relocation.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include "ctree.h"
  24. #include "disk-io.h"
  25. #include "transaction.h"
  26. #include "volumes.h"
  27. #include "locking.h"
  28. #include "btrfs_inode.h"
  29. #include "async-thread.h"
  30. /*
  31. * backref_node, mapping_node and tree_block start with this
  32. */
  33. struct tree_entry {
  34. struct rb_node rb_node;
  35. u64 bytenr;
  36. };
  37. /*
  38. * present a tree block in the backref cache
  39. */
  40. struct backref_node {
  41. struct rb_node rb_node;
  42. u64 bytenr;
  43. /* objectid tree block owner */
  44. u64 owner;
  45. /* list of upper level blocks reference this block */
  46. struct list_head upper;
  47. /* list of child blocks in the cache */
  48. struct list_head lower;
  49. /* NULL if this node is not tree root */
  50. struct btrfs_root *root;
  51. /* extent buffer got by COW the block */
  52. struct extent_buffer *eb;
  53. /* level of tree block */
  54. unsigned int level:8;
  55. /* 1 if the block is root of old snapshot */
  56. unsigned int old_root:1;
  57. /* 1 if no child blocks in the cache */
  58. unsigned int lowest:1;
  59. /* is the extent buffer locked */
  60. unsigned int locked:1;
  61. /* has the block been processed */
  62. unsigned int processed:1;
  63. /* have backrefs of this block been checked */
  64. unsigned int checked:1;
  65. };
  66. /*
  67. * present a block pointer in the backref cache
  68. */
  69. struct backref_edge {
  70. struct list_head list[2];
  71. struct backref_node *node[2];
  72. u64 blockptr;
  73. };
  74. #define LOWER 0
  75. #define UPPER 1
  76. struct backref_cache {
  77. /* red black tree of all backref nodes in the cache */
  78. struct rb_root rb_root;
  79. /* list of backref nodes with no child block in the cache */
  80. struct list_head pending[BTRFS_MAX_LEVEL];
  81. spinlock_t lock;
  82. };
  83. /*
  84. * map address of tree root to tree
  85. */
  86. struct mapping_node {
  87. struct rb_node rb_node;
  88. u64 bytenr;
  89. void *data;
  90. };
  91. struct mapping_tree {
  92. struct rb_root rb_root;
  93. spinlock_t lock;
  94. };
  95. /*
  96. * present a tree block to process
  97. */
  98. struct tree_block {
  99. struct rb_node rb_node;
  100. u64 bytenr;
  101. struct btrfs_key key;
  102. unsigned int level:8;
  103. unsigned int key_ready:1;
  104. };
  105. /* inode vector */
  106. #define INODEVEC_SIZE 16
  107. struct inodevec {
  108. struct list_head list;
  109. struct inode *inode[INODEVEC_SIZE];
  110. int nr;
  111. };
  112. #define MAX_EXTENTS 128
  113. struct file_extent_cluster {
  114. u64 start;
  115. u64 end;
  116. u64 boundary[MAX_EXTENTS];
  117. unsigned int nr;
  118. };
  119. struct reloc_control {
  120. /* block group to relocate */
  121. struct btrfs_block_group_cache *block_group;
  122. /* extent tree */
  123. struct btrfs_root *extent_root;
  124. /* inode for moving data */
  125. struct inode *data_inode;
  126. struct btrfs_workers workers;
  127. /* tree blocks have been processed */
  128. struct extent_io_tree processed_blocks;
  129. /* map start of tree root to corresponding reloc tree */
  130. struct mapping_tree reloc_root_tree;
  131. /* list of reloc trees */
  132. struct list_head reloc_roots;
  133. u64 search_start;
  134. u64 extents_found;
  135. u64 extents_skipped;
  136. int stage;
  137. int create_reloc_root;
  138. unsigned int found_file_extent:1;
  139. unsigned int found_old_snapshot:1;
  140. };
  141. /* stages of data relocation */
  142. #define MOVE_DATA_EXTENTS 0
  143. #define UPDATE_DATA_PTRS 1
  144. /*
  145. * merge reloc tree to corresponding fs tree in worker threads
  146. */
  147. struct async_merge {
  148. struct btrfs_work work;
  149. struct reloc_control *rc;
  150. struct btrfs_root *root;
  151. struct completion *done;
  152. atomic_t *num_pending;
  153. };
  154. static void mapping_tree_init(struct mapping_tree *tree)
  155. {
  156. tree->rb_root.rb_node = NULL;
  157. spin_lock_init(&tree->lock);
  158. }
  159. static void backref_cache_init(struct backref_cache *cache)
  160. {
  161. int i;
  162. cache->rb_root.rb_node = NULL;
  163. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  164. INIT_LIST_HEAD(&cache->pending[i]);
  165. spin_lock_init(&cache->lock);
  166. }
  167. static void backref_node_init(struct backref_node *node)
  168. {
  169. memset(node, 0, sizeof(*node));
  170. INIT_LIST_HEAD(&node->upper);
  171. INIT_LIST_HEAD(&node->lower);
  172. RB_CLEAR_NODE(&node->rb_node);
  173. }
  174. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  175. struct rb_node *node)
  176. {
  177. struct rb_node **p = &root->rb_node;
  178. struct rb_node *parent = NULL;
  179. struct tree_entry *entry;
  180. while (*p) {
  181. parent = *p;
  182. entry = rb_entry(parent, struct tree_entry, rb_node);
  183. if (bytenr < entry->bytenr)
  184. p = &(*p)->rb_left;
  185. else if (bytenr > entry->bytenr)
  186. p = &(*p)->rb_right;
  187. else
  188. return parent;
  189. }
  190. rb_link_node(node, parent, p);
  191. rb_insert_color(node, root);
  192. return NULL;
  193. }
  194. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  195. {
  196. struct rb_node *n = root->rb_node;
  197. struct tree_entry *entry;
  198. while (n) {
  199. entry = rb_entry(n, struct tree_entry, rb_node);
  200. if (bytenr < entry->bytenr)
  201. n = n->rb_left;
  202. else if (bytenr > entry->bytenr)
  203. n = n->rb_right;
  204. else
  205. return n;
  206. }
  207. return NULL;
  208. }
  209. /*
  210. * walk up backref nodes until reach node presents tree root
  211. */
  212. static struct backref_node *walk_up_backref(struct backref_node *node,
  213. struct backref_edge *edges[],
  214. int *index)
  215. {
  216. struct backref_edge *edge;
  217. int idx = *index;
  218. while (!list_empty(&node->upper)) {
  219. edge = list_entry(node->upper.next,
  220. struct backref_edge, list[LOWER]);
  221. edges[idx++] = edge;
  222. node = edge->node[UPPER];
  223. }
  224. *index = idx;
  225. return node;
  226. }
  227. /*
  228. * walk down backref nodes to find start of next reference path
  229. */
  230. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  231. int *index)
  232. {
  233. struct backref_edge *edge;
  234. struct backref_node *lower;
  235. int idx = *index;
  236. while (idx > 0) {
  237. edge = edges[idx - 1];
  238. lower = edge->node[LOWER];
  239. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  240. idx--;
  241. continue;
  242. }
  243. edge = list_entry(edge->list[LOWER].next,
  244. struct backref_edge, list[LOWER]);
  245. edges[idx - 1] = edge;
  246. *index = idx;
  247. return edge->node[UPPER];
  248. }
  249. *index = 0;
  250. return NULL;
  251. }
  252. static void drop_node_buffer(struct backref_node *node)
  253. {
  254. if (node->eb) {
  255. if (node->locked) {
  256. btrfs_tree_unlock(node->eb);
  257. node->locked = 0;
  258. }
  259. free_extent_buffer(node->eb);
  260. node->eb = NULL;
  261. }
  262. }
  263. static void drop_backref_node(struct backref_cache *tree,
  264. struct backref_node *node)
  265. {
  266. BUG_ON(!node->lowest);
  267. BUG_ON(!list_empty(&node->upper));
  268. drop_node_buffer(node);
  269. list_del(&node->lower);
  270. rb_erase(&node->rb_node, &tree->rb_root);
  271. kfree(node);
  272. }
  273. /*
  274. * remove a backref node from the backref cache
  275. */
  276. static void remove_backref_node(struct backref_cache *cache,
  277. struct backref_node *node)
  278. {
  279. struct backref_node *upper;
  280. struct backref_edge *edge;
  281. if (!node)
  282. return;
  283. BUG_ON(!node->lowest);
  284. while (!list_empty(&node->upper)) {
  285. edge = list_entry(node->upper.next, struct backref_edge,
  286. list[LOWER]);
  287. upper = edge->node[UPPER];
  288. list_del(&edge->list[LOWER]);
  289. list_del(&edge->list[UPPER]);
  290. kfree(edge);
  291. /*
  292. * add the node to pending list if no other
  293. * child block cached.
  294. */
  295. if (list_empty(&upper->lower)) {
  296. list_add_tail(&upper->lower,
  297. &cache->pending[upper->level]);
  298. upper->lowest = 1;
  299. }
  300. }
  301. drop_backref_node(cache, node);
  302. }
  303. /*
  304. * find reloc tree by address of tree root
  305. */
  306. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  307. u64 bytenr)
  308. {
  309. struct rb_node *rb_node;
  310. struct mapping_node *node;
  311. struct btrfs_root *root = NULL;
  312. spin_lock(&rc->reloc_root_tree.lock);
  313. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  314. if (rb_node) {
  315. node = rb_entry(rb_node, struct mapping_node, rb_node);
  316. root = (struct btrfs_root *)node->data;
  317. }
  318. spin_unlock(&rc->reloc_root_tree.lock);
  319. return root;
  320. }
  321. static int is_cowonly_root(u64 root_objectid)
  322. {
  323. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  324. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  325. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  326. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  327. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  328. root_objectid == BTRFS_CSUM_TREE_OBJECTID)
  329. return 1;
  330. return 0;
  331. }
  332. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  333. u64 root_objectid)
  334. {
  335. struct btrfs_key key;
  336. key.objectid = root_objectid;
  337. key.type = BTRFS_ROOT_ITEM_KEY;
  338. if (is_cowonly_root(root_objectid))
  339. key.offset = 0;
  340. else
  341. key.offset = (u64)-1;
  342. return btrfs_read_fs_root_no_name(fs_info, &key);
  343. }
  344. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  345. static noinline_for_stack
  346. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  347. struct extent_buffer *leaf,
  348. struct btrfs_extent_ref_v0 *ref0)
  349. {
  350. struct btrfs_root *root;
  351. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  352. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  353. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  354. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  355. BUG_ON(IS_ERR(root));
  356. if (root->ref_cows &&
  357. generation != btrfs_root_generation(&root->root_item))
  358. return NULL;
  359. return root;
  360. }
  361. #endif
  362. static noinline_for_stack
  363. int find_inline_backref(struct extent_buffer *leaf, int slot,
  364. unsigned long *ptr, unsigned long *end)
  365. {
  366. struct btrfs_extent_item *ei;
  367. struct btrfs_tree_block_info *bi;
  368. u32 item_size;
  369. item_size = btrfs_item_size_nr(leaf, slot);
  370. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  371. if (item_size < sizeof(*ei)) {
  372. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  373. return 1;
  374. }
  375. #endif
  376. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  377. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  378. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  379. if (item_size <= sizeof(*ei) + sizeof(*bi)) {
  380. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  381. return 1;
  382. }
  383. bi = (struct btrfs_tree_block_info *)(ei + 1);
  384. *ptr = (unsigned long)(bi + 1);
  385. *end = (unsigned long)ei + item_size;
  386. return 0;
  387. }
  388. /*
  389. * build backref tree for a given tree block. root of the backref tree
  390. * corresponds the tree block, leaves of the backref tree correspond
  391. * roots of b-trees that reference the tree block.
  392. *
  393. * the basic idea of this function is check backrefs of a given block
  394. * to find upper level blocks that refernece the block, and then check
  395. * bakcrefs of these upper level blocks recursively. the recursion stop
  396. * when tree root is reached or backrefs for the block is cached.
  397. *
  398. * NOTE: if we find backrefs for a block are cached, we know backrefs
  399. * for all upper level blocks that directly/indirectly reference the
  400. * block are also cached.
  401. */
  402. static struct backref_node *build_backref_tree(struct reloc_control *rc,
  403. struct backref_cache *cache,
  404. struct btrfs_key *node_key,
  405. int level, u64 bytenr)
  406. {
  407. struct btrfs_path *path1;
  408. struct btrfs_path *path2;
  409. struct extent_buffer *eb;
  410. struct btrfs_root *root;
  411. struct backref_node *cur;
  412. struct backref_node *upper;
  413. struct backref_node *lower;
  414. struct backref_node *node = NULL;
  415. struct backref_node *exist = NULL;
  416. struct backref_edge *edge;
  417. struct rb_node *rb_node;
  418. struct btrfs_key key;
  419. unsigned long end;
  420. unsigned long ptr;
  421. LIST_HEAD(list);
  422. int ret;
  423. int err = 0;
  424. path1 = btrfs_alloc_path();
  425. path2 = btrfs_alloc_path();
  426. if (!path1 || !path2) {
  427. err = -ENOMEM;
  428. goto out;
  429. }
  430. node = kmalloc(sizeof(*node), GFP_NOFS);
  431. if (!node) {
  432. err = -ENOMEM;
  433. goto out;
  434. }
  435. backref_node_init(node);
  436. node->bytenr = bytenr;
  437. node->owner = 0;
  438. node->level = level;
  439. node->lowest = 1;
  440. cur = node;
  441. again:
  442. end = 0;
  443. ptr = 0;
  444. key.objectid = cur->bytenr;
  445. key.type = BTRFS_EXTENT_ITEM_KEY;
  446. key.offset = (u64)-1;
  447. path1->search_commit_root = 1;
  448. path1->skip_locking = 1;
  449. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  450. 0, 0);
  451. if (ret < 0) {
  452. err = ret;
  453. goto out;
  454. }
  455. BUG_ON(!ret || !path1->slots[0]);
  456. path1->slots[0]--;
  457. WARN_ON(cur->checked);
  458. if (!list_empty(&cur->upper)) {
  459. /*
  460. * the backref was added previously when processsing
  461. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  462. */
  463. BUG_ON(!list_is_singular(&cur->upper));
  464. edge = list_entry(cur->upper.next, struct backref_edge,
  465. list[LOWER]);
  466. BUG_ON(!list_empty(&edge->list[UPPER]));
  467. exist = edge->node[UPPER];
  468. /*
  469. * add the upper level block to pending list if we need
  470. * check its backrefs
  471. */
  472. if (!exist->checked)
  473. list_add_tail(&edge->list[UPPER], &list);
  474. } else {
  475. exist = NULL;
  476. }
  477. while (1) {
  478. cond_resched();
  479. eb = path1->nodes[0];
  480. if (ptr >= end) {
  481. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  482. ret = btrfs_next_leaf(rc->extent_root, path1);
  483. if (ret < 0) {
  484. err = ret;
  485. goto out;
  486. }
  487. if (ret > 0)
  488. break;
  489. eb = path1->nodes[0];
  490. }
  491. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  492. if (key.objectid != cur->bytenr) {
  493. WARN_ON(exist);
  494. break;
  495. }
  496. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  497. ret = find_inline_backref(eb, path1->slots[0],
  498. &ptr, &end);
  499. if (ret)
  500. goto next;
  501. }
  502. }
  503. if (ptr < end) {
  504. /* update key for inline back ref */
  505. struct btrfs_extent_inline_ref *iref;
  506. iref = (struct btrfs_extent_inline_ref *)ptr;
  507. key.type = btrfs_extent_inline_ref_type(eb, iref);
  508. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  509. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  510. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  511. }
  512. if (exist &&
  513. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  514. exist->owner == key.offset) ||
  515. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  516. exist->bytenr == key.offset))) {
  517. exist = NULL;
  518. goto next;
  519. }
  520. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  521. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  522. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  523. if (key.objectid == key.offset &&
  524. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  525. struct btrfs_extent_ref_v0 *ref0;
  526. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  527. struct btrfs_extent_ref_v0);
  528. root = find_tree_root(rc, eb, ref0);
  529. if (root)
  530. cur->root = root;
  531. else
  532. cur->old_root = 1;
  533. break;
  534. }
  535. #else
  536. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  537. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  538. #endif
  539. if (key.objectid == key.offset) {
  540. /*
  541. * only root blocks of reloc trees use
  542. * backref of this type.
  543. */
  544. root = find_reloc_root(rc, cur->bytenr);
  545. BUG_ON(!root);
  546. cur->root = root;
  547. break;
  548. }
  549. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  550. if (!edge) {
  551. err = -ENOMEM;
  552. goto out;
  553. }
  554. rb_node = tree_search(&cache->rb_root, key.offset);
  555. if (!rb_node) {
  556. upper = kmalloc(sizeof(*upper), GFP_NOFS);
  557. if (!upper) {
  558. kfree(edge);
  559. err = -ENOMEM;
  560. goto out;
  561. }
  562. backref_node_init(upper);
  563. upper->bytenr = key.offset;
  564. upper->owner = 0;
  565. upper->level = cur->level + 1;
  566. /*
  567. * backrefs for the upper level block isn't
  568. * cached, add the block to pending list
  569. */
  570. list_add_tail(&edge->list[UPPER], &list);
  571. } else {
  572. upper = rb_entry(rb_node, struct backref_node,
  573. rb_node);
  574. INIT_LIST_HEAD(&edge->list[UPPER]);
  575. }
  576. list_add(&edge->list[LOWER], &cur->upper);
  577. edge->node[UPPER] = upper;
  578. edge->node[LOWER] = cur;
  579. goto next;
  580. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  581. goto next;
  582. }
  583. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  584. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  585. if (IS_ERR(root)) {
  586. err = PTR_ERR(root);
  587. goto out;
  588. }
  589. if (btrfs_root_level(&root->root_item) == cur->level) {
  590. /* tree root */
  591. BUG_ON(btrfs_root_bytenr(&root->root_item) !=
  592. cur->bytenr);
  593. cur->root = root;
  594. break;
  595. }
  596. level = cur->level + 1;
  597. /*
  598. * searching the tree to find upper level blocks
  599. * reference the block.
  600. */
  601. path2->search_commit_root = 1;
  602. path2->skip_locking = 1;
  603. path2->lowest_level = level;
  604. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  605. path2->lowest_level = 0;
  606. if (ret < 0) {
  607. err = ret;
  608. goto out;
  609. }
  610. if (ret > 0 && path2->slots[level] > 0)
  611. path2->slots[level]--;
  612. eb = path2->nodes[level];
  613. WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
  614. cur->bytenr);
  615. lower = cur;
  616. for (; level < BTRFS_MAX_LEVEL; level++) {
  617. if (!path2->nodes[level]) {
  618. BUG_ON(btrfs_root_bytenr(&root->root_item) !=
  619. lower->bytenr);
  620. lower->root = root;
  621. break;
  622. }
  623. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  624. if (!edge) {
  625. err = -ENOMEM;
  626. goto out;
  627. }
  628. eb = path2->nodes[level];
  629. rb_node = tree_search(&cache->rb_root, eb->start);
  630. if (!rb_node) {
  631. upper = kmalloc(sizeof(*upper), GFP_NOFS);
  632. if (!upper) {
  633. kfree(edge);
  634. err = -ENOMEM;
  635. goto out;
  636. }
  637. backref_node_init(upper);
  638. upper->bytenr = eb->start;
  639. upper->owner = btrfs_header_owner(eb);
  640. upper->level = lower->level + 1;
  641. /*
  642. * if we know the block isn't shared
  643. * we can void checking its backrefs.
  644. */
  645. if (btrfs_block_can_be_shared(root, eb))
  646. upper->checked = 0;
  647. else
  648. upper->checked = 1;
  649. /*
  650. * add the block to pending list if we
  651. * need check its backrefs. only block
  652. * at 'cur->level + 1' is added to the
  653. * tail of pending list. this guarantees
  654. * we check backrefs from lower level
  655. * blocks to upper level blocks.
  656. */
  657. if (!upper->checked &&
  658. level == cur->level + 1) {
  659. list_add_tail(&edge->list[UPPER],
  660. &list);
  661. } else
  662. INIT_LIST_HEAD(&edge->list[UPPER]);
  663. } else {
  664. upper = rb_entry(rb_node, struct backref_node,
  665. rb_node);
  666. BUG_ON(!upper->checked);
  667. INIT_LIST_HEAD(&edge->list[UPPER]);
  668. }
  669. list_add_tail(&edge->list[LOWER], &lower->upper);
  670. edge->node[UPPER] = upper;
  671. edge->node[LOWER] = lower;
  672. if (rb_node)
  673. break;
  674. lower = upper;
  675. upper = NULL;
  676. }
  677. btrfs_release_path(root, path2);
  678. next:
  679. if (ptr < end) {
  680. ptr += btrfs_extent_inline_ref_size(key.type);
  681. if (ptr >= end) {
  682. WARN_ON(ptr > end);
  683. ptr = 0;
  684. end = 0;
  685. }
  686. }
  687. if (ptr >= end)
  688. path1->slots[0]++;
  689. }
  690. btrfs_release_path(rc->extent_root, path1);
  691. cur->checked = 1;
  692. WARN_ON(exist);
  693. /* the pending list isn't empty, take the first block to process */
  694. if (!list_empty(&list)) {
  695. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  696. list_del_init(&edge->list[UPPER]);
  697. cur = edge->node[UPPER];
  698. goto again;
  699. }
  700. /*
  701. * everything goes well, connect backref nodes and insert backref nodes
  702. * into the cache.
  703. */
  704. BUG_ON(!node->checked);
  705. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  706. BUG_ON(rb_node);
  707. list_for_each_entry(edge, &node->upper, list[LOWER])
  708. list_add_tail(&edge->list[UPPER], &list);
  709. while (!list_empty(&list)) {
  710. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  711. list_del_init(&edge->list[UPPER]);
  712. upper = edge->node[UPPER];
  713. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  714. if (upper->lowest) {
  715. list_del_init(&upper->lower);
  716. upper->lowest = 0;
  717. }
  718. list_add_tail(&edge->list[UPPER], &upper->lower);
  719. continue;
  720. }
  721. BUG_ON(!upper->checked);
  722. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  723. &upper->rb_node);
  724. BUG_ON(rb_node);
  725. list_add_tail(&edge->list[UPPER], &upper->lower);
  726. list_for_each_entry(edge, &upper->upper, list[LOWER])
  727. list_add_tail(&edge->list[UPPER], &list);
  728. }
  729. out:
  730. btrfs_free_path(path1);
  731. btrfs_free_path(path2);
  732. if (err) {
  733. INIT_LIST_HEAD(&list);
  734. upper = node;
  735. while (upper) {
  736. if (RB_EMPTY_NODE(&upper->rb_node)) {
  737. list_splice_tail(&upper->upper, &list);
  738. kfree(upper);
  739. }
  740. if (list_empty(&list))
  741. break;
  742. edge = list_entry(list.next, struct backref_edge,
  743. list[LOWER]);
  744. upper = edge->node[UPPER];
  745. kfree(edge);
  746. }
  747. return ERR_PTR(err);
  748. }
  749. return node;
  750. }
  751. /*
  752. * helper to add 'address of tree root -> reloc tree' mapping
  753. */
  754. static int __add_reloc_root(struct btrfs_root *root)
  755. {
  756. struct rb_node *rb_node;
  757. struct mapping_node *node;
  758. struct reloc_control *rc = root->fs_info->reloc_ctl;
  759. node = kmalloc(sizeof(*node), GFP_NOFS);
  760. BUG_ON(!node);
  761. node->bytenr = root->node->start;
  762. node->data = root;
  763. spin_lock(&rc->reloc_root_tree.lock);
  764. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  765. node->bytenr, &node->rb_node);
  766. spin_unlock(&rc->reloc_root_tree.lock);
  767. BUG_ON(rb_node);
  768. list_add_tail(&root->root_list, &rc->reloc_roots);
  769. return 0;
  770. }
  771. /*
  772. * helper to update/delete the 'address of tree root -> reloc tree'
  773. * mapping
  774. */
  775. static int __update_reloc_root(struct btrfs_root *root, int del)
  776. {
  777. struct rb_node *rb_node;
  778. struct mapping_node *node = NULL;
  779. struct reloc_control *rc = root->fs_info->reloc_ctl;
  780. spin_lock(&rc->reloc_root_tree.lock);
  781. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  782. root->commit_root->start);
  783. if (rb_node) {
  784. node = rb_entry(rb_node, struct mapping_node, rb_node);
  785. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  786. }
  787. spin_unlock(&rc->reloc_root_tree.lock);
  788. BUG_ON((struct btrfs_root *)node->data != root);
  789. if (!del) {
  790. spin_lock(&rc->reloc_root_tree.lock);
  791. node->bytenr = root->node->start;
  792. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  793. node->bytenr, &node->rb_node);
  794. spin_unlock(&rc->reloc_root_tree.lock);
  795. BUG_ON(rb_node);
  796. } else {
  797. list_del_init(&root->root_list);
  798. kfree(node);
  799. }
  800. return 0;
  801. }
  802. /*
  803. * create reloc tree for a given fs tree. reloc tree is just a
  804. * snapshot of the fs tree with special root objectid.
  805. */
  806. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  807. struct btrfs_root *root)
  808. {
  809. struct btrfs_root *reloc_root;
  810. struct extent_buffer *eb;
  811. struct btrfs_root_item *root_item;
  812. struct btrfs_key root_key;
  813. int ret;
  814. if (root->reloc_root) {
  815. reloc_root = root->reloc_root;
  816. reloc_root->last_trans = trans->transid;
  817. return 0;
  818. }
  819. if (!root->fs_info->reloc_ctl ||
  820. !root->fs_info->reloc_ctl->create_reloc_root ||
  821. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  822. return 0;
  823. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  824. BUG_ON(!root_item);
  825. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  826. root_key.type = BTRFS_ROOT_ITEM_KEY;
  827. root_key.offset = root->root_key.objectid;
  828. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  829. BTRFS_TREE_RELOC_OBJECTID);
  830. BUG_ON(ret);
  831. btrfs_set_root_last_snapshot(&root->root_item, trans->transid - 1);
  832. memcpy(root_item, &root->root_item, sizeof(*root_item));
  833. btrfs_set_root_refs(root_item, 1);
  834. btrfs_set_root_bytenr(root_item, eb->start);
  835. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  836. btrfs_set_root_generation(root_item, trans->transid);
  837. memset(&root_item->drop_progress, 0, sizeof(struct btrfs_disk_key));
  838. root_item->drop_level = 0;
  839. btrfs_tree_unlock(eb);
  840. free_extent_buffer(eb);
  841. ret = btrfs_insert_root(trans, root->fs_info->tree_root,
  842. &root_key, root_item);
  843. BUG_ON(ret);
  844. kfree(root_item);
  845. reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
  846. &root_key);
  847. BUG_ON(IS_ERR(reloc_root));
  848. reloc_root->last_trans = trans->transid;
  849. __add_reloc_root(reloc_root);
  850. root->reloc_root = reloc_root;
  851. return 0;
  852. }
  853. /*
  854. * update root item of reloc tree
  855. */
  856. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  857. struct btrfs_root *root)
  858. {
  859. struct btrfs_root *reloc_root;
  860. struct btrfs_root_item *root_item;
  861. int del = 0;
  862. int ret;
  863. if (!root->reloc_root)
  864. return 0;
  865. reloc_root = root->reloc_root;
  866. root_item = &reloc_root->root_item;
  867. if (btrfs_root_refs(root_item) == 0) {
  868. root->reloc_root = NULL;
  869. del = 1;
  870. }
  871. __update_reloc_root(reloc_root, del);
  872. if (reloc_root->commit_root != reloc_root->node) {
  873. btrfs_set_root_node(root_item, reloc_root->node);
  874. free_extent_buffer(reloc_root->commit_root);
  875. reloc_root->commit_root = btrfs_root_node(reloc_root);
  876. }
  877. ret = btrfs_update_root(trans, root->fs_info->tree_root,
  878. &reloc_root->root_key, root_item);
  879. BUG_ON(ret);
  880. return 0;
  881. }
  882. /*
  883. * helper to find first cached inode with inode number >= objectid
  884. * in a subvolume
  885. */
  886. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  887. {
  888. struct rb_node *node;
  889. struct rb_node *prev;
  890. struct btrfs_inode *entry;
  891. struct inode *inode;
  892. spin_lock(&root->inode_lock);
  893. again:
  894. node = root->inode_tree.rb_node;
  895. prev = NULL;
  896. while (node) {
  897. prev = node;
  898. entry = rb_entry(node, struct btrfs_inode, rb_node);
  899. if (objectid < entry->vfs_inode.i_ino)
  900. node = node->rb_left;
  901. else if (objectid > entry->vfs_inode.i_ino)
  902. node = node->rb_right;
  903. else
  904. break;
  905. }
  906. if (!node) {
  907. while (prev) {
  908. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  909. if (objectid <= entry->vfs_inode.i_ino) {
  910. node = prev;
  911. break;
  912. }
  913. prev = rb_next(prev);
  914. }
  915. }
  916. while (node) {
  917. entry = rb_entry(node, struct btrfs_inode, rb_node);
  918. inode = igrab(&entry->vfs_inode);
  919. if (inode) {
  920. spin_unlock(&root->inode_lock);
  921. return inode;
  922. }
  923. objectid = entry->vfs_inode.i_ino + 1;
  924. if (cond_resched_lock(&root->inode_lock))
  925. goto again;
  926. node = rb_next(node);
  927. }
  928. spin_unlock(&root->inode_lock);
  929. return NULL;
  930. }
  931. static int in_block_group(u64 bytenr,
  932. struct btrfs_block_group_cache *block_group)
  933. {
  934. if (bytenr >= block_group->key.objectid &&
  935. bytenr < block_group->key.objectid + block_group->key.offset)
  936. return 1;
  937. return 0;
  938. }
  939. /*
  940. * get new location of data
  941. */
  942. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  943. u64 bytenr, u64 num_bytes)
  944. {
  945. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  946. struct btrfs_path *path;
  947. struct btrfs_file_extent_item *fi;
  948. struct extent_buffer *leaf;
  949. int ret;
  950. path = btrfs_alloc_path();
  951. if (!path)
  952. return -ENOMEM;
  953. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  954. ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
  955. bytenr, 0);
  956. if (ret < 0)
  957. goto out;
  958. if (ret > 0) {
  959. ret = -ENOENT;
  960. goto out;
  961. }
  962. leaf = path->nodes[0];
  963. fi = btrfs_item_ptr(leaf, path->slots[0],
  964. struct btrfs_file_extent_item);
  965. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  966. btrfs_file_extent_compression(leaf, fi) ||
  967. btrfs_file_extent_encryption(leaf, fi) ||
  968. btrfs_file_extent_other_encoding(leaf, fi));
  969. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  970. ret = 1;
  971. goto out;
  972. }
  973. if (new_bytenr)
  974. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  975. ret = 0;
  976. out:
  977. btrfs_free_path(path);
  978. return ret;
  979. }
  980. /*
  981. * update file extent items in the tree leaf to point to
  982. * the new locations.
  983. */
  984. static int replace_file_extents(struct btrfs_trans_handle *trans,
  985. struct reloc_control *rc,
  986. struct btrfs_root *root,
  987. struct extent_buffer *leaf,
  988. struct list_head *inode_list)
  989. {
  990. struct btrfs_key key;
  991. struct btrfs_file_extent_item *fi;
  992. struct inode *inode = NULL;
  993. struct inodevec *ivec = NULL;
  994. u64 parent;
  995. u64 bytenr;
  996. u64 new_bytenr;
  997. u64 num_bytes;
  998. u64 end;
  999. u32 nritems;
  1000. u32 i;
  1001. int ret;
  1002. int first = 1;
  1003. int dirty = 0;
  1004. if (rc->stage != UPDATE_DATA_PTRS)
  1005. return 0;
  1006. /* reloc trees always use full backref */
  1007. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1008. parent = leaf->start;
  1009. else
  1010. parent = 0;
  1011. nritems = btrfs_header_nritems(leaf);
  1012. for (i = 0; i < nritems; i++) {
  1013. cond_resched();
  1014. btrfs_item_key_to_cpu(leaf, &key, i);
  1015. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1016. continue;
  1017. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1018. if (btrfs_file_extent_type(leaf, fi) ==
  1019. BTRFS_FILE_EXTENT_INLINE)
  1020. continue;
  1021. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1022. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1023. if (bytenr == 0)
  1024. continue;
  1025. if (!in_block_group(bytenr, rc->block_group))
  1026. continue;
  1027. /*
  1028. * if we are modifying block in fs tree, wait for readpage
  1029. * to complete and drop the extent cache
  1030. */
  1031. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1032. if (!ivec || ivec->nr == INODEVEC_SIZE) {
  1033. ivec = kmalloc(sizeof(*ivec), GFP_NOFS);
  1034. BUG_ON(!ivec);
  1035. ivec->nr = 0;
  1036. list_add_tail(&ivec->list, inode_list);
  1037. }
  1038. if (first) {
  1039. inode = find_next_inode(root, key.objectid);
  1040. if (inode)
  1041. ivec->inode[ivec->nr++] = inode;
  1042. first = 0;
  1043. } else if (inode && inode->i_ino < key.objectid) {
  1044. inode = find_next_inode(root, key.objectid);
  1045. if (inode)
  1046. ivec->inode[ivec->nr++] = inode;
  1047. }
  1048. if (inode && inode->i_ino == key.objectid) {
  1049. end = key.offset +
  1050. btrfs_file_extent_num_bytes(leaf, fi);
  1051. WARN_ON(!IS_ALIGNED(key.offset,
  1052. root->sectorsize));
  1053. WARN_ON(!IS_ALIGNED(end, root->sectorsize));
  1054. end--;
  1055. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1056. key.offset, end,
  1057. GFP_NOFS);
  1058. if (!ret)
  1059. continue;
  1060. btrfs_drop_extent_cache(inode, key.offset, end,
  1061. 1);
  1062. unlock_extent(&BTRFS_I(inode)->io_tree,
  1063. key.offset, end, GFP_NOFS);
  1064. }
  1065. }
  1066. ret = get_new_location(rc->data_inode, &new_bytenr,
  1067. bytenr, num_bytes);
  1068. if (ret > 0)
  1069. continue;
  1070. BUG_ON(ret < 0);
  1071. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1072. dirty = 1;
  1073. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1074. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1075. num_bytes, parent,
  1076. btrfs_header_owner(leaf),
  1077. key.objectid, key.offset);
  1078. BUG_ON(ret);
  1079. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1080. parent, btrfs_header_owner(leaf),
  1081. key.objectid, key.offset);
  1082. BUG_ON(ret);
  1083. }
  1084. if (dirty)
  1085. btrfs_mark_buffer_dirty(leaf);
  1086. return 0;
  1087. }
  1088. static noinline_for_stack
  1089. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1090. struct btrfs_path *path, int level)
  1091. {
  1092. struct btrfs_disk_key key1;
  1093. struct btrfs_disk_key key2;
  1094. btrfs_node_key(eb, &key1, slot);
  1095. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1096. return memcmp(&key1, &key2, sizeof(key1));
  1097. }
  1098. /*
  1099. * try to replace tree blocks in fs tree with the new blocks
  1100. * in reloc tree. tree blocks haven't been modified since the
  1101. * reloc tree was create can be replaced.
  1102. *
  1103. * if a block was replaced, level of the block + 1 is returned.
  1104. * if no block got replaced, 0 is returned. if there are other
  1105. * errors, a negative error number is returned.
  1106. */
  1107. static int replace_path(struct btrfs_trans_handle *trans,
  1108. struct btrfs_root *dest, struct btrfs_root *src,
  1109. struct btrfs_path *path, struct btrfs_key *next_key,
  1110. struct extent_buffer **leaf,
  1111. int lowest_level, int max_level)
  1112. {
  1113. struct extent_buffer *eb;
  1114. struct extent_buffer *parent;
  1115. struct btrfs_key key;
  1116. u64 old_bytenr;
  1117. u64 new_bytenr;
  1118. u64 old_ptr_gen;
  1119. u64 new_ptr_gen;
  1120. u64 last_snapshot;
  1121. u32 blocksize;
  1122. int level;
  1123. int ret;
  1124. int slot;
  1125. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1126. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1127. BUG_ON(lowest_level > 1 && leaf);
  1128. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1129. slot = path->slots[lowest_level];
  1130. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1131. eb = btrfs_lock_root_node(dest);
  1132. btrfs_set_lock_blocking(eb);
  1133. level = btrfs_header_level(eb);
  1134. if (level < lowest_level) {
  1135. btrfs_tree_unlock(eb);
  1136. free_extent_buffer(eb);
  1137. return 0;
  1138. }
  1139. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1140. BUG_ON(ret);
  1141. btrfs_set_lock_blocking(eb);
  1142. if (next_key) {
  1143. next_key->objectid = (u64)-1;
  1144. next_key->type = (u8)-1;
  1145. next_key->offset = (u64)-1;
  1146. }
  1147. parent = eb;
  1148. while (1) {
  1149. level = btrfs_header_level(parent);
  1150. BUG_ON(level < lowest_level);
  1151. ret = btrfs_bin_search(parent, &key, level, &slot);
  1152. if (ret && slot > 0)
  1153. slot--;
  1154. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1155. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1156. old_bytenr = btrfs_node_blockptr(parent, slot);
  1157. blocksize = btrfs_level_size(dest, level - 1);
  1158. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1159. if (level <= max_level) {
  1160. eb = path->nodes[level];
  1161. new_bytenr = btrfs_node_blockptr(eb,
  1162. path->slots[level]);
  1163. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1164. path->slots[level]);
  1165. } else {
  1166. new_bytenr = 0;
  1167. new_ptr_gen = 0;
  1168. }
  1169. if (new_bytenr > 0 && new_bytenr == old_bytenr) {
  1170. WARN_ON(1);
  1171. ret = level;
  1172. break;
  1173. }
  1174. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1175. memcmp_node_keys(parent, slot, path, level)) {
  1176. if (level <= lowest_level && !leaf) {
  1177. ret = 0;
  1178. break;
  1179. }
  1180. eb = read_tree_block(dest, old_bytenr, blocksize,
  1181. old_ptr_gen);
  1182. btrfs_tree_lock(eb);
  1183. ret = btrfs_cow_block(trans, dest, eb, parent,
  1184. slot, &eb);
  1185. BUG_ON(ret);
  1186. btrfs_set_lock_blocking(eb);
  1187. if (level <= lowest_level) {
  1188. *leaf = eb;
  1189. ret = 0;
  1190. break;
  1191. }
  1192. btrfs_tree_unlock(parent);
  1193. free_extent_buffer(parent);
  1194. parent = eb;
  1195. continue;
  1196. }
  1197. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1198. path->slots[level]);
  1199. btrfs_release_path(src, path);
  1200. path->lowest_level = level;
  1201. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1202. path->lowest_level = 0;
  1203. BUG_ON(ret);
  1204. /*
  1205. * swap blocks in fs tree and reloc tree.
  1206. */
  1207. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1208. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1209. btrfs_mark_buffer_dirty(parent);
  1210. btrfs_set_node_blockptr(path->nodes[level],
  1211. path->slots[level], old_bytenr);
  1212. btrfs_set_node_ptr_generation(path->nodes[level],
  1213. path->slots[level], old_ptr_gen);
  1214. btrfs_mark_buffer_dirty(path->nodes[level]);
  1215. ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
  1216. path->nodes[level]->start,
  1217. src->root_key.objectid, level - 1, 0);
  1218. BUG_ON(ret);
  1219. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
  1220. 0, dest->root_key.objectid, level - 1,
  1221. 0);
  1222. BUG_ON(ret);
  1223. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1224. path->nodes[level]->start,
  1225. src->root_key.objectid, level - 1, 0);
  1226. BUG_ON(ret);
  1227. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1228. 0, dest->root_key.objectid, level - 1,
  1229. 0);
  1230. BUG_ON(ret);
  1231. btrfs_unlock_up_safe(path, 0);
  1232. ret = level;
  1233. break;
  1234. }
  1235. btrfs_tree_unlock(parent);
  1236. free_extent_buffer(parent);
  1237. return ret;
  1238. }
  1239. /*
  1240. * helper to find next relocated block in reloc tree
  1241. */
  1242. static noinline_for_stack
  1243. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1244. int *level)
  1245. {
  1246. struct extent_buffer *eb;
  1247. int i;
  1248. u64 last_snapshot;
  1249. u32 nritems;
  1250. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1251. for (i = 0; i < *level; i++) {
  1252. free_extent_buffer(path->nodes[i]);
  1253. path->nodes[i] = NULL;
  1254. }
  1255. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1256. eb = path->nodes[i];
  1257. nritems = btrfs_header_nritems(eb);
  1258. while (path->slots[i] + 1 < nritems) {
  1259. path->slots[i]++;
  1260. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1261. last_snapshot)
  1262. continue;
  1263. *level = i;
  1264. return 0;
  1265. }
  1266. free_extent_buffer(path->nodes[i]);
  1267. path->nodes[i] = NULL;
  1268. }
  1269. return 1;
  1270. }
  1271. /*
  1272. * walk down reloc tree to find relocated block of lowest level
  1273. */
  1274. static noinline_for_stack
  1275. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1276. int *level)
  1277. {
  1278. struct extent_buffer *eb = NULL;
  1279. int i;
  1280. u64 bytenr;
  1281. u64 ptr_gen = 0;
  1282. u64 last_snapshot;
  1283. u32 blocksize;
  1284. u32 nritems;
  1285. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1286. for (i = *level; i > 0; i--) {
  1287. eb = path->nodes[i];
  1288. nritems = btrfs_header_nritems(eb);
  1289. while (path->slots[i] < nritems) {
  1290. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1291. if (ptr_gen > last_snapshot)
  1292. break;
  1293. path->slots[i]++;
  1294. }
  1295. if (path->slots[i] >= nritems) {
  1296. if (i == *level)
  1297. break;
  1298. *level = i + 1;
  1299. return 0;
  1300. }
  1301. if (i == 1) {
  1302. *level = i;
  1303. return 0;
  1304. }
  1305. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1306. blocksize = btrfs_level_size(root, i - 1);
  1307. eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
  1308. BUG_ON(btrfs_header_level(eb) != i - 1);
  1309. path->nodes[i - 1] = eb;
  1310. path->slots[i - 1] = 0;
  1311. }
  1312. return 1;
  1313. }
  1314. /*
  1315. * invalidate extent cache for file extents whose key in range of
  1316. * [min_key, max_key)
  1317. */
  1318. static int invalidate_extent_cache(struct btrfs_root *root,
  1319. struct btrfs_key *min_key,
  1320. struct btrfs_key *max_key)
  1321. {
  1322. struct inode *inode = NULL;
  1323. u64 objectid;
  1324. u64 start, end;
  1325. objectid = min_key->objectid;
  1326. while (1) {
  1327. cond_resched();
  1328. iput(inode);
  1329. if (objectid > max_key->objectid)
  1330. break;
  1331. inode = find_next_inode(root, objectid);
  1332. if (!inode)
  1333. break;
  1334. if (inode->i_ino > max_key->objectid) {
  1335. iput(inode);
  1336. break;
  1337. }
  1338. objectid = inode->i_ino + 1;
  1339. if (!S_ISREG(inode->i_mode))
  1340. continue;
  1341. if (unlikely(min_key->objectid == inode->i_ino)) {
  1342. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1343. continue;
  1344. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1345. start = 0;
  1346. else {
  1347. start = min_key->offset;
  1348. WARN_ON(!IS_ALIGNED(start, root->sectorsize));
  1349. }
  1350. } else {
  1351. start = 0;
  1352. }
  1353. if (unlikely(max_key->objectid == inode->i_ino)) {
  1354. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1355. continue;
  1356. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1357. end = (u64)-1;
  1358. } else {
  1359. if (max_key->offset == 0)
  1360. continue;
  1361. end = max_key->offset;
  1362. WARN_ON(!IS_ALIGNED(end, root->sectorsize));
  1363. end--;
  1364. }
  1365. } else {
  1366. end = (u64)-1;
  1367. }
  1368. /* the lock_extent waits for readpage to complete */
  1369. lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  1370. btrfs_drop_extent_cache(inode, start, end, 1);
  1371. unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  1372. }
  1373. return 0;
  1374. }
  1375. static void put_inodes(struct list_head *list)
  1376. {
  1377. struct inodevec *ivec;
  1378. while (!list_empty(list)) {
  1379. ivec = list_entry(list->next, struct inodevec, list);
  1380. list_del(&ivec->list);
  1381. while (ivec->nr > 0) {
  1382. ivec->nr--;
  1383. iput(ivec->inode[ivec->nr]);
  1384. }
  1385. kfree(ivec);
  1386. }
  1387. }
  1388. static int find_next_key(struct btrfs_path *path, int level,
  1389. struct btrfs_key *key)
  1390. {
  1391. while (level < BTRFS_MAX_LEVEL) {
  1392. if (!path->nodes[level])
  1393. break;
  1394. if (path->slots[level] + 1 <
  1395. btrfs_header_nritems(path->nodes[level])) {
  1396. btrfs_node_key_to_cpu(path->nodes[level], key,
  1397. path->slots[level] + 1);
  1398. return 0;
  1399. }
  1400. level++;
  1401. }
  1402. return 1;
  1403. }
  1404. /*
  1405. * merge the relocated tree blocks in reloc tree with corresponding
  1406. * fs tree.
  1407. */
  1408. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1409. struct btrfs_root *root)
  1410. {
  1411. LIST_HEAD(inode_list);
  1412. struct btrfs_key key;
  1413. struct btrfs_key next_key;
  1414. struct btrfs_trans_handle *trans;
  1415. struct btrfs_root *reloc_root;
  1416. struct btrfs_root_item *root_item;
  1417. struct btrfs_path *path;
  1418. struct extent_buffer *leaf = NULL;
  1419. unsigned long nr;
  1420. int level;
  1421. int max_level;
  1422. int replaced = 0;
  1423. int ret;
  1424. int err = 0;
  1425. path = btrfs_alloc_path();
  1426. if (!path)
  1427. return -ENOMEM;
  1428. reloc_root = root->reloc_root;
  1429. root_item = &reloc_root->root_item;
  1430. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1431. level = btrfs_root_level(root_item);
  1432. extent_buffer_get(reloc_root->node);
  1433. path->nodes[level] = reloc_root->node;
  1434. path->slots[level] = 0;
  1435. } else {
  1436. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1437. level = root_item->drop_level;
  1438. BUG_ON(level == 0);
  1439. path->lowest_level = level;
  1440. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1441. path->lowest_level = 0;
  1442. if (ret < 0) {
  1443. btrfs_free_path(path);
  1444. return ret;
  1445. }
  1446. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1447. path->slots[level]);
  1448. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1449. btrfs_unlock_up_safe(path, 0);
  1450. }
  1451. if (level == 0 && rc->stage == UPDATE_DATA_PTRS) {
  1452. trans = btrfs_start_transaction(root, 1);
  1453. leaf = path->nodes[0];
  1454. btrfs_item_key_to_cpu(leaf, &key, 0);
  1455. btrfs_release_path(reloc_root, path);
  1456. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1457. if (ret < 0) {
  1458. err = ret;
  1459. goto out;
  1460. }
  1461. leaf = path->nodes[0];
  1462. btrfs_unlock_up_safe(path, 1);
  1463. ret = replace_file_extents(trans, rc, root, leaf,
  1464. &inode_list);
  1465. if (ret < 0)
  1466. err = ret;
  1467. goto out;
  1468. }
  1469. memset(&next_key, 0, sizeof(next_key));
  1470. while (1) {
  1471. leaf = NULL;
  1472. replaced = 0;
  1473. trans = btrfs_start_transaction(root, 1);
  1474. max_level = level;
  1475. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1476. if (ret < 0) {
  1477. err = ret;
  1478. goto out;
  1479. }
  1480. if (ret > 0)
  1481. break;
  1482. if (!find_next_key(path, level, &key) &&
  1483. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1484. ret = 0;
  1485. } else if (level == 1 && rc->stage == UPDATE_DATA_PTRS) {
  1486. ret = replace_path(trans, root, reloc_root,
  1487. path, &next_key, &leaf,
  1488. level, max_level);
  1489. } else {
  1490. ret = replace_path(trans, root, reloc_root,
  1491. path, &next_key, NULL,
  1492. level, max_level);
  1493. }
  1494. if (ret < 0) {
  1495. err = ret;
  1496. goto out;
  1497. }
  1498. if (ret > 0) {
  1499. level = ret;
  1500. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1501. path->slots[level]);
  1502. replaced = 1;
  1503. } else if (leaf) {
  1504. /*
  1505. * no block got replaced, try replacing file extents
  1506. */
  1507. btrfs_item_key_to_cpu(leaf, &key, 0);
  1508. ret = replace_file_extents(trans, rc, root, leaf,
  1509. &inode_list);
  1510. btrfs_tree_unlock(leaf);
  1511. free_extent_buffer(leaf);
  1512. BUG_ON(ret < 0);
  1513. }
  1514. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1515. if (ret > 0)
  1516. break;
  1517. BUG_ON(level == 0);
  1518. /*
  1519. * save the merging progress in the drop_progress.
  1520. * this is OK since root refs == 1 in this case.
  1521. */
  1522. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  1523. path->slots[level]);
  1524. root_item->drop_level = level;
  1525. nr = trans->blocks_used;
  1526. btrfs_end_transaction(trans, root);
  1527. btrfs_btree_balance_dirty(root, nr);
  1528. /*
  1529. * put inodes outside transaction, otherwise we may deadlock.
  1530. */
  1531. put_inodes(&inode_list);
  1532. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1533. invalidate_extent_cache(root, &key, &next_key);
  1534. }
  1535. /*
  1536. * handle the case only one block in the fs tree need to be
  1537. * relocated and the block is tree root.
  1538. */
  1539. leaf = btrfs_lock_root_node(root);
  1540. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  1541. btrfs_tree_unlock(leaf);
  1542. free_extent_buffer(leaf);
  1543. if (ret < 0)
  1544. err = ret;
  1545. out:
  1546. btrfs_free_path(path);
  1547. if (err == 0) {
  1548. memset(&root_item->drop_progress, 0,
  1549. sizeof(root_item->drop_progress));
  1550. root_item->drop_level = 0;
  1551. btrfs_set_root_refs(root_item, 0);
  1552. }
  1553. nr = trans->blocks_used;
  1554. btrfs_end_transaction(trans, root);
  1555. btrfs_btree_balance_dirty(root, nr);
  1556. put_inodes(&inode_list);
  1557. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1558. invalidate_extent_cache(root, &key, &next_key);
  1559. return err;
  1560. }
  1561. /*
  1562. * callback for the work threads.
  1563. * this function merges reloc tree with corresponding fs tree,
  1564. * and then drops the reloc tree.
  1565. */
  1566. static void merge_func(struct btrfs_work *work)
  1567. {
  1568. struct btrfs_trans_handle *trans;
  1569. struct btrfs_root *root;
  1570. struct btrfs_root *reloc_root;
  1571. struct async_merge *async;
  1572. async = container_of(work, struct async_merge, work);
  1573. reloc_root = async->root;
  1574. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  1575. root = read_fs_root(reloc_root->fs_info,
  1576. reloc_root->root_key.offset);
  1577. BUG_ON(IS_ERR(root));
  1578. BUG_ON(root->reloc_root != reloc_root);
  1579. merge_reloc_root(async->rc, root);
  1580. trans = btrfs_start_transaction(root, 1);
  1581. btrfs_update_reloc_root(trans, root);
  1582. btrfs_end_transaction(trans, root);
  1583. }
  1584. btrfs_drop_snapshot(reloc_root, 0);
  1585. if (atomic_dec_and_test(async->num_pending))
  1586. complete(async->done);
  1587. kfree(async);
  1588. }
  1589. static int merge_reloc_roots(struct reloc_control *rc)
  1590. {
  1591. struct async_merge *async;
  1592. struct btrfs_root *root;
  1593. struct completion done;
  1594. atomic_t num_pending;
  1595. init_completion(&done);
  1596. atomic_set(&num_pending, 1);
  1597. while (!list_empty(&rc->reloc_roots)) {
  1598. root = list_entry(rc->reloc_roots.next,
  1599. struct btrfs_root, root_list);
  1600. list_del_init(&root->root_list);
  1601. async = kmalloc(sizeof(*async), GFP_NOFS);
  1602. BUG_ON(!async);
  1603. async->work.func = merge_func;
  1604. async->work.flags = 0;
  1605. async->rc = rc;
  1606. async->root = root;
  1607. async->done = &done;
  1608. async->num_pending = &num_pending;
  1609. atomic_inc(&num_pending);
  1610. btrfs_queue_worker(&rc->workers, &async->work);
  1611. }
  1612. if (!atomic_dec_and_test(&num_pending))
  1613. wait_for_completion(&done);
  1614. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  1615. return 0;
  1616. }
  1617. static void free_block_list(struct rb_root *blocks)
  1618. {
  1619. struct tree_block *block;
  1620. struct rb_node *rb_node;
  1621. while ((rb_node = rb_first(blocks))) {
  1622. block = rb_entry(rb_node, struct tree_block, rb_node);
  1623. rb_erase(rb_node, blocks);
  1624. kfree(block);
  1625. }
  1626. }
  1627. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  1628. struct btrfs_root *reloc_root)
  1629. {
  1630. struct btrfs_root *root;
  1631. if (reloc_root->last_trans == trans->transid)
  1632. return 0;
  1633. root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
  1634. BUG_ON(IS_ERR(root));
  1635. BUG_ON(root->reloc_root != reloc_root);
  1636. return btrfs_record_root_in_trans(trans, root);
  1637. }
  1638. /*
  1639. * select one tree from trees that references the block.
  1640. * for blocks in refernce counted trees, we preper reloc tree.
  1641. * if no reloc tree found and reloc_only is true, NULL is returned.
  1642. */
  1643. static struct btrfs_root *__select_one_root(struct btrfs_trans_handle *trans,
  1644. struct backref_node *node,
  1645. struct backref_edge *edges[],
  1646. int *nr, int reloc_only)
  1647. {
  1648. struct backref_node *next;
  1649. struct btrfs_root *root;
  1650. int index;
  1651. int loop = 0;
  1652. again:
  1653. index = 0;
  1654. next = node;
  1655. while (1) {
  1656. cond_resched();
  1657. next = walk_up_backref(next, edges, &index);
  1658. root = next->root;
  1659. if (!root) {
  1660. BUG_ON(!node->old_root);
  1661. goto skip;
  1662. }
  1663. /* no other choice for non-refernce counted tree */
  1664. if (!root->ref_cows) {
  1665. BUG_ON(reloc_only);
  1666. break;
  1667. }
  1668. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  1669. record_reloc_root_in_trans(trans, root);
  1670. break;
  1671. }
  1672. if (loop) {
  1673. btrfs_record_root_in_trans(trans, root);
  1674. break;
  1675. }
  1676. if (reloc_only || next != node) {
  1677. if (!root->reloc_root)
  1678. btrfs_record_root_in_trans(trans, root);
  1679. root = root->reloc_root;
  1680. /*
  1681. * if the reloc tree was created in current
  1682. * transation, there is no node in backref tree
  1683. * corresponds to the root of the reloc tree.
  1684. */
  1685. if (btrfs_root_last_snapshot(&root->root_item) ==
  1686. trans->transid - 1)
  1687. break;
  1688. }
  1689. skip:
  1690. root = NULL;
  1691. next = walk_down_backref(edges, &index);
  1692. if (!next || next->level <= node->level)
  1693. break;
  1694. }
  1695. if (!root && !loop && !reloc_only) {
  1696. loop = 1;
  1697. goto again;
  1698. }
  1699. if (root)
  1700. *nr = index;
  1701. else
  1702. *nr = 0;
  1703. return root;
  1704. }
  1705. static noinline_for_stack
  1706. struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
  1707. struct backref_node *node)
  1708. {
  1709. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1710. int nr;
  1711. return __select_one_root(trans, node, edges, &nr, 0);
  1712. }
  1713. static noinline_for_stack
  1714. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  1715. struct backref_node *node,
  1716. struct backref_edge *edges[], int *nr)
  1717. {
  1718. return __select_one_root(trans, node, edges, nr, 1);
  1719. }
  1720. static void grab_path_buffers(struct btrfs_path *path,
  1721. struct backref_node *node,
  1722. struct backref_edge *edges[], int nr)
  1723. {
  1724. int i = 0;
  1725. while (1) {
  1726. drop_node_buffer(node);
  1727. node->eb = path->nodes[node->level];
  1728. BUG_ON(!node->eb);
  1729. if (path->locks[node->level])
  1730. node->locked = 1;
  1731. path->nodes[node->level] = NULL;
  1732. path->locks[node->level] = 0;
  1733. if (i >= nr)
  1734. break;
  1735. edges[i]->blockptr = node->eb->start;
  1736. node = edges[i]->node[UPPER];
  1737. i++;
  1738. }
  1739. }
  1740. /*
  1741. * relocate a block tree, and then update pointers in upper level
  1742. * blocks that reference the block to point to the new location.
  1743. *
  1744. * if called by link_to_upper, the block has already been relocated.
  1745. * in that case this function just updates pointers.
  1746. */
  1747. static int do_relocation(struct btrfs_trans_handle *trans,
  1748. struct backref_node *node,
  1749. struct btrfs_key *key,
  1750. struct btrfs_path *path, int lowest)
  1751. {
  1752. struct backref_node *upper;
  1753. struct backref_edge *edge;
  1754. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1755. struct btrfs_root *root;
  1756. struct extent_buffer *eb;
  1757. u32 blocksize;
  1758. u64 bytenr;
  1759. u64 generation;
  1760. int nr;
  1761. int slot;
  1762. int ret;
  1763. int err = 0;
  1764. BUG_ON(lowest && node->eb);
  1765. path->lowest_level = node->level + 1;
  1766. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  1767. cond_resched();
  1768. if (node->eb && node->eb->start == edge->blockptr)
  1769. continue;
  1770. upper = edge->node[UPPER];
  1771. root = select_reloc_root(trans, upper, edges, &nr);
  1772. if (!root)
  1773. continue;
  1774. if (upper->eb && !upper->locked)
  1775. drop_node_buffer(upper);
  1776. if (!upper->eb) {
  1777. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  1778. if (ret < 0) {
  1779. err = ret;
  1780. break;
  1781. }
  1782. BUG_ON(ret > 0);
  1783. slot = path->slots[upper->level];
  1784. btrfs_unlock_up_safe(path, upper->level + 1);
  1785. grab_path_buffers(path, upper, edges, nr);
  1786. btrfs_release_path(NULL, path);
  1787. } else {
  1788. ret = btrfs_bin_search(upper->eb, key, upper->level,
  1789. &slot);
  1790. BUG_ON(ret);
  1791. }
  1792. bytenr = btrfs_node_blockptr(upper->eb, slot);
  1793. if (!lowest) {
  1794. if (node->eb->start == bytenr) {
  1795. btrfs_tree_unlock(upper->eb);
  1796. upper->locked = 0;
  1797. continue;
  1798. }
  1799. } else {
  1800. BUG_ON(node->bytenr != bytenr);
  1801. }
  1802. blocksize = btrfs_level_size(root, node->level);
  1803. generation = btrfs_node_ptr_generation(upper->eb, slot);
  1804. eb = read_tree_block(root, bytenr, blocksize, generation);
  1805. btrfs_tree_lock(eb);
  1806. btrfs_set_lock_blocking(eb);
  1807. if (!node->eb) {
  1808. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  1809. slot, &eb);
  1810. if (ret < 0) {
  1811. err = ret;
  1812. break;
  1813. }
  1814. btrfs_set_lock_blocking(eb);
  1815. node->eb = eb;
  1816. node->locked = 1;
  1817. } else {
  1818. btrfs_set_node_blockptr(upper->eb, slot,
  1819. node->eb->start);
  1820. btrfs_set_node_ptr_generation(upper->eb, slot,
  1821. trans->transid);
  1822. btrfs_mark_buffer_dirty(upper->eb);
  1823. ret = btrfs_inc_extent_ref(trans, root,
  1824. node->eb->start, blocksize,
  1825. upper->eb->start,
  1826. btrfs_header_owner(upper->eb),
  1827. node->level, 0);
  1828. BUG_ON(ret);
  1829. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  1830. BUG_ON(ret);
  1831. }
  1832. if (!lowest) {
  1833. btrfs_tree_unlock(upper->eb);
  1834. upper->locked = 0;
  1835. }
  1836. }
  1837. path->lowest_level = 0;
  1838. return err;
  1839. }
  1840. static int link_to_upper(struct btrfs_trans_handle *trans,
  1841. struct backref_node *node,
  1842. struct btrfs_path *path)
  1843. {
  1844. struct btrfs_key key;
  1845. if (!node->eb || list_empty(&node->upper))
  1846. return 0;
  1847. btrfs_node_key_to_cpu(node->eb, &key, 0);
  1848. return do_relocation(trans, node, &key, path, 0);
  1849. }
  1850. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  1851. struct backref_cache *cache,
  1852. struct btrfs_path *path)
  1853. {
  1854. struct backref_node *node;
  1855. int level;
  1856. int ret;
  1857. int err = 0;
  1858. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  1859. while (!list_empty(&cache->pending[level])) {
  1860. node = list_entry(cache->pending[level].next,
  1861. struct backref_node, lower);
  1862. BUG_ON(node->level != level);
  1863. ret = link_to_upper(trans, node, path);
  1864. if (ret < 0)
  1865. err = ret;
  1866. /*
  1867. * this remove the node from the pending list and
  1868. * may add some other nodes to the level + 1
  1869. * pending list
  1870. */
  1871. remove_backref_node(cache, node);
  1872. }
  1873. }
  1874. BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
  1875. return err;
  1876. }
  1877. static void mark_block_processed(struct reloc_control *rc,
  1878. struct backref_node *node)
  1879. {
  1880. u32 blocksize;
  1881. if (node->level == 0 ||
  1882. in_block_group(node->bytenr, rc->block_group)) {
  1883. blocksize = btrfs_level_size(rc->extent_root, node->level);
  1884. set_extent_bits(&rc->processed_blocks, node->bytenr,
  1885. node->bytenr + blocksize - 1, EXTENT_DIRTY,
  1886. GFP_NOFS);
  1887. }
  1888. node->processed = 1;
  1889. }
  1890. /*
  1891. * mark a block and all blocks directly/indirectly reference the block
  1892. * as processed.
  1893. */
  1894. static void update_processed_blocks(struct reloc_control *rc,
  1895. struct backref_node *node)
  1896. {
  1897. struct backref_node *next = node;
  1898. struct backref_edge *edge;
  1899. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1900. int index = 0;
  1901. while (next) {
  1902. cond_resched();
  1903. while (1) {
  1904. if (next->processed)
  1905. break;
  1906. mark_block_processed(rc, next);
  1907. if (list_empty(&next->upper))
  1908. break;
  1909. edge = list_entry(next->upper.next,
  1910. struct backref_edge, list[LOWER]);
  1911. edges[index++] = edge;
  1912. next = edge->node[UPPER];
  1913. }
  1914. next = walk_down_backref(edges, &index);
  1915. }
  1916. }
  1917. static int tree_block_processed(u64 bytenr, u32 blocksize,
  1918. struct reloc_control *rc)
  1919. {
  1920. if (test_range_bit(&rc->processed_blocks, bytenr,
  1921. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  1922. return 1;
  1923. return 0;
  1924. }
  1925. /*
  1926. * check if there are any file extent pointers in the leaf point to
  1927. * data require processing
  1928. */
  1929. static int check_file_extents(struct reloc_control *rc,
  1930. u64 bytenr, u32 blocksize, u64 ptr_gen)
  1931. {
  1932. struct btrfs_key found_key;
  1933. struct btrfs_file_extent_item *fi;
  1934. struct extent_buffer *leaf;
  1935. u32 nritems;
  1936. int i;
  1937. int ret = 0;
  1938. leaf = read_tree_block(rc->extent_root, bytenr, blocksize, ptr_gen);
  1939. nritems = btrfs_header_nritems(leaf);
  1940. for (i = 0; i < nritems; i++) {
  1941. cond_resched();
  1942. btrfs_item_key_to_cpu(leaf, &found_key, i);
  1943. if (found_key.type != BTRFS_EXTENT_DATA_KEY)
  1944. continue;
  1945. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1946. if (btrfs_file_extent_type(leaf, fi) ==
  1947. BTRFS_FILE_EXTENT_INLINE)
  1948. continue;
  1949. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1950. if (bytenr == 0)
  1951. continue;
  1952. if (in_block_group(bytenr, rc->block_group)) {
  1953. ret = 1;
  1954. break;
  1955. }
  1956. }
  1957. free_extent_buffer(leaf);
  1958. return ret;
  1959. }
  1960. /*
  1961. * scan child blocks of a given block to find blocks require processing
  1962. */
  1963. static int add_child_blocks(struct btrfs_trans_handle *trans,
  1964. struct reloc_control *rc,
  1965. struct backref_node *node,
  1966. struct rb_root *blocks)
  1967. {
  1968. struct tree_block *block;
  1969. struct rb_node *rb_node;
  1970. u64 bytenr;
  1971. u64 ptr_gen;
  1972. u32 blocksize;
  1973. u32 nritems;
  1974. int i;
  1975. int err = 0;
  1976. nritems = btrfs_header_nritems(node->eb);
  1977. blocksize = btrfs_level_size(rc->extent_root, node->level - 1);
  1978. for (i = 0; i < nritems; i++) {
  1979. cond_resched();
  1980. bytenr = btrfs_node_blockptr(node->eb, i);
  1981. ptr_gen = btrfs_node_ptr_generation(node->eb, i);
  1982. if (ptr_gen == trans->transid)
  1983. continue;
  1984. if (!in_block_group(bytenr, rc->block_group) &&
  1985. (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
  1986. continue;
  1987. if (tree_block_processed(bytenr, blocksize, rc))
  1988. continue;
  1989. readahead_tree_block(rc->extent_root,
  1990. bytenr, blocksize, ptr_gen);
  1991. }
  1992. for (i = 0; i < nritems; i++) {
  1993. cond_resched();
  1994. bytenr = btrfs_node_blockptr(node->eb, i);
  1995. ptr_gen = btrfs_node_ptr_generation(node->eb, i);
  1996. if (ptr_gen == trans->transid)
  1997. continue;
  1998. if (!in_block_group(bytenr, rc->block_group) &&
  1999. (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
  2000. continue;
  2001. if (tree_block_processed(bytenr, blocksize, rc))
  2002. continue;
  2003. if (!in_block_group(bytenr, rc->block_group) &&
  2004. !check_file_extents(rc, bytenr, blocksize, ptr_gen))
  2005. continue;
  2006. block = kmalloc(sizeof(*block), GFP_NOFS);
  2007. if (!block) {
  2008. err = -ENOMEM;
  2009. break;
  2010. }
  2011. block->bytenr = bytenr;
  2012. btrfs_node_key_to_cpu(node->eb, &block->key, i);
  2013. block->level = node->level - 1;
  2014. block->key_ready = 1;
  2015. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2016. BUG_ON(rb_node);
  2017. }
  2018. if (err)
  2019. free_block_list(blocks);
  2020. return err;
  2021. }
  2022. /*
  2023. * find adjacent blocks require processing
  2024. */
  2025. static noinline_for_stack
  2026. int add_adjacent_blocks(struct btrfs_trans_handle *trans,
  2027. struct reloc_control *rc,
  2028. struct backref_cache *cache,
  2029. struct rb_root *blocks, int level,
  2030. struct backref_node **upper)
  2031. {
  2032. struct backref_node *node;
  2033. int ret = 0;
  2034. WARN_ON(!list_empty(&cache->pending[level]));
  2035. if (list_empty(&cache->pending[level + 1]))
  2036. return 1;
  2037. node = list_entry(cache->pending[level + 1].next,
  2038. struct backref_node, lower);
  2039. if (node->eb)
  2040. ret = add_child_blocks(trans, rc, node, blocks);
  2041. *upper = node;
  2042. return ret;
  2043. }
  2044. static int get_tree_block_key(struct reloc_control *rc,
  2045. struct tree_block *block)
  2046. {
  2047. struct extent_buffer *eb;
  2048. BUG_ON(block->key_ready);
  2049. eb = read_tree_block(rc->extent_root, block->bytenr,
  2050. block->key.objectid, block->key.offset);
  2051. WARN_ON(btrfs_header_level(eb) != block->level);
  2052. if (block->level == 0)
  2053. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2054. else
  2055. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2056. free_extent_buffer(eb);
  2057. block->key_ready = 1;
  2058. return 0;
  2059. }
  2060. static int reada_tree_block(struct reloc_control *rc,
  2061. struct tree_block *block)
  2062. {
  2063. BUG_ON(block->key_ready);
  2064. readahead_tree_block(rc->extent_root, block->bytenr,
  2065. block->key.objectid, block->key.offset);
  2066. return 0;
  2067. }
  2068. /*
  2069. * helper function to relocate a tree block
  2070. */
  2071. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2072. struct reloc_control *rc,
  2073. struct backref_node *node,
  2074. struct btrfs_key *key,
  2075. struct btrfs_path *path)
  2076. {
  2077. struct btrfs_root *root;
  2078. int ret;
  2079. root = select_one_root(trans, node);
  2080. if (unlikely(!root)) {
  2081. rc->found_old_snapshot = 1;
  2082. update_processed_blocks(rc, node);
  2083. return 0;
  2084. }
  2085. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2086. ret = do_relocation(trans, node, key, path, 1);
  2087. if (ret < 0)
  2088. goto out;
  2089. if (node->level == 0 && rc->stage == UPDATE_DATA_PTRS) {
  2090. ret = replace_file_extents(trans, rc, root,
  2091. node->eb, NULL);
  2092. if (ret < 0)
  2093. goto out;
  2094. }
  2095. drop_node_buffer(node);
  2096. } else if (!root->ref_cows) {
  2097. path->lowest_level = node->level;
  2098. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2099. btrfs_release_path(root, path);
  2100. if (ret < 0)
  2101. goto out;
  2102. } else if (root != node->root) {
  2103. WARN_ON(node->level > 0 || rc->stage != UPDATE_DATA_PTRS);
  2104. }
  2105. update_processed_blocks(rc, node);
  2106. ret = 0;
  2107. out:
  2108. drop_node_buffer(node);
  2109. return ret;
  2110. }
  2111. /*
  2112. * relocate a list of blocks
  2113. */
  2114. static noinline_for_stack
  2115. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2116. struct reloc_control *rc, struct rb_root *blocks)
  2117. {
  2118. struct backref_cache *cache;
  2119. struct backref_node *node;
  2120. struct btrfs_path *path;
  2121. struct tree_block *block;
  2122. struct rb_node *rb_node;
  2123. int level = -1;
  2124. int ret;
  2125. int err = 0;
  2126. path = btrfs_alloc_path();
  2127. if (!path)
  2128. return -ENOMEM;
  2129. cache = kmalloc(sizeof(*cache), GFP_NOFS);
  2130. if (!cache) {
  2131. btrfs_free_path(path);
  2132. return -ENOMEM;
  2133. }
  2134. backref_cache_init(cache);
  2135. rb_node = rb_first(blocks);
  2136. while (rb_node) {
  2137. block = rb_entry(rb_node, struct tree_block, rb_node);
  2138. if (level == -1)
  2139. level = block->level;
  2140. else
  2141. BUG_ON(level != block->level);
  2142. if (!block->key_ready)
  2143. reada_tree_block(rc, block);
  2144. rb_node = rb_next(rb_node);
  2145. }
  2146. rb_node = rb_first(blocks);
  2147. while (rb_node) {
  2148. block = rb_entry(rb_node, struct tree_block, rb_node);
  2149. if (!block->key_ready)
  2150. get_tree_block_key(rc, block);
  2151. rb_node = rb_next(rb_node);
  2152. }
  2153. rb_node = rb_first(blocks);
  2154. while (rb_node) {
  2155. block = rb_entry(rb_node, struct tree_block, rb_node);
  2156. node = build_backref_tree(rc, cache, &block->key,
  2157. block->level, block->bytenr);
  2158. if (IS_ERR(node)) {
  2159. err = PTR_ERR(node);
  2160. goto out;
  2161. }
  2162. ret = relocate_tree_block(trans, rc, node, &block->key,
  2163. path);
  2164. if (ret < 0) {
  2165. err = ret;
  2166. goto out;
  2167. }
  2168. remove_backref_node(cache, node);
  2169. rb_node = rb_next(rb_node);
  2170. }
  2171. if (level > 0)
  2172. goto out;
  2173. free_block_list(blocks);
  2174. /*
  2175. * now backrefs of some upper level tree blocks have been cached,
  2176. * try relocating blocks referenced by these upper level blocks.
  2177. */
  2178. while (1) {
  2179. struct backref_node *upper = NULL;
  2180. if (trans->transaction->in_commit ||
  2181. trans->transaction->delayed_refs.flushing)
  2182. break;
  2183. ret = add_adjacent_blocks(trans, rc, cache, blocks, level,
  2184. &upper);
  2185. if (ret < 0)
  2186. err = ret;
  2187. if (ret != 0)
  2188. break;
  2189. rb_node = rb_first(blocks);
  2190. while (rb_node) {
  2191. block = rb_entry(rb_node, struct tree_block, rb_node);
  2192. if (trans->transaction->in_commit ||
  2193. trans->transaction->delayed_refs.flushing)
  2194. goto out;
  2195. BUG_ON(!block->key_ready);
  2196. node = build_backref_tree(rc, cache, &block->key,
  2197. level, block->bytenr);
  2198. if (IS_ERR(node)) {
  2199. err = PTR_ERR(node);
  2200. goto out;
  2201. }
  2202. ret = relocate_tree_block(trans, rc, node,
  2203. &block->key, path);
  2204. if (ret < 0) {
  2205. err = ret;
  2206. goto out;
  2207. }
  2208. remove_backref_node(cache, node);
  2209. rb_node = rb_next(rb_node);
  2210. }
  2211. free_block_list(blocks);
  2212. if (upper) {
  2213. ret = link_to_upper(trans, upper, path);
  2214. if (ret < 0) {
  2215. err = ret;
  2216. break;
  2217. }
  2218. remove_backref_node(cache, upper);
  2219. }
  2220. }
  2221. out:
  2222. free_block_list(blocks);
  2223. ret = finish_pending_nodes(trans, cache, path);
  2224. if (ret < 0)
  2225. err = ret;
  2226. kfree(cache);
  2227. btrfs_free_path(path);
  2228. return err;
  2229. }
  2230. static noinline_for_stack
  2231. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2232. u64 block_start)
  2233. {
  2234. struct btrfs_root *root = BTRFS_I(inode)->root;
  2235. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2236. struct extent_map *em;
  2237. int ret = 0;
  2238. em = alloc_extent_map(GFP_NOFS);
  2239. if (!em)
  2240. return -ENOMEM;
  2241. em->start = start;
  2242. em->len = end + 1 - start;
  2243. em->block_len = em->len;
  2244. em->block_start = block_start;
  2245. em->bdev = root->fs_info->fs_devices->latest_bdev;
  2246. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2247. lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  2248. while (1) {
  2249. write_lock(&em_tree->lock);
  2250. ret = add_extent_mapping(em_tree, em);
  2251. write_unlock(&em_tree->lock);
  2252. if (ret != -EEXIST) {
  2253. free_extent_map(em);
  2254. break;
  2255. }
  2256. btrfs_drop_extent_cache(inode, start, end, 0);
  2257. }
  2258. unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  2259. return ret;
  2260. }
  2261. static int relocate_file_extent_cluster(struct inode *inode,
  2262. struct file_extent_cluster *cluster)
  2263. {
  2264. u64 page_start;
  2265. u64 page_end;
  2266. u64 offset = BTRFS_I(inode)->index_cnt;
  2267. unsigned long index;
  2268. unsigned long last_index;
  2269. unsigned int dirty_page = 0;
  2270. struct page *page;
  2271. struct file_ra_state *ra;
  2272. int nr = 0;
  2273. int ret = 0;
  2274. if (!cluster->nr)
  2275. return 0;
  2276. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2277. if (!ra)
  2278. return -ENOMEM;
  2279. index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
  2280. last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
  2281. mutex_lock(&inode->i_mutex);
  2282. i_size_write(inode, cluster->end + 1 - offset);
  2283. ret = setup_extent_mapping(inode, cluster->start - offset,
  2284. cluster->end - offset, cluster->start);
  2285. if (ret)
  2286. goto out_unlock;
  2287. file_ra_state_init(ra, inode->i_mapping);
  2288. WARN_ON(cluster->start != cluster->boundary[0]);
  2289. while (index <= last_index) {
  2290. page = find_lock_page(inode->i_mapping, index);
  2291. if (!page) {
  2292. page_cache_sync_readahead(inode->i_mapping,
  2293. ra, NULL, index,
  2294. last_index + 1 - index);
  2295. page = grab_cache_page(inode->i_mapping, index);
  2296. if (!page) {
  2297. ret = -ENOMEM;
  2298. goto out_unlock;
  2299. }
  2300. }
  2301. if (PageReadahead(page)) {
  2302. page_cache_async_readahead(inode->i_mapping,
  2303. ra, NULL, page, index,
  2304. last_index + 1 - index);
  2305. }
  2306. if (!PageUptodate(page)) {
  2307. btrfs_readpage(NULL, page);
  2308. lock_page(page);
  2309. if (!PageUptodate(page)) {
  2310. unlock_page(page);
  2311. page_cache_release(page);
  2312. ret = -EIO;
  2313. goto out_unlock;
  2314. }
  2315. }
  2316. page_start = (u64)page->index << PAGE_CACHE_SHIFT;
  2317. page_end = page_start + PAGE_CACHE_SIZE - 1;
  2318. lock_extent(&BTRFS_I(inode)->io_tree,
  2319. page_start, page_end, GFP_NOFS);
  2320. set_page_extent_mapped(page);
  2321. if (nr < cluster->nr &&
  2322. page_start + offset == cluster->boundary[nr]) {
  2323. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2324. page_start, page_end,
  2325. EXTENT_BOUNDARY, GFP_NOFS);
  2326. nr++;
  2327. }
  2328. btrfs_set_extent_delalloc(inode, page_start, page_end);
  2329. set_page_dirty(page);
  2330. dirty_page++;
  2331. unlock_extent(&BTRFS_I(inode)->io_tree,
  2332. page_start, page_end, GFP_NOFS);
  2333. unlock_page(page);
  2334. page_cache_release(page);
  2335. index++;
  2336. if (nr < cluster->nr &&
  2337. page_end + 1 + offset == cluster->boundary[nr]) {
  2338. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  2339. dirty_page);
  2340. dirty_page = 0;
  2341. }
  2342. }
  2343. if (dirty_page) {
  2344. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  2345. dirty_page);
  2346. }
  2347. WARN_ON(nr != cluster->nr);
  2348. out_unlock:
  2349. mutex_unlock(&inode->i_mutex);
  2350. kfree(ra);
  2351. return ret;
  2352. }
  2353. static noinline_for_stack
  2354. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2355. struct file_extent_cluster *cluster)
  2356. {
  2357. int ret;
  2358. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2359. ret = relocate_file_extent_cluster(inode, cluster);
  2360. if (ret)
  2361. return ret;
  2362. cluster->nr = 0;
  2363. }
  2364. if (!cluster->nr)
  2365. cluster->start = extent_key->objectid;
  2366. else
  2367. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2368. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2369. cluster->boundary[cluster->nr] = extent_key->objectid;
  2370. cluster->nr++;
  2371. if (cluster->nr >= MAX_EXTENTS) {
  2372. ret = relocate_file_extent_cluster(inode, cluster);
  2373. if (ret)
  2374. return ret;
  2375. cluster->nr = 0;
  2376. }
  2377. return 0;
  2378. }
  2379. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2380. static int get_ref_objectid_v0(struct reloc_control *rc,
  2381. struct btrfs_path *path,
  2382. struct btrfs_key *extent_key,
  2383. u64 *ref_objectid, int *path_change)
  2384. {
  2385. struct btrfs_key key;
  2386. struct extent_buffer *leaf;
  2387. struct btrfs_extent_ref_v0 *ref0;
  2388. int ret;
  2389. int slot;
  2390. leaf = path->nodes[0];
  2391. slot = path->slots[0];
  2392. while (1) {
  2393. if (slot >= btrfs_header_nritems(leaf)) {
  2394. ret = btrfs_next_leaf(rc->extent_root, path);
  2395. if (ret < 0)
  2396. return ret;
  2397. BUG_ON(ret > 0);
  2398. leaf = path->nodes[0];
  2399. slot = path->slots[0];
  2400. if (path_change)
  2401. *path_change = 1;
  2402. }
  2403. btrfs_item_key_to_cpu(leaf, &key, slot);
  2404. if (key.objectid != extent_key->objectid)
  2405. return -ENOENT;
  2406. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2407. slot++;
  2408. continue;
  2409. }
  2410. ref0 = btrfs_item_ptr(leaf, slot,
  2411. struct btrfs_extent_ref_v0);
  2412. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2413. break;
  2414. }
  2415. return 0;
  2416. }
  2417. #endif
  2418. /*
  2419. * helper to add a tree block to the list.
  2420. * the major work is getting the generation and level of the block
  2421. */
  2422. static int add_tree_block(struct reloc_control *rc,
  2423. struct btrfs_key *extent_key,
  2424. struct btrfs_path *path,
  2425. struct rb_root *blocks)
  2426. {
  2427. struct extent_buffer *eb;
  2428. struct btrfs_extent_item *ei;
  2429. struct btrfs_tree_block_info *bi;
  2430. struct tree_block *block;
  2431. struct rb_node *rb_node;
  2432. u32 item_size;
  2433. int level = -1;
  2434. int generation;
  2435. eb = path->nodes[0];
  2436. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2437. if (item_size >= sizeof(*ei) + sizeof(*bi)) {
  2438. ei = btrfs_item_ptr(eb, path->slots[0],
  2439. struct btrfs_extent_item);
  2440. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2441. generation = btrfs_extent_generation(eb, ei);
  2442. level = btrfs_tree_block_level(eb, bi);
  2443. } else {
  2444. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2445. u64 ref_owner;
  2446. int ret;
  2447. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2448. ret = get_ref_objectid_v0(rc, path, extent_key,
  2449. &ref_owner, NULL);
  2450. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  2451. level = (int)ref_owner;
  2452. /* FIXME: get real generation */
  2453. generation = 0;
  2454. #else
  2455. BUG();
  2456. #endif
  2457. }
  2458. btrfs_release_path(rc->extent_root, path);
  2459. BUG_ON(level == -1);
  2460. block = kmalloc(sizeof(*block), GFP_NOFS);
  2461. if (!block)
  2462. return -ENOMEM;
  2463. block->bytenr = extent_key->objectid;
  2464. block->key.objectid = extent_key->offset;
  2465. block->key.offset = generation;
  2466. block->level = level;
  2467. block->key_ready = 0;
  2468. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2469. BUG_ON(rb_node);
  2470. return 0;
  2471. }
  2472. /*
  2473. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  2474. */
  2475. static int __add_tree_block(struct reloc_control *rc,
  2476. u64 bytenr, u32 blocksize,
  2477. struct rb_root *blocks)
  2478. {
  2479. struct btrfs_path *path;
  2480. struct btrfs_key key;
  2481. int ret;
  2482. if (tree_block_processed(bytenr, blocksize, rc))
  2483. return 0;
  2484. if (tree_search(blocks, bytenr))
  2485. return 0;
  2486. path = btrfs_alloc_path();
  2487. if (!path)
  2488. return -ENOMEM;
  2489. key.objectid = bytenr;
  2490. key.type = BTRFS_EXTENT_ITEM_KEY;
  2491. key.offset = blocksize;
  2492. path->search_commit_root = 1;
  2493. path->skip_locking = 1;
  2494. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  2495. if (ret < 0)
  2496. goto out;
  2497. BUG_ON(ret);
  2498. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  2499. ret = add_tree_block(rc, &key, path, blocks);
  2500. out:
  2501. btrfs_free_path(path);
  2502. return ret;
  2503. }
  2504. /*
  2505. * helper to check if the block use full backrefs for pointers in it
  2506. */
  2507. static int block_use_full_backref(struct reloc_control *rc,
  2508. struct extent_buffer *eb)
  2509. {
  2510. struct btrfs_path *path;
  2511. struct btrfs_extent_item *ei;
  2512. struct btrfs_key key;
  2513. u64 flags;
  2514. int ret;
  2515. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  2516. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  2517. return 1;
  2518. path = btrfs_alloc_path();
  2519. BUG_ON(!path);
  2520. key.objectid = eb->start;
  2521. key.type = BTRFS_EXTENT_ITEM_KEY;
  2522. key.offset = eb->len;
  2523. path->search_commit_root = 1;
  2524. path->skip_locking = 1;
  2525. ret = btrfs_search_slot(NULL, rc->extent_root,
  2526. &key, path, 0, 0);
  2527. BUG_ON(ret);
  2528. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2529. struct btrfs_extent_item);
  2530. flags = btrfs_extent_flags(path->nodes[0], ei);
  2531. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  2532. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  2533. ret = 1;
  2534. else
  2535. ret = 0;
  2536. btrfs_free_path(path);
  2537. return ret;
  2538. }
  2539. /*
  2540. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  2541. * this function scans fs tree to find blocks reference the data extent
  2542. */
  2543. static int find_data_references(struct reloc_control *rc,
  2544. struct btrfs_key *extent_key,
  2545. struct extent_buffer *leaf,
  2546. struct btrfs_extent_data_ref *ref,
  2547. struct rb_root *blocks)
  2548. {
  2549. struct btrfs_path *path;
  2550. struct tree_block *block;
  2551. struct btrfs_root *root;
  2552. struct btrfs_file_extent_item *fi;
  2553. struct rb_node *rb_node;
  2554. struct btrfs_key key;
  2555. u64 ref_root;
  2556. u64 ref_objectid;
  2557. u64 ref_offset;
  2558. u32 ref_count;
  2559. u32 nritems;
  2560. int err = 0;
  2561. int added = 0;
  2562. int counted;
  2563. int ret;
  2564. path = btrfs_alloc_path();
  2565. if (!path)
  2566. return -ENOMEM;
  2567. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  2568. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  2569. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  2570. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  2571. root = read_fs_root(rc->extent_root->fs_info, ref_root);
  2572. if (IS_ERR(root)) {
  2573. err = PTR_ERR(root);
  2574. goto out;
  2575. }
  2576. key.objectid = ref_objectid;
  2577. key.offset = ref_offset;
  2578. key.type = BTRFS_EXTENT_DATA_KEY;
  2579. path->search_commit_root = 1;
  2580. path->skip_locking = 1;
  2581. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2582. if (ret < 0) {
  2583. err = ret;
  2584. goto out;
  2585. }
  2586. leaf = path->nodes[0];
  2587. nritems = btrfs_header_nritems(leaf);
  2588. /*
  2589. * the references in tree blocks that use full backrefs
  2590. * are not counted in
  2591. */
  2592. if (block_use_full_backref(rc, leaf))
  2593. counted = 0;
  2594. else
  2595. counted = 1;
  2596. rb_node = tree_search(blocks, leaf->start);
  2597. if (rb_node) {
  2598. if (counted)
  2599. added = 1;
  2600. else
  2601. path->slots[0] = nritems;
  2602. }
  2603. while (ref_count > 0) {
  2604. while (path->slots[0] >= nritems) {
  2605. ret = btrfs_next_leaf(root, path);
  2606. if (ret < 0) {
  2607. err = ret;
  2608. goto out;
  2609. }
  2610. if (ret > 0) {
  2611. WARN_ON(1);
  2612. goto out;
  2613. }
  2614. leaf = path->nodes[0];
  2615. nritems = btrfs_header_nritems(leaf);
  2616. added = 0;
  2617. if (block_use_full_backref(rc, leaf))
  2618. counted = 0;
  2619. else
  2620. counted = 1;
  2621. rb_node = tree_search(blocks, leaf->start);
  2622. if (rb_node) {
  2623. if (counted)
  2624. added = 1;
  2625. else
  2626. path->slots[0] = nritems;
  2627. }
  2628. }
  2629. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2630. if (key.objectid != ref_objectid ||
  2631. key.type != BTRFS_EXTENT_DATA_KEY) {
  2632. WARN_ON(1);
  2633. break;
  2634. }
  2635. fi = btrfs_item_ptr(leaf, path->slots[0],
  2636. struct btrfs_file_extent_item);
  2637. if (btrfs_file_extent_type(leaf, fi) ==
  2638. BTRFS_FILE_EXTENT_INLINE)
  2639. goto next;
  2640. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  2641. extent_key->objectid)
  2642. goto next;
  2643. key.offset -= btrfs_file_extent_offset(leaf, fi);
  2644. if (key.offset != ref_offset)
  2645. goto next;
  2646. if (counted)
  2647. ref_count--;
  2648. if (added)
  2649. goto next;
  2650. if (!tree_block_processed(leaf->start, leaf->len, rc)) {
  2651. block = kmalloc(sizeof(*block), GFP_NOFS);
  2652. if (!block) {
  2653. err = -ENOMEM;
  2654. break;
  2655. }
  2656. block->bytenr = leaf->start;
  2657. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  2658. block->level = 0;
  2659. block->key_ready = 1;
  2660. rb_node = tree_insert(blocks, block->bytenr,
  2661. &block->rb_node);
  2662. BUG_ON(rb_node);
  2663. }
  2664. if (counted)
  2665. added = 1;
  2666. else
  2667. path->slots[0] = nritems;
  2668. next:
  2669. path->slots[0]++;
  2670. }
  2671. out:
  2672. btrfs_free_path(path);
  2673. return err;
  2674. }
  2675. /*
  2676. * hepler to find all tree blocks that reference a given data extent
  2677. */
  2678. static noinline_for_stack
  2679. int add_data_references(struct reloc_control *rc,
  2680. struct btrfs_key *extent_key,
  2681. struct btrfs_path *path,
  2682. struct rb_root *blocks)
  2683. {
  2684. struct btrfs_key key;
  2685. struct extent_buffer *eb;
  2686. struct btrfs_extent_data_ref *dref;
  2687. struct btrfs_extent_inline_ref *iref;
  2688. unsigned long ptr;
  2689. unsigned long end;
  2690. u32 blocksize;
  2691. int ret;
  2692. int err = 0;
  2693. ret = get_new_location(rc->data_inode, NULL, extent_key->objectid,
  2694. extent_key->offset);
  2695. BUG_ON(ret < 0);
  2696. if (ret > 0) {
  2697. /* the relocated data is fragmented */
  2698. rc->extents_skipped++;
  2699. btrfs_release_path(rc->extent_root, path);
  2700. return 0;
  2701. }
  2702. blocksize = btrfs_level_size(rc->extent_root, 0);
  2703. eb = path->nodes[0];
  2704. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  2705. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  2706. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2707. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  2708. ptr = end;
  2709. else
  2710. #endif
  2711. ptr += sizeof(struct btrfs_extent_item);
  2712. while (ptr < end) {
  2713. iref = (struct btrfs_extent_inline_ref *)ptr;
  2714. key.type = btrfs_extent_inline_ref_type(eb, iref);
  2715. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  2716. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  2717. ret = __add_tree_block(rc, key.offset, blocksize,
  2718. blocks);
  2719. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  2720. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2721. ret = find_data_references(rc, extent_key,
  2722. eb, dref, blocks);
  2723. } else {
  2724. BUG();
  2725. }
  2726. ptr += btrfs_extent_inline_ref_size(key.type);
  2727. }
  2728. WARN_ON(ptr > end);
  2729. while (1) {
  2730. cond_resched();
  2731. eb = path->nodes[0];
  2732. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  2733. ret = btrfs_next_leaf(rc->extent_root, path);
  2734. if (ret < 0) {
  2735. err = ret;
  2736. break;
  2737. }
  2738. if (ret > 0)
  2739. break;
  2740. eb = path->nodes[0];
  2741. }
  2742. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  2743. if (key.objectid != extent_key->objectid)
  2744. break;
  2745. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2746. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  2747. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  2748. #else
  2749. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  2750. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  2751. #endif
  2752. ret = __add_tree_block(rc, key.offset, blocksize,
  2753. blocks);
  2754. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  2755. dref = btrfs_item_ptr(eb, path->slots[0],
  2756. struct btrfs_extent_data_ref);
  2757. ret = find_data_references(rc, extent_key,
  2758. eb, dref, blocks);
  2759. } else {
  2760. ret = 0;
  2761. }
  2762. if (ret) {
  2763. err = ret;
  2764. break;
  2765. }
  2766. path->slots[0]++;
  2767. }
  2768. btrfs_release_path(rc->extent_root, path);
  2769. if (err)
  2770. free_block_list(blocks);
  2771. return err;
  2772. }
  2773. /*
  2774. * hepler to find next unprocessed extent
  2775. */
  2776. static noinline_for_stack
  2777. int find_next_extent(struct btrfs_trans_handle *trans,
  2778. struct reloc_control *rc, struct btrfs_path *path)
  2779. {
  2780. struct btrfs_key key;
  2781. struct extent_buffer *leaf;
  2782. u64 start, end, last;
  2783. int ret;
  2784. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  2785. while (1) {
  2786. cond_resched();
  2787. if (rc->search_start >= last) {
  2788. ret = 1;
  2789. break;
  2790. }
  2791. key.objectid = rc->search_start;
  2792. key.type = BTRFS_EXTENT_ITEM_KEY;
  2793. key.offset = 0;
  2794. path->search_commit_root = 1;
  2795. path->skip_locking = 1;
  2796. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  2797. 0, 0);
  2798. if (ret < 0)
  2799. break;
  2800. next:
  2801. leaf = path->nodes[0];
  2802. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  2803. ret = btrfs_next_leaf(rc->extent_root, path);
  2804. if (ret != 0)
  2805. break;
  2806. leaf = path->nodes[0];
  2807. }
  2808. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2809. if (key.objectid >= last) {
  2810. ret = 1;
  2811. break;
  2812. }
  2813. if (key.type != BTRFS_EXTENT_ITEM_KEY ||
  2814. key.objectid + key.offset <= rc->search_start) {
  2815. path->slots[0]++;
  2816. goto next;
  2817. }
  2818. ret = find_first_extent_bit(&rc->processed_blocks,
  2819. key.objectid, &start, &end,
  2820. EXTENT_DIRTY);
  2821. if (ret == 0 && start <= key.objectid) {
  2822. btrfs_release_path(rc->extent_root, path);
  2823. rc->search_start = end + 1;
  2824. } else {
  2825. rc->search_start = key.objectid + key.offset;
  2826. return 0;
  2827. }
  2828. }
  2829. btrfs_release_path(rc->extent_root, path);
  2830. return ret;
  2831. }
  2832. static void set_reloc_control(struct reloc_control *rc)
  2833. {
  2834. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2835. mutex_lock(&fs_info->trans_mutex);
  2836. fs_info->reloc_ctl = rc;
  2837. mutex_unlock(&fs_info->trans_mutex);
  2838. }
  2839. static void unset_reloc_control(struct reloc_control *rc)
  2840. {
  2841. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2842. mutex_lock(&fs_info->trans_mutex);
  2843. fs_info->reloc_ctl = NULL;
  2844. mutex_unlock(&fs_info->trans_mutex);
  2845. }
  2846. static int check_extent_flags(u64 flags)
  2847. {
  2848. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  2849. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  2850. return 1;
  2851. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  2852. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  2853. return 1;
  2854. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  2855. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  2856. return 1;
  2857. return 0;
  2858. }
  2859. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  2860. {
  2861. struct rb_root blocks = RB_ROOT;
  2862. struct btrfs_key key;
  2863. struct file_extent_cluster *cluster;
  2864. struct btrfs_trans_handle *trans = NULL;
  2865. struct btrfs_path *path;
  2866. struct btrfs_extent_item *ei;
  2867. unsigned long nr;
  2868. u64 flags;
  2869. u32 item_size;
  2870. int ret;
  2871. int err = 0;
  2872. cluster = kzalloc(sizeof(*cluster), GFP_NOFS);
  2873. if (!cluster)
  2874. return -ENOMEM;
  2875. path = btrfs_alloc_path();
  2876. if (!path)
  2877. return -ENOMEM;
  2878. rc->extents_found = 0;
  2879. rc->extents_skipped = 0;
  2880. rc->search_start = rc->block_group->key.objectid;
  2881. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
  2882. GFP_NOFS);
  2883. rc->create_reloc_root = 1;
  2884. set_reloc_control(rc);
  2885. trans = btrfs_start_transaction(rc->extent_root, 1);
  2886. btrfs_commit_transaction(trans, rc->extent_root);
  2887. while (1) {
  2888. trans = btrfs_start_transaction(rc->extent_root, 1);
  2889. ret = find_next_extent(trans, rc, path);
  2890. if (ret < 0)
  2891. err = ret;
  2892. if (ret != 0)
  2893. break;
  2894. rc->extents_found++;
  2895. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2896. struct btrfs_extent_item);
  2897. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  2898. item_size = btrfs_item_size_nr(path->nodes[0],
  2899. path->slots[0]);
  2900. if (item_size >= sizeof(*ei)) {
  2901. flags = btrfs_extent_flags(path->nodes[0], ei);
  2902. ret = check_extent_flags(flags);
  2903. BUG_ON(ret);
  2904. } else {
  2905. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2906. u64 ref_owner;
  2907. int path_change = 0;
  2908. BUG_ON(item_size !=
  2909. sizeof(struct btrfs_extent_item_v0));
  2910. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  2911. &path_change);
  2912. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  2913. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  2914. else
  2915. flags = BTRFS_EXTENT_FLAG_DATA;
  2916. if (path_change) {
  2917. btrfs_release_path(rc->extent_root, path);
  2918. path->search_commit_root = 1;
  2919. path->skip_locking = 1;
  2920. ret = btrfs_search_slot(NULL, rc->extent_root,
  2921. &key, path, 0, 0);
  2922. if (ret < 0) {
  2923. err = ret;
  2924. break;
  2925. }
  2926. BUG_ON(ret > 0);
  2927. }
  2928. #else
  2929. BUG();
  2930. #endif
  2931. }
  2932. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  2933. ret = add_tree_block(rc, &key, path, &blocks);
  2934. } else if (rc->stage == UPDATE_DATA_PTRS &&
  2935. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  2936. ret = add_data_references(rc, &key, path, &blocks);
  2937. } else {
  2938. btrfs_release_path(rc->extent_root, path);
  2939. ret = 0;
  2940. }
  2941. if (ret < 0) {
  2942. err = 0;
  2943. break;
  2944. }
  2945. if (!RB_EMPTY_ROOT(&blocks)) {
  2946. ret = relocate_tree_blocks(trans, rc, &blocks);
  2947. if (ret < 0) {
  2948. err = ret;
  2949. break;
  2950. }
  2951. }
  2952. nr = trans->blocks_used;
  2953. btrfs_end_transaction(trans, rc->extent_root);
  2954. trans = NULL;
  2955. btrfs_btree_balance_dirty(rc->extent_root, nr);
  2956. if (rc->stage == MOVE_DATA_EXTENTS &&
  2957. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  2958. rc->found_file_extent = 1;
  2959. ret = relocate_data_extent(rc->data_inode,
  2960. &key, cluster);
  2961. if (ret < 0) {
  2962. err = ret;
  2963. break;
  2964. }
  2965. }
  2966. }
  2967. btrfs_free_path(path);
  2968. if (trans) {
  2969. nr = trans->blocks_used;
  2970. btrfs_end_transaction(trans, rc->extent_root);
  2971. btrfs_btree_balance_dirty(rc->extent_root, nr);
  2972. }
  2973. if (!err) {
  2974. ret = relocate_file_extent_cluster(rc->data_inode, cluster);
  2975. if (ret < 0)
  2976. err = ret;
  2977. }
  2978. kfree(cluster);
  2979. rc->create_reloc_root = 0;
  2980. smp_mb();
  2981. if (rc->extents_found > 0) {
  2982. trans = btrfs_start_transaction(rc->extent_root, 1);
  2983. btrfs_commit_transaction(trans, rc->extent_root);
  2984. }
  2985. merge_reloc_roots(rc);
  2986. unset_reloc_control(rc);
  2987. /* get rid of pinned extents */
  2988. trans = btrfs_start_transaction(rc->extent_root, 1);
  2989. btrfs_commit_transaction(trans, rc->extent_root);
  2990. return err;
  2991. }
  2992. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  2993. struct btrfs_root *root, u64 objectid)
  2994. {
  2995. struct btrfs_path *path;
  2996. struct btrfs_inode_item *item;
  2997. struct extent_buffer *leaf;
  2998. int ret;
  2999. path = btrfs_alloc_path();
  3000. if (!path)
  3001. return -ENOMEM;
  3002. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3003. if (ret)
  3004. goto out;
  3005. leaf = path->nodes[0];
  3006. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3007. memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
  3008. btrfs_set_inode_generation(leaf, item, 1);
  3009. btrfs_set_inode_size(leaf, item, 0);
  3010. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3011. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
  3012. btrfs_mark_buffer_dirty(leaf);
  3013. btrfs_release_path(root, path);
  3014. out:
  3015. btrfs_free_path(path);
  3016. return ret;
  3017. }
  3018. /*
  3019. * helper to create inode for data relocation.
  3020. * the inode is in data relocation tree and its link count is 0
  3021. */
  3022. static struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3023. struct btrfs_block_group_cache *group)
  3024. {
  3025. struct inode *inode = NULL;
  3026. struct btrfs_trans_handle *trans;
  3027. struct btrfs_root *root;
  3028. struct btrfs_key key;
  3029. unsigned long nr;
  3030. u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
  3031. int err = 0;
  3032. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3033. if (IS_ERR(root))
  3034. return ERR_CAST(root);
  3035. trans = btrfs_start_transaction(root, 1);
  3036. BUG_ON(!trans);
  3037. err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
  3038. if (err)
  3039. goto out;
  3040. err = __insert_orphan_inode(trans, root, objectid);
  3041. BUG_ON(err);
  3042. key.objectid = objectid;
  3043. key.type = BTRFS_INODE_ITEM_KEY;
  3044. key.offset = 0;
  3045. inode = btrfs_iget(root->fs_info->sb, &key, root);
  3046. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3047. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3048. err = btrfs_orphan_add(trans, inode);
  3049. out:
  3050. nr = trans->blocks_used;
  3051. btrfs_end_transaction(trans, root);
  3052. btrfs_btree_balance_dirty(root, nr);
  3053. if (err) {
  3054. if (inode)
  3055. iput(inode);
  3056. inode = ERR_PTR(err);
  3057. }
  3058. return inode;
  3059. }
  3060. /*
  3061. * function to relocate all extents in a block group.
  3062. */
  3063. int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
  3064. {
  3065. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3066. struct reloc_control *rc;
  3067. int ret;
  3068. int err = 0;
  3069. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3070. if (!rc)
  3071. return -ENOMEM;
  3072. mapping_tree_init(&rc->reloc_root_tree);
  3073. extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
  3074. INIT_LIST_HEAD(&rc->reloc_roots);
  3075. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3076. BUG_ON(!rc->block_group);
  3077. btrfs_init_workers(&rc->workers, "relocate",
  3078. fs_info->thread_pool_size, NULL);
  3079. rc->extent_root = extent_root;
  3080. btrfs_prepare_block_group_relocation(extent_root, rc->block_group);
  3081. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3082. if (IS_ERR(rc->data_inode)) {
  3083. err = PTR_ERR(rc->data_inode);
  3084. rc->data_inode = NULL;
  3085. goto out;
  3086. }
  3087. printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
  3088. (unsigned long long)rc->block_group->key.objectid,
  3089. (unsigned long long)rc->block_group->flags);
  3090. btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
  3091. btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
  3092. while (1) {
  3093. rc->extents_found = 0;
  3094. rc->extents_skipped = 0;
  3095. mutex_lock(&fs_info->cleaner_mutex);
  3096. btrfs_clean_old_snapshots(fs_info->tree_root);
  3097. ret = relocate_block_group(rc);
  3098. mutex_unlock(&fs_info->cleaner_mutex);
  3099. if (ret < 0) {
  3100. err = ret;
  3101. break;
  3102. }
  3103. if (rc->extents_found == 0)
  3104. break;
  3105. printk(KERN_INFO "btrfs: found %llu extents\n",
  3106. (unsigned long long)rc->extents_found);
  3107. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3108. btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
  3109. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3110. 0, -1);
  3111. rc->stage = UPDATE_DATA_PTRS;
  3112. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3113. rc->extents_skipped >= rc->extents_found) {
  3114. iput(rc->data_inode);
  3115. rc->data_inode = create_reloc_inode(fs_info,
  3116. rc->block_group);
  3117. if (IS_ERR(rc->data_inode)) {
  3118. err = PTR_ERR(rc->data_inode);
  3119. rc->data_inode = NULL;
  3120. break;
  3121. }
  3122. rc->stage = MOVE_DATA_EXTENTS;
  3123. rc->found_file_extent = 0;
  3124. }
  3125. }
  3126. filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
  3127. rc->block_group->key.objectid,
  3128. rc->block_group->key.objectid +
  3129. rc->block_group->key.offset - 1);
  3130. WARN_ON(rc->block_group->pinned > 0);
  3131. WARN_ON(rc->block_group->reserved > 0);
  3132. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3133. out:
  3134. iput(rc->data_inode);
  3135. btrfs_stop_workers(&rc->workers);
  3136. btrfs_put_block_group(rc->block_group);
  3137. kfree(rc);
  3138. return err;
  3139. }
  3140. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3141. {
  3142. struct btrfs_trans_handle *trans;
  3143. int ret;
  3144. trans = btrfs_start_transaction(root->fs_info->tree_root, 1);
  3145. memset(&root->root_item.drop_progress, 0,
  3146. sizeof(root->root_item.drop_progress));
  3147. root->root_item.drop_level = 0;
  3148. btrfs_set_root_refs(&root->root_item, 0);
  3149. ret = btrfs_update_root(trans, root->fs_info->tree_root,
  3150. &root->root_key, &root->root_item);
  3151. BUG_ON(ret);
  3152. ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
  3153. BUG_ON(ret);
  3154. return 0;
  3155. }
  3156. /*
  3157. * recover relocation interrupted by system crash.
  3158. *
  3159. * this function resumes merging reloc trees with corresponding fs trees.
  3160. * this is important for keeping the sharing of tree blocks
  3161. */
  3162. int btrfs_recover_relocation(struct btrfs_root *root)
  3163. {
  3164. LIST_HEAD(reloc_roots);
  3165. struct btrfs_key key;
  3166. struct btrfs_root *fs_root;
  3167. struct btrfs_root *reloc_root;
  3168. struct btrfs_path *path;
  3169. struct extent_buffer *leaf;
  3170. struct reloc_control *rc = NULL;
  3171. struct btrfs_trans_handle *trans;
  3172. int ret;
  3173. int err = 0;
  3174. path = btrfs_alloc_path();
  3175. if (!path)
  3176. return -ENOMEM;
  3177. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3178. key.type = BTRFS_ROOT_ITEM_KEY;
  3179. key.offset = (u64)-1;
  3180. while (1) {
  3181. ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
  3182. path, 0, 0);
  3183. if (ret < 0) {
  3184. err = ret;
  3185. goto out;
  3186. }
  3187. if (ret > 0) {
  3188. if (path->slots[0] == 0)
  3189. break;
  3190. path->slots[0]--;
  3191. }
  3192. leaf = path->nodes[0];
  3193. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3194. btrfs_release_path(root->fs_info->tree_root, path);
  3195. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3196. key.type != BTRFS_ROOT_ITEM_KEY)
  3197. break;
  3198. reloc_root = btrfs_read_fs_root_no_radix(root, &key);
  3199. if (IS_ERR(reloc_root)) {
  3200. err = PTR_ERR(reloc_root);
  3201. goto out;
  3202. }
  3203. list_add(&reloc_root->root_list, &reloc_roots);
  3204. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3205. fs_root = read_fs_root(root->fs_info,
  3206. reloc_root->root_key.offset);
  3207. if (IS_ERR(fs_root)) {
  3208. ret = PTR_ERR(fs_root);
  3209. if (ret != -ENOENT) {
  3210. err = ret;
  3211. goto out;
  3212. }
  3213. mark_garbage_root(reloc_root);
  3214. }
  3215. }
  3216. if (key.offset == 0)
  3217. break;
  3218. key.offset--;
  3219. }
  3220. btrfs_release_path(root->fs_info->tree_root, path);
  3221. if (list_empty(&reloc_roots))
  3222. goto out;
  3223. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3224. if (!rc) {
  3225. err = -ENOMEM;
  3226. goto out;
  3227. }
  3228. mapping_tree_init(&rc->reloc_root_tree);
  3229. INIT_LIST_HEAD(&rc->reloc_roots);
  3230. btrfs_init_workers(&rc->workers, "relocate",
  3231. root->fs_info->thread_pool_size, NULL);
  3232. rc->extent_root = root->fs_info->extent_root;
  3233. set_reloc_control(rc);
  3234. while (!list_empty(&reloc_roots)) {
  3235. reloc_root = list_entry(reloc_roots.next,
  3236. struct btrfs_root, root_list);
  3237. list_del(&reloc_root->root_list);
  3238. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3239. list_add_tail(&reloc_root->root_list,
  3240. &rc->reloc_roots);
  3241. continue;
  3242. }
  3243. fs_root = read_fs_root(root->fs_info,
  3244. reloc_root->root_key.offset);
  3245. BUG_ON(IS_ERR(fs_root));
  3246. __add_reloc_root(reloc_root);
  3247. fs_root->reloc_root = reloc_root;
  3248. }
  3249. trans = btrfs_start_transaction(rc->extent_root, 1);
  3250. btrfs_commit_transaction(trans, rc->extent_root);
  3251. merge_reloc_roots(rc);
  3252. unset_reloc_control(rc);
  3253. trans = btrfs_start_transaction(rc->extent_root, 1);
  3254. btrfs_commit_transaction(trans, rc->extent_root);
  3255. out:
  3256. if (rc) {
  3257. btrfs_stop_workers(&rc->workers);
  3258. kfree(rc);
  3259. }
  3260. while (!list_empty(&reloc_roots)) {
  3261. reloc_root = list_entry(reloc_roots.next,
  3262. struct btrfs_root, root_list);
  3263. list_del(&reloc_root->root_list);
  3264. free_extent_buffer(reloc_root->node);
  3265. free_extent_buffer(reloc_root->commit_root);
  3266. kfree(reloc_root);
  3267. }
  3268. btrfs_free_path(path);
  3269. if (err == 0) {
  3270. /* cleanup orphan inode in data relocation tree */
  3271. fs_root = read_fs_root(root->fs_info,
  3272. BTRFS_DATA_RELOC_TREE_OBJECTID);
  3273. if (IS_ERR(fs_root))
  3274. err = PTR_ERR(fs_root);
  3275. btrfs_orphan_cleanup(fs_root);
  3276. }
  3277. return err;
  3278. }
  3279. /*
  3280. * helper to add ordered checksum for data relocation.
  3281. *
  3282. * cloning checksum properly handles the nodatasum extents.
  3283. * it also saves CPU time to re-calculate the checksum.
  3284. */
  3285. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  3286. {
  3287. struct btrfs_ordered_sum *sums;
  3288. struct btrfs_sector_sum *sector_sum;
  3289. struct btrfs_ordered_extent *ordered;
  3290. struct btrfs_root *root = BTRFS_I(inode)->root;
  3291. size_t offset;
  3292. int ret;
  3293. u64 disk_bytenr;
  3294. LIST_HEAD(list);
  3295. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  3296. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  3297. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  3298. ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
  3299. disk_bytenr + len - 1, &list);
  3300. while (!list_empty(&list)) {
  3301. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  3302. list_del_init(&sums->list);
  3303. sector_sum = sums->sums;
  3304. sums->bytenr = ordered->start;
  3305. offset = 0;
  3306. while (offset < sums->len) {
  3307. sector_sum->bytenr += ordered->start - disk_bytenr;
  3308. sector_sum++;
  3309. offset += root->sectorsize;
  3310. }
  3311. btrfs_add_ordered_sum(inode, ordered, sums);
  3312. }
  3313. btrfs_put_ordered_extent(ordered);
  3314. return 0;
  3315. }