  874. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  875. if (create && !handle) { /* Direct IO write... */
  876. if (max_blocks > DIO_MAX_BLOCKS)
  877. max_blocks = DIO_MAX_BLOCKS;
  878. handle = ext3_journal_start(inode, DIO_CREDITS +
  879. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  880. if (IS_ERR(handle)) {
  881. ret = PTR_ERR(handle);
  882. goto out;
  883. }
  884. started = 1;
  885. }
  886. ret = ext3_get_blocks_handle(handle, inode, iblock,
  887. max_blocks, bh_result, create);
  888. if (ret > 0) {
  889. bh_result->b_size = (ret << inode->i_blkbits);
  890. ret = 0;
  891. }
  892. if (started)
  893. ext3_journal_stop(handle);
  894. out:
  895. return ret;
  896. }
  897. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  898. u64 start, u64 len)
  899. {
  900. return generic_block_fiemap(inode, fieinfo, start, len,
  901. ext3_get_block);
  902. }
  903. /*
  904. * `handle' can be NULL if create is zero
  905. */
  906. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  907. long block, int create, int *errp)
  908. {
  909. struct buffer_head dummy;
  910. int fatal = 0, err;
  911. J_ASSERT(handle != NULL || create == 0);
  912. dummy.b_state = 0;
  913. dummy.b_blocknr = -1000;
  914. buffer_trace_init(&dummy.b_history);
  915. err = ext3_get_blocks_handle(handle, inode, block, 1,
  916. &dummy, create);
  917. /*
  918. * ext3_get_blocks_handle() returns number of blocks
  919. * mapped. 0 in case of a HOLE.
  920. */
  921. if (err > 0) {
  922. if (err > 1)
  923. WARN_ON(1);
  924. err = 0;
  925. }
  926. *errp = err;
  927. if (!err && buffer_mapped(&dummy)) {
  928. struct buffer_head *bh;
  929. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  930. if (!bh) {
  931. *errp = -EIO;
  932. goto err;
  933. }
  934. if (buffer_new(&dummy)) {
  935. J_ASSERT(create != 0);
  936. J_ASSERT(handle != NULL);
  937. /*
  938. * Now that we do not always journal data, we should
  939. * keep in mind whether this should always journal the
  940. * new buffer as metadata. For now, regular file
  941. * writes use ext3_get_block instead, so it's not a
  942. * problem.
  943. */
  944. lock_buffer(bh);
  945. BUFFER_TRACE(bh, "call get_create_access");
  946. fatal = ext3_journal_get_create_access(handle, bh);
  947. if (!fatal && !buffer_uptodate(bh)) {
  948. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  949. set_buffer_uptodate(bh);
  950. }
  951. unlock_buffer(bh);
  952. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  953. err = ext3_journal_dirty_metadata(handle, bh);
  954. if (!fatal)
  955. fatal = err;
  956. } else {
  957. BUFFER_TRACE(bh, "not a new buffer");
  958. }
  959. if (fatal) {
  960. *errp = fatal;
  961. brelse(bh);
  962. bh = NULL;
  963. }
  964. return bh;
  965. }
  966. err:
  967. return NULL;
  968. }
  969. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  970. int block, int create, int *err)
  971. {
  972. struct buffer_head * bh;
  973. bh = ext3_getblk(handle, inode, block, create, err);
  974. if (!bh)
  975. return bh;
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. ll_rw_block(READ_META, 1, &bh);
  979. wait_on_buffer(bh);
  980. if (buffer_uptodate(bh))
  981. return bh;
  982. put_bh(bh);
  983. *err = -EIO;
  984. return NULL;
  985. }
  986. static int walk_page_buffers( handle_t *handle,
  987. struct buffer_head *head,
  988. unsigned from,
  989. unsigned to,
  990. int *partial,
  991. int (*fn)( handle_t *handle,
  992. struct buffer_head *bh))
  993. {
  994. struct buffer_head *bh;
  995. unsigned block_start, block_end;
  996. unsigned blocksize = head->b_size;
  997. int err, ret = 0;
  998. struct buffer_head *next;
  999. for ( bh = head, block_start = 0;
  1000. ret == 0 && (bh != head || !block_start);
  1001. block_start = block_end, bh = next)
  1002. {
  1003. next = bh->b_this_page;
  1004. block_end = block_start + blocksize;
  1005. if (block_end <= from || block_start >= to) {
  1006. if (partial && !buffer_uptodate(bh))
  1007. *partial = 1;
  1008. continue;
  1009. }
  1010. err = (*fn)(handle, bh);
  1011. if (!ret)
  1012. ret = err;
  1013. }
  1014. return ret;
  1015. }
  1016. /*
  1017. * To preserve ordering, it is essential that the hole instantiation and
  1018. * the data write be encapsulated in a single transaction. We cannot
  1019. * close off a transaction and start a new one between the ext3_get_block()
  1020. * and the commit_write(). So doing the journal_start at the start of
  1021. * prepare_write() is the right place.
  1022. *
  1023. * Also, this function can nest inside ext3_writepage() ->
  1024. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1025. * has generated enough buffer credits to do the whole page. So we won't
  1026. * block on the journal in that case, which is good, because the caller may
  1027. * be PF_MEMALLOC.
  1028. *
  1029. * By accident, ext3 can be reentered when a transaction is open via
  1030. * quota file writes. If we were to commit the transaction while thus
  1031. * reentered, there can be a deadlock - we would be holding a quota
  1032. * lock, and the commit would never complete if another thread had a
  1033. * transaction open and was blocking on the quota lock - a ranking
  1034. * violation.
  1035. *
  1036. * So what we do is to rely on the fact that journal_stop/journal_start
  1037. * will _not_ run commit under these circumstances because handle->h_ref
  1038. * is elevated. We'll still have enough credits for the tiny quotafile
  1039. * write.
  1040. */
  1041. static int do_journal_get_write_access(handle_t *handle,
  1042. struct buffer_head *bh)
  1043. {
  1044. if (!buffer_mapped(bh) || buffer_freed(bh))
  1045. return 0;
  1046. return ext3_journal_get_write_access(handle, bh);
  1047. }
  1048. /*
  1049. * Truncate blocks that were not used by write. We have to truncate the
  1050. * pagecache as well so that corresponding buffers get properly unmapped.
  1051. */
  1052. static void ext3_truncate_failed_write(struct inode *inode)
  1053. {
  1054. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1055. ext3_truncate(inode);
  1056. }
  1057. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1058. loff_t pos, unsigned len, unsigned flags,
  1059. struct page **pagep, void **fsdata)
  1060. {
  1061. struct inode *inode = mapping->host;
  1062. int ret;
  1063. handle_t *handle;
  1064. int retries = 0;
  1065. struct page *page;
  1066. pgoff_t index;
  1067. unsigned from, to;
  1068. /* Reserve one block more for addition to orphan list in case
  1069. * we allocate blocks but write fails for some reason */
  1070. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1071. index = pos >> PAGE_CACHE_SHIFT;
  1072. from = pos & (PAGE_CACHE_SIZE - 1);
  1073. to = from + len;
  1074. retry:
  1075. page = grab_cache_page_write_begin(mapping, index, flags);
  1076. if (!page)
  1077. return -ENOMEM;
  1078. *pagep = page;
  1079. handle = ext3_journal_start(inode, needed_blocks);
  1080. if (IS_ERR(handle)) {
  1081. unlock_page(page);
  1082. page_cache_release(page);
  1083. ret = PTR_ERR(handle);
  1084. goto out;
  1085. }
  1086. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1087. ext3_get_block);
  1088. if (ret)
  1089. goto write_begin_failed;
  1090. if (ext3_should_journal_data(inode)) {
  1091. ret = walk_page_buffers(handle, page_buffers(page),
  1092. from, to, NULL, do_journal_get_write_access);
  1093. }
  1094. write_begin_failed:
  1095. if (ret) {
  1096. /*
  1097. * block_write_begin may have instantiated a few blocks
  1098. * outside i_size. Trim these off again. Don't need
  1099. * i_size_read because we hold i_mutex.
  1100. *
  1101. * Add inode to orphan list in case we crash before truncate
  1102. * finishes. Do this only if ext3_can_truncate() agrees so
  1103. * that orphan processing code is happy.
  1104. */
  1105. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1106. ext3_orphan_add(handle, inode);
  1107. ext3_journal_stop(handle);
  1108. unlock_page(page);
  1109. page_cache_release(page);
  1110. if (pos + len > inode->i_size)
  1111. ext3_truncate_failed_write(inode);
  1112. }
  1113. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1114. goto retry;
  1115. out:
  1116. return ret;
  1117. }
  1118. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1119. {
  1120. int err = journal_dirty_data(handle, bh);
  1121. if (err)
  1122. ext3_journal_abort_handle(__func__, __func__,
  1123. bh, handle, err);
  1124. return err;
  1125. }
  1126. /* For ordered writepage and write_end functions */
  1127. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1128. {
  1129. /*
  1130. * Write could have mapped the buffer but it didn't copy the data in
  1131. * yet. So avoid filing such buffer into a transaction.
  1132. */
  1133. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1134. return ext3_journal_dirty_data(handle, bh);
  1135. return 0;
  1136. }
  1137. /* For write_end() in data=journal mode */
  1138. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1139. {
  1140. if (!buffer_mapped(bh) || buffer_freed(bh))
  1141. return 0;
  1142. set_buffer_uptodate(bh);
  1143. return ext3_journal_dirty_metadata(handle, bh);
  1144. }
  1145. /*
  1146. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1147. * for the whole page but later we failed to copy the data in. Update inode
  1148. * size according to what we managed to copy. The rest is going to be
  1149. * truncated in write_end function.
  1150. */
  1151. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1152. {
  1153. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1154. if (pos + copied > inode->i_size)
  1155. i_size_write(inode, pos + copied);
  1156. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1157. EXT3_I(inode)->i_disksize = pos + copied;
  1158. mark_inode_dirty(inode);
  1159. }
  1160. }
  1161. /*
  1162. * We need to pick up the new inode size which generic_commit_write gave us
  1163. * `file' can be NULL - eg, when called from page_symlink().
  1164. *
  1165. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1166. * buffers are managed internally.
  1167. */
  1168. static int ext3_ordered_write_end(struct file *file,
  1169. struct address_space *mapping,
  1170. loff_t pos, unsigned len, unsigned copied,
  1171. struct page *page, void *fsdata)
  1172. {
  1173. handle_t *handle = ext3_journal_current_handle();
  1174. struct inode *inode = file->f_mapping->host;
  1175. unsigned from, to;
  1176. int ret = 0, ret2;
  1177. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1178. from = pos & (PAGE_CACHE_SIZE - 1);
  1179. to = from + copied;
  1180. ret = walk_page_buffers(handle, page_buffers(page),
  1181. from, to, NULL, journal_dirty_data_fn);
  1182. if (ret == 0)
  1183. update_file_sizes(inode, pos, copied);
  1184. /*
  1185. * There may be allocated blocks outside of i_size because
  1186. * we failed to copy some data. Prepare for truncate.
  1187. */
  1188. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1189. ext3_orphan_add(handle, inode);
  1190. ret2 = ext3_journal_stop(handle);
  1191. if (!ret)
  1192. ret = ret2;
  1193. unlock_page(page);
  1194. page_cache_release(page);
  1195. if (pos + len > inode->i_size)
  1196. ext3_truncate_failed_write(inode);
  1197. return ret ? ret : copied;
  1198. }
  1199. static int ext3_writeback_write_end(struct file *file,
  1200. struct address_space *mapping,
  1201. loff_t pos, unsigned len, unsigned copied,
  1202. struct page *page, void *fsdata)
  1203. {
  1204. handle_t *handle = ext3_journal_current_handle();
  1205. struct inode *inode = file->f_mapping->host;
  1206. int ret;
  1207. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1208. update_file_sizes(inode, pos, copied);
  1209. /*
  1210. * There may be allocated blocks outside of i_size because
  1211. * we failed to copy some data. Prepare for truncate.
  1212. */
  1213. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1214. ext3_orphan_add(handle, inode);
  1215. ret = ext3_journal_stop(handle);
  1216. unlock_page(page);
  1217. page_cache_release(page);
  1218. if (pos + len > inode->i_size)
  1219. ext3_truncate_failed_write(inode);
  1220. return ret ? ret : copied;
  1221. }
  1222. static int ext3_journalled_write_end(struct file *file,
  1223. struct address_space *mapping,
  1224. loff_t pos, unsigned len, unsigned copied,
  1225. struct page *page, void *fsdata)
  1226. {
  1227. handle_t *handle = ext3_journal_current_handle();
  1228. struct inode *inode = mapping->host;
  1229. int ret = 0, ret2;
  1230. int partial = 0;
  1231. unsigned from, to;
  1232. from = pos & (PAGE_CACHE_SIZE - 1);
  1233. to = from + len;
  1234. if (copied < len) {
  1235. if (!PageUptodate(page))
  1236. copied = 0;
  1237. page_zero_new_buffers(page, from + copied, to);
  1238. to = from + copied;
  1239. }
  1240. ret = walk_page_buffers(handle, page_buffers(page), from,
  1241. to, &partial, write_end_fn);
  1242. if (!partial)
  1243. SetPageUptodate(page);
  1244. if (pos + copied > inode->i_size)
  1245. i_size_write(inode, pos + copied);
  1246. /*
  1247. * There may be allocated blocks outside of i_size because
  1248. * we failed to copy some data. Prepare for truncate.
  1249. */
  1250. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1251. ext3_orphan_add(handle, inode);
  1252. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1253. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1254. EXT3_I(inode)->i_disksize = inode->i_size;
  1255. ret2 = ext3_mark_inode_dirty(handle, inode);
  1256. if (!ret)
  1257. ret = ret2;
  1258. }
  1259. ret2 = ext3_journal_stop(handle);
  1260. if (!ret)
  1261. ret = ret2;
  1262. unlock_page(page);
  1263. page_cache_release(page);
  1264. if (pos + len > inode->i_size)
  1265. ext3_truncate_failed_write(inode);
  1266. return ret ? ret : copied;
  1267. }
  1268. /*
  1269. * bmap() is special. It gets used by applications such as lilo and by
  1270. * the swapper to find the on-disk block of a specific piece of data.
  1271. *
  1272. * Naturally, this is dangerous if the block concerned is still in the
  1273. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1274. * filesystem and enables swap, then they may get a nasty shock when the
  1275. * data getting swapped to that swapfile suddenly gets overwritten by
  1276. * the original zero's written out previously to the journal and
  1277. * awaiting writeback in the kernel's buffer cache.
  1278. *
  1279. * So, if we see any bmap calls here on a modified, data-journaled file,
  1280. * take extra steps to flush any blocks which might be in the cache.
  1281. */
  1282. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1283. {
  1284. struct inode *inode = mapping->host;
  1285. journal_t *journal;
  1286. int err;
  1287. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1288. /*
  1289. * This is a REALLY heavyweight approach, but the use of
  1290. * bmap on dirty files is expected to be extremely rare:
  1291. * only if we run lilo or swapon on a freshly made file
  1292. * do we expect this to happen.
  1293. *
  1294. * (bmap requires CAP_SYS_RAWIO so this does not
  1295. * represent an unprivileged user DOS attack --- we'd be
  1296. * in trouble if mortal users could trigger this path at
  1297. * will.)
  1298. *
  1299. * NB. EXT3_STATE_JDATA is not set on files other than
  1300. * regular files. If somebody wants to bmap a directory
  1301. * or symlink and gets confused because the buffer
  1302. * hasn't yet been flushed to disk, they deserve
  1303. * everything they get.
  1304. */
  1305. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1306. journal = EXT3_JOURNAL(inode);
  1307. journal_lock_updates(journal);
  1308. err = journal_flush(journal);
  1309. journal_unlock_updates(journal);
  1310. if (err)
  1311. return 0;
  1312. }
  1313. return generic_block_bmap(mapping,block,ext3_get_block);
  1314. }
  1315. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1316. {
  1317. get_bh(bh);
  1318. return 0;
  1319. }
  1320. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1321. {
  1322. put_bh(bh);
  1323. return 0;
  1324. }
  1325. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1326. {
  1327. return !buffer_mapped(bh);
  1328. }
  1329. /*
  1330. * Note that we always start a transaction even if we're not journalling
  1331. * data. This is to preserve ordering: any hole instantiation within
  1332. * __block_write_full_page -> ext3_get_block() should be journalled
  1333. * along with the data so we don't crash and then get metadata which
  1334. * refers to old data.
  1335. *
  1336. * In all journalling modes block_write_full_page() will start the I/O.
  1337. *
  1338. * Problem:
  1339. *
  1340. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1341. * ext3_writepage()
  1342. *
  1343. * Similar for:
  1344. *
  1345. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1346. *
  1347. * Same applies to ext3_get_block(). We will deadlock on various things like
  1348. * lock_journal and i_truncate_mutex.
  1349. *
  1350. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1351. * allocations fail.
  1352. *
  1353. * 16May01: If we're reentered then journal_current_handle() will be
  1354. * non-zero. We simply *return*.
  1355. *
  1356. * 1 July 2001: @@@ FIXME:
  1357. * In journalled data mode, a data buffer may be metadata against the
  1358. * current transaction. But the same file is part of a shared mapping
  1359. * and someone does a writepage() on it.
  1360. *
  1361. * We will move the buffer onto the async_data list, but *after* it has
  1362. * been dirtied. So there's a small window where we have dirty data on
  1363. * BJ_Metadata.
  1364. *
  1365. * Note that this only applies to the last partial page in the file. The
  1366. * bit which block_write_full_page() uses prepare/commit for. (That's
  1367. * broken code anyway: it's wrong for msync()).
  1368. *
  1369. * It's a rare case: affects the final partial page, for journalled data
  1370. * where the file is subject to bith write() and writepage() in the same
  1371. * transction. To fix it we'll need a custom block_write_full_page().
  1372. * We'll probably need that anyway for journalling writepage() output.
  1373. *
  1374. * We don't honour synchronous mounts for writepage(). That would be
  1375. * disastrous. Any write() or metadata operation will sync the fs for
  1376. * us.
  1377. *
  1378. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1379. * we don't need to open a transaction here.
  1380. */
  1381. static int ext3_ordered_writepage(struct page *page,
  1382. struct writeback_control *wbc)
  1383. {
  1384. struct inode *inode = page->mapping->host;
  1385. struct buffer_head *page_bufs;
  1386. handle_t *handle = NULL;
  1387. int ret = 0;
  1388. int err;
  1389. J_ASSERT(PageLocked(page));
  1390. /*
  1391. * We give up here if we're reentered, because it might be for a
  1392. * different filesystem.
  1393. */
  1394. if (ext3_journal_current_handle())
  1395. goto out_fail;
  1396. if (!page_has_buffers(page)) {
  1397. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1398. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1399. page_bufs = page_buffers(page);
  1400. } else {
  1401. page_bufs = page_buffers(page);
  1402. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1403. NULL, buffer_unmapped)) {
  1404. /* Provide NULL get_block() to catch bugs if buffers
  1405. * weren't really mapped */
  1406. return block_write_full_page(page, NULL, wbc);
  1407. }
  1408. }
  1409. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1410. if (IS_ERR(handle)) {
  1411. ret = PTR_ERR(handle);
  1412. goto out_fail;
  1413. }
  1414. walk_page_buffers(handle, page_bufs, 0,
  1415. PAGE_CACHE_SIZE, NULL, bget_one);
  1416. ret = block_write_full_page(page, ext3_get_block, wbc);
  1417. /*
  1418. * The page can become unlocked at any point now, and
  1419. * truncate can then come in and change things. So we
  1420. * can't touch *page from now on. But *page_bufs is
  1421. * safe due to elevated refcount.
  1422. */
  1423. /*
  1424. * And attach them to the current transaction. But only if
  1425. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1426. * and generally junk.
  1427. */
  1428. if (ret == 0) {
  1429. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1430. NULL, journal_dirty_data_fn);
  1431. if (!ret)
  1432. ret = err;
  1433. }
  1434. walk_page_buffers(handle, page_bufs, 0,
  1435. PAGE_CACHE_SIZE, NULL, bput_one);
  1436. err = ext3_journal_stop(handle);
  1437. if (!ret)
  1438. ret = err;
  1439. return ret;
  1440. out_fail:
  1441. redirty_page_for_writepage(wbc, page);
  1442. unlock_page(page);
  1443. return ret;
  1444. }
  1445. static int ext3_writeback_writepage(struct page *page,
  1446. struct writeback_control *wbc)
  1447. {
  1448. struct inode *inode = page->mapping->host;
  1449. handle_t *handle = NULL;
  1450. int ret = 0;
  1451. int err;
  1452. if (ext3_journal_current_handle())
  1453. goto out_fail;
  1454. if (page_has_buffers(page)) {
  1455. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1456. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1457. /* Provide NULL get_block() to catch bugs if buffers
  1458. * weren't really mapped */
  1459. return block_write_full_page(page, NULL, wbc);
  1460. }
  1461. }
  1462. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1463. if (IS_ERR(handle)) {
  1464. ret = PTR_ERR(handle);
  1465. goto out_fail;
  1466. }
  1467. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1468. ret = nobh_writepage(page, ext3_get_block, wbc);
  1469. else
  1470. ret = block_write_full_page(page, ext3_get_block, wbc);
  1471. err = ext3_journal_stop(handle);
  1472. if (!ret)
  1473. ret = err;
  1474. return ret;
  1475. out_fail:
  1476. redirty_page_for_writepage(wbc, page);
  1477. unlock_page(page);
  1478. return ret;
  1479. }
  1480. static int ext3_journalled_writepage(struct page *page,
  1481. struct writeback_control *wbc)
  1482. {
  1483. struct inode *inode = page->mapping->host;
  1484. handle_t *handle = NULL;
  1485. int ret = 0;
  1486. int err;
  1487. if (ext3_journal_current_handle())
  1488. goto no_write;
  1489. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1490. if (IS_ERR(handle)) {
  1491. ret = PTR_ERR(handle);
  1492. goto no_write;
  1493. }
  1494. if (!page_has_buffers(page) || PageChecked(page)) {
  1495. /*
  1496. * It's mmapped pagecache. Add buffers and journal it. There
  1497. * doesn't seem much point in redirtying the page here.
  1498. */
  1499. ClearPageChecked(page);
  1500. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1501. ext3_get_block);
  1502. if (ret != 0) {
  1503. ext3_journal_stop(handle);
  1504. goto out_unlock;
  1505. }
  1506. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1507. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1508. err = walk_page_buffers(handle, page_buffers(page), 0,
  1509. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1510. if (ret == 0)
  1511. ret = err;
  1512. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1513. unlock_page(page);
  1514. } else {
  1515. /*
  1516. * It may be a page full of checkpoint-mode buffers. We don't
  1517. * really know unless we go poke around in the buffer_heads.
  1518. * But block_write_full_page will do the right thing.
  1519. */
  1520. ret = block_write_full_page(page, ext3_get_block, wbc);
  1521. }
  1522. err = ext3_journal_stop(handle);
  1523. if (!ret)
  1524. ret = err;
  1525. out:
  1526. return ret;
  1527. no_write:
  1528. redirty_page_for_writepage(wbc, page);
  1529. out_unlock:
  1530. unlock_page(page);
  1531. goto out;
  1532. }
  1533. static int ext3_readpage(struct file *file, struct page *page)
  1534. {
  1535. return mpage_readpage(page, ext3_get_block);
  1536. }
  1537. static int
  1538. ext3_readpages(struct file *file, struct address_space *mapping,
  1539. struct list_head *pages, unsigned nr_pages)
  1540. {
  1541. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1542. }
  1543. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1544. {
  1545. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1546. /*
  1547. * If it's a full truncate we just forget about the pending dirtying
  1548. */
  1549. if (offset == 0)
  1550. ClearPageChecked(page);
  1551. journal_invalidatepage(journal, page, offset);
  1552. }
  1553. static int ext3_releasepage(struct page *page, gfp_t wait)
  1554. {
  1555. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1556. WARN_ON(PageChecked(page));
  1557. if (!page_has_buffers(page))
  1558. return 0;
  1559. return journal_try_to_free_buffers(journal, page, wait);
  1560. }
  1561. /*
  1562. * If the O_DIRECT write will extend the file then add this inode to the
  1563. * orphan list. So recovery will truncate it back to the original size
  1564. * if the machine crashes during the write.
  1565. *
  1566. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1567. * crashes then stale disk data _may_ be exposed inside the file. But current
  1568. * VFS code falls back into buffered path in that case so we are safe.
  1569. */
  1570. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1571. const struct iovec *iov, loff_t offset,
  1572. unsigned long nr_segs)
  1573. {
  1574. struct file *file = iocb->ki_filp;
  1575. struct inode *inode = file->f_mapping->host;
  1576. struct ext3_inode_info *ei = EXT3_I(inode);
  1577. handle_t *handle;
  1578. ssize_t ret;
  1579. int orphan = 0;
  1580. size_t count = iov_length(iov, nr_segs);
  1581. int retries = 0;
  1582. if (rw == WRITE) {
  1583. loff_t final_size = offset + count;
  1584. if (final_size > inode->i_size) {
  1585. /* Credits for sb + inode write */
  1586. handle = ext3_journal_start(inode, 2);
  1587. if (IS_ERR(handle)) {
  1588. ret = PTR_ERR(handle);
  1589. goto out;
  1590. }
  1591. ret = ext3_orphan_add(handle, inode);
  1592. if (ret) {
  1593. ext3_journal_stop(handle);
  1594. goto out;
  1595. }
  1596. orphan = 1;
  1597. ei->i_disksize = inode->i_size;
  1598. ext3_journal_stop(handle);
  1599. }
  1600. }
  1601. retry:
  1602. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1603. offset, nr_segs,
  1604. ext3_get_block, NULL);
  1605. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1606. goto retry;
  1607. if (orphan) {
  1608. int err;
  1609. /* Credits for sb + inode write */
  1610. handle = ext3_journal_start(inode, 2);
  1611. if (IS_ERR(handle)) {
  1612. /* This is really bad luck. We've written the data
  1613. * but cannot extend i_size. Bail out and pretend
  1614. * the write failed... */
  1615. ret = PTR_ERR(handle);
  1616. goto out;
  1617. }
  1618. if (inode->i_nlink)
  1619. ext3_orphan_del(handle, inode);
  1620. if (ret > 0) {
  1621. loff_t end = offset + ret;
  1622. if (end > inode->i_size) {
  1623. ei->i_disksize = end;
  1624. i_size_write(inode, end);
  1625. /*
  1626. * We're going to return a positive `ret'
  1627. * here due to non-zero-length I/O, so there's
  1628. * no way of reporting error returns from
  1629. * ext3_mark_inode_dirty() to userspace. So
  1630. * ignore it.
  1631. */
  1632. ext3_mark_inode_dirty(handle, inode);
  1633. }
  1634. }
  1635. err = ext3_journal_stop(handle);
  1636. if (ret == 0)
  1637. ret = err;
  1638. }
  1639. out:
  1640. return ret;
  1641. }
  1642. /*
  1643. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1644. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1645. * much here because ->set_page_dirty is called under VFS locks. The page is
  1646. * not necessarily locked.
  1647. *
  1648. * We cannot just dirty the page and leave attached buffers clean, because the
  1649. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1650. * or jbddirty because all the journalling code will explode.
  1651. *
  1652. * So what we do is to mark the page "pending dirty" and next time writepage
  1653. * is called, propagate that into the buffers appropriately.
  1654. */
  1655. static int ext3_journalled_set_page_dirty(struct page *page)
  1656. {
  1657. SetPageChecked(page);
  1658. return __set_page_dirty_nobuffers(page);
  1659. }
  1660. static const struct address_space_operations ext3_ordered_aops = {
  1661. .readpage = ext3_readpage,
  1662. .readpages = ext3_readpages,
  1663. .writepage = ext3_ordered_writepage,
  1664. .sync_page = block_sync_page,
  1665. .write_begin = ext3_write_begin,
  1666. .write_end = ext3_ordered_write_end,
  1667. .bmap = ext3_bmap,
  1668. .invalidatepage = ext3_invalidatepage,
  1669. .releasepage = ext3_releasepage,
  1670. .direct_IO = ext3_direct_IO,
  1671. .migratepage = buffer_migrate_page,
  1672. .is_partially_uptodate = block_is_partially_uptodate,
  1673. .error_remove_page = generic_error_remove_page,
  1674. };
  1675. static const struct address_space_operations ext3_writeback_aops = {
  1676. .readpage = ext3_readpage,
  1677. .readpages = ext3_readpages,
  1678. .writepage = ext3_writeback_writepage,
  1679. .sync_page = block_sync_page,
  1680. .write_begin = ext3_write_begin,
  1681. .write_end = ext3_writeback_write_end,
  1682. .bmap = ext3_bmap,
  1683. .invalidatepage = ext3_invalidatepage,
  1684. .releasepage = ext3_releasepage,
  1685. .direct_IO = ext3_direct_IO,
  1686. .migratepage = buffer_migrate_page,
  1687. .is_partially_uptodate = block_is_partially_uptodate,
  1688. .error_remove_page = generic_error_remove_page,
  1689. };
  1690. static const struct address_space_operations ext3_journalled_aops = {
  1691. .readpage = ext3_readpage,
  1692. .readpages = ext3_readpages,
  1693. .writepage = ext3_journalled_writepage,
  1694. .sync_page = block_sync_page,
  1695. .write_begin = ext3_write_begin,
  1696. .write_end = ext3_journalled_write_end,
  1697. .set_page_dirty = ext3_journalled_set_page_dirty,
  1698. .bmap = ext3_bmap,
  1699. .invalidatepage = ext3_invalidatepage,
  1700. .releasepage = ext3_releasepage,
  1701. .is_partially_uptodate = block_is_partially_uptodate,
  1702. .error_remove_page = generic_error_remove_page,
  1703. };
  1704. void ext3_set_aops(struct inode *inode)
  1705. {
  1706. if (ext3_should_order_data(inode))
  1707. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1708. else if (ext3_should_writeback_data(inode))
  1709. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1710. else
  1711. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1712. }
  1713. /*
  1714. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1715. * up to the end of the block which corresponds to `from'.
  1716. * This required during truncate. We need to physically zero the tail end
  1717. * of that block so it doesn't yield old data if the file is later grown.
  1718. */
  1719. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1720. struct address_space *mapping, loff_t from)
  1721. {
  1722. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1723. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1724. unsigned blocksize, iblock, length, pos;
  1725. struct inode *inode = mapping->host;
  1726. struct buffer_head *bh;
  1727. int err = 0;
  1728. blocksize = inode->i_sb->s_blocksize;
  1729. length = blocksize - (offset & (blocksize - 1));
  1730. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1731. /*
  1732. * For "nobh" option, we can only work if we don't need to
  1733. * read-in the page - otherwise we create buffers to do the IO.
  1734. */
  1735. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1736. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1737. zero_user(page, offset, length);
  1738. set_page_dirty(page);
  1739. goto unlock;
  1740. }
  1741. if (!page_has_buffers(page))
  1742. create_empty_buffers(page, blocksize, 0);
  1743. /* Find the buffer that contains "offset" */
  1744. bh = page_buffers(page);
  1745. pos = blocksize;
  1746. while (offset >= pos) {
  1747. bh = bh->b_this_page;
  1748. iblock++;
  1749. pos += blocksize;
  1750. }
  1751. err = 0;
  1752. if (buffer_freed(bh)) {
  1753. BUFFER_TRACE(bh, "freed: skip");
  1754. goto unlock;
  1755. }
  1756. if (!buffer_mapped(bh)) {
  1757. BUFFER_TRACE(bh, "unmapped");
  1758. ext3_get_block(inode, iblock, bh, 0);
  1759. /* unmapped? It's a hole - nothing to do */
  1760. if (!buffer_mapped(bh)) {
  1761. BUFFER_TRACE(bh, "still unmapped");
  1762. goto unlock;
  1763. }
  1764. }
  1765. /* Ok, it's mapped. Make sure it's up-to-date */
  1766. if (PageUptodate(page))
  1767. set_buffer_uptodate(bh);
  1768. if (!buffer_uptodate(bh)) {
  1769. err = -EIO;
  1770. ll_rw_block(READ, 1, &bh);
  1771. wait_on_buffer(bh);
  1772. /* Uhhuh. Read error. Complain and punt. */
  1773. if (!buffer_uptodate(bh))
  1774. goto unlock;
  1775. }
  1776. if (ext3_should_journal_data(inode)) {
  1777. BUFFER_TRACE(bh, "get write access");
  1778. err = ext3_journal_get_write_access(handle, bh);
  1779. if (err)
  1780. goto unlock;
  1781. }
  1782. zero_user(page, offset, length);
  1783. BUFFER_TRACE(bh, "zeroed end of block");
  1784. err = 0;
  1785. if (ext3_should_journal_data(inode)) {
  1786. err = ext3_journal_dirty_metadata(handle, bh);
  1787. } else {
  1788. if (ext3_should_order_data(inode))
  1789. err = ext3_journal_dirty_data(handle, bh);
  1790. mark_buffer_dirty(bh);
  1791. }
  1792. unlock:
  1793. unlock_page(page);
  1794. page_cache_release(page);
  1795. return err;
  1796. }
  1797. /*
  1798. * Probably it should be a library function... search for first non-zero word
  1799. * or memcmp with zero_page, whatever is better for particular architecture.
  1800. * Linus?
  1801. */
  1802. static inline int all_zeroes(__le32 *p, __le32 *q)
  1803. {
  1804. while (p < q)
  1805. if (*p++)
  1806. return 0;
  1807. return 1;
  1808. }
  1809. /**
  1810. * ext3_find_shared - find the indirect blocks for partial truncation.
  1811. * @inode: inode in question
  1812. * @depth: depth of the affected branch
  1813. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1814. * @chain: place to store the pointers to partial indirect blocks
  1815. * @top: place to the (detached) top of branch
  1816. *
  1817. * This is a helper function used by ext3_truncate().
  1818. *
  1819. * When we do truncate() we may have to clean the ends of several
  1820. * indirect blocks but leave the blocks themselves alive. Block is
  1821. * partially truncated if some data below the new i_size is refered
  1822. * from it (and it is on the path to the first completely truncated
  1823. * data block, indeed). We have to free the top of that path along
  1824. * with everything to the right of the path. Since no allocation
  1825. * past the truncation point is possible until ext3_truncate()
  1826. * finishes, we may safely do the latter, but top of branch may
  1827. * require special attention - pageout below the truncation point
  1828. * might try to populate it.
  1829. *
  1830. * We atomically detach the top of branch from the tree, store the
  1831. * block number of its root in *@top, pointers to buffer_heads of
  1832. * partially truncated blocks - in @chain[].bh and pointers to
  1833. * their last elements that should not be removed - in
  1834. * @chain[].p. Return value is the pointer to last filled element
  1835. * of @chain.
  1836. *
  1837. * The work left to caller to do the actual freeing of subtrees:
  1838. * a) free the subtree starting from *@top
  1839. * b) free the subtrees whose roots are stored in
  1840. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1841. * c) free the subtrees growing from the inode past the @chain[0].
  1842. * (no partially truncated stuff there). */
  1843. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1844. int offsets[4], Indirect chain[4], __le32 *top)
  1845. {
  1846. Indirect *partial, *p;
  1847. int k, err;
  1848. *top = 0;
  1849. /* Make k index the deepest non-null offset + 1 */
  1850. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1851. ;
  1852. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1853. /* Writer: pointers */
  1854. if (!partial)
  1855. partial = chain + k-1;
  1856. /*
  1857. * If the branch acquired continuation since we've looked at it -
  1858. * fine, it should all survive and (new) top doesn't belong to us.
  1859. */
  1860. if (!partial->key && *partial->p)
  1861. /* Writer: end */
  1862. goto no_top;
  1863. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1864. ;
  1865. /*
  1866. * OK, we've found the last block that must survive. The rest of our
  1867. * branch should be detached before unlocking. However, if that rest
  1868. * of branch is all ours and does not grow immediately from the inode
  1869. * it's easier to cheat and just decrement partial->p.
  1870. */
  1871. if (p == chain + k - 1 && p > chain) {
  1872. p->p--;
  1873. } else {
  1874. *top = *p->p;
  1875. /* Nope, don't do this in ext3. Must leave the tree intact */
  1876. #if 0
  1877. *p->p = 0;
  1878. #endif
  1879. }
  1880. /* Writer: end */
  1881. while(partial > p) {
  1882. brelse(partial->bh);
  1883. partial--;
  1884. }
  1885. no_top:
  1886. return partial;
  1887. }
  1888. /*
  1889. * Zero a number of block pointers in either an inode or an indirect block.
  1890. * If we restart the transaction we must again get write access to the
  1891. * indirect block for further modification.
  1892. *
  1893. * We release `count' blocks on disk, but (last - first) may be greater
  1894. * than `count' because there can be holes in there.
  1895. */
  1896. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1897. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1898. unsigned long count, __le32 *first, __le32 *last)
  1899. {
  1900. __le32 *p;
  1901. if (try_to_extend_transaction(handle, inode)) {
  1902. if (bh) {
  1903. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1904. ext3_journal_dirty_metadata(handle, bh);
  1905. }
  1906. ext3_mark_inode_dirty(handle, inode);
  1907. truncate_restart_transaction(handle, inode);
  1908. if (bh) {
  1909. BUFFER_TRACE(bh, "retaking write access");
  1910. ext3_journal_get_write_access(handle, bh);
  1911. }
  1912. }
  1913. /*
  1914. * Any buffers which are on the journal will be in memory. We find
  1915. * them on the hash table so journal_revoke() will run journal_forget()
  1916. * on them. We've already detached each block from the file, so
  1917. * bforget() in journal_forget() should be safe.
  1918. *
  1919. * AKPM: turn on bforget in journal_forget()!!!
  1920. */
  1921. for (p = first; p < last; p++) {
  1922. u32 nr = le32_to_cpu(*p);
  1923. if (nr) {
  1924. struct buffer_head *bh;
  1925. *p = 0;
  1926. bh = sb_find_get_block(inode->i_sb, nr);
  1927. ext3_forget(handle, 0, inode, bh, nr);
  1928. }
  1929. }
  1930. ext3_free_blocks(handle, inode, block_to_free, count);
  1931. }
  1932. /**
  1933. * ext3_free_data - free a list of data blocks
  1934. * @handle: handle for this transaction
  1935. * @inode: inode we are dealing with
  1936. * @this_bh: indirect buffer_head which contains *@first and *@last
  1937. * @first: array of block numbers
  1938. * @last: points immediately past the end of array
  1939. *
  1940. * We are freeing all blocks refered from that array (numbers are stored as
  1941. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1942. *
  1943. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1944. * blocks are contiguous then releasing them at one time will only affect one
  1945. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1946. * actually use a lot of journal space.
  1947. *
  1948. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1949. * block pointers.
  1950. */
  1951. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1952. struct buffer_head *this_bh,
  1953. __le32 *first, __le32 *last)
  1954. {
  1955. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1956. unsigned long count = 0; /* Number of blocks in the run */
  1957. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1958. corresponding to
  1959. block_to_free */
  1960. ext3_fsblk_t nr; /* Current block # */
  1961. __le32 *p; /* Pointer into inode/ind
  1962. for current block */
  1963. int err;
  1964. if (this_bh) { /* For indirect block */
  1965. BUFFER_TRACE(this_bh, "get_write_access");
  1966. err = ext3_journal_get_write_access(handle, this_bh);
  1967. /* Important: if we can't update the indirect pointers
  1968. * to the blocks, we can't free them. */
  1969. if (err)
  1970. return;
  1971. }
  1972. for (p = first; p < last; p++) {
  1973. nr = le32_to_cpu(*p);
  1974. if (nr) {
  1975. /* accumulate blocks to free if they're contiguous */
  1976. if (count == 0) {
  1977. block_to_free = nr;
  1978. block_to_free_p = p;
  1979. count = 1;
  1980. } else if (nr == block_to_free + count) {
  1981. count++;
  1982. } else {
  1983. ext3_clear_blocks(handle, inode, this_bh,
  1984. block_to_free,
  1985. count, block_to_free_p, p);
  1986. block_to_free = nr;
  1987. block_to_free_p = p;
  1988. count = 1;
  1989. }
  1990. }
  1991. }
  1992. if (count > 0)
  1993. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1994. count, block_to_free_p, p);
  1995. if (this_bh) {
  1996. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1997. /*
  1998. * The buffer head should have an attached journal head at this
  1999. * point. However, if the data is corrupted and an indirect
  2000. * block pointed to itself, it would have been detached when
  2001. * the block was cleared. Check for this instead of OOPSing.
  2002. */
  2003. if (bh2jh(this_bh))
  2004. ext3_journal_dirty_metadata(handle, this_bh);
  2005. else
  2006. ext3_error(inode->i_sb, "ext3_free_data",
  2007. "circular indirect block detected, "
  2008. "inode=%lu, block=%llu",
  2009. inode->i_ino,
  2010. (unsigned long long)this_bh->b_blocknr);
  2011. }
  2012. }
  2013. /**
  2014. * ext3_free_branches - free an array of branches
  2015. * @handle: JBD handle for this transaction
  2016. * @inode: inode we are dealing with
  2017. * @parent_bh: the buffer_head which contains *@first and *@last
  2018. * @first: array of block numbers
  2019. * @last: pointer immediately past the end of array
  2020. * @depth: depth of the branches to free
  2021. *
  2022. * We are freeing all blocks refered from these branches (numbers are
  2023. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2024. * appropriately.
  2025. */
  2026. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2027. struct buffer_head *parent_bh,
  2028. __le32 *first, __le32 *last, int depth)
  2029. {
  2030. ext3_fsblk_t nr;
  2031. __le32 *p;
  2032. if (is_handle_aborted(handle))
  2033. return;
  2034. if (depth--) {
  2035. struct buffer_head *bh;
  2036. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2037. p = last;
  2038. while (--p >= first) {
  2039. nr = le32_to_cpu(*p);
  2040. if (!nr)
  2041. continue; /* A hole */
  2042. /* Go read the buffer for the next level down */
  2043. bh = sb_bread(inode->i_sb, nr);
  2044. /*
  2045. * A read failure? Report error and clear slot
  2046. * (should be rare).
  2047. */
  2048. if (!bh) {
  2049. ext3_error(inode->i_sb, "ext3_free_branches",
  2050. "Read failure, inode=%lu, block="E3FSBLK,
  2051. inode->i_ino, nr);
  2052. continue;
  2053. }
  2054. /* This zaps the entire block. Bottom up. */
  2055. BUFFER_TRACE(bh, "free child branches");
  2056. ext3_free_branches(handle, inode, bh,
  2057. (__le32*)bh->b_data,
  2058. (__le32*)bh->b_data + addr_per_block,
  2059. depth);
  2060. /*
  2061. * We've probably journalled the indirect block several
  2062. * times during the truncate. But it's no longer
  2063. * needed and we now drop it from the transaction via
  2064. * journal_revoke().
  2065. *
  2066. * That's easy if it's exclusively part of this
  2067. * transaction. But if it's part of the committing
  2068. * transaction then journal_forget() will simply
  2069. * brelse() it. That means that if the underlying
  2070. * block is reallocated in ext3_get_block(),
  2071. * unmap_underlying_metadata() will find this block
  2072. * and will try to get rid of it. damn, damn.
  2073. *
  2074. * If this block has already been committed to the
  2075. * journal, a revoke record will be written. And
  2076. * revoke records must be emitted *before* clearing
  2077. * this block's bit in the bitmaps.
  2078. */
  2079. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2080. /*
  2081. * Everything below this this pointer has been
  2082. * released. Now let this top-of-subtree go.
  2083. *
  2084. * We want the freeing of this indirect block to be
  2085. * atomic in the journal with the updating of the
  2086. * bitmap block which owns it. So make some room in
  2087. * the journal.
  2088. *
  2089. * We zero the parent pointer *after* freeing its
  2090. * pointee in the bitmaps, so if extend_transaction()
  2091. * for some reason fails to put the bitmap changes and
  2092. * the release into the same transaction, recovery
  2093. * will merely complain about releasing a free block,
  2094. * rather than leaking blocks.
  2095. */
  2096. if (is_handle_aborted(handle))
  2097. return;
  2098. if (try_to_extend_transaction(handle, inode)) {
  2099. ext3_mark_inode_dirty(handle, inode);
  2100. truncate_restart_transaction(handle, inode);
  2101. }
  2102. ext3_free_blocks(handle, inode, nr, 1);
  2103. if (parent_bh) {
  2104. /*
  2105. * The block which we have just freed is
  2106. * pointed to by an indirect block: journal it
  2107. */
  2108. BUFFER_TRACE(parent_bh, "get_write_access");
  2109. if (!ext3_journal_get_write_access(handle,
  2110. parent_bh)){
  2111. *p = 0;
  2112. BUFFER_TRACE(parent_bh,
  2113. "call ext3_journal_dirty_metadata");
  2114. ext3_journal_dirty_metadata(handle,
  2115. parent_bh);
  2116. }
  2117. }
  2118. }
  2119. } else {
  2120. /* We have reached the bottom of the tree. */
  2121. BUFFER_TRACE(parent_bh, "free data blocks");
  2122. ext3_free_data(handle, inode, parent_bh, first, last);
  2123. }
  2124. }
  2125. int ext3_can_truncate(struct inode *inode)
  2126. {
  2127. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2128. return 0;
  2129. if (S_ISREG(inode->i_mode))
  2130. return 1;
  2131. if (S_ISDIR(inode->i_mode))
  2132. return 1;
  2133. if (S_ISLNK(inode->i_mode))
  2134. return !ext3_inode_is_fast_symlink(inode);
  2135. return 0;
  2136. }
  2137. /*
  2138. * ext3_truncate()
  2139. *
  2140. * We block out ext3_get_block() block instantiations across the entire
  2141. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2142. * simultaneously on behalf of the same inode.
  2143. *
  2144. * As we work through the truncate and commmit bits of it to the journal there
  2145. * is one core, guiding principle: the file's tree must always be consistent on
  2146. * disk. We must be able to restart the truncate after a crash.
  2147. *
  2148. * The file's tree may be transiently inconsistent in memory (although it
  2149. * probably isn't), but whenever we close off and commit a journal transaction,
  2150. * the contents of (the filesystem + the journal) must be consistent and
  2151. * restartable. It's pretty simple, really: bottom up, right to left (although
  2152. * left-to-right works OK too).
  2153. *
  2154. * Note that at recovery time, journal replay occurs *before* the restart of
  2155. * truncate against the orphan inode list.
  2156. *
  2157. * The committed inode has the new, desired i_size (which is the same as
  2158. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2159. * that this inode's truncate did not complete and it will again call
  2160. * ext3_truncate() to have another go. So there will be instantiated blocks
  2161. * to the right of the truncation point in a crashed ext3 filesystem. But
  2162. * that's fine - as long as they are linked from the inode, the post-crash
  2163. * ext3_truncate() run will find them and release them.
  2164. */
  2165. void ext3_truncate(struct inode *inode)
  2166. {
  2167. handle_t *handle;
  2168. struct ext3_inode_info *ei = EXT3_I(inode);
  2169. __le32 *i_data = ei->i_data;
  2170. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2171. struct address_space *mapping = inode->i_mapping;
  2172. int offsets[4];
  2173. Indirect chain[4];
  2174. Indirect *partial;
  2175. __le32 nr = 0;
  2176. int n;
  2177. long last_block;
  2178. unsigned blocksize = inode->i_sb->s_blocksize;
  2179. struct page *page;
  2180. if (!ext3_can_truncate(inode))
  2181. goto out_notrans;
  2182. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2183. ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
  2184. /*
  2185. * We have to lock the EOF page here, because lock_page() nests
  2186. * outside journal_start().
  2187. */
  2188. if ((inode->i_size & (blocksize - 1)) == 0) {
  2189. /* Block boundary? Nothing to do */
  2190. page = NULL;
  2191. } else {
  2192. page = grab_cache_page(mapping,
  2193. inode->i_size >> PAGE_CACHE_SHIFT);
  2194. if (!page)
  2195. goto out_notrans;
  2196. }
  2197. handle = start_transaction(inode);
  2198. if (IS_ERR(handle)) {
  2199. if (page) {
  2200. clear_highpage(page);
  2201. flush_dcache_page(page);
  2202. unlock_page(page);
  2203. page_cache_release(page);
  2204. }
  2205. goto out_notrans;
  2206. }
  2207. last_block = (inode->i_size + blocksize-1)
  2208. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2209. if (page)
  2210. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2211. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2212. if (n == 0)
  2213. goto out_stop; /* error */
  2214. /*
  2215. * OK. This truncate is going to happen. We add the inode to the
  2216. * orphan list, so that if this truncate spans multiple transactions,
  2217. * and we crash, we will resume the truncate when the filesystem
  2218. * recovers. It also marks the inode dirty, to catch the new size.
  2219. *
  2220. * Implication: the file must always be in a sane, consistent
  2221. * truncatable state while each transaction commits.
  2222. */
  2223. if (ext3_orphan_add(handle, inode))
  2224. goto out_stop;
  2225. /*
  2226. * The orphan list entry will now protect us from any crash which
  2227. * occurs before the truncate completes, so it is now safe to propagate
  2228. * the new, shorter inode size (held for now in i_size) into the
  2229. * on-disk inode. We do this via i_disksize, which is the value which
  2230. * ext3 *really* writes onto the disk inode.
  2231. */
  2232. ei->i_disksize = inode->i_size;
  2233. /*
  2234. * From here we block out all ext3_get_block() callers who want to
  2235. * modify the block allocation tree.
  2236. */
  2237. mutex_lock(&ei->truncate_mutex);
  2238. if (n == 1) { /* direct blocks */
  2239. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2240. i_data + EXT3_NDIR_BLOCKS);
  2241. goto do_indirects;
  2242. }
  2243. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2244. /* Kill the top of shared branch (not detached) */
  2245. if (nr) {
  2246. if (partial == chain) {
  2247. /* Shared branch grows from the inode */
  2248. ext3_free_branches(handle, inode, NULL,
  2249. &nr, &nr+1, (chain+n-1) - partial);
  2250. *partial->p = 0;
  2251. /*
  2252. * We mark the inode dirty prior to restart,
  2253. * and prior to stop. No need for it here.
  2254. */
  2255. } else {
  2256. /* Shared branch grows from an indirect block */
  2257. BUFFER_TRACE(partial->bh, "get_write_access");
  2258. ext3_free_branches(handle, inode, partial->bh,
  2259. partial->p,
  2260. partial->p+1, (chain+n-1) - partial);
  2261. }
  2262. }
  2263. /* Clear the ends of indirect blocks on the shared branch */
  2264. while (partial > chain) {
  2265. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2266. (__le32*)partial->bh->b_data+addr_per_block,
  2267. (chain+n-1) - partial);
  2268. BUFFER_TRACE(partial->bh, "call brelse");
  2269. brelse (partial->bh);
  2270. partial--;
  2271. }
  2272. do_indirects:
  2273. /* Kill the remaining (whole) subtrees */
  2274. switch (offsets[0]) {
  2275. default:
  2276. nr = i_data[EXT3_IND_BLOCK];
  2277. if (nr) {
  2278. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2279. i_data[EXT3_IND_BLOCK] = 0;
  2280. }
  2281. case EXT3_IND_BLOCK:
  2282. nr = i_data[EXT3_DIND_BLOCK];
  2283. if (nr) {
  2284. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2285. i_data[EXT3_DIND_BLOCK] = 0;
  2286. }
  2287. case EXT3_DIND_BLOCK:
  2288. nr = i_data[EXT3_TIND_BLOCK];
  2289. if (nr) {
  2290. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2291. i_data[EXT3_TIND_BLOCK] = 0;
  2292. }
  2293. case EXT3_TIND_BLOCK:
  2294. ;
  2295. }
  2296. ext3_discard_reservation(inode);
  2297. mutex_unlock(&ei->truncate_mutex);
  2298. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2299. ext3_mark_inode_dirty(handle, inode);
  2300. /*
  2301. * In a multi-transaction truncate, we only make the final transaction
  2302. * synchronous
  2303. */
  2304. if (IS_SYNC(inode))
  2305. handle->h_sync = 1;
  2306. out_stop:
  2307. /*
  2308. * If this was a simple ftruncate(), and the file will remain alive
  2309. * then we need to clear up the orphan record which we created above.
  2310. * However, if this was a real unlink then we were called by
  2311. * ext3_delete_inode(), and we allow that function to clean up the
  2312. * orphan info for us.
  2313. */
  2314. if (inode->i_nlink)
  2315. ext3_orphan_del(handle, inode);
  2316. ext3_journal_stop(handle);
  2317. return;
  2318. out_notrans:
  2319. /*
  2320. * Delete the inode from orphan list so that it doesn't stay there
  2321. * forever and trigger assertion on umount.
  2322. */
  2323. if (inode->i_nlink)
  2324. ext3_orphan_del(NULL, inode);
  2325. }
  2326. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2327. unsigned long ino, struct ext3_iloc *iloc)
  2328. {
  2329. unsigned long block_group;
  2330. unsigned long offset;
  2331. ext3_fsblk_t block;
  2332. struct ext3_group_desc *gdp;
  2333. if (!ext3_valid_inum(sb, ino)) {
  2334. /*
  2335. * This error is already checked for in namei.c unless we are
  2336. * looking at an NFS filehandle, in which case no error
  2337. * report is needed
  2338. */
  2339. return 0;
  2340. }
  2341. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2342. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2343. if (!gdp)
  2344. return 0;
  2345. /*
  2346. * Figure out the offset within the block group inode table
  2347. */
  2348. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2349. EXT3_INODE_SIZE(sb);
  2350. block = le32_to_cpu(gdp->bg_inode_table) +
  2351. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2352. iloc->block_group = block_group;
  2353. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2354. return block;
  2355. }
  2356. /*
  2357. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2358. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2359. * data in memory that is needed to recreate the on-disk version of this
  2360. * inode.
  2361. */
  2362. static int __ext3_get_inode_loc(struct inode *inode,
  2363. struct ext3_iloc *iloc, int in_mem)
  2364. {
  2365. ext3_fsblk_t block;
  2366. struct buffer_head *bh;
  2367. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2368. if (!block)
  2369. return -EIO;
  2370. bh = sb_getblk(inode->i_sb, block);
  2371. if (!bh) {
  2372. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2373. "unable to read inode block - "
  2374. "inode=%lu, block="E3FSBLK,
  2375. inode->i_ino, block);
  2376. return -EIO;
  2377. }
  2378. if (!buffer_uptodate(bh)) {
  2379. lock_buffer(bh);
  2380. /*
  2381. * If the buffer has the write error flag, we have failed
  2382. * to write out another inode in the same block. In this
  2383. * case, we don't have to read the block because we may
  2384. * read the old inode data successfully.
  2385. */
  2386. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2387. set_buffer_uptodate(bh);
  2388. if (buffer_uptodate(bh)) {
  2389. /* someone brought it uptodate while we waited */
  2390. unlock_buffer(bh);
  2391. goto has_buffer;
  2392. }
  2393. /*
  2394. * If we have all information of the inode in memory and this
  2395. * is the only valid inode in the block, we need not read the
  2396. * block.
  2397. */
  2398. if (in_mem) {
  2399. struct buffer_head *bitmap_bh;
  2400. struct ext3_group_desc *desc;
  2401. int inodes_per_buffer;
  2402. int inode_offset, i;
  2403. int block_group;
  2404. int start;
  2405. block_group = (inode->i_ino - 1) /
  2406. EXT3_INODES_PER_GROUP(inode->i_sb);
  2407. inodes_per_buffer = bh->b_size /
  2408. EXT3_INODE_SIZE(inode->i_sb);
  2409. inode_offset = ((inode->i_ino - 1) %
  2410. EXT3_INODES_PER_GROUP(inode->i_sb));
  2411. start = inode_offset & ~(inodes_per_buffer - 1);
  2412. /* Is the inode bitmap in cache? */
  2413. desc = ext3_get_group_desc(inode->i_sb,
  2414. block_group, NULL);
  2415. if (!desc)
  2416. goto make_io;
  2417. bitmap_bh = sb_getblk(inode->i_sb,
  2418. le32_to_cpu(desc->bg_inode_bitmap));
  2419. if (!bitmap_bh)
  2420. goto make_io;
  2421. /*
  2422. * If the inode bitmap isn't in cache then the
  2423. * optimisation may end up performing two reads instead
  2424. * of one, so skip it.
  2425. */
  2426. if (!buffer_uptodate(bitmap_bh)) {
  2427. brelse(bitmap_bh);
  2428. goto make_io;
  2429. }
  2430. for (i = start; i < start + inodes_per_buffer; i++) {
  2431. if (i == inode_offset)
  2432. continue;
  2433. if (ext3_test_bit(i, bitmap_bh->b_data))
  2434. break;
  2435. }
  2436. brelse(bitmap_bh);
  2437. if (i == start + inodes_per_buffer) {
  2438. /* all other inodes are free, so skip I/O */
  2439. memset(bh->b_data, 0, bh->b_size);
  2440. set_buffer_uptodate(bh);
  2441. unlock_buffer(bh);
  2442. goto has_buffer;
  2443. }
  2444. }
  2445. make_io:
  2446. /*
  2447. * There are other valid inodes in the buffer, this inode
  2448. * has in-inode xattrs, or we don't have this inode in memory.
  2449. * Read the block from disk.
  2450. */
  2451. get_bh(bh);
  2452. bh->b_end_io = end_buffer_read_sync;
  2453. submit_bh(READ_META, bh);
  2454. wait_on_buffer(bh);
  2455. if (!buffer_uptodate(bh)) {
  2456. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2457. "unable to read inode block - "
  2458. "inode=%lu, block="E3FSBLK,
  2459. inode->i_ino, block);
  2460. brelse(bh);
  2461. return -EIO;
  2462. }
  2463. }
  2464. has_buffer:
  2465. iloc->bh = bh;
  2466. return 0;
  2467. }
  2468. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2469. {
  2470. /* We have all inode data except xattrs in memory here. */
  2471. return __ext3_get_inode_loc(inode, iloc,
  2472. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2473. }
  2474. void ext3_set_inode_flags(struct inode *inode)
  2475. {
  2476. unsigned int flags = EXT3_I(inode)->i_flags;
  2477. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2478. if (flags & EXT3_SYNC_FL)
  2479. inode->i_flags |= S_SYNC;
  2480. if (flags & EXT3_APPEND_FL)
  2481. inode->i_flags |= S_APPEND;
  2482. if (flags & EXT3_IMMUTABLE_FL)
  2483. inode->i_flags |= S_IMMUTABLE;
  2484. if (flags & EXT3_NOATIME_FL)
  2485. inode->i_flags |= S_NOATIME;
  2486. if (flags & EXT3_DIRSYNC_FL)
  2487. inode->i_flags |= S_DIRSYNC;
  2488. }
  2489. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2490. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2491. {
  2492. unsigned int flags = ei->vfs_inode.i_flags;
  2493. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2494. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2495. if (flags & S_SYNC)
  2496. ei->i_flags |= EXT3_SYNC_FL;
  2497. if (flags & S_APPEND)
  2498. ei->i_flags |= EXT3_APPEND_FL;
  2499. if (flags & S_IMMUTABLE)
  2500. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2501. if (flags & S_NOATIME)
  2502. ei->i_flags |= EXT3_NOATIME_FL;
  2503. if (flags & S_DIRSYNC)
  2504. ei->i_flags |= EXT3_DIRSYNC_FL;
  2505. }
  2506. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2507. {
  2508. struct ext3_iloc iloc;
  2509. struct ext3_inode *raw_inode;
  2510. struct ext3_inode_info *ei;
  2511. struct buffer_head *bh;
  2512. struct inode *inode;
  2513. journal_t *journal = EXT3_SB(sb)->s_journal;
  2514. transaction_t *transaction;
  2515. long ret;
  2516. int block;
  2517. inode = iget_locked(sb, ino);
  2518. if (!inode)
  2519. return ERR_PTR(-ENOMEM);
  2520. if (!(inode->i_state & I_NEW))
  2521. return inode;
  2522. ei = EXT3_I(inode);
  2523. ei->i_block_alloc_info = NULL;
  2524. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2525. if (ret < 0)
  2526. goto bad_inode;
  2527. bh = iloc.bh;
  2528. raw_inode = ext3_raw_inode(&iloc);
  2529. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2530. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2531. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2532. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2533. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2534. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2535. }
  2536. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2537. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2538. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2539. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2540. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2541. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2542. ei->i_state = 0;
  2543. ei->i_dir_start_lookup = 0;
  2544. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2545. /* We now have enough fields to check if the inode was active or not.
  2546. * This is needed because nfsd might try to access dead inodes
  2547. * the test is that same one that e2fsck uses
  2548. * NeilBrown 1999oct15
  2549. */
  2550. if (inode->i_nlink == 0) {
  2551. if (inode->i_mode == 0 ||
  2552. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2553. /* this inode is deleted */
  2554. brelse (bh);
  2555. ret = -ESTALE;
  2556. goto bad_inode;
  2557. }
  2558. /* The only unlinked inodes we let through here have
  2559. * valid i_mode and are being read by the orphan
  2560. * recovery code: that's fine, we're about to complete
  2561. * the process of deleting those. */
  2562. }
  2563. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2564. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2565. #ifdef EXT3_FRAGMENTS
  2566. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2567. ei->i_frag_no = raw_inode->i_frag;
  2568. ei->i_frag_size = raw_inode->i_fsize;
  2569. #endif
  2570. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2571. if (!S_ISREG(inode->i_mode)) {
  2572. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2573. } else {
  2574. inode->i_size |=
  2575. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2576. }
  2577. ei->i_disksize = inode->i_size;
  2578. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2579. ei->i_block_group = iloc.block_group;
  2580. /*
  2581. * NOTE! The in-memory inode i_data array is in little-endian order
  2582. * even on big-endian machines: we do NOT byteswap the block numbers!
  2583. */
  2584. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2585. ei->i_data[block] = raw_inode->i_block[block];
  2586. INIT_LIST_HEAD(&ei->i_orphan);
  2587. /*
  2588. * Set transaction id's of transactions that have to be committed
  2589. * to finish f[data]sync. We set them to currently running transaction
  2590. * as we cannot be sure that the inode or some of its metadata isn't
  2591. * part of the transaction - the inode could have been reclaimed and
  2592. * now it is reread from disk.
  2593. */
  2594. if (journal) {
  2595. tid_t tid;
  2596. spin_lock(&journal->j_state_lock);
  2597. if (journal->j_running_transaction)
  2598. transaction = journal->j_running_transaction;
  2599. else
  2600. transaction = journal->j_committing_transaction;
  2601. if (transaction)
  2602. tid = transaction->t_tid;
  2603. else
  2604. tid = journal->j_commit_sequence;
  2605. spin_unlock(&journal->j_state_lock);
  2606. atomic_set(&ei->i_sync_tid, tid);
  2607. atomic_set(&ei->i_datasync_tid, tid);
  2608. }
  2609. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2610. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2611. /*
  2612. * When mke2fs creates big inodes it does not zero out
  2613. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2614. * so ignore those first few inodes.
  2615. */
  2616. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2617. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2618. EXT3_INODE_SIZE(inode->i_sb)) {
  2619. brelse (bh);
  2620. ret = -EIO;
  2621. goto bad_inode;
  2622. }
  2623. if (ei->i_extra_isize == 0) {
  2624. /* The extra space is currently unused. Use it. */
  2625. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2626. EXT3_GOOD_OLD_INODE_SIZE;
  2627. } else {
  2628. __le32 *magic = (void *)raw_inode +
  2629. EXT3_GOOD_OLD_INODE_SIZE +
  2630. ei->i_extra_isize;
  2631. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2632. ei->i_state |= EXT3_STATE_XATTR;
  2633. }
  2634. } else
  2635. ei->i_extra_isize = 0;
  2636. if (S_ISREG(inode->i_mode)) {
  2637. inode->i_op = &ext3_file_inode_operations;
  2638. inode->i_fop = &ext3_file_operations;
  2639. ext3_set_aops(inode);
  2640. } else if (S_ISDIR(inode->i_mode)) {
  2641. inode->i_op = &ext3_dir_inode_operations;
  2642. inode->i_fop = &ext3_dir_operations;
  2643. } else if (S_ISLNK(inode->i_mode)) {
  2644. if (ext3_inode_is_fast_symlink(inode)) {
  2645. inode->i_op = &ext3_fast_symlink_inode_operations;
  2646. nd_terminate_link(ei->i_data, inode->i_size,
  2647. sizeof(ei->i_data) - 1);
  2648. } else {
  2649. inode->i_op = &ext3_symlink_inode_operations;
  2650. ext3_set_aops(inode);
  2651. }
  2652. } else {
  2653. inode->i_op = &ext3_special_inode_operations;
  2654. if (raw_inode->i_block[0])
  2655. init_special_inode(inode, inode->i_mode,
  2656. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2657. else
  2658. init_special_inode(inode, inode->i_mode,
  2659. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2660. }
  2661. brelse (iloc.bh);
  2662. ext3_set_inode_flags(inode);
  2663. unlock_new_inode(inode);
  2664. return inode;
  2665. bad_inode:
  2666. iget_failed(inode);
  2667. return ERR_PTR(ret);
  2668. }
  2669. /*
  2670. * Post the struct inode info into an on-disk inode location in the
  2671. * buffer-cache. This gobbles the caller's reference to the
  2672. * buffer_head in the inode location struct.
  2673. *
  2674. * The caller must have write access to iloc->bh.
  2675. */
  2676. static int ext3_do_update_inode(handle_t *handle,
  2677. struct inode *inode,
  2678. struct ext3_iloc *iloc)
  2679. {
  2680. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2681. struct ext3_inode_info *ei = EXT3_I(inode);
  2682. struct buffer_head *bh = iloc->bh;
  2683. int err = 0, rc, block;
  2684. again:
  2685. /* we can't allow multiple procs in here at once, its a bit racey */
  2686. lock_buffer(bh);
  2687. /* For fields not not tracking in the in-memory inode,
  2688. * initialise them to zero for new inodes. */
  2689. if (ei->i_state & EXT3_STATE_NEW)
  2690. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2691. ext3_get_inode_flags(ei);
  2692. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2693. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2694. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2695. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2696. /*
  2697. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2698. * re-used with the upper 16 bits of the uid/gid intact
  2699. */
  2700. if(!ei->i_dtime) {
  2701. raw_inode->i_uid_high =
  2702. cpu_to_le16(high_16_bits(inode->i_uid));
  2703. raw_inode->i_gid_high =
  2704. cpu_to_le16(high_16_bits(inode->i_gid));
  2705. } else {
  2706. raw_inode->i_uid_high = 0;
  2707. raw_inode->i_gid_high = 0;
  2708. }
  2709. } else {
  2710. raw_inode->i_uid_low =
  2711. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2712. raw_inode->i_gid_low =
  2713. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2714. raw_inode->i_uid_high = 0;
  2715. raw_inode->i_gid_high = 0;
  2716. }
  2717. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2718. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2719. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2720. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2721. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2722. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2723. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2724. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2725. #ifdef EXT3_FRAGMENTS
  2726. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2727. raw_inode->i_frag = ei->i_frag_no;
  2728. raw_inode->i_fsize = ei->i_frag_size;
  2729. #endif
  2730. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2731. if (!S_ISREG(inode->i_mode)) {
  2732. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2733. } else {
  2734. raw_inode->i_size_high =
  2735. cpu_to_le32(ei->i_disksize >> 32);
  2736. if (ei->i_disksize > 0x7fffffffULL) {
  2737. struct super_block *sb = inode->i_sb;
  2738. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2739. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2740. EXT3_SB(sb)->s_es->s_rev_level ==
  2741. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2742. /* If this is the first large file
  2743. * created, add a flag to the superblock.
  2744. */
  2745. unlock_buffer(bh);
  2746. err = ext3_journal_get_write_access(handle,
  2747. EXT3_SB(sb)->s_sbh);
  2748. if (err)
  2749. goto out_brelse;
  2750. ext3_update_dynamic_rev(sb);
  2751. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2752. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2753. handle->h_sync = 1;
  2754. err = ext3_journal_dirty_metadata(handle,
  2755. EXT3_SB(sb)->s_sbh);
  2756. /* get our lock and start over */
  2757. goto again;
  2758. }
  2759. }
  2760. }
  2761. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2762. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2763. if (old_valid_dev(inode->i_rdev)) {
  2764. raw_inode->i_block[0] =
  2765. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2766. raw_inode->i_block[1] = 0;
  2767. } else {
  2768. raw_inode->i_block[0] = 0;
  2769. raw_inode->i_block[1] =
  2770. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2771. raw_inode->i_block[2] = 0;
  2772. }
  2773. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2774. raw_inode->i_block[block] = ei->i_data[block];
  2775. if (ei->i_extra_isize)
  2776. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2777. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2778. unlock_buffer(bh);
  2779. rc = ext3_journal_dirty_metadata(handle, bh);
  2780. if (!err)
  2781. err = rc;
  2782. ei->i_state &= ~EXT3_STATE_NEW;
  2783. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2784. out_brelse:
  2785. brelse (bh);
  2786. ext3_std_error(inode->i_sb, err);
  2787. return err;
  2788. }
  2789. /*
  2790. * ext3_write_inode()
  2791. *
  2792. * We are called from a few places:
  2793. *
  2794. * - Within generic_file_write() for O_SYNC files.
  2795. * Here, there will be no transaction running. We wait for any running
  2796. * trasnaction to commit.
  2797. *
  2798. * - Within sys_sync(), kupdate and such.
  2799. * We wait on commit, if tol to.
  2800. *
  2801. * - Within prune_icache() (PF_MEMALLOC == true)
  2802. * Here we simply return. We can't afford to block kswapd on the
  2803. * journal commit.
  2804. *
  2805. * In all cases it is actually safe for us to return without doing anything,
  2806. * because the inode has been copied into a raw inode buffer in
  2807. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2808. * knfsd.
  2809. *
  2810. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2811. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2812. * which we are interested.
  2813. *
  2814. * It would be a bug for them to not do this. The code:
  2815. *
  2816. * mark_inode_dirty(inode)
  2817. * stuff();
  2818. * inode->i_size = expr;
  2819. *
  2820. * is in error because a kswapd-driven write_inode() could occur while
  2821. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2822. * will no longer be on the superblock's dirty inode list.
  2823. */
  2824. int ext3_write_inode(struct inode *inode, int wait)
  2825. {
  2826. if (current->flags & PF_MEMALLOC)
  2827. return 0;
  2828. if (ext3_journal_current_handle()) {
  2829. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2830. dump_stack();
  2831. return -EIO;
  2832. }
  2833. if (!wait)
  2834. return 0;
  2835. return ext3_force_commit(inode->i_sb);
  2836. }
  2837. /*
  2838. * ext3_setattr()
  2839. *
  2840. * Called from notify_change.
  2841. *
  2842. * We want to trap VFS attempts to truncate the file as soon as
  2843. * possible. In particular, we want to make sure that when the VFS
  2844. * shrinks i_size, we put the inode on the orphan list and modify
  2845. * i_disksize immediately, so that during the subsequent flushing of
  2846. * dirty pages and freeing of disk blocks, we can guarantee that any
  2847. * commit will leave the blocks being flushed in an unused state on
  2848. * disk. (On recovery, the inode will get truncated and the blocks will
  2849. * be freed, so we have a strong guarantee that no future commit will
  2850. * leave these blocks visible to the user.)
  2851. *
  2852. * Called with inode->sem down.
  2853. */
  2854. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2855. {
  2856. struct inode *inode = dentry->d_inode;
  2857. int error, rc = 0;
  2858. const unsigned int ia_valid = attr->ia_valid;
  2859. error = inode_change_ok(inode, attr);
  2860. if (error)
  2861. return error;
  2862. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2863. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2864. handle_t *handle;
  2865. /* (user+group)*(old+new) structure, inode write (sb,
  2866. * inode block, ? - but truncate inode update has it) */
  2867. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2868. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2869. if (IS_ERR(handle)) {
  2870. error = PTR_ERR(handle);
  2871. goto err_out;
  2872. }
  2873. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  2874. if (error) {
  2875. ext3_journal_stop(handle);
  2876. return error;
  2877. }
  2878. /* Update corresponding info in inode so that everything is in
  2879. * one transaction */
  2880. if (attr->ia_valid & ATTR_UID)
  2881. inode->i_uid = attr->ia_uid;
  2882. if (attr->ia_valid & ATTR_GID)
  2883. inode->i_gid = attr->ia_gid;
  2884. error = ext3_mark_inode_dirty(handle, inode);
  2885. ext3_journal_stop(handle);
  2886. }
  2887. if (S_ISREG(inode->i_mode) &&
  2888. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2889. handle_t *handle;
  2890. handle = ext3_journal_start(inode, 3);
  2891. if (IS_ERR(handle)) {
  2892. error = PTR_ERR(handle);
  2893. goto err_out;
  2894. }
  2895. error = ext3_orphan_add(handle, inode);
  2896. EXT3_I(inode)->i_disksize = attr->ia_size;
  2897. rc = ext3_mark_inode_dirty(handle, inode);
  2898. if (!error)
  2899. error = rc;
  2900. ext3_journal_stop(handle);
  2901. }
  2902. rc = inode_setattr(inode, attr);
  2903. if (!rc && (ia_valid & ATTR_MODE))
  2904. rc = ext3_acl_chmod(inode);
  2905. err_out:
  2906. ext3_std_error(inode->i_sb, error);
  2907. if (!error)
  2908. error = rc;
  2909. return error;
  2910. }
  2911. /*
  2912. * How many blocks doth make a writepage()?
  2913. *
  2914. * With N blocks per page, it may be:
  2915. * N data blocks
  2916. * 2 indirect block
  2917. * 2 dindirect
  2918. * 1 tindirect
  2919. * N+5 bitmap blocks (from the above)
  2920. * N+5 group descriptor summary blocks
  2921. * 1 inode block
  2922. * 1 superblock.
  2923. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2924. *
  2925. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2926. *
  2927. * With ordered or writeback data it's the same, less the N data blocks.
  2928. *
  2929. * If the inode's direct blocks can hold an integral number of pages then a
  2930. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2931. * and dindirect block, and the "5" above becomes "3".
  2932. *
  2933. * This still overestimates under most circumstances. If we were to pass the
  2934. * start and end offsets in here as well we could do block_to_path() on each
  2935. * block and work out the exact number of indirects which are touched. Pah.
  2936. */
  2937. static int ext3_writepage_trans_blocks(struct inode *inode)
  2938. {
  2939. int bpp = ext3_journal_blocks_per_page(inode);
  2940. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2941. int ret;
  2942. if (ext3_should_journal_data(inode))
  2943. ret = 3 * (bpp + indirects) + 2;
  2944. else
  2945. ret = 2 * (bpp + indirects) + 2;
  2946. #ifdef CONFIG_QUOTA
  2947. /* We know that structure was already allocated during vfs_dq_init so
  2948. * we will be updating only the data blocks + inodes */
  2949. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  2950. #endif
  2951. return ret;
  2952. }
  2953. /*
  2954. * The caller must have previously called ext3_reserve_inode_write().
  2955. * Give this, we know that the caller already has write access to iloc->bh.
  2956. */
  2957. int ext3_mark_iloc_dirty(handle_t *handle,
  2958. struct inode *inode, struct ext3_iloc *iloc)
  2959. {
  2960. int err = 0;
  2961. /* the do_update_inode consumes one bh->b_count */
  2962. get_bh(iloc->bh);
  2963. /* ext3_do_update_inode() does journal_dirty_metadata */
  2964. err = ext3_do_update_inode(handle, inode, iloc);
  2965. put_bh(iloc->bh);
  2966. return err;
  2967. }
  2968. /*
  2969. * On success, We end up with an outstanding reference count against
  2970. * iloc->bh. This _must_ be cleaned up later.
  2971. */
  2972. int
  2973. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2974. struct ext3_iloc *iloc)
  2975. {
  2976. int err = 0;
  2977. if (handle) {
  2978. err = ext3_get_inode_loc(inode, iloc);
  2979. if (!err) {
  2980. BUFFER_TRACE(iloc->bh, "get_write_access");
  2981. err = ext3_journal_get_write_access(handle, iloc->bh);
  2982. if (err) {
  2983. brelse(iloc->bh);
  2984. iloc->bh = NULL;
  2985. }
  2986. }
  2987. }
  2988. ext3_std_error(inode->i_sb, err);
  2989. return err;
  2990. }
  2991. /*
  2992. * What we do here is to mark the in-core inode as clean with respect to inode
  2993. * dirtiness (it may still be data-dirty).
  2994. * This means that the in-core inode may be reaped by prune_icache
  2995. * without having to perform any I/O. This is a very good thing,
  2996. * because *any* task may call prune_icache - even ones which
  2997. * have a transaction open against a different journal.
  2998. *
  2999. * Is this cheating? Not really. Sure, we haven't written the
  3000. * inode out, but prune_icache isn't a user-visible syncing function.
  3001. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3002. * we start and wait on commits.
  3003. *
  3004. * Is this efficient/effective? Well, we're being nice to the system
  3005. * by cleaning up our inodes proactively so they can be reaped
  3006. * without I/O. But we are potentially leaving up to five seconds'
  3007. * worth of inodes floating about which prune_icache wants us to
  3008. * write out. One way to fix that would be to get prune_icache()
  3009. * to do a write_super() to free up some memory. It has the desired
  3010. * effect.
  3011. */
  3012. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3013. {
  3014. struct ext3_iloc iloc;
  3015. int err;
  3016. might_sleep();
  3017. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3018. if (!err)
  3019. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3020. return err;
  3021. }
  3022. /*
  3023. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3024. *
  3025. * We're really interested in the case where a file is being extended.
  3026. * i_size has been changed by generic_commit_write() and we thus need
  3027. * to include the updated inode in the current transaction.
  3028. *
  3029. * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
  3030. * are allocated to the file.
  3031. *
  3032. * If the inode is marked synchronous, we don't honour that here - doing
  3033. * so would cause a commit on atime updates, which we don't bother doing.
  3034. * We handle synchronous inodes at the highest possible level.
  3035. */
  3036. void ext3_dirty_inode(struct inode *inode)
  3037. {
  3038. handle_t *current_handle = ext3_journal_current_handle();
  3039. handle_t *handle;
  3040. handle = ext3_journal_start(inode, 2);
  3041. if (IS_ERR(handle))
  3042. goto out;
  3043. if (current_handle &&
  3044. current_handle->h_transaction != handle->h_transaction) {
  3045. /* This task has a transaction open against a different fs */
  3046. printk(KERN_EMERG "%s: transactions do not match!\n",
  3047. __func__);
  3048. } else {
  3049. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3050. current_handle);
  3051. ext3_mark_inode_dirty(handle, inode);
  3052. }
  3053. ext3_journal_stop(handle);
  3054. out:
  3055. return;
  3056. }
  3057. #if 0
  3058. /*
  3059. * Bind an inode's backing buffer_head into this transaction, to prevent
  3060. * it from being flushed to disk early. Unlike
  3061. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3062. * returns no iloc structure, so the caller needs to repeat the iloc
  3063. * lookup to mark the inode dirty later.
  3064. */
  3065. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3066. {
  3067. struct ext3_iloc iloc;
  3068. int err = 0;
  3069. if (handle) {
  3070. err = ext3_get_inode_loc(inode, &iloc);
  3071. if (!err) {
  3072. BUFFER_TRACE(iloc.bh, "get_write_access");
  3073. err = journal_get_write_access(handle, iloc.bh);
  3074. if (!err)
  3075. err = ext3_journal_dirty_metadata(handle,
  3076. iloc.bh);
  3077. brelse(iloc.bh);
  3078. }
  3079. }
  3080. ext3_std_error(inode->i_sb, err);
  3081. return err;
  3082. }
  3083. #endif
  3084. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3085. {
  3086. journal_t *journal;
  3087. handle_t *handle;
  3088. int err;
  3089. /*
  3090. * We have to be very careful here: changing a data block's
  3091. * journaling status dynamically is dangerous. If we write a
  3092. * data block to the journal, change the status and then delete
  3093. * that block, we risk forgetting to revoke the old log record
  3094. * from the journal and so a subsequent replay can corrupt data.
  3095. * So, first we make sure that the journal is empty and that
  3096. * nobody is changing anything.
  3097. */
  3098. journal = EXT3_JOURNAL(inode);
  3099. if (is_journal_aborted(journal))
  3100. return -EROFS;
  3101. journal_lock_updates(journal);
  3102. journal_flush(journal);
  3103. /*
  3104. * OK, there are no updates running now, and all cached data is
  3105. * synced to disk. We are now in a completely consistent state
  3106. * which doesn't have anything in the journal, and we know that
  3107. * no filesystem updates are running, so it is safe to modify
  3108. * the inode's in-core data-journaling state flag now.
  3109. */
  3110. if (val)
  3111. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3112. else
  3113. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3114. ext3_set_aops(inode);
  3115. journal_unlock_updates(journal);
  3116. /* Finally we can mark the inode as dirty. */
  3117. handle = ext3_journal_start(inode, 1);
  3118. if (IS_ERR(handle))
  3119. return PTR_ERR(handle);
  3120. err = ext3_mark_inode_dirty(handle, inode);
  3121. handle->h_sync = 1;
  3122. ext3_journal_stop(handle);
  3123. ext3_std_error(inode->i_sb, err);
  3124. return err;
  3125. }