dispc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. /*
  2. * OMAP2 display controller support
  3. *
  4. * Copyright (C) 2005 Nokia Corporation
  5. * Author: Imre Deak <imre.deak@nokia.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/mm.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/clk.h>
  26. #include <linux/io.h>
  27. #include <linux/platform_device.h>
  28. #include <plat/sram.h>
  29. #include <plat/board.h>
  30. #include "omapfb.h"
  31. #include "dispc.h"
  32. #define MODULE_NAME "dispc"
  33. #define DSS_BASE 0x48050000
  34. #define DSS_SYSCONFIG 0x0010
  35. #define DISPC_BASE 0x48050400
  36. /* DISPC common */
  37. #define DISPC_REVISION 0x0000
  38. #define DISPC_SYSCONFIG 0x0010
  39. #define DISPC_SYSSTATUS 0x0014
  40. #define DISPC_IRQSTATUS 0x0018
  41. #define DISPC_IRQENABLE 0x001C
  42. #define DISPC_CONTROL 0x0040
  43. #define DISPC_CONFIG 0x0044
  44. #define DISPC_CAPABLE 0x0048
  45. #define DISPC_DEFAULT_COLOR0 0x004C
  46. #define DISPC_DEFAULT_COLOR1 0x0050
  47. #define DISPC_TRANS_COLOR0 0x0054
  48. #define DISPC_TRANS_COLOR1 0x0058
  49. #define DISPC_LINE_STATUS 0x005C
  50. #define DISPC_LINE_NUMBER 0x0060
  51. #define DISPC_TIMING_H 0x0064
  52. #define DISPC_TIMING_V 0x0068
  53. #define DISPC_POL_FREQ 0x006C
  54. #define DISPC_DIVISOR 0x0070
  55. #define DISPC_SIZE_DIG 0x0078
  56. #define DISPC_SIZE_LCD 0x007C
  57. #define DISPC_DATA_CYCLE1 0x01D4
  58. #define DISPC_DATA_CYCLE2 0x01D8
  59. #define DISPC_DATA_CYCLE3 0x01DC
  60. /* DISPC GFX plane */
  61. #define DISPC_GFX_BA0 0x0080
  62. #define DISPC_GFX_BA1 0x0084
  63. #define DISPC_GFX_POSITION 0x0088
  64. #define DISPC_GFX_SIZE 0x008C
  65. #define DISPC_GFX_ATTRIBUTES 0x00A0
  66. #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
  67. #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
  68. #define DISPC_GFX_ROW_INC 0x00AC
  69. #define DISPC_GFX_PIXEL_INC 0x00B0
  70. #define DISPC_GFX_WINDOW_SKIP 0x00B4
  71. #define DISPC_GFX_TABLE_BA 0x00B8
  72. /* DISPC Video plane 1/2 */
  73. #define DISPC_VID1_BASE 0x00BC
  74. #define DISPC_VID2_BASE 0x014C
  75. /* Offsets into DISPC_VID1/2_BASE */
  76. #define DISPC_VID_BA0 0x0000
  77. #define DISPC_VID_BA1 0x0004
  78. #define DISPC_VID_POSITION 0x0008
  79. #define DISPC_VID_SIZE 0x000C
  80. #define DISPC_VID_ATTRIBUTES 0x0010
  81. #define DISPC_VID_FIFO_THRESHOLD 0x0014
  82. #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
  83. #define DISPC_VID_ROW_INC 0x001C
  84. #define DISPC_VID_PIXEL_INC 0x0020
  85. #define DISPC_VID_FIR 0x0024
  86. #define DISPC_VID_PICTURE_SIZE 0x0028
  87. #define DISPC_VID_ACCU0 0x002C
  88. #define DISPC_VID_ACCU1 0x0030
  89. /* 8 elements in 8 byte increments */
  90. #define DISPC_VID_FIR_COEF_H0 0x0034
  91. /* 8 elements in 8 byte increments */
  92. #define DISPC_VID_FIR_COEF_HV0 0x0038
  93. /* 5 elements in 4 byte increments */
  94. #define DISPC_VID_CONV_COEF0 0x0074
  95. #define DISPC_IRQ_FRAMEMASK 0x0001
  96. #define DISPC_IRQ_VSYNC 0x0002
  97. #define DISPC_IRQ_EVSYNC_EVEN 0x0004
  98. #define DISPC_IRQ_EVSYNC_ODD 0x0008
  99. #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
  100. #define DISPC_IRQ_PROG_LINE_NUM 0x0020
  101. #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
  102. #define DISPC_IRQ_GFX_END_WIN 0x0080
  103. #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
  104. #define DISPC_IRQ_OCP_ERR 0x0200
  105. #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
  106. #define DISPC_IRQ_VID1_END_WIN 0x0800
  107. #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
  108. #define DISPC_IRQ_VID2_END_WIN 0x2000
  109. #define DISPC_IRQ_SYNC_LOST 0x4000
  110. #define DISPC_IRQ_MASK_ALL 0x7fff
  111. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  112. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  113. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  114. DISPC_IRQ_SYNC_LOST)
  115. #define RFBI_CONTROL 0x48050040
  116. #define MAX_PALETTE_SIZE (256 * 16)
  117. #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
  118. #define MOD_REG_FLD(reg, mask, val) \
  119. dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
  120. #define OMAP2_SRAM_START 0x40200000
  121. /* Maximum size, in reality this is smaller if SRAM is partially locked. */
  122. #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
  123. /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
  124. #define DISPC_MEMTYPE_NUM 2
  125. #define RESMAP_SIZE(_page_cnt) \
  126. ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
  127. #define RESMAP_PTR(_res_map, _page_nr) \
  128. (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
  129. #define RESMAP_MASK(_page_nr) \
  130. (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
  131. struct resmap {
  132. unsigned long start;
  133. unsigned page_cnt;
  134. unsigned long *map;
  135. };
  136. #define MAX_IRQ_HANDLERS 4
  137. static struct {
  138. void __iomem *base;
  139. struct omapfb_mem_desc mem_desc;
  140. struct resmap *res_map[DISPC_MEMTYPE_NUM];
  141. atomic_t map_count[OMAPFB_PLANE_NUM];
  142. dma_addr_t palette_paddr;
  143. void *palette_vaddr;
  144. int ext_mode;
  145. struct {
  146. u32 irq_mask;
  147. void (*callback)(void *);
  148. void *data;
  149. } irq_handlers[MAX_IRQ_HANDLERS];
  150. struct completion frame_done;
  151. int fir_hinc[OMAPFB_PLANE_NUM];
  152. int fir_vinc[OMAPFB_PLANE_NUM];
  153. struct clk *dss_ick, *dss1_fck;
  154. struct clk *dss_54m_fck;
  155. enum omapfb_update_mode update_mode;
  156. struct omapfb_device *fbdev;
  157. struct omapfb_color_key color_key;
  158. } dispc;
  159. static void enable_lcd_clocks(int enable);
  160. static void inline dispc_write_reg(int idx, u32 val)
  161. {
  162. __raw_writel(val, dispc.base + idx);
  163. }
  164. static u32 inline dispc_read_reg(int idx)
  165. {
  166. u32 l = __raw_readl(dispc.base + idx);
  167. return l;
  168. }
  169. /* Select RFBI or bypass mode */
  170. static void enable_rfbi_mode(int enable)
  171. {
  172. void __iomem *rfbi_control;
  173. u32 l;
  174. l = dispc_read_reg(DISPC_CONTROL);
  175. /* Enable RFBI, GPIO0/1 */
  176. l &= ~((1 << 11) | (1 << 15) | (1 << 16));
  177. l |= enable ? (1 << 11) : 0;
  178. /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
  179. l |= 1 << 15;
  180. l |= enable ? 0 : (1 << 16);
  181. dispc_write_reg(DISPC_CONTROL, l);
  182. /* Set bypass mode in RFBI module */
  183. rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
  184. if (!rfbi_control) {
  185. pr_err("Unable to ioremap rfbi_control\n");
  186. return;
  187. }
  188. l = __raw_readl(rfbi_control);
  189. l |= enable ? 0 : (1 << 1);
  190. __raw_writel(l, rfbi_control);
  191. iounmap(rfbi_control);
  192. }
  193. static void set_lcd_data_lines(int data_lines)
  194. {
  195. u32 l;
  196. int code = 0;
  197. switch (data_lines) {
  198. case 12:
  199. code = 0;
  200. break;
  201. case 16:
  202. code = 1;
  203. break;
  204. case 18:
  205. code = 2;
  206. break;
  207. case 24:
  208. code = 3;
  209. break;
  210. default:
  211. BUG();
  212. }
  213. l = dispc_read_reg(DISPC_CONTROL);
  214. l &= ~(0x03 << 8);
  215. l |= code << 8;
  216. dispc_write_reg(DISPC_CONTROL, l);
  217. }
  218. static void set_load_mode(int mode)
  219. {
  220. BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
  221. DISPC_LOAD_CLUT_ONCE_FRAME));
  222. MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
  223. }
  224. void omap_dispc_set_lcd_size(int x, int y)
  225. {
  226. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  227. enable_lcd_clocks(1);
  228. MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  229. ((y - 1) << 16) | (x - 1));
  230. enable_lcd_clocks(0);
  231. }
  232. EXPORT_SYMBOL(omap_dispc_set_lcd_size);
  233. void omap_dispc_set_digit_size(int x, int y)
  234. {
  235. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  236. enable_lcd_clocks(1);
  237. MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  238. ((y - 1) << 16) | (x - 1));
  239. enable_lcd_clocks(0);
  240. }
  241. EXPORT_SYMBOL(omap_dispc_set_digit_size);
  242. static void setup_plane_fifo(int plane, int ext_mode)
  243. {
  244. const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  245. DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
  246. DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
  247. const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  248. DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
  249. DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
  250. int low, high;
  251. u32 l;
  252. BUG_ON(plane > 2);
  253. l = dispc_read_reg(fsz_reg[plane]);
  254. l &= FLD_MASK(0, 11);
  255. if (ext_mode) {
  256. low = l * 3 / 4;
  257. high = l;
  258. } else {
  259. low = l / 4;
  260. high = l * 3 / 4;
  261. }
  262. MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
  263. (high << 16) | low);
  264. }
  265. void omap_dispc_enable_lcd_out(int enable)
  266. {
  267. enable_lcd_clocks(1);
  268. MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
  269. enable_lcd_clocks(0);
  270. }
  271. EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
  272. void omap_dispc_enable_digit_out(int enable)
  273. {
  274. enable_lcd_clocks(1);
  275. MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
  276. enable_lcd_clocks(0);
  277. }
  278. EXPORT_SYMBOL(omap_dispc_enable_digit_out);
  279. static inline int _setup_plane(int plane, int channel_out,
  280. u32 paddr, int screen_width,
  281. int pos_x, int pos_y, int width, int height,
  282. int color_mode)
  283. {
  284. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  285. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  286. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  287. const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
  288. DISPC_VID2_BASE + DISPC_VID_BA0 };
  289. const u32 ps_reg[] = { DISPC_GFX_POSITION,
  290. DISPC_VID1_BASE + DISPC_VID_POSITION,
  291. DISPC_VID2_BASE + DISPC_VID_POSITION };
  292. const u32 sz_reg[] = { DISPC_GFX_SIZE,
  293. DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
  294. DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
  295. const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
  296. DISPC_VID1_BASE + DISPC_VID_ROW_INC,
  297. DISPC_VID2_BASE + DISPC_VID_ROW_INC };
  298. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  299. DISPC_VID2_BASE + DISPC_VID_SIZE };
  300. int chout_shift, burst_shift;
  301. int chout_val;
  302. int color_code;
  303. int bpp;
  304. int cconv_en;
  305. int set_vsize;
  306. u32 l;
  307. #ifdef VERBOSE
  308. dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
  309. " pos_x %d pos_y %d width %d height %d color_mode %d\n",
  310. plane, channel_out, paddr, screen_width, pos_x, pos_y,
  311. width, height, color_mode);
  312. #endif
  313. set_vsize = 0;
  314. switch (plane) {
  315. case OMAPFB_PLANE_GFX:
  316. burst_shift = 6;
  317. chout_shift = 8;
  318. break;
  319. case OMAPFB_PLANE_VID1:
  320. case OMAPFB_PLANE_VID2:
  321. burst_shift = 14;
  322. chout_shift = 16;
  323. set_vsize = 1;
  324. break;
  325. default:
  326. return -EINVAL;
  327. }
  328. switch (channel_out) {
  329. case OMAPFB_CHANNEL_OUT_LCD:
  330. chout_val = 0;
  331. break;
  332. case OMAPFB_CHANNEL_OUT_DIGIT:
  333. chout_val = 1;
  334. break;
  335. default:
  336. return -EINVAL;
  337. }
  338. cconv_en = 0;
  339. switch (color_mode) {
  340. case OMAPFB_COLOR_RGB565:
  341. color_code = DISPC_RGB_16_BPP;
  342. bpp = 16;
  343. break;
  344. case OMAPFB_COLOR_YUV422:
  345. if (plane == 0)
  346. return -EINVAL;
  347. color_code = DISPC_UYVY_422;
  348. cconv_en = 1;
  349. bpp = 16;
  350. break;
  351. case OMAPFB_COLOR_YUY422:
  352. if (plane == 0)
  353. return -EINVAL;
  354. color_code = DISPC_YUV2_422;
  355. cconv_en = 1;
  356. bpp = 16;
  357. break;
  358. default:
  359. return -EINVAL;
  360. }
  361. l = dispc_read_reg(at_reg[plane]);
  362. l &= ~(0x0f << 1);
  363. l |= color_code << 1;
  364. l &= ~(1 << 9);
  365. l |= cconv_en << 9;
  366. l &= ~(0x03 << burst_shift);
  367. l |= DISPC_BURST_8x32 << burst_shift;
  368. l &= ~(1 << chout_shift);
  369. l |= chout_val << chout_shift;
  370. dispc_write_reg(at_reg[plane], l);
  371. dispc_write_reg(ba_reg[plane], paddr);
  372. MOD_REG_FLD(ps_reg[plane],
  373. FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
  374. MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
  375. ((height - 1) << 16) | (width - 1));
  376. if (set_vsize) {
  377. /* Set video size if set_scale hasn't set it */
  378. if (!dispc.fir_vinc[plane])
  379. MOD_REG_FLD(vs_reg[plane],
  380. FLD_MASK(16, 11), (height - 1) << 16);
  381. if (!dispc.fir_hinc[plane])
  382. MOD_REG_FLD(vs_reg[plane],
  383. FLD_MASK(0, 11), width - 1);
  384. }
  385. dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
  386. return height * screen_width * bpp / 8;
  387. }
  388. static int omap_dispc_setup_plane(int plane, int channel_out,
  389. unsigned long offset,
  390. int screen_width,
  391. int pos_x, int pos_y, int width, int height,
  392. int color_mode)
  393. {
  394. u32 paddr;
  395. int r;
  396. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  397. return -EINVAL;
  398. paddr = dispc.mem_desc.region[plane].paddr + offset;
  399. enable_lcd_clocks(1);
  400. r = _setup_plane(plane, channel_out, paddr,
  401. screen_width,
  402. pos_x, pos_y, width, height, color_mode);
  403. enable_lcd_clocks(0);
  404. return r;
  405. }
  406. static void write_firh_reg(int plane, int reg, u32 value)
  407. {
  408. u32 base;
  409. if (plane == 1)
  410. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
  411. else
  412. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
  413. dispc_write_reg(base + reg * 8, value);
  414. }
  415. static void write_firhv_reg(int plane, int reg, u32 value)
  416. {
  417. u32 base;
  418. if (plane == 1)
  419. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
  420. else
  421. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
  422. dispc_write_reg(base + reg * 8, value);
  423. }
  424. static void set_upsampling_coef_table(int plane)
  425. {
  426. const u32 coef[][2] = {
  427. { 0x00800000, 0x00800000 },
  428. { 0x0D7CF800, 0x037B02FF },
  429. { 0x1E70F5FF, 0x0C6F05FE },
  430. { 0x335FF5FE, 0x205907FB },
  431. { 0xF74949F7, 0x00404000 },
  432. { 0xF55F33FB, 0x075920FE },
  433. { 0xF5701EFE, 0x056F0CFF },
  434. { 0xF87C0DFF, 0x027B0300 },
  435. };
  436. int i;
  437. for (i = 0; i < 8; i++) {
  438. write_firh_reg(plane, i, coef[i][0]);
  439. write_firhv_reg(plane, i, coef[i][1]);
  440. }
  441. }
  442. static int omap_dispc_set_scale(int plane,
  443. int orig_width, int orig_height,
  444. int out_width, int out_height)
  445. {
  446. const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  447. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  448. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  449. DISPC_VID2_BASE + DISPC_VID_SIZE };
  450. const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
  451. DISPC_VID2_BASE + DISPC_VID_FIR };
  452. u32 l;
  453. int fir_hinc;
  454. int fir_vinc;
  455. if ((unsigned)plane > OMAPFB_PLANE_NUM)
  456. return -ENODEV;
  457. if (plane == OMAPFB_PLANE_GFX &&
  458. (out_width != orig_width || out_height != orig_height))
  459. return -EINVAL;
  460. enable_lcd_clocks(1);
  461. if (orig_width < out_width) {
  462. /*
  463. * Upsampling.
  464. * Currently you can only scale both dimensions in one way.
  465. */
  466. if (orig_height > out_height ||
  467. orig_width * 8 < out_width ||
  468. orig_height * 8 < out_height) {
  469. enable_lcd_clocks(0);
  470. return -EINVAL;
  471. }
  472. set_upsampling_coef_table(plane);
  473. } else if (orig_width > out_width) {
  474. /* Downsampling not yet supported
  475. */
  476. enable_lcd_clocks(0);
  477. return -EINVAL;
  478. }
  479. if (!orig_width || orig_width == out_width)
  480. fir_hinc = 0;
  481. else
  482. fir_hinc = 1024 * orig_width / out_width;
  483. if (!orig_height || orig_height == out_height)
  484. fir_vinc = 0;
  485. else
  486. fir_vinc = 1024 * orig_height / out_height;
  487. dispc.fir_hinc[plane] = fir_hinc;
  488. dispc.fir_vinc[plane] = fir_vinc;
  489. MOD_REG_FLD(fir_reg[plane],
  490. FLD_MASK(16, 12) | FLD_MASK(0, 12),
  491. ((fir_vinc & 4095) << 16) |
  492. (fir_hinc & 4095));
  493. dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
  494. "orig_height %d fir_hinc %d fir_vinc %d\n",
  495. out_width, out_height, orig_width, orig_height,
  496. fir_hinc, fir_vinc);
  497. MOD_REG_FLD(vs_reg[plane],
  498. FLD_MASK(16, 11) | FLD_MASK(0, 11),
  499. ((out_height - 1) << 16) | (out_width - 1));
  500. l = dispc_read_reg(at_reg[plane]);
  501. l &= ~(0x03 << 5);
  502. l |= fir_hinc ? (1 << 5) : 0;
  503. l |= fir_vinc ? (1 << 6) : 0;
  504. dispc_write_reg(at_reg[plane], l);
  505. enable_lcd_clocks(0);
  506. return 0;
  507. }
  508. static int omap_dispc_enable_plane(int plane, int enable)
  509. {
  510. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  511. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  512. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  513. if ((unsigned int)plane > dispc.mem_desc.region_cnt)
  514. return -EINVAL;
  515. enable_lcd_clocks(1);
  516. MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
  517. enable_lcd_clocks(0);
  518. return 0;
  519. }
  520. static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
  521. {
  522. u32 df_reg, tr_reg;
  523. int shift, val;
  524. switch (ck->channel_out) {
  525. case OMAPFB_CHANNEL_OUT_LCD:
  526. df_reg = DISPC_DEFAULT_COLOR0;
  527. tr_reg = DISPC_TRANS_COLOR0;
  528. shift = 10;
  529. break;
  530. case OMAPFB_CHANNEL_OUT_DIGIT:
  531. df_reg = DISPC_DEFAULT_COLOR1;
  532. tr_reg = DISPC_TRANS_COLOR1;
  533. shift = 12;
  534. break;
  535. default:
  536. return -EINVAL;
  537. }
  538. switch (ck->key_type) {
  539. case OMAPFB_COLOR_KEY_DISABLED:
  540. val = 0;
  541. break;
  542. case OMAPFB_COLOR_KEY_GFX_DST:
  543. val = 1;
  544. break;
  545. case OMAPFB_COLOR_KEY_VID_SRC:
  546. val = 3;
  547. break;
  548. default:
  549. return -EINVAL;
  550. }
  551. enable_lcd_clocks(1);
  552. MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
  553. if (val != 0)
  554. dispc_write_reg(tr_reg, ck->trans_key);
  555. dispc_write_reg(df_reg, ck->background);
  556. enable_lcd_clocks(0);
  557. dispc.color_key = *ck;
  558. return 0;
  559. }
  560. static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
  561. {
  562. *ck = dispc.color_key;
  563. return 0;
  564. }
  565. static void load_palette(void)
  566. {
  567. }
  568. static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
  569. {
  570. int r = 0;
  571. if (mode != dispc.update_mode) {
  572. switch (mode) {
  573. case OMAPFB_AUTO_UPDATE:
  574. case OMAPFB_MANUAL_UPDATE:
  575. enable_lcd_clocks(1);
  576. omap_dispc_enable_lcd_out(1);
  577. dispc.update_mode = mode;
  578. break;
  579. case OMAPFB_UPDATE_DISABLED:
  580. init_completion(&dispc.frame_done);
  581. omap_dispc_enable_lcd_out(0);
  582. if (!wait_for_completion_timeout(&dispc.frame_done,
  583. msecs_to_jiffies(500))) {
  584. dev_err(dispc.fbdev->dev,
  585. "timeout waiting for FRAME DONE\n");
  586. }
  587. dispc.update_mode = mode;
  588. enable_lcd_clocks(0);
  589. break;
  590. default:
  591. r = -EINVAL;
  592. }
  593. }
  594. return r;
  595. }
  596. static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
  597. {
  598. caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
  599. if (plane > 0)
  600. caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
  601. caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
  602. (1 << OMAPFB_COLOR_YUV422) |
  603. (1 << OMAPFB_COLOR_YUY422);
  604. if (plane == 0)
  605. caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
  606. (1 << OMAPFB_COLOR_CLUT_4BPP) |
  607. (1 << OMAPFB_COLOR_CLUT_2BPP) |
  608. (1 << OMAPFB_COLOR_CLUT_1BPP) |
  609. (1 << OMAPFB_COLOR_RGB444);
  610. }
  611. static enum omapfb_update_mode omap_dispc_get_update_mode(void)
  612. {
  613. return dispc.update_mode;
  614. }
  615. static void setup_color_conv_coef(void)
  616. {
  617. u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
  618. int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
  619. int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
  620. int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
  621. int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
  622. const struct color_conv_coef {
  623. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  624. int full_range;
  625. } ctbl_bt601_5 = {
  626. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  627. };
  628. const struct color_conv_coef *ct;
  629. #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
  630. ct = &ctbl_bt601_5;
  631. MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
  632. MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  633. MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  634. MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
  635. MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
  636. MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
  637. MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  638. MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  639. MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
  640. MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
  641. #undef CVAL
  642. MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
  643. MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
  644. }
  645. static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
  646. {
  647. unsigned long fck, lck;
  648. *lck_div = 1;
  649. pck = max(1, pck);
  650. fck = clk_get_rate(dispc.dss1_fck);
  651. lck = fck;
  652. *pck_div = (lck + pck - 1) / pck;
  653. if (is_tft)
  654. *pck_div = max(2, *pck_div);
  655. else
  656. *pck_div = max(3, *pck_div);
  657. if (*pck_div > 255) {
  658. *pck_div = 255;
  659. lck = pck * *pck_div;
  660. *lck_div = fck / lck;
  661. BUG_ON(*lck_div < 1);
  662. if (*lck_div > 255) {
  663. *lck_div = 255;
  664. dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
  665. pck / 1000);
  666. }
  667. }
  668. }
  669. static void set_lcd_tft_mode(int enable)
  670. {
  671. u32 mask;
  672. mask = 1 << 3;
  673. MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
  674. }
  675. static void set_lcd_timings(void)
  676. {
  677. u32 l;
  678. int lck_div, pck_div;
  679. struct lcd_panel *panel = dispc.fbdev->panel;
  680. int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
  681. unsigned long fck;
  682. l = dispc_read_reg(DISPC_TIMING_H);
  683. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  684. l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
  685. l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
  686. l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
  687. dispc_write_reg(DISPC_TIMING_H, l);
  688. l = dispc_read_reg(DISPC_TIMING_V);
  689. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  690. l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
  691. l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
  692. l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
  693. dispc_write_reg(DISPC_TIMING_V, l);
  694. l = dispc_read_reg(DISPC_POL_FREQ);
  695. l &= ~FLD_MASK(12, 6);
  696. l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
  697. l |= panel->acb & 0xff;
  698. dispc_write_reg(DISPC_POL_FREQ, l);
  699. calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
  700. l = dispc_read_reg(DISPC_DIVISOR);
  701. l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
  702. l |= (lck_div << 16) | (pck_div << 0);
  703. dispc_write_reg(DISPC_DIVISOR, l);
  704. /* update panel info with the exact clock */
  705. fck = clk_get_rate(dispc.dss1_fck);
  706. panel->pixel_clock = fck / lck_div / pck_div / 1000;
  707. }
  708. static void recalc_irq_mask(void)
  709. {
  710. int i;
  711. unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
  712. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  713. if (!dispc.irq_handlers[i].callback)
  714. continue;
  715. irq_mask |= dispc.irq_handlers[i].irq_mask;
  716. }
  717. enable_lcd_clocks(1);
  718. MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
  719. enable_lcd_clocks(0);
  720. }
  721. int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
  722. void *data)
  723. {
  724. int i;
  725. BUG_ON(callback == NULL);
  726. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  727. if (dispc.irq_handlers[i].callback)
  728. continue;
  729. dispc.irq_handlers[i].irq_mask = irq_mask;
  730. dispc.irq_handlers[i].callback = callback;
  731. dispc.irq_handlers[i].data = data;
  732. recalc_irq_mask();
  733. return 0;
  734. }
  735. return -EBUSY;
  736. }
  737. EXPORT_SYMBOL(omap_dispc_request_irq);
  738. void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
  739. void *data)
  740. {
  741. int i;
  742. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  743. if (dispc.irq_handlers[i].callback == callback &&
  744. dispc.irq_handlers[i].data == data) {
  745. dispc.irq_handlers[i].irq_mask = 0;
  746. dispc.irq_handlers[i].callback = NULL;
  747. dispc.irq_handlers[i].data = NULL;
  748. recalc_irq_mask();
  749. return;
  750. }
  751. }
  752. BUG();
  753. }
  754. EXPORT_SYMBOL(omap_dispc_free_irq);
  755. static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
  756. {
  757. u32 stat;
  758. int i = 0;
  759. enable_lcd_clocks(1);
  760. stat = dispc_read_reg(DISPC_IRQSTATUS);
  761. if (stat & DISPC_IRQ_FRAMEMASK)
  762. complete(&dispc.frame_done);
  763. if (stat & DISPC_IRQ_MASK_ERROR) {
  764. if (printk_ratelimit()) {
  765. dev_err(dispc.fbdev->dev, "irq error status %04x\n",
  766. stat & 0x7fff);
  767. }
  768. }
  769. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  770. if (unlikely(dispc.irq_handlers[i].callback &&
  771. (stat & dispc.irq_handlers[i].irq_mask)))
  772. dispc.irq_handlers[i].callback(
  773. dispc.irq_handlers[i].data);
  774. }
  775. dispc_write_reg(DISPC_IRQSTATUS, stat);
  776. enable_lcd_clocks(0);
  777. return IRQ_HANDLED;
  778. }
  779. static int get_dss_clocks(void)
  780. {
  781. dispc.dss_ick = clk_get(&dispc.fbdev->dssdev->dev, "ick");
  782. if (IS_ERR(dispc.dss_ick)) {
  783. dev_err(dispc.fbdev->dev, "can't get ick\n");
  784. return PTR_ERR(dispc.dss_ick);
  785. }
  786. dispc.dss1_fck = clk_get(&dispc.fbdev->dssdev->dev, "dss1_fck");
  787. if (IS_ERR(dispc.dss1_fck)) {
  788. dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
  789. clk_put(dispc.dss_ick);
  790. return PTR_ERR(dispc.dss1_fck);
  791. }
  792. dispc.dss_54m_fck = clk_get(&dispc.fbdev->dssdev->dev, "tv_fck");
  793. if (IS_ERR(dispc.dss_54m_fck)) {
  794. dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
  795. clk_put(dispc.dss_ick);
  796. clk_put(dispc.dss1_fck);
  797. return PTR_ERR(dispc.dss_54m_fck);
  798. }
  799. return 0;
  800. }
  801. static void put_dss_clocks(void)
  802. {
  803. clk_put(dispc.dss_54m_fck);
  804. clk_put(dispc.dss1_fck);
  805. clk_put(dispc.dss_ick);
  806. }
  807. static void enable_lcd_clocks(int enable)
  808. {
  809. if (enable) {
  810. clk_enable(dispc.dss_ick);
  811. clk_enable(dispc.dss1_fck);
  812. } else {
  813. clk_disable(dispc.dss1_fck);
  814. clk_disable(dispc.dss_ick);
  815. }
  816. }
  817. static void enable_digit_clocks(int enable)
  818. {
  819. if (enable)
  820. clk_enable(dispc.dss_54m_fck);
  821. else
  822. clk_disable(dispc.dss_54m_fck);
  823. }
  824. static void omap_dispc_suspend(void)
  825. {
  826. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  827. init_completion(&dispc.frame_done);
  828. omap_dispc_enable_lcd_out(0);
  829. if (!wait_for_completion_timeout(&dispc.frame_done,
  830. msecs_to_jiffies(500))) {
  831. dev_err(dispc.fbdev->dev,
  832. "timeout waiting for FRAME DONE\n");
  833. }
  834. enable_lcd_clocks(0);
  835. }
  836. }
  837. static void omap_dispc_resume(void)
  838. {
  839. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  840. enable_lcd_clocks(1);
  841. if (!dispc.ext_mode) {
  842. set_lcd_timings();
  843. load_palette();
  844. }
  845. omap_dispc_enable_lcd_out(1);
  846. }
  847. }
  848. static int omap_dispc_update_window(struct fb_info *fbi,
  849. struct omapfb_update_window *win,
  850. void (*complete_callback)(void *arg),
  851. void *complete_callback_data)
  852. {
  853. return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
  854. }
  855. static int mmap_kern(struct omapfb_mem_region *region)
  856. {
  857. struct vm_struct *kvma;
  858. struct vm_area_struct vma;
  859. pgprot_t pgprot;
  860. unsigned long vaddr;
  861. kvma = get_vm_area(region->size, VM_IOREMAP);
  862. if (kvma == NULL) {
  863. dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
  864. return -ENOMEM;
  865. }
  866. vma.vm_mm = &init_mm;
  867. vaddr = (unsigned long)kvma->addr;
  868. pgprot = pgprot_writecombine(pgprot_kernel);
  869. vma.vm_start = vaddr;
  870. vma.vm_end = vaddr + region->size;
  871. if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
  872. region->size, pgprot) < 0) {
  873. dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
  874. return -EAGAIN;
  875. }
  876. region->vaddr = (void *)vaddr;
  877. return 0;
  878. }
  879. static void mmap_user_open(struct vm_area_struct *vma)
  880. {
  881. int plane = (int)vma->vm_private_data;
  882. atomic_inc(&dispc.map_count[plane]);
  883. }
  884. static void mmap_user_close(struct vm_area_struct *vma)
  885. {
  886. int plane = (int)vma->vm_private_data;
  887. atomic_dec(&dispc.map_count[plane]);
  888. }
  889. static const struct vm_operations_struct mmap_user_ops = {
  890. .open = mmap_user_open,
  891. .close = mmap_user_close,
  892. };
  893. static int omap_dispc_mmap_user(struct fb_info *info,
  894. struct vm_area_struct *vma)
  895. {
  896. struct omapfb_plane_struct *plane = info->par;
  897. unsigned long off;
  898. unsigned long start;
  899. u32 len;
  900. if (vma->vm_end - vma->vm_start == 0)
  901. return 0;
  902. if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
  903. return -EINVAL;
  904. off = vma->vm_pgoff << PAGE_SHIFT;
  905. start = info->fix.smem_start;
  906. len = info->fix.smem_len;
  907. if (off >= len)
  908. return -EINVAL;
  909. if ((vma->vm_end - vma->vm_start + off) > len)
  910. return -EINVAL;
  911. off += start;
  912. vma->vm_pgoff = off >> PAGE_SHIFT;
  913. vma->vm_flags |= VM_IO | VM_RESERVED;
  914. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  915. vma->vm_ops = &mmap_user_ops;
  916. vma->vm_private_data = (void *)plane->idx;
  917. if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
  918. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  919. return -EAGAIN;
  920. /* vm_ops.open won't be called for mmap itself. */
  921. atomic_inc(&dispc.map_count[plane->idx]);
  922. return 0;
  923. }
  924. static void unmap_kern(struct omapfb_mem_region *region)
  925. {
  926. vunmap(region->vaddr);
  927. }
  928. static int alloc_palette_ram(void)
  929. {
  930. dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  931. MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
  932. if (dispc.palette_vaddr == NULL) {
  933. dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
  934. return -ENOMEM;
  935. }
  936. return 0;
  937. }
  938. static void free_palette_ram(void)
  939. {
  940. dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
  941. dispc.palette_vaddr, dispc.palette_paddr);
  942. }
  943. static int alloc_fbmem(struct omapfb_mem_region *region)
  944. {
  945. region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  946. region->size, &region->paddr, GFP_KERNEL);
  947. if (region->vaddr == NULL) {
  948. dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
  949. return -ENOMEM;
  950. }
  951. return 0;
  952. }
  953. static void free_fbmem(struct omapfb_mem_region *region)
  954. {
  955. dma_free_writecombine(dispc.fbdev->dev, region->size,
  956. region->vaddr, region->paddr);
  957. }
  958. static struct resmap *init_resmap(unsigned long start, size_t size)
  959. {
  960. unsigned page_cnt;
  961. struct resmap *res_map;
  962. page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
  963. res_map =
  964. kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
  965. if (res_map == NULL)
  966. return NULL;
  967. res_map->start = start;
  968. res_map->page_cnt = page_cnt;
  969. res_map->map = (unsigned long *)(res_map + 1);
  970. return res_map;
  971. }
  972. static void cleanup_resmap(struct resmap *res_map)
  973. {
  974. kfree(res_map);
  975. }
  976. static inline int resmap_mem_type(unsigned long start)
  977. {
  978. if (start >= OMAP2_SRAM_START &&
  979. start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
  980. return OMAPFB_MEMTYPE_SRAM;
  981. else
  982. return OMAPFB_MEMTYPE_SDRAM;
  983. }
  984. static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
  985. {
  986. return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
  987. }
  988. static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
  989. {
  990. BUG_ON(resmap_page_reserved(res_map, page_nr));
  991. *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
  992. }
  993. static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
  994. {
  995. BUG_ON(!resmap_page_reserved(res_map, page_nr));
  996. *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
  997. }
  998. static void resmap_reserve_region(unsigned long start, size_t size)
  999. {
  1000. struct resmap *res_map;
  1001. unsigned start_page;
  1002. unsigned end_page;
  1003. int mtype;
  1004. unsigned i;
  1005. mtype = resmap_mem_type(start);
  1006. res_map = dispc.res_map[mtype];
  1007. dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
  1008. mtype, start, size);
  1009. start_page = (start - res_map->start) / PAGE_SIZE;
  1010. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1011. for (i = start_page; i < end_page; i++)
  1012. resmap_reserve_page(res_map, i);
  1013. }
  1014. static void resmap_free_region(unsigned long start, size_t size)
  1015. {
  1016. struct resmap *res_map;
  1017. unsigned start_page;
  1018. unsigned end_page;
  1019. unsigned i;
  1020. int mtype;
  1021. mtype = resmap_mem_type(start);
  1022. res_map = dispc.res_map[mtype];
  1023. dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
  1024. mtype, start, size);
  1025. start_page = (start - res_map->start) / PAGE_SIZE;
  1026. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1027. for (i = start_page; i < end_page; i++)
  1028. resmap_free_page(res_map, i);
  1029. }
  1030. static unsigned long resmap_alloc_region(int mtype, size_t size)
  1031. {
  1032. unsigned i;
  1033. unsigned total;
  1034. unsigned start_page;
  1035. unsigned long start;
  1036. struct resmap *res_map = dispc.res_map[mtype];
  1037. BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
  1038. size = PAGE_ALIGN(size) / PAGE_SIZE;
  1039. start_page = 0;
  1040. total = 0;
  1041. for (i = 0; i < res_map->page_cnt; i++) {
  1042. if (resmap_page_reserved(res_map, i)) {
  1043. start_page = i + 1;
  1044. total = 0;
  1045. } else if (++total == size)
  1046. break;
  1047. }
  1048. if (total < size)
  1049. return 0;
  1050. start = res_map->start + start_page * PAGE_SIZE;
  1051. resmap_reserve_region(start, size * PAGE_SIZE);
  1052. return start;
  1053. }
  1054. /* Note that this will only work for user mappings, we don't deal with
  1055. * kernel mappings here, so fbcon will keep using the old region.
  1056. */
  1057. static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
  1058. unsigned long *paddr)
  1059. {
  1060. struct omapfb_mem_region *rg;
  1061. unsigned long new_addr = 0;
  1062. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  1063. return -EINVAL;
  1064. if (mem_type >= DISPC_MEMTYPE_NUM)
  1065. return -EINVAL;
  1066. if (dispc.res_map[mem_type] == NULL)
  1067. return -ENOMEM;
  1068. rg = &dispc.mem_desc.region[plane];
  1069. if (size == rg->size && mem_type == rg->type)
  1070. return 0;
  1071. if (atomic_read(&dispc.map_count[plane]))
  1072. return -EBUSY;
  1073. if (rg->size != 0)
  1074. resmap_free_region(rg->paddr, rg->size);
  1075. if (size != 0) {
  1076. new_addr = resmap_alloc_region(mem_type, size);
  1077. if (!new_addr) {
  1078. /* Reallocate old region. */
  1079. resmap_reserve_region(rg->paddr, rg->size);
  1080. return -ENOMEM;
  1081. }
  1082. }
  1083. rg->paddr = new_addr;
  1084. rg->size = size;
  1085. rg->type = mem_type;
  1086. *paddr = new_addr;
  1087. return 0;
  1088. }
  1089. static int setup_fbmem(struct omapfb_mem_desc *req_md)
  1090. {
  1091. struct omapfb_mem_region *rg;
  1092. int i;
  1093. int r;
  1094. unsigned long mem_start[DISPC_MEMTYPE_NUM];
  1095. unsigned long mem_end[DISPC_MEMTYPE_NUM];
  1096. if (!req_md->region_cnt) {
  1097. dev_err(dispc.fbdev->dev, "no memory regions defined\n");
  1098. return -ENOENT;
  1099. }
  1100. rg = &req_md->region[0];
  1101. memset(mem_start, 0xff, sizeof(mem_start));
  1102. memset(mem_end, 0, sizeof(mem_end));
  1103. for (i = 0; i < req_md->region_cnt; i++, rg++) {
  1104. int mtype;
  1105. if (rg->paddr) {
  1106. rg->alloc = 0;
  1107. if (rg->vaddr == NULL) {
  1108. rg->map = 1;
  1109. if ((r = mmap_kern(rg)) < 0)
  1110. return r;
  1111. }
  1112. } else {
  1113. if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
  1114. dev_err(dispc.fbdev->dev,
  1115. "unsupported memory type\n");
  1116. return -EINVAL;
  1117. }
  1118. rg->alloc = rg->map = 1;
  1119. if ((r = alloc_fbmem(rg)) < 0)
  1120. return r;
  1121. }
  1122. mtype = rg->type;
  1123. if (rg->paddr < mem_start[mtype])
  1124. mem_start[mtype] = rg->paddr;
  1125. if (rg->paddr + rg->size > mem_end[mtype])
  1126. mem_end[mtype] = rg->paddr + rg->size;
  1127. }
  1128. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1129. unsigned long start;
  1130. size_t size;
  1131. if (mem_end[i] == 0)
  1132. continue;
  1133. start = mem_start[i];
  1134. size = mem_end[i] - start;
  1135. dispc.res_map[i] = init_resmap(start, size);
  1136. r = -ENOMEM;
  1137. if (dispc.res_map[i] == NULL)
  1138. goto fail;
  1139. /* Initial state is that everything is reserved. This
  1140. * includes possible holes as well, which will never be
  1141. * freed.
  1142. */
  1143. resmap_reserve_region(start, size);
  1144. }
  1145. dispc.mem_desc = *req_md;
  1146. return 0;
  1147. fail:
  1148. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1149. if (dispc.res_map[i] != NULL)
  1150. cleanup_resmap(dispc.res_map[i]);
  1151. }
  1152. return r;
  1153. }
  1154. static void cleanup_fbmem(void)
  1155. {
  1156. struct omapfb_mem_region *rg;
  1157. int i;
  1158. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1159. if (dispc.res_map[i] != NULL)
  1160. cleanup_resmap(dispc.res_map[i]);
  1161. }
  1162. rg = &dispc.mem_desc.region[0];
  1163. for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
  1164. if (rg->alloc)
  1165. free_fbmem(rg);
  1166. else {
  1167. if (rg->map)
  1168. unmap_kern(rg);
  1169. }
  1170. }
  1171. }
  1172. static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
  1173. struct omapfb_mem_desc *req_vram)
  1174. {
  1175. int r;
  1176. u32 l;
  1177. struct lcd_panel *panel = fbdev->panel;
  1178. void __iomem *ram_fw_base;
  1179. int tmo = 10000;
  1180. int skip_init = 0;
  1181. int i;
  1182. memset(&dispc, 0, sizeof(dispc));
  1183. dispc.base = ioremap(DISPC_BASE, SZ_1K);
  1184. if (!dispc.base) {
  1185. dev_err(fbdev->dev, "can't ioremap DISPC\n");
  1186. return -ENOMEM;
  1187. }
  1188. dispc.fbdev = fbdev;
  1189. dispc.ext_mode = ext_mode;
  1190. init_completion(&dispc.frame_done);
  1191. if ((r = get_dss_clocks()) < 0)
  1192. goto fail0;
  1193. enable_lcd_clocks(1);
  1194. #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
  1195. l = dispc_read_reg(DISPC_CONTROL);
  1196. /* LCD enabled ? */
  1197. if (l & 1) {
  1198. pr_info("omapfb: skipping hardware initialization\n");
  1199. skip_init = 1;
  1200. }
  1201. #endif
  1202. if (!skip_init) {
  1203. /* Reset monitoring works only w/ the 54M clk */
  1204. enable_digit_clocks(1);
  1205. /* Soft reset */
  1206. MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
  1207. while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
  1208. if (!--tmo) {
  1209. dev_err(dispc.fbdev->dev, "soft reset failed\n");
  1210. r = -ENODEV;
  1211. enable_digit_clocks(0);
  1212. goto fail1;
  1213. }
  1214. }
  1215. enable_digit_clocks(0);
  1216. }
  1217. /* Enable smart standby/idle, autoidle and wakeup */
  1218. l = dispc_read_reg(DISPC_SYSCONFIG);
  1219. l &= ~((3 << 12) | (3 << 3));
  1220. l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
  1221. dispc_write_reg(DISPC_SYSCONFIG, l);
  1222. omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
  1223. /* Set functional clock autogating */
  1224. l = dispc_read_reg(DISPC_CONFIG);
  1225. l |= 1 << 9;
  1226. dispc_write_reg(DISPC_CONFIG, l);
  1227. l = dispc_read_reg(DISPC_IRQSTATUS);
  1228. dispc_write_reg(DISPC_IRQSTATUS, l);
  1229. recalc_irq_mask();
  1230. if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
  1231. 0, MODULE_NAME, fbdev)) < 0) {
  1232. dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
  1233. goto fail1;
  1234. }
  1235. /* L3 firewall setting: enable access to OCM RAM */
  1236. ram_fw_base = ioremap(0x68005000, SZ_1K);
  1237. if (!ram_fw_base) {
  1238. dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
  1239. goto fail1;
  1240. }
  1241. __raw_writel(0x402000b0, ram_fw_base + 0xa0);
  1242. iounmap(ram_fw_base);
  1243. if ((r = alloc_palette_ram()) < 0)
  1244. goto fail2;
  1245. if ((r = setup_fbmem(req_vram)) < 0)
  1246. goto fail3;
  1247. if (!skip_init) {
  1248. for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
  1249. memset(dispc.mem_desc.region[i].vaddr, 0,
  1250. dispc.mem_desc.region[i].size);
  1251. }
  1252. /* Set logic clock to fck, pixel clock to fck/2 for now */
  1253. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
  1254. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
  1255. setup_plane_fifo(0, ext_mode);
  1256. setup_plane_fifo(1, ext_mode);
  1257. setup_plane_fifo(2, ext_mode);
  1258. setup_color_conv_coef();
  1259. set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
  1260. set_load_mode(DISPC_LOAD_FRAME_ONLY);
  1261. if (!ext_mode) {
  1262. set_lcd_data_lines(panel->data_lines);
  1263. omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
  1264. set_lcd_timings();
  1265. } else
  1266. set_lcd_data_lines(panel->bpp);
  1267. enable_rfbi_mode(ext_mode);
  1268. }
  1269. l = dispc_read_reg(DISPC_REVISION);
  1270. pr_info("omapfb: DISPC version %d.%d initialized\n",
  1271. l >> 4 & 0x0f, l & 0x0f);
  1272. enable_lcd_clocks(0);
  1273. return 0;
  1274. fail3:
  1275. free_palette_ram();
  1276. fail2:
  1277. free_irq(INT_24XX_DSS_IRQ, fbdev);
  1278. fail1:
  1279. enable_lcd_clocks(0);
  1280. put_dss_clocks();
  1281. fail0:
  1282. iounmap(dispc.base);
  1283. return r;
  1284. }
  1285. static void omap_dispc_cleanup(void)
  1286. {
  1287. int i;
  1288. omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
  1289. /* This will also disable clocks that are on */
  1290. for (i = 0; i < dispc.mem_desc.region_cnt; i++)
  1291. omap_dispc_enable_plane(i, 0);
  1292. cleanup_fbmem();
  1293. free_palette_ram();
  1294. free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
  1295. put_dss_clocks();
  1296. iounmap(dispc.base);
  1297. }
  1298. const struct lcd_ctrl omap2_int_ctrl = {
  1299. .name = "internal",
  1300. .init = omap_dispc_init,
  1301. .cleanup = omap_dispc_cleanup,
  1302. .get_caps = omap_dispc_get_caps,
  1303. .set_update_mode = omap_dispc_set_update_mode,
  1304. .get_update_mode = omap_dispc_get_update_mode,
  1305. .update_window = omap_dispc_update_window,
  1306. .suspend = omap_dispc_suspend,
  1307. .resume = omap_dispc_resume,
  1308. .setup_plane = omap_dispc_setup_plane,
  1309. .setup_mem = omap_dispc_setup_mem,
  1310. .set_scale = omap_dispc_set_scale,
  1311. .enable_plane = omap_dispc_enable_plane,
  1312. .set_color_key = omap_dispc_set_color_key,
  1313. .get_color_key = omap_dispc_get_color_key,
  1314. .mmap = omap_dispc_mmap_user,
  1315. };