intelfbhw.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, /* I8xx */
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } /* I9xx */
  58. };
  59. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_854:
  78. dinfo->mobile = 1;
  79. dinfo->name = "Intel(R) 854";
  80. dinfo->chipset = INTEL_854;
  81. return 0;
  82. case PCI_DEVICE_ID_INTEL_85XGM:
  83. tmp = 0;
  84. dinfo->mobile = 1;
  85. dinfo->pll_index = PLLS_I8xx;
  86. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  87. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  88. INTEL_85X_VARIANT_MASK) {
  89. case INTEL_VAR_855GME:
  90. dinfo->name = "Intel(R) 855GME";
  91. dinfo->chipset = INTEL_855GME;
  92. return 0;
  93. case INTEL_VAR_855GM:
  94. dinfo->name = "Intel(R) 855GM";
  95. dinfo->chipset = INTEL_855GM;
  96. return 0;
  97. case INTEL_VAR_852GME:
  98. dinfo->name = "Intel(R) 852GME";
  99. dinfo->chipset = INTEL_852GME;
  100. return 0;
  101. case INTEL_VAR_852GM:
  102. dinfo->name = "Intel(R) 852GM";
  103. dinfo->chipset = INTEL_852GM;
  104. return 0;
  105. default:
  106. dinfo->name = "Intel(R) 852GM/855GM";
  107. dinfo->chipset = INTEL_85XGM;
  108. return 0;
  109. }
  110. break;
  111. case PCI_DEVICE_ID_INTEL_865G:
  112. dinfo->name = "Intel(R) 865G";
  113. dinfo->chipset = INTEL_865G;
  114. dinfo->mobile = 0;
  115. dinfo->pll_index = PLLS_I8xx;
  116. return 0;
  117. case PCI_DEVICE_ID_INTEL_915G:
  118. dinfo->name = "Intel(R) 915G";
  119. dinfo->chipset = INTEL_915G;
  120. dinfo->mobile = 0;
  121. dinfo->pll_index = PLLS_I9xx;
  122. return 0;
  123. case PCI_DEVICE_ID_INTEL_915GM:
  124. dinfo->name = "Intel(R) 915GM";
  125. dinfo->chipset = INTEL_915GM;
  126. dinfo->mobile = 1;
  127. dinfo->pll_index = PLLS_I9xx;
  128. return 0;
  129. case PCI_DEVICE_ID_INTEL_945G:
  130. dinfo->name = "Intel(R) 945G";
  131. dinfo->chipset = INTEL_945G;
  132. dinfo->mobile = 0;
  133. dinfo->pll_index = PLLS_I9xx;
  134. return 0;
  135. case PCI_DEVICE_ID_INTEL_945GM:
  136. dinfo->name = "Intel(R) 945GM";
  137. dinfo->chipset = INTEL_945GM;
  138. dinfo->mobile = 1;
  139. dinfo->pll_index = PLLS_I9xx;
  140. return 0;
  141. case PCI_DEVICE_ID_INTEL_945GME:
  142. dinfo->name = "Intel(R) 945GME";
  143. dinfo->chipset = INTEL_945GME;
  144. dinfo->mobile = 1;
  145. dinfo->pll_index = PLLS_I9xx;
  146. return 0;
  147. case PCI_DEVICE_ID_INTEL_965G:
  148. dinfo->name = "Intel(R) 965G";
  149. dinfo->chipset = INTEL_965G;
  150. dinfo->mobile = 0;
  151. dinfo->pll_index = PLLS_I9xx;
  152. return 0;
  153. case PCI_DEVICE_ID_INTEL_965GM:
  154. dinfo->name = "Intel(R) 965GM";
  155. dinfo->chipset = INTEL_965GM;
  156. dinfo->mobile = 1;
  157. dinfo->pll_index = PLLS_I9xx;
  158. return 0;
  159. default:
  160. return 1;
  161. }
  162. }
  163. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  164. int *stolen_size)
  165. {
  166. struct pci_dev *bridge_dev;
  167. u16 tmp;
  168. int stolen_overhead;
  169. if (!pdev || !aperture_size || !stolen_size)
  170. return 1;
  171. /* Find the bridge device. It is always 0:0.0 */
  172. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  173. ERR_MSG("cannot find bridge device\n");
  174. return 1;
  175. }
  176. /* Get the fb aperture size and "stolen" memory amount. */
  177. tmp = 0;
  178. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  179. pci_dev_put(bridge_dev);
  180. switch (pdev->device) {
  181. case PCI_DEVICE_ID_INTEL_915G:
  182. case PCI_DEVICE_ID_INTEL_915GM:
  183. case PCI_DEVICE_ID_INTEL_945G:
  184. case PCI_DEVICE_ID_INTEL_945GM:
  185. case PCI_DEVICE_ID_INTEL_945GME:
  186. case PCI_DEVICE_ID_INTEL_965G:
  187. case PCI_DEVICE_ID_INTEL_965GM:
  188. /* 915, 945 and 965 chipsets support a 256MB aperture.
  189. Aperture size is determined by inspected the
  190. base address of the aperture. */
  191. if (pci_resource_start(pdev, 2) & 0x08000000)
  192. *aperture_size = MB(128);
  193. else
  194. *aperture_size = MB(256);
  195. break;
  196. default:
  197. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  198. *aperture_size = MB(64);
  199. else
  200. *aperture_size = MB(128);
  201. break;
  202. }
  203. /* Stolen memory size is reduced by the GTT and the popup.
  204. GTT is 1K per MB of aperture size, and popup is 4K. */
  205. stolen_overhead = (*aperture_size / MB(1)) + 4;
  206. switch(pdev->device) {
  207. case PCI_DEVICE_ID_INTEL_830M:
  208. case PCI_DEVICE_ID_INTEL_845G:
  209. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  210. case INTEL_830_GMCH_GMS_STOLEN_512:
  211. *stolen_size = KB(512) - KB(stolen_overhead);
  212. return 0;
  213. case INTEL_830_GMCH_GMS_STOLEN_1024:
  214. *stolen_size = MB(1) - KB(stolen_overhead);
  215. return 0;
  216. case INTEL_830_GMCH_GMS_STOLEN_8192:
  217. *stolen_size = MB(8) - KB(stolen_overhead);
  218. return 0;
  219. case INTEL_830_GMCH_GMS_LOCAL:
  220. ERR_MSG("only local memory found\n");
  221. return 1;
  222. case INTEL_830_GMCH_GMS_DISABLED:
  223. ERR_MSG("video memory is disabled\n");
  224. return 1;
  225. default:
  226. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  227. tmp & INTEL_830_GMCH_GMS_MASK);
  228. return 1;
  229. }
  230. break;
  231. default:
  232. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  233. case INTEL_855_GMCH_GMS_STOLEN_1M:
  234. *stolen_size = MB(1) - KB(stolen_overhead);
  235. return 0;
  236. case INTEL_855_GMCH_GMS_STOLEN_4M:
  237. *stolen_size = MB(4) - KB(stolen_overhead);
  238. return 0;
  239. case INTEL_855_GMCH_GMS_STOLEN_8M:
  240. *stolen_size = MB(8) - KB(stolen_overhead);
  241. return 0;
  242. case INTEL_855_GMCH_GMS_STOLEN_16M:
  243. *stolen_size = MB(16) - KB(stolen_overhead);
  244. return 0;
  245. case INTEL_855_GMCH_GMS_STOLEN_32M:
  246. *stolen_size = MB(32) - KB(stolen_overhead);
  247. return 0;
  248. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  249. *stolen_size = MB(48) - KB(stolen_overhead);
  250. return 0;
  251. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  252. *stolen_size = MB(64) - KB(stolen_overhead);
  253. return 0;
  254. case INTEL_855_GMCH_GMS_DISABLED:
  255. ERR_MSG("video memory is disabled\n");
  256. return 0;
  257. default:
  258. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  259. tmp & INTEL_855_GMCH_GMS_MASK);
  260. return 1;
  261. }
  262. }
  263. }
  264. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  265. {
  266. int dvo = 0;
  267. if (INREG(LVDS) & PORT_ENABLE)
  268. dvo |= LVDS_PORT;
  269. if (INREG(DVOA) & PORT_ENABLE)
  270. dvo |= DVOA_PORT;
  271. if (INREG(DVOB) & PORT_ENABLE)
  272. dvo |= DVOB_PORT;
  273. if (INREG(DVOC) & PORT_ENABLE)
  274. dvo |= DVOC_PORT;
  275. return dvo;
  276. }
  277. const char * intelfbhw_dvo_to_string(int dvo)
  278. {
  279. if (dvo & DVOA_PORT)
  280. return "DVO port A";
  281. else if (dvo & DVOB_PORT)
  282. return "DVO port B";
  283. else if (dvo & DVOC_PORT)
  284. return "DVO port C";
  285. else if (dvo & LVDS_PORT)
  286. return "LVDS port";
  287. else
  288. return NULL;
  289. }
  290. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  291. struct fb_var_screeninfo *var)
  292. {
  293. int bytes_per_pixel;
  294. int tmp;
  295. #if VERBOSE > 0
  296. DBG_MSG("intelfbhw_validate_mode\n");
  297. #endif
  298. bytes_per_pixel = var->bits_per_pixel / 8;
  299. if (bytes_per_pixel == 3)
  300. bytes_per_pixel = 4;
  301. /* Check if enough video memory. */
  302. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  303. if (tmp > dinfo->fb.size) {
  304. WRN_MSG("Not enough video ram for mode "
  305. "(%d KByte vs %d KByte).\n",
  306. BtoKB(tmp), BtoKB(dinfo->fb.size));
  307. return 1;
  308. }
  309. /* Check if x/y limits are OK. */
  310. if (var->xres - 1 > HACTIVE_MASK) {
  311. WRN_MSG("X resolution too large (%d vs %d).\n",
  312. var->xres, HACTIVE_MASK + 1);
  313. return 1;
  314. }
  315. if (var->yres - 1 > VACTIVE_MASK) {
  316. WRN_MSG("Y resolution too large (%d vs %d).\n",
  317. var->yres, VACTIVE_MASK + 1);
  318. return 1;
  319. }
  320. if (var->xres < 4) {
  321. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  322. return 1;
  323. }
  324. if (var->yres < 4) {
  325. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  326. return 1;
  327. }
  328. /* Check for doublescan modes. */
  329. if (var->vmode & FB_VMODE_DOUBLE) {
  330. WRN_MSG("Mode is double-scan.\n");
  331. return 1;
  332. }
  333. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  334. WRN_MSG("Odd number of lines in interlaced mode\n");
  335. return 1;
  336. }
  337. /* Check if clock is OK. */
  338. tmp = 1000000000 / var->pixclock;
  339. if (tmp < MIN_CLOCK) {
  340. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  341. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  342. return 1;
  343. }
  344. if (tmp > MAX_CLOCK) {
  345. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  346. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  347. return 1;
  348. }
  349. return 0;
  350. }
  351. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  352. {
  353. struct intelfb_info *dinfo = GET_DINFO(info);
  354. u32 offset, xoffset, yoffset;
  355. #if VERBOSE > 0
  356. DBG_MSG("intelfbhw_pan_display\n");
  357. #endif
  358. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  359. yoffset = var->yoffset;
  360. if ((xoffset + var->xres > var->xres_virtual) ||
  361. (yoffset + var->yres > var->yres_virtual))
  362. return -EINVAL;
  363. offset = (yoffset * dinfo->pitch) +
  364. (xoffset * var->bits_per_pixel) / 8;
  365. offset += dinfo->fb.offset << 12;
  366. dinfo->vsync.pan_offset = offset;
  367. if ((var->activate & FB_ACTIVATE_VBL) &&
  368. !intelfbhw_enable_irq(dinfo))
  369. dinfo->vsync.pan_display = 1;
  370. else {
  371. dinfo->vsync.pan_display = 0;
  372. OUTREG(DSPABASE, offset);
  373. }
  374. return 0;
  375. }
  376. /* Blank the screen. */
  377. void intelfbhw_do_blank(int blank, struct fb_info *info)
  378. {
  379. struct intelfb_info *dinfo = GET_DINFO(info);
  380. u32 tmp;
  381. #if VERBOSE > 0
  382. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  383. #endif
  384. /* Turn plane A on or off */
  385. tmp = INREG(DSPACNTR);
  386. if (blank)
  387. tmp &= ~DISPPLANE_PLANE_ENABLE;
  388. else
  389. tmp |= DISPPLANE_PLANE_ENABLE;
  390. OUTREG(DSPACNTR, tmp);
  391. /* Flush */
  392. tmp = INREG(DSPABASE);
  393. OUTREG(DSPABASE, tmp);
  394. /* Turn off/on the HW cursor */
  395. #if VERBOSE > 0
  396. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  397. #endif
  398. if (dinfo->cursor_on) {
  399. if (blank)
  400. intelfbhw_cursor_hide(dinfo);
  401. else
  402. intelfbhw_cursor_show(dinfo);
  403. dinfo->cursor_on = 1;
  404. }
  405. dinfo->cursor_blanked = blank;
  406. /* Set DPMS level */
  407. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  408. switch (blank) {
  409. case FB_BLANK_UNBLANK:
  410. case FB_BLANK_NORMAL:
  411. tmp |= ADPA_DPMS_D0;
  412. break;
  413. case FB_BLANK_VSYNC_SUSPEND:
  414. tmp |= ADPA_DPMS_D1;
  415. break;
  416. case FB_BLANK_HSYNC_SUSPEND:
  417. tmp |= ADPA_DPMS_D2;
  418. break;
  419. case FB_BLANK_POWERDOWN:
  420. tmp |= ADPA_DPMS_D3;
  421. break;
  422. }
  423. OUTREG(ADPA, tmp);
  424. return;
  425. }
  426. /* Check which pipe is connected to an active display plane. */
  427. int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
  428. {
  429. int pipe = -1;
  430. /* keep old default behaviour - prefer PIPE_A */
  431. if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
  432. pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  433. pipe &= PIPE_MASK;
  434. if (unlikely(pipe == PIPE_A))
  435. return PIPE_A;
  436. }
  437. if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
  438. pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
  439. pipe &= PIPE_MASK;
  440. if (likely(pipe == PIPE_A))
  441. return PIPE_A;
  442. }
  443. /* Impossible that no pipe is selected - return PIPE_A */
  444. WARN_ON(pipe == -1);
  445. if (unlikely(pipe == -1))
  446. pipe = PIPE_A;
  447. return pipe;
  448. }
  449. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  450. unsigned red, unsigned green, unsigned blue,
  451. unsigned transp)
  452. {
  453. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  454. PALETTE_A : PALETTE_B;
  455. #if VERBOSE > 0
  456. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  457. regno, red, green, blue);
  458. #endif
  459. OUTREG(palette_reg + (regno << 2),
  460. (red << PALETTE_8_RED_SHIFT) |
  461. (green << PALETTE_8_GREEN_SHIFT) |
  462. (blue << PALETTE_8_BLUE_SHIFT));
  463. }
  464. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  465. struct intelfb_hwstate *hw, int flag)
  466. {
  467. int i;
  468. #if VERBOSE > 0
  469. DBG_MSG("intelfbhw_read_hw_state\n");
  470. #endif
  471. if (!hw || !dinfo)
  472. return -1;
  473. /* Read in as much of the HW state as possible. */
  474. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  475. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  476. hw->vga_pd = INREG(VGAPD);
  477. hw->dpll_a = INREG(DPLL_A);
  478. hw->dpll_b = INREG(DPLL_B);
  479. hw->fpa0 = INREG(FPA0);
  480. hw->fpa1 = INREG(FPA1);
  481. hw->fpb0 = INREG(FPB0);
  482. hw->fpb1 = INREG(FPB1);
  483. if (flag == 1)
  484. return flag;
  485. #if 0
  486. /* This seems to be a problem with the 852GM/855GM */
  487. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  488. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  489. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  490. }
  491. #endif
  492. if (flag == 2)
  493. return flag;
  494. hw->htotal_a = INREG(HTOTAL_A);
  495. hw->hblank_a = INREG(HBLANK_A);
  496. hw->hsync_a = INREG(HSYNC_A);
  497. hw->vtotal_a = INREG(VTOTAL_A);
  498. hw->vblank_a = INREG(VBLANK_A);
  499. hw->vsync_a = INREG(VSYNC_A);
  500. hw->src_size_a = INREG(SRC_SIZE_A);
  501. hw->bclrpat_a = INREG(BCLRPAT_A);
  502. hw->htotal_b = INREG(HTOTAL_B);
  503. hw->hblank_b = INREG(HBLANK_B);
  504. hw->hsync_b = INREG(HSYNC_B);
  505. hw->vtotal_b = INREG(VTOTAL_B);
  506. hw->vblank_b = INREG(VBLANK_B);
  507. hw->vsync_b = INREG(VSYNC_B);
  508. hw->src_size_b = INREG(SRC_SIZE_B);
  509. hw->bclrpat_b = INREG(BCLRPAT_B);
  510. if (flag == 3)
  511. return flag;
  512. hw->adpa = INREG(ADPA);
  513. hw->dvoa = INREG(DVOA);
  514. hw->dvob = INREG(DVOB);
  515. hw->dvoc = INREG(DVOC);
  516. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  517. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  518. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  519. hw->lvds = INREG(LVDS);
  520. if (flag == 4)
  521. return flag;
  522. hw->pipe_a_conf = INREG(PIPEACONF);
  523. hw->pipe_b_conf = INREG(PIPEBCONF);
  524. hw->disp_arb = INREG(DISPARB);
  525. if (flag == 5)
  526. return flag;
  527. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  528. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  529. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  530. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  531. if (flag == 6)
  532. return flag;
  533. for (i = 0; i < 4; i++) {
  534. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  535. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  536. }
  537. if (flag == 7)
  538. return flag;
  539. hw->cursor_size = INREG(CURSOR_SIZE);
  540. if (flag == 8)
  541. return flag;
  542. hw->disp_a_ctrl = INREG(DSPACNTR);
  543. hw->disp_b_ctrl = INREG(DSPBCNTR);
  544. hw->disp_a_base = INREG(DSPABASE);
  545. hw->disp_b_base = INREG(DSPBBASE);
  546. hw->disp_a_stride = INREG(DSPASTRIDE);
  547. hw->disp_b_stride = INREG(DSPBSTRIDE);
  548. if (flag == 9)
  549. return flag;
  550. hw->vgacntrl = INREG(VGACNTRL);
  551. if (flag == 10)
  552. return flag;
  553. hw->add_id = INREG(ADD_ID);
  554. if (flag == 11)
  555. return flag;
  556. for (i = 0; i < 7; i++) {
  557. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  558. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  559. if (i < 3)
  560. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  561. }
  562. for (i = 0; i < 8; i++)
  563. hw->fence[i] = INREG(FENCE + (i << 2));
  564. hw->instpm = INREG(INSTPM);
  565. hw->mem_mode = INREG(MEM_MODE);
  566. hw->fw_blc_0 = INREG(FW_BLC_0);
  567. hw->fw_blc_1 = INREG(FW_BLC_1);
  568. hw->hwstam = INREG16(HWSTAM);
  569. hw->ier = INREG16(IER);
  570. hw->iir = INREG16(IIR);
  571. hw->imr = INREG16(IMR);
  572. return 0;
  573. }
  574. static int calc_vclock3(int index, int m, int n, int p)
  575. {
  576. if (p == 0 || n == 0)
  577. return 0;
  578. return plls[index].ref_clk * m / n / p;
  579. }
  580. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  581. int lvds)
  582. {
  583. struct pll_min_max *pll = &plls[index];
  584. u32 m, vco, p;
  585. m = (5 * (m1 + 2)) + (m2 + 2);
  586. n += 2;
  587. vco = pll->ref_clk * m / n;
  588. if (index == PLLS_I8xx)
  589. p = ((p1 + 2) * (1 << (p2 + 1)));
  590. else
  591. p = ((p1) * (p2 ? 5 : 10));
  592. return vco / p;
  593. }
  594. #if REGDUMP
  595. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  596. int *o_p1, int *o_p2)
  597. {
  598. int p1, p2;
  599. if (IS_I9XX(dinfo)) {
  600. if (dpll & DPLL_P1_FORCE_DIV2)
  601. p1 = 1;
  602. else
  603. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  604. p1 = ffs(p1);
  605. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  606. } else {
  607. if (dpll & DPLL_P1_FORCE_DIV2)
  608. p1 = 0;
  609. else
  610. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  611. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  612. }
  613. *o_p1 = p1;
  614. *o_p2 = p2;
  615. }
  616. #endif
  617. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  618. struct intelfb_hwstate *hw)
  619. {
  620. #if REGDUMP
  621. int i, m1, m2, n, p1, p2;
  622. int index = dinfo->pll_index;
  623. DBG_MSG("intelfbhw_print_hw_state\n");
  624. if (!hw)
  625. return;
  626. /* Read in as much of the HW state as possible. */
  627. printk("hw state dump start\n");
  628. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  629. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  630. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  631. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  632. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  633. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  634. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  635. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  636. m1, m2, n, p1, p2);
  637. printk(" VGA0: clock is %d\n",
  638. calc_vclock(index, m1, m2, n, p1, p2, 0));
  639. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  640. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  641. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  642. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  643. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  644. m1, m2, n, p1, p2);
  645. printk(" VGA1: clock is %d\n",
  646. calc_vclock(index, m1, m2, n, p1, p2, 0));
  647. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  648. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  649. printk(" FPA0: 0x%08x\n", hw->fpa0);
  650. printk(" FPA1: 0x%08x\n", hw->fpa1);
  651. printk(" FPB0: 0x%08x\n", hw->fpb0);
  652. printk(" FPB1: 0x%08x\n", hw->fpb1);
  653. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  654. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  655. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  656. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  657. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  658. m1, m2, n, p1, p2);
  659. printk(" PLLA0: clock is %d\n",
  660. calc_vclock(index, m1, m2, n, p1, p2, 0));
  661. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  662. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  663. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  664. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  665. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  666. m1, m2, n, p1, p2);
  667. printk(" PLLA1: clock is %d\n",
  668. calc_vclock(index, m1, m2, n, p1, p2, 0));
  669. #if 0
  670. printk(" PALETTE_A:\n");
  671. for (i = 0; i < PALETTE_8_ENTRIES)
  672. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  673. printk(" PALETTE_B:\n");
  674. for (i = 0; i < PALETTE_8_ENTRIES)
  675. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  676. #endif
  677. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  678. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  679. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  680. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  681. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  682. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  683. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  684. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  685. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  686. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  687. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  688. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  689. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  690. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  691. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  692. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  693. printk(" ADPA: 0x%08x\n", hw->adpa);
  694. printk(" DVOA: 0x%08x\n", hw->dvoa);
  695. printk(" DVOB: 0x%08x\n", hw->dvob);
  696. printk(" DVOC: 0x%08x\n", hw->dvoc);
  697. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  698. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  699. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  700. printk(" LVDS: 0x%08x\n", hw->lvds);
  701. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  702. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  703. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  704. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  705. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  706. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  707. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  708. printk(" CURSOR_A_PALETTE: ");
  709. for (i = 0; i < 4; i++) {
  710. printk("0x%08x", hw->cursor_a_palette[i]);
  711. if (i < 3)
  712. printk(", ");
  713. }
  714. printk("\n");
  715. printk(" CURSOR_B_PALETTE: ");
  716. for (i = 0; i < 4; i++) {
  717. printk("0x%08x", hw->cursor_b_palette[i]);
  718. if (i < 3)
  719. printk(", ");
  720. }
  721. printk("\n");
  722. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  723. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  724. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  725. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  726. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  727. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  728. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  729. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  730. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  731. for (i = 0; i < 7; i++) {
  732. printk(" SWF0%d 0x%08x\n", i,
  733. hw->swf0x[i]);
  734. }
  735. for (i = 0; i < 7; i++) {
  736. printk(" SWF1%d 0x%08x\n", i,
  737. hw->swf1x[i]);
  738. }
  739. for (i = 0; i < 3; i++) {
  740. printk(" SWF3%d 0x%08x\n", i,
  741. hw->swf3x[i]);
  742. }
  743. for (i = 0; i < 8; i++)
  744. printk(" FENCE%d 0x%08x\n", i,
  745. hw->fence[i]);
  746. printk(" INSTPM 0x%08x\n", hw->instpm);
  747. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  748. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  749. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  750. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  751. printk(" IER 0x%04x\n", hw->ier);
  752. printk(" IIR 0x%04x\n", hw->iir);
  753. printk(" IMR 0x%04x\n", hw->imr);
  754. printk("hw state dump end\n");
  755. #endif
  756. }
  757. /* Split the M parameter into M1 and M2. */
  758. static int splitm(int index, unsigned int m, unsigned int *retm1,
  759. unsigned int *retm2)
  760. {
  761. int m1, m2;
  762. int testm;
  763. struct pll_min_max *pll = &plls[index];
  764. /* no point optimising too much - brute force m */
  765. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  766. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  767. testm = (5 * (m1 + 2)) + (m2 + 2);
  768. if (testm == m) {
  769. *retm1 = (unsigned int)m1;
  770. *retm2 = (unsigned int)m2;
  771. return 0;
  772. }
  773. }
  774. }
  775. return 1;
  776. }
  777. /* Split the P parameter into P1 and P2. */
  778. static int splitp(int index, unsigned int p, unsigned int *retp1,
  779. unsigned int *retp2)
  780. {
  781. int p1, p2;
  782. struct pll_min_max *pll = &plls[index];
  783. if (index == PLLS_I9xx) {
  784. p2 = (p % 10) ? 1 : 0;
  785. p1 = p / (p2 ? 5 : 10);
  786. *retp1 = (unsigned int)p1;
  787. *retp2 = (unsigned int)p2;
  788. return 0;
  789. }
  790. if (p % 4 == 0)
  791. p2 = 1;
  792. else
  793. p2 = 0;
  794. p1 = (p / (1 << (p2 + 1))) - 2;
  795. if (p % 4 == 0 && p1 < pll->min_p1) {
  796. p2 = 0;
  797. p1 = (p / (1 << (p2 + 1))) - 2;
  798. }
  799. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  800. (p1 + 2) * (1 << (p2 + 1)) != p) {
  801. return 1;
  802. } else {
  803. *retp1 = (unsigned int)p1;
  804. *retp2 = (unsigned int)p2;
  805. return 0;
  806. }
  807. }
  808. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  809. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  810. {
  811. u32 m1, m2, n, p1, p2, n1, testm;
  812. u32 f_vco, p, p_best = 0, m, f_out = 0;
  813. u32 err_max, err_target, err_best = 10000000;
  814. u32 n_best = 0, m_best = 0, f_best, f_err;
  815. u32 p_min, p_max, p_inc, div_max;
  816. struct pll_min_max *pll = &plls[index];
  817. /* Accept 0.5% difference, but aim for 0.1% */
  818. err_max = 5 * clock / 1000;
  819. err_target = clock / 1000;
  820. DBG_MSG("Clock is %d\n", clock);
  821. div_max = pll->max_vco / clock;
  822. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  823. p_min = p_inc;
  824. p_max = ROUND_DOWN_TO(div_max, p_inc);
  825. if (p_min < pll->min_p)
  826. p_min = pll->min_p;
  827. if (p_max > pll->max_p)
  828. p_max = pll->max_p;
  829. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  830. p = p_min;
  831. do {
  832. if (splitp(index, p, &p1, &p2)) {
  833. WRN_MSG("cannot split p = %d\n", p);
  834. p += p_inc;
  835. continue;
  836. }
  837. n = pll->min_n;
  838. f_vco = clock * p;
  839. do {
  840. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  841. if (m < pll->min_m)
  842. m = pll->min_m + 1;
  843. if (m > pll->max_m)
  844. m = pll->max_m - 1;
  845. for (testm = m - 1; testm <= m; testm++) {
  846. f_out = calc_vclock3(index, testm, n, p);
  847. if (splitm(index, testm, &m1, &m2)) {
  848. WRN_MSG("cannot split m = %d\n",
  849. testm);
  850. continue;
  851. }
  852. if (clock > f_out)
  853. f_err = clock - f_out;
  854. else/* slightly bias the error for bigger clocks */
  855. f_err = f_out - clock + 1;
  856. if (f_err < err_best) {
  857. m_best = testm;
  858. n_best = n;
  859. p_best = p;
  860. f_best = f_out;
  861. err_best = f_err;
  862. }
  863. }
  864. n++;
  865. } while ((n <= pll->max_n) && (f_out >= clock));
  866. p += p_inc;
  867. } while ((p <= p_max));
  868. if (!m_best) {
  869. WRN_MSG("cannot find parameters for clock %d\n", clock);
  870. return 1;
  871. }
  872. m = m_best;
  873. n = n_best;
  874. p = p_best;
  875. splitm(index, m, &m1, &m2);
  876. splitp(index, p, &p1, &p2);
  877. n1 = n - 2;
  878. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  879. "f: %d (%d), VCO: %d\n",
  880. m, m1, m2, n, n1, p, p1, p2,
  881. calc_vclock3(index, m, n, p),
  882. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  883. calc_vclock3(index, m, n, p) * p);
  884. *retm1 = m1;
  885. *retm2 = m2;
  886. *retn = n1;
  887. *retp1 = p1;
  888. *retp2 = p2;
  889. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  890. return 0;
  891. }
  892. static __inline__ int check_overflow(u32 value, u32 limit,
  893. const char *description)
  894. {
  895. if (value > limit) {
  896. WRN_MSG("%s value %d exceeds limit %d\n",
  897. description, value, limit);
  898. return 1;
  899. }
  900. return 0;
  901. }
  902. /* It is assumed that hw is filled in with the initial state information. */
  903. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  904. struct intelfb_hwstate *hw,
  905. struct fb_var_screeninfo *var)
  906. {
  907. int pipe = intelfbhw_active_pipe(hw);
  908. u32 *dpll, *fp0, *fp1;
  909. u32 m1, m2, n, p1, p2, clock_target, clock;
  910. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  911. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  912. u32 vsync_pol, hsync_pol;
  913. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  914. u32 stride_alignment;
  915. DBG_MSG("intelfbhw_mode_to_hw\n");
  916. /* Disable VGA */
  917. hw->vgacntrl |= VGA_DISABLE;
  918. /* Set which pipe's registers will be set. */
  919. if (pipe == PIPE_B) {
  920. dpll = &hw->dpll_b;
  921. fp0 = &hw->fpb0;
  922. fp1 = &hw->fpb1;
  923. hs = &hw->hsync_b;
  924. hb = &hw->hblank_b;
  925. ht = &hw->htotal_b;
  926. vs = &hw->vsync_b;
  927. vb = &hw->vblank_b;
  928. vt = &hw->vtotal_b;
  929. ss = &hw->src_size_b;
  930. pipe_conf = &hw->pipe_b_conf;
  931. } else {
  932. dpll = &hw->dpll_a;
  933. fp0 = &hw->fpa0;
  934. fp1 = &hw->fpa1;
  935. hs = &hw->hsync_a;
  936. hb = &hw->hblank_a;
  937. ht = &hw->htotal_a;
  938. vs = &hw->vsync_a;
  939. vb = &hw->vblank_a;
  940. vt = &hw->vtotal_a;
  941. ss = &hw->src_size_a;
  942. pipe_conf = &hw->pipe_a_conf;
  943. }
  944. /* Use ADPA register for sync control. */
  945. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  946. /* sync polarity */
  947. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  948. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  949. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  950. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  951. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  952. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  953. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  954. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  955. /* Connect correct pipe to the analog port DAC */
  956. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  957. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  958. /* Set DPMS state to D0 (on) */
  959. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  960. hw->adpa |= ADPA_DPMS_D0;
  961. hw->adpa |= ADPA_DAC_ENABLE;
  962. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  963. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  964. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  965. /* Desired clock in kHz */
  966. clock_target = 1000000000 / var->pixclock;
  967. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  968. &n, &p1, &p2, &clock)) {
  969. WRN_MSG("calc_pll_params failed\n");
  970. return 1;
  971. }
  972. /* Check for overflow. */
  973. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  974. return 1;
  975. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  976. return 1;
  977. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  978. return 1;
  979. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  980. return 1;
  981. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  982. return 1;
  983. *dpll &= ~DPLL_P1_FORCE_DIV2;
  984. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  985. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  986. if (IS_I9XX(dinfo)) {
  987. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  988. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  989. } else
  990. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  991. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  992. (m1 << FP_M1_DIVISOR_SHIFT) |
  993. (m2 << FP_M2_DIVISOR_SHIFT);
  994. *fp1 = *fp0;
  995. hw->dvob &= ~PORT_ENABLE;
  996. hw->dvoc &= ~PORT_ENABLE;
  997. /* Use display plane A. */
  998. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  999. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  1000. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  1001. switch (intelfb_var_to_depth(var)) {
  1002. case 8:
  1003. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  1004. break;
  1005. case 15:
  1006. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  1007. break;
  1008. case 16:
  1009. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  1010. break;
  1011. case 24:
  1012. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  1013. break;
  1014. }
  1015. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  1016. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  1017. /* Set CRTC registers. */
  1018. hactive = var->xres;
  1019. hsync_start = hactive + var->right_margin;
  1020. hsync_end = hsync_start + var->hsync_len;
  1021. htotal = hsync_end + var->left_margin;
  1022. hblank_start = hactive;
  1023. hblank_end = htotal;
  1024. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1025. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1026. hblank_end);
  1027. vactive = var->yres;
  1028. if (var->vmode & FB_VMODE_INTERLACED)
  1029. vactive--; /* the chip adds 2 halflines automatically */
  1030. vsync_start = vactive + var->lower_margin;
  1031. vsync_end = vsync_start + var->vsync_len;
  1032. vtotal = vsync_end + var->upper_margin;
  1033. vblank_start = vactive;
  1034. vblank_end = vtotal;
  1035. vblank_end = vsync_end + 1;
  1036. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1037. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1038. vblank_end);
  1039. /* Adjust for register values, and check for overflow. */
  1040. hactive--;
  1041. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1042. return 1;
  1043. hsync_start--;
  1044. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1045. return 1;
  1046. hsync_end--;
  1047. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1048. return 1;
  1049. htotal--;
  1050. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1051. return 1;
  1052. hblank_start--;
  1053. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1054. return 1;
  1055. hblank_end--;
  1056. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1057. return 1;
  1058. vactive--;
  1059. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1060. return 1;
  1061. vsync_start--;
  1062. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1063. return 1;
  1064. vsync_end--;
  1065. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1066. return 1;
  1067. vtotal--;
  1068. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1069. return 1;
  1070. vblank_start--;
  1071. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1072. return 1;
  1073. vblank_end--;
  1074. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1075. return 1;
  1076. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1077. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1078. (hblank_end << HSYNCEND_SHIFT);
  1079. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1080. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1081. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1082. (vblank_end << VSYNCEND_SHIFT);
  1083. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1084. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1085. (vactive << SRC_SIZE_VERT_SHIFT);
  1086. hw->disp_a_stride = dinfo->pitch;
  1087. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1088. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1089. var->xoffset * var->bits_per_pixel / 8;
  1090. hw->disp_a_base += dinfo->fb.offset << 12;
  1091. /* Check stride alignment. */
  1092. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1093. STRIDE_ALIGNMENT;
  1094. if (hw->disp_a_stride % stride_alignment != 0) {
  1095. WRN_MSG("display stride %d has bad alignment %d\n",
  1096. hw->disp_a_stride, stride_alignment);
  1097. return 1;
  1098. }
  1099. /* Set the palette to 8-bit mode. */
  1100. *pipe_conf &= ~PIPECONF_GAMMA;
  1101. if (var->vmode & FB_VMODE_INTERLACED)
  1102. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1103. else
  1104. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1105. return 0;
  1106. }
  1107. /* Program a (non-VGA) video mode. */
  1108. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1109. const struct intelfb_hwstate *hw, int blank)
  1110. {
  1111. u32 tmp;
  1112. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1113. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1114. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1115. u32 hsync_reg, htotal_reg, hblank_reg;
  1116. u32 vsync_reg, vtotal_reg, vblank_reg;
  1117. u32 src_size_reg;
  1118. u32 count, tmp_val[3];
  1119. /* Assume single pipe */
  1120. #if VERBOSE > 0
  1121. DBG_MSG("intelfbhw_program_mode\n");
  1122. #endif
  1123. /* Disable VGA */
  1124. tmp = INREG(VGACNTRL);
  1125. tmp |= VGA_DISABLE;
  1126. OUTREG(VGACNTRL, tmp);
  1127. dinfo->pipe = intelfbhw_active_pipe(hw);
  1128. if (dinfo->pipe == PIPE_B) {
  1129. dpll = &hw->dpll_b;
  1130. fp0 = &hw->fpb0;
  1131. fp1 = &hw->fpb1;
  1132. pipe_conf = &hw->pipe_b_conf;
  1133. hs = &hw->hsync_b;
  1134. hb = &hw->hblank_b;
  1135. ht = &hw->htotal_b;
  1136. vs = &hw->vsync_b;
  1137. vb = &hw->vblank_b;
  1138. vt = &hw->vtotal_b;
  1139. ss = &hw->src_size_b;
  1140. dpll_reg = DPLL_B;
  1141. fp0_reg = FPB0;
  1142. fp1_reg = FPB1;
  1143. pipe_conf_reg = PIPEBCONF;
  1144. pipe_stat_reg = PIPEBSTAT;
  1145. hsync_reg = HSYNC_B;
  1146. htotal_reg = HTOTAL_B;
  1147. hblank_reg = HBLANK_B;
  1148. vsync_reg = VSYNC_B;
  1149. vtotal_reg = VTOTAL_B;
  1150. vblank_reg = VBLANK_B;
  1151. src_size_reg = SRC_SIZE_B;
  1152. } else {
  1153. dpll = &hw->dpll_a;
  1154. fp0 = &hw->fpa0;
  1155. fp1 = &hw->fpa1;
  1156. pipe_conf = &hw->pipe_a_conf;
  1157. hs = &hw->hsync_a;
  1158. hb = &hw->hblank_a;
  1159. ht = &hw->htotal_a;
  1160. vs = &hw->vsync_a;
  1161. vb = &hw->vblank_a;
  1162. vt = &hw->vtotal_a;
  1163. ss = &hw->src_size_a;
  1164. dpll_reg = DPLL_A;
  1165. fp0_reg = FPA0;
  1166. fp1_reg = FPA1;
  1167. pipe_conf_reg = PIPEACONF;
  1168. pipe_stat_reg = PIPEASTAT;
  1169. hsync_reg = HSYNC_A;
  1170. htotal_reg = HTOTAL_A;
  1171. hblank_reg = HBLANK_A;
  1172. vsync_reg = VSYNC_A;
  1173. vtotal_reg = VTOTAL_A;
  1174. vblank_reg = VBLANK_A;
  1175. src_size_reg = SRC_SIZE_A;
  1176. }
  1177. /* turn off pipe */
  1178. tmp = INREG(pipe_conf_reg);
  1179. tmp &= ~PIPECONF_ENABLE;
  1180. OUTREG(pipe_conf_reg, tmp);
  1181. count = 0;
  1182. do {
  1183. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1184. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1185. break;
  1186. count++;
  1187. udelay(1);
  1188. if (count % 200 == 0) {
  1189. tmp = INREG(pipe_conf_reg);
  1190. tmp &= ~PIPECONF_ENABLE;
  1191. OUTREG(pipe_conf_reg, tmp);
  1192. }
  1193. } while (count < 2000);
  1194. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1195. /* Disable planes A and B. */
  1196. tmp = INREG(DSPACNTR);
  1197. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1198. OUTREG(DSPACNTR, tmp);
  1199. tmp = INREG(DSPBCNTR);
  1200. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1201. OUTREG(DSPBCNTR, tmp);
  1202. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1203. mdelay(20);
  1204. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1205. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1206. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1207. /* Disable Sync */
  1208. tmp = INREG(ADPA);
  1209. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1210. tmp |= ADPA_DPMS_D3;
  1211. OUTREG(ADPA, tmp);
  1212. /* do some funky magic - xyzzy */
  1213. OUTREG(0x61204, 0xabcd0000);
  1214. /* turn off PLL */
  1215. tmp = INREG(dpll_reg);
  1216. tmp &= ~DPLL_VCO_ENABLE;
  1217. OUTREG(dpll_reg, tmp);
  1218. /* Set PLL parameters */
  1219. OUTREG(fp0_reg, *fp0);
  1220. OUTREG(fp1_reg, *fp1);
  1221. /* Enable PLL */
  1222. OUTREG(dpll_reg, *dpll);
  1223. /* Set DVOs B/C */
  1224. OUTREG(DVOB, hw->dvob);
  1225. OUTREG(DVOC, hw->dvoc);
  1226. /* undo funky magic */
  1227. OUTREG(0x61204, 0x00000000);
  1228. /* Set ADPA */
  1229. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1230. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1231. /* Set pipe parameters */
  1232. OUTREG(hsync_reg, *hs);
  1233. OUTREG(hblank_reg, *hb);
  1234. OUTREG(htotal_reg, *ht);
  1235. OUTREG(vsync_reg, *vs);
  1236. OUTREG(vblank_reg, *vb);
  1237. OUTREG(vtotal_reg, *vt);
  1238. OUTREG(src_size_reg, *ss);
  1239. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1240. FB_VMODE_ODD_FLD_FIRST)) {
  1241. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1242. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1243. break;
  1244. case FB_VMODE_INTERLACED: /* even lines first */
  1245. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1246. break;
  1247. default: /* non-interlaced */
  1248. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1249. }
  1250. /* Enable pipe */
  1251. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1252. /* Enable sync */
  1253. tmp = INREG(ADPA);
  1254. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1255. tmp |= ADPA_DPMS_D0;
  1256. OUTREG(ADPA, tmp);
  1257. /* setup display plane */
  1258. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1259. /*
  1260. * i830M errata: the display plane must be enabled
  1261. * to allow writes to the other bits in the plane
  1262. * control register.
  1263. */
  1264. tmp = INREG(DSPACNTR);
  1265. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1266. tmp |= DISPPLANE_PLANE_ENABLE;
  1267. OUTREG(DSPACNTR, tmp);
  1268. OUTREG(DSPACNTR,
  1269. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1270. mdelay(1);
  1271. }
  1272. }
  1273. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1274. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1275. OUTREG(DSPABASE, hw->disp_a_base);
  1276. /* Enable plane */
  1277. if (!blank) {
  1278. tmp = INREG(DSPACNTR);
  1279. tmp |= DISPPLANE_PLANE_ENABLE;
  1280. OUTREG(DSPACNTR, tmp);
  1281. OUTREG(DSPABASE, hw->disp_a_base);
  1282. }
  1283. return 0;
  1284. }
  1285. /* forward declarations */
  1286. static void refresh_ring(struct intelfb_info *dinfo);
  1287. static void reset_state(struct intelfb_info *dinfo);
  1288. static void do_flush(struct intelfb_info *dinfo);
  1289. static u32 get_ring_space(struct intelfb_info *dinfo)
  1290. {
  1291. u32 ring_space;
  1292. if (dinfo->ring_tail >= dinfo->ring_head)
  1293. ring_space = dinfo->ring.size -
  1294. (dinfo->ring_tail - dinfo->ring_head);
  1295. else
  1296. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1297. if (ring_space > RING_MIN_FREE)
  1298. ring_space -= RING_MIN_FREE;
  1299. else
  1300. ring_space = 0;
  1301. return ring_space;
  1302. }
  1303. static int wait_ring(struct intelfb_info *dinfo, int n)
  1304. {
  1305. int i = 0;
  1306. unsigned long end;
  1307. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1308. #if VERBOSE > 0
  1309. DBG_MSG("wait_ring: %d\n", n);
  1310. #endif
  1311. end = jiffies + (HZ * 3);
  1312. while (dinfo->ring_space < n) {
  1313. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1314. dinfo->ring_space = get_ring_space(dinfo);
  1315. if (dinfo->ring_head != last_head) {
  1316. end = jiffies + (HZ * 3);
  1317. last_head = dinfo->ring_head;
  1318. }
  1319. i++;
  1320. if (time_before(end, jiffies)) {
  1321. if (!i) {
  1322. /* Try again */
  1323. reset_state(dinfo);
  1324. refresh_ring(dinfo);
  1325. do_flush(dinfo);
  1326. end = jiffies + (HZ * 3);
  1327. i = 1;
  1328. } else {
  1329. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1330. dinfo->ring_space, n);
  1331. WRN_MSG("lockup - turning off hardware "
  1332. "acceleration\n");
  1333. dinfo->ring_lockup = 1;
  1334. break;
  1335. }
  1336. }
  1337. udelay(1);
  1338. }
  1339. return i;
  1340. }
  1341. static void do_flush(struct intelfb_info *dinfo)
  1342. {
  1343. START_RING(2);
  1344. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1345. OUT_RING(MI_NOOP);
  1346. ADVANCE_RING();
  1347. }
  1348. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1349. {
  1350. #if VERBOSE > 0
  1351. DBG_MSG("intelfbhw_do_sync\n");
  1352. #endif
  1353. if (!dinfo->accel)
  1354. return;
  1355. /*
  1356. * Send a flush, then wait until the ring is empty. This is what
  1357. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1358. * than the recommended method (both have problems).
  1359. */
  1360. do_flush(dinfo);
  1361. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1362. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1363. }
  1364. static void refresh_ring(struct intelfb_info *dinfo)
  1365. {
  1366. #if VERBOSE > 0
  1367. DBG_MSG("refresh_ring\n");
  1368. #endif
  1369. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1370. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1371. dinfo->ring_space = get_ring_space(dinfo);
  1372. }
  1373. static void reset_state(struct intelfb_info *dinfo)
  1374. {
  1375. int i;
  1376. u32 tmp;
  1377. #if VERBOSE > 0
  1378. DBG_MSG("reset_state\n");
  1379. #endif
  1380. for (i = 0; i < FENCE_NUM; i++)
  1381. OUTREG(FENCE + (i << 2), 0);
  1382. /* Flush the ring buffer if it's enabled. */
  1383. tmp = INREG(PRI_RING_LENGTH);
  1384. if (tmp & RING_ENABLE) {
  1385. #if VERBOSE > 0
  1386. DBG_MSG("reset_state: ring was enabled\n");
  1387. #endif
  1388. refresh_ring(dinfo);
  1389. intelfbhw_do_sync(dinfo);
  1390. DO_RING_IDLE();
  1391. }
  1392. OUTREG(PRI_RING_LENGTH, 0);
  1393. OUTREG(PRI_RING_HEAD, 0);
  1394. OUTREG(PRI_RING_TAIL, 0);
  1395. OUTREG(PRI_RING_START, 0);
  1396. }
  1397. /* Stop the 2D engine, and turn off the ring buffer. */
  1398. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1399. {
  1400. #if VERBOSE > 0
  1401. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1402. dinfo->accel, dinfo->ring_active);
  1403. #endif
  1404. if (!dinfo->accel)
  1405. return;
  1406. dinfo->ring_active = 0;
  1407. reset_state(dinfo);
  1408. }
  1409. /*
  1410. * Enable the ring buffer, and initialise the 2D engine.
  1411. * It is assumed that the graphics engine has been stopped by previously
  1412. * calling intelfb_2d_stop().
  1413. */
  1414. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1415. {
  1416. #if VERBOSE > 0
  1417. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1418. dinfo->accel, dinfo->ring_active);
  1419. #endif
  1420. if (!dinfo->accel)
  1421. return;
  1422. /* Initialise the primary ring buffer. */
  1423. OUTREG(PRI_RING_LENGTH, 0);
  1424. OUTREG(PRI_RING_TAIL, 0);
  1425. OUTREG(PRI_RING_HEAD, 0);
  1426. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1427. OUTREG(PRI_RING_LENGTH,
  1428. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1429. RING_NO_REPORT | RING_ENABLE);
  1430. refresh_ring(dinfo);
  1431. dinfo->ring_active = 1;
  1432. }
  1433. /* 2D fillrect (solid fill or invert) */
  1434. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1435. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1436. {
  1437. u32 br00, br09, br13, br14, br16;
  1438. #if VERBOSE > 0
  1439. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1440. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1441. #endif
  1442. br00 = COLOR_BLT_CMD;
  1443. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1444. br13 = (rop << ROP_SHIFT) | pitch;
  1445. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1446. br16 = color;
  1447. switch (bpp) {
  1448. case 8:
  1449. br13 |= COLOR_DEPTH_8;
  1450. break;
  1451. case 16:
  1452. br13 |= COLOR_DEPTH_16;
  1453. break;
  1454. case 32:
  1455. br13 |= COLOR_DEPTH_32;
  1456. br00 |= WRITE_ALPHA | WRITE_RGB;
  1457. break;
  1458. }
  1459. START_RING(6);
  1460. OUT_RING(br00);
  1461. OUT_RING(br13);
  1462. OUT_RING(br14);
  1463. OUT_RING(br09);
  1464. OUT_RING(br16);
  1465. OUT_RING(MI_NOOP);
  1466. ADVANCE_RING();
  1467. #if VERBOSE > 0
  1468. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1469. dinfo->ring_tail, dinfo->ring_space);
  1470. #endif
  1471. }
  1472. void
  1473. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1474. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1475. {
  1476. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1477. #if VERBOSE > 0
  1478. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1479. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1480. #endif
  1481. br00 = XY_SRC_COPY_BLT_CMD;
  1482. br09 = dinfo->fb_start;
  1483. br11 = (pitch << PITCH_SHIFT);
  1484. br12 = dinfo->fb_start;
  1485. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1486. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1487. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1488. ((dsty + h) << HEIGHT_SHIFT);
  1489. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1490. switch (bpp) {
  1491. case 8:
  1492. br13 |= COLOR_DEPTH_8;
  1493. break;
  1494. case 16:
  1495. br13 |= COLOR_DEPTH_16;
  1496. break;
  1497. case 32:
  1498. br13 |= COLOR_DEPTH_32;
  1499. br00 |= WRITE_ALPHA | WRITE_RGB;
  1500. break;
  1501. }
  1502. START_RING(8);
  1503. OUT_RING(br00);
  1504. OUT_RING(br13);
  1505. OUT_RING(br22);
  1506. OUT_RING(br23);
  1507. OUT_RING(br09);
  1508. OUT_RING(br26);
  1509. OUT_RING(br11);
  1510. OUT_RING(br12);
  1511. ADVANCE_RING();
  1512. }
  1513. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1514. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1515. u32 bpp)
  1516. {
  1517. int nbytes, ndwords, pad, tmp;
  1518. u32 br00, br09, br13, br18, br19, br22, br23;
  1519. int dat, ix, iy, iw;
  1520. int i, j;
  1521. #if VERBOSE > 0
  1522. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1523. #endif
  1524. /* size in bytes of a padded scanline */
  1525. nbytes = ROUND_UP_TO(w, 16) / 8;
  1526. /* Total bytes of padded scanline data to write out. */
  1527. nbytes = nbytes * h;
  1528. /*
  1529. * Check if the glyph data exceeds the immediate mode limit.
  1530. * It would take a large font (1K pixels) to hit this limit.
  1531. */
  1532. if (nbytes > MAX_MONO_IMM_SIZE)
  1533. return 0;
  1534. /* Src data is packaged a dword (32-bit) at a time. */
  1535. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1536. /*
  1537. * Ring has to be padded to a quad word. But because the command starts
  1538. with 7 bytes, pad only if there is an even number of ndwords
  1539. */
  1540. pad = !(ndwords % 2);
  1541. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1542. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1543. br09 = dinfo->fb_start;
  1544. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1545. br18 = bg;
  1546. br19 = fg;
  1547. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1548. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1549. switch (bpp) {
  1550. case 8:
  1551. br13 |= COLOR_DEPTH_8;
  1552. break;
  1553. case 16:
  1554. br13 |= COLOR_DEPTH_16;
  1555. break;
  1556. case 32:
  1557. br13 |= COLOR_DEPTH_32;
  1558. br00 |= WRITE_ALPHA | WRITE_RGB;
  1559. break;
  1560. }
  1561. START_RING(8 + ndwords);
  1562. OUT_RING(br00);
  1563. OUT_RING(br13);
  1564. OUT_RING(br22);
  1565. OUT_RING(br23);
  1566. OUT_RING(br09);
  1567. OUT_RING(br18);
  1568. OUT_RING(br19);
  1569. ix = iy = 0;
  1570. iw = ROUND_UP_TO(w, 8) / 8;
  1571. while (ndwords--) {
  1572. dat = 0;
  1573. for (j = 0; j < 2; ++j) {
  1574. for (i = 0; i < 2; ++i) {
  1575. if (ix != iw || i == 0)
  1576. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1577. }
  1578. if (ix == iw && iy != (h-1)) {
  1579. ix = 0;
  1580. ++iy;
  1581. }
  1582. }
  1583. OUT_RING(dat);
  1584. }
  1585. if (pad)
  1586. OUT_RING(MI_NOOP);
  1587. ADVANCE_RING();
  1588. return 1;
  1589. }
  1590. /* HW cursor functions. */
  1591. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1592. {
  1593. u32 tmp;
  1594. #if VERBOSE > 0
  1595. DBG_MSG("intelfbhw_cursor_init\n");
  1596. #endif
  1597. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1598. if (!dinfo->cursor.physical)
  1599. return;
  1600. tmp = INREG(CURSOR_A_CONTROL);
  1601. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1602. CURSOR_MEM_TYPE_LOCAL |
  1603. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1604. tmp |= CURSOR_MODE_DISABLE;
  1605. OUTREG(CURSOR_A_CONTROL, tmp);
  1606. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1607. } else {
  1608. tmp = INREG(CURSOR_CONTROL);
  1609. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1610. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1611. tmp = CURSOR_FORMAT_3C;
  1612. OUTREG(CURSOR_CONTROL, tmp);
  1613. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1614. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1615. (64 << CURSOR_SIZE_V_SHIFT);
  1616. OUTREG(CURSOR_SIZE, tmp);
  1617. }
  1618. }
  1619. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1620. {
  1621. u32 tmp;
  1622. #if VERBOSE > 0
  1623. DBG_MSG("intelfbhw_cursor_hide\n");
  1624. #endif
  1625. dinfo->cursor_on = 0;
  1626. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1627. if (!dinfo->cursor.physical)
  1628. return;
  1629. tmp = INREG(CURSOR_A_CONTROL);
  1630. tmp &= ~CURSOR_MODE_MASK;
  1631. tmp |= CURSOR_MODE_DISABLE;
  1632. OUTREG(CURSOR_A_CONTROL, tmp);
  1633. /* Flush changes */
  1634. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1635. } else {
  1636. tmp = INREG(CURSOR_CONTROL);
  1637. tmp &= ~CURSOR_ENABLE;
  1638. OUTREG(CURSOR_CONTROL, tmp);
  1639. }
  1640. }
  1641. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1642. {
  1643. u32 tmp;
  1644. #if VERBOSE > 0
  1645. DBG_MSG("intelfbhw_cursor_show\n");
  1646. #endif
  1647. dinfo->cursor_on = 1;
  1648. if (dinfo->cursor_blanked)
  1649. return;
  1650. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1651. if (!dinfo->cursor.physical)
  1652. return;
  1653. tmp = INREG(CURSOR_A_CONTROL);
  1654. tmp &= ~CURSOR_MODE_MASK;
  1655. tmp |= CURSOR_MODE_64_4C_AX;
  1656. OUTREG(CURSOR_A_CONTROL, tmp);
  1657. /* Flush changes */
  1658. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1659. } else {
  1660. tmp = INREG(CURSOR_CONTROL);
  1661. tmp |= CURSOR_ENABLE;
  1662. OUTREG(CURSOR_CONTROL, tmp);
  1663. }
  1664. }
  1665. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1666. {
  1667. u32 tmp;
  1668. #if VERBOSE > 0
  1669. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1670. #endif
  1671. /*
  1672. * Sets the position. The coordinates are assumed to already
  1673. * have any offset adjusted. Assume that the cursor is never
  1674. * completely off-screen, and that x, y are always >= 0.
  1675. */
  1676. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1677. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1678. OUTREG(CURSOR_A_POSITION, tmp);
  1679. if (IS_I9XX(dinfo))
  1680. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1681. }
  1682. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1683. {
  1684. #if VERBOSE > 0
  1685. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1686. #endif
  1687. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1688. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1689. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1690. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1691. }
  1692. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1693. u8 *data)
  1694. {
  1695. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1696. int i, j, w = width / 8;
  1697. int mod = width % 8, t_mask, d_mask;
  1698. #if VERBOSE > 0
  1699. DBG_MSG("intelfbhw_cursor_load\n");
  1700. #endif
  1701. if (!dinfo->cursor.virtual)
  1702. return;
  1703. t_mask = 0xff >> mod;
  1704. d_mask = ~(0xff >> mod);
  1705. for (i = height; i--; ) {
  1706. for (j = 0; j < w; j++) {
  1707. writeb(0x00, addr + j);
  1708. writeb(*(data++), addr + j+8);
  1709. }
  1710. if (mod) {
  1711. writeb(t_mask, addr + j);
  1712. writeb(*(data++) & d_mask, addr + j+8);
  1713. }
  1714. addr += 16;
  1715. }
  1716. }
  1717. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1718. {
  1719. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1720. int i, j;
  1721. #if VERBOSE > 0
  1722. DBG_MSG("intelfbhw_cursor_reset\n");
  1723. #endif
  1724. if (!dinfo->cursor.virtual)
  1725. return;
  1726. for (i = 64; i--; ) {
  1727. for (j = 0; j < 8; j++) {
  1728. writeb(0xff, addr + j+0);
  1729. writeb(0x00, addr + j+8);
  1730. }
  1731. addr += 16;
  1732. }
  1733. }
  1734. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1735. {
  1736. u16 tmp;
  1737. struct intelfb_info *dinfo = dev_id;
  1738. spin_lock(&dinfo->int_lock);
  1739. tmp = INREG16(IIR);
  1740. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1741. tmp &= PIPE_A_EVENT_INTERRUPT;
  1742. else
  1743. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1744. if (tmp == 0) {
  1745. spin_unlock(&dinfo->int_lock);
  1746. return IRQ_RETVAL(0); /* not us */
  1747. }
  1748. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1749. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1750. OUTREG16(IIR, tmp);
  1751. if (dinfo->vsync.pan_display) {
  1752. dinfo->vsync.pan_display = 0;
  1753. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1754. }
  1755. dinfo->vsync.count++;
  1756. wake_up_interruptible(&dinfo->vsync.wait);
  1757. spin_unlock(&dinfo->int_lock);
  1758. return IRQ_RETVAL(1);
  1759. }
  1760. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1761. {
  1762. u16 tmp;
  1763. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1764. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1765. "intelfb", dinfo)) {
  1766. clear_bit(0, &dinfo->irq_flags);
  1767. return -EINVAL;
  1768. }
  1769. spin_lock_irq(&dinfo->int_lock);
  1770. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1771. OUTREG16(IMR, 0);
  1772. } else
  1773. spin_lock_irq(&dinfo->int_lock);
  1774. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1775. tmp = PIPE_A_EVENT_INTERRUPT;
  1776. else
  1777. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1778. if (tmp != INREG16(IER)) {
  1779. DBG_MSG("changing IER to 0x%X\n", tmp);
  1780. OUTREG16(IER, tmp);
  1781. }
  1782. spin_unlock_irq(&dinfo->int_lock);
  1783. return 0;
  1784. }
  1785. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1786. {
  1787. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1788. if (dinfo->vsync.pan_display) {
  1789. dinfo->vsync.pan_display = 0;
  1790. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1791. }
  1792. spin_lock_irq(&dinfo->int_lock);
  1793. OUTREG16(HWSTAM, 0xffff);
  1794. OUTREG16(IMR, 0xffff);
  1795. OUTREG16(IER, 0x0);
  1796. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1797. spin_unlock_irq(&dinfo->int_lock);
  1798. free_irq(dinfo->pdev->irq, dinfo);
  1799. }
  1800. }
  1801. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1802. {
  1803. struct intelfb_vsync *vsync;
  1804. unsigned int count;
  1805. int ret;
  1806. switch (pipe) {
  1807. case 0:
  1808. vsync = &dinfo->vsync;
  1809. break;
  1810. default:
  1811. return -ENODEV;
  1812. }
  1813. ret = intelfbhw_enable_irq(dinfo);
  1814. if (ret)
  1815. return ret;
  1816. count = vsync->count;
  1817. ret = wait_event_interruptible_timeout(vsync->wait,
  1818. count != vsync->count, HZ / 10);
  1819. if (ret < 0)
  1820. return ret;
  1821. if (ret == 0) {
  1822. DBG_MSG("wait_for_vsync timed out!\n");
  1823. return -ETIMEDOUT;
  1824. }
  1825. return 0;
  1826. }