amd5536udc.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. /*
  22. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  23. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  24. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  25. *
  26. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  27. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  28. * by BIOS init).
  29. *
  30. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  31. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  32. * can be used with gadget ether.
  33. */
  34. /* debug control */
  35. /* #define UDC_VERBOSE */
  36. /* Driver strings */
  37. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  38. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  39. /* system */
  40. #include <linux/module.h>
  41. #include <linux/pci.h>
  42. #include <linux/kernel.h>
  43. #include <linux/delay.h>
  44. #include <linux/ioport.h>
  45. #include <linux/sched.h>
  46. #include <linux/slab.h>
  47. #include <linux/errno.h>
  48. #include <linux/init.h>
  49. #include <linux/timer.h>
  50. #include <linux/list.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/ioctl.h>
  53. #include <linux/fs.h>
  54. #include <linux/dmapool.h>
  55. #include <linux/moduleparam.h>
  56. #include <linux/device.h>
  57. #include <linux/io.h>
  58. #include <linux/irq.h>
  59. #include <asm/byteorder.h>
  60. #include <asm/system.h>
  61. #include <asm/unaligned.h>
  62. /* gadget stack */
  63. #include <linux/usb/ch9.h>
  64. #include <linux/usb/gadget.h>
  65. /* udc specific */
  66. #include "amd5536udc.h"
  67. static void udc_tasklet_disconnect(unsigned long);
  68. static void empty_req_queue(struct udc_ep *);
  69. static int udc_probe(struct udc *dev);
  70. static void udc_basic_init(struct udc *dev);
  71. static void udc_setup_endpoints(struct udc *dev);
  72. static void udc_soft_reset(struct udc *dev);
  73. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  74. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  75. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  76. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  77. unsigned long buf_len, gfp_t gfp_flags);
  78. static int udc_remote_wakeup(struct udc *dev);
  79. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  80. static void udc_pci_remove(struct pci_dev *pdev);
  81. /* description */
  82. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  83. static const char name[] = "amd5536udc";
  84. /* structure to hold endpoint function pointers */
  85. static const struct usb_ep_ops udc_ep_ops;
  86. /* received setup data */
  87. static union udc_setup_data setup_data;
  88. /* pointer to device object */
  89. static struct udc *udc;
  90. /* irq spin lock for soft reset */
  91. static DEFINE_SPINLOCK(udc_irq_spinlock);
  92. /* stall spin lock */
  93. static DEFINE_SPINLOCK(udc_stall_spinlock);
  94. /*
  95. * slave mode: pending bytes in rx fifo after nyet,
  96. * used if EPIN irq came but no req was available
  97. */
  98. static unsigned int udc_rxfifo_pending;
  99. /* count soft resets after suspend to avoid loop */
  100. static int soft_reset_occured;
  101. static int soft_reset_after_usbreset_occured;
  102. /* timer */
  103. static struct timer_list udc_timer;
  104. static int stop_timer;
  105. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  106. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  107. * all OUT endpoints. So we have to handle race conditions like
  108. * when OUT data reaches the fifo but no request was queued yet.
  109. * This cannot be solved by letting the RX DMA disabled until a
  110. * request gets queued because there may be other OUT packets
  111. * in the FIFO (important for not blocking control traffic).
  112. * The value of set_rde controls the correspondig timer.
  113. *
  114. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  115. * set_rde 0 == do not touch RDE, do no start the RDE timer
  116. * set_rde 1 == timer function will look whether FIFO has data
  117. * set_rde 2 == set by timer function to enable RX DMA on next call
  118. */
  119. static int set_rde = -1;
  120. static DECLARE_COMPLETION(on_exit);
  121. static struct timer_list udc_pollstall_timer;
  122. static int stop_pollstall_timer;
  123. static DECLARE_COMPLETION(on_pollstall_exit);
  124. /* tasklet for usb disconnect */
  125. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  126. (unsigned long) &udc);
  127. /* endpoint names used for print */
  128. static const char ep0_string[] = "ep0in";
  129. static const char *ep_string[] = {
  130. ep0_string,
  131. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  132. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  133. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  134. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  135. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  136. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  137. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  138. };
  139. /* DMA usage flag */
  140. static int use_dma = 1;
  141. /* packet per buffer dma */
  142. static int use_dma_ppb = 1;
  143. /* with per descr. update */
  144. static int use_dma_ppb_du;
  145. /* buffer fill mode */
  146. static int use_dma_bufferfill_mode;
  147. /* full speed only mode */
  148. static int use_fullspeed;
  149. /* tx buffer size for high speed */
  150. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  151. /* module parameters */
  152. module_param(use_dma, bool, S_IRUGO);
  153. MODULE_PARM_DESC(use_dma, "true for DMA");
  154. module_param(use_dma_ppb, bool, S_IRUGO);
  155. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  156. module_param(use_dma_ppb_du, bool, S_IRUGO);
  157. MODULE_PARM_DESC(use_dma_ppb_du,
  158. "true for DMA in packet per buffer mode with descriptor update");
  159. module_param(use_fullspeed, bool, S_IRUGO);
  160. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  161. /*---------------------------------------------------------------------------*/
  162. /* Prints UDC device registers and endpoint irq registers */
  163. static void print_regs(struct udc *dev)
  164. {
  165. DBG(dev, "------- Device registers -------\n");
  166. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  167. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  168. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  169. DBG(dev, "\n");
  170. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  171. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  172. DBG(dev, "\n");
  173. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  174. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  175. DBG(dev, "\n");
  176. DBG(dev, "USE DMA = %d\n", use_dma);
  177. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  178. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  179. "WITHOUT desc. update)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  181. } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
  182. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  183. "WITH desc. update)\n");
  184. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  185. }
  186. if (use_dma && use_dma_bufferfill_mode) {
  187. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  188. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  189. }
  190. if (!use_dma) {
  191. dev_info(&dev->pdev->dev, "FIFO mode\n");
  192. }
  193. DBG(dev, "-------------------------------------------------------\n");
  194. }
  195. /* Masks unused interrupts */
  196. static int udc_mask_unused_interrupts(struct udc *dev)
  197. {
  198. u32 tmp;
  199. /* mask all dev interrupts */
  200. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  201. AMD_BIT(UDC_DEVINT_ENUM) |
  202. AMD_BIT(UDC_DEVINT_US) |
  203. AMD_BIT(UDC_DEVINT_UR) |
  204. AMD_BIT(UDC_DEVINT_ES) |
  205. AMD_BIT(UDC_DEVINT_SI) |
  206. AMD_BIT(UDC_DEVINT_SOF)|
  207. AMD_BIT(UDC_DEVINT_SC);
  208. writel(tmp, &dev->regs->irqmsk);
  209. /* mask all ep interrupts */
  210. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  211. return 0;
  212. }
  213. /* Enables endpoint 0 interrupts */
  214. static int udc_enable_ep0_interrupts(struct udc *dev)
  215. {
  216. u32 tmp;
  217. DBG(dev, "udc_enable_ep0_interrupts()\n");
  218. /* read irq mask */
  219. tmp = readl(&dev->regs->ep_irqmsk);
  220. /* enable ep0 irq's */
  221. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  222. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  223. writel(tmp, &dev->regs->ep_irqmsk);
  224. return 0;
  225. }
  226. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  227. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  228. {
  229. u32 tmp;
  230. DBG(dev, "enable device interrupts for setup data\n");
  231. /* read irq mask */
  232. tmp = readl(&dev->regs->irqmsk);
  233. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  234. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  235. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  236. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  237. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  238. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  239. writel(tmp, &dev->regs->irqmsk);
  240. return 0;
  241. }
  242. /* Calculates fifo start of endpoint based on preceeding endpoints */
  243. static int udc_set_txfifo_addr(struct udc_ep *ep)
  244. {
  245. struct udc *dev;
  246. u32 tmp;
  247. int i;
  248. if (!ep || !(ep->in))
  249. return -EINVAL;
  250. dev = ep->dev;
  251. ep->txfifo = dev->txfifo;
  252. /* traverse ep's */
  253. for (i = 0; i < ep->num; i++) {
  254. if (dev->ep[i].regs) {
  255. /* read fifo size */
  256. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  257. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  258. ep->txfifo += tmp;
  259. }
  260. }
  261. return 0;
  262. }
  263. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  264. static u32 cnak_pending;
  265. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  266. {
  267. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  268. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  269. cnak_pending |= 1 << (num);
  270. ep->naking = 1;
  271. } else
  272. cnak_pending = cnak_pending & (~(1 << (num)));
  273. }
  274. /* Enables endpoint, is called by gadget driver */
  275. static int
  276. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  277. {
  278. struct udc_ep *ep;
  279. struct udc *dev;
  280. u32 tmp;
  281. unsigned long iflags;
  282. u8 udc_csr_epix;
  283. unsigned maxpacket;
  284. if (!usbep
  285. || usbep->name == ep0_string
  286. || !desc
  287. || desc->bDescriptorType != USB_DT_ENDPOINT)
  288. return -EINVAL;
  289. ep = container_of(usbep, struct udc_ep, ep);
  290. dev = ep->dev;
  291. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  292. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  293. return -ESHUTDOWN;
  294. spin_lock_irqsave(&dev->lock, iflags);
  295. ep->desc = desc;
  296. ep->halted = 0;
  297. /* set traffic type */
  298. tmp = readl(&dev->ep[ep->num].regs->ctl);
  299. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  300. writel(tmp, &dev->ep[ep->num].regs->ctl);
  301. /* set max packet size */
  302. maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  303. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  304. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  305. ep->ep.maxpacket = maxpacket;
  306. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  307. /* IN ep */
  308. if (ep->in) {
  309. /* ep ix in UDC CSR register space */
  310. udc_csr_epix = ep->num;
  311. /* set buffer size (tx fifo entries) */
  312. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  313. /* double buffering: fifo size = 2 x max packet size */
  314. tmp = AMD_ADDBITS(
  315. tmp,
  316. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  317. / UDC_DWORD_BYTES,
  318. UDC_EPIN_BUFF_SIZE);
  319. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  320. /* calc. tx fifo base addr */
  321. udc_set_txfifo_addr(ep);
  322. /* flush fifo */
  323. tmp = readl(&ep->regs->ctl);
  324. tmp |= AMD_BIT(UDC_EPCTL_F);
  325. writel(tmp, &ep->regs->ctl);
  326. /* OUT ep */
  327. } else {
  328. /* ep ix in UDC CSR register space */
  329. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  330. /* set max packet size UDC CSR */
  331. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  332. tmp = AMD_ADDBITS(tmp, maxpacket,
  333. UDC_CSR_NE_MAX_PKT);
  334. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  335. if (use_dma && !ep->in) {
  336. /* alloc and init BNA dummy request */
  337. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  338. ep->bna_occurred = 0;
  339. }
  340. if (ep->num != UDC_EP0OUT_IX)
  341. dev->data_ep_enabled = 1;
  342. }
  343. /* set ep values */
  344. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  345. /* max packet */
  346. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  347. /* ep number */
  348. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  349. /* ep direction */
  350. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  351. /* ep type */
  352. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  353. /* ep config */
  354. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  355. /* ep interface */
  356. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  357. /* ep alt */
  358. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  359. /* write reg */
  360. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  361. /* enable ep irq */
  362. tmp = readl(&dev->regs->ep_irqmsk);
  363. tmp &= AMD_UNMASK_BIT(ep->num);
  364. writel(tmp, &dev->regs->ep_irqmsk);
  365. /*
  366. * clear NAK by writing CNAK
  367. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  368. */
  369. if (!use_dma || ep->in) {
  370. tmp = readl(&ep->regs->ctl);
  371. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  372. writel(tmp, &ep->regs->ctl);
  373. ep->naking = 0;
  374. UDC_QUEUE_CNAK(ep, ep->num);
  375. }
  376. tmp = desc->bEndpointAddress;
  377. DBG(dev, "%s enabled\n", usbep->name);
  378. spin_unlock_irqrestore(&dev->lock, iflags);
  379. return 0;
  380. }
  381. /* Resets endpoint */
  382. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  383. {
  384. u32 tmp;
  385. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  386. ep->desc = NULL;
  387. ep->ep.ops = &udc_ep_ops;
  388. INIT_LIST_HEAD(&ep->queue);
  389. ep->ep.maxpacket = (u16) ~0;
  390. /* set NAK */
  391. tmp = readl(&ep->regs->ctl);
  392. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  393. writel(tmp, &ep->regs->ctl);
  394. ep->naking = 1;
  395. /* disable interrupt */
  396. tmp = readl(&regs->ep_irqmsk);
  397. tmp |= AMD_BIT(ep->num);
  398. writel(tmp, &regs->ep_irqmsk);
  399. if (ep->in) {
  400. /* unset P and IN bit of potential former DMA */
  401. tmp = readl(&ep->regs->ctl);
  402. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  403. writel(tmp, &ep->regs->ctl);
  404. tmp = readl(&ep->regs->sts);
  405. tmp |= AMD_BIT(UDC_EPSTS_IN);
  406. writel(tmp, &ep->regs->sts);
  407. /* flush the fifo */
  408. tmp = readl(&ep->regs->ctl);
  409. tmp |= AMD_BIT(UDC_EPCTL_F);
  410. writel(tmp, &ep->regs->ctl);
  411. }
  412. /* reset desc pointer */
  413. writel(0, &ep->regs->desptr);
  414. }
  415. /* Disables endpoint, is called by gadget driver */
  416. static int udc_ep_disable(struct usb_ep *usbep)
  417. {
  418. struct udc_ep *ep = NULL;
  419. unsigned long iflags;
  420. if (!usbep)
  421. return -EINVAL;
  422. ep = container_of(usbep, struct udc_ep, ep);
  423. if (usbep->name == ep0_string || !ep->desc)
  424. return -EINVAL;
  425. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  426. spin_lock_irqsave(&ep->dev->lock, iflags);
  427. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  428. empty_req_queue(ep);
  429. ep_init(ep->dev->regs, ep);
  430. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  431. return 0;
  432. }
  433. /* Allocates request packet, called by gadget driver */
  434. static struct usb_request *
  435. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  436. {
  437. struct udc_request *req;
  438. struct udc_data_dma *dma_desc;
  439. struct udc_ep *ep;
  440. if (!usbep)
  441. return NULL;
  442. ep = container_of(usbep, struct udc_ep, ep);
  443. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  444. req = kzalloc(sizeof(struct udc_request), gfp);
  445. if (!req)
  446. return NULL;
  447. req->req.dma = DMA_DONT_USE;
  448. INIT_LIST_HEAD(&req->queue);
  449. if (ep->dma) {
  450. /* ep0 in requests are allocated from data pool here */
  451. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  452. &req->td_phys);
  453. if (!dma_desc) {
  454. kfree(req);
  455. return NULL;
  456. }
  457. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  458. "td_phys = %lx\n",
  459. req, dma_desc,
  460. (unsigned long)req->td_phys);
  461. /* prevent from using desc. - set HOST BUSY */
  462. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  463. UDC_DMA_STP_STS_BS_HOST_BUSY,
  464. UDC_DMA_STP_STS_BS);
  465. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  466. req->td_data = dma_desc;
  467. req->td_data_last = NULL;
  468. req->chain_len = 1;
  469. }
  470. return &req->req;
  471. }
  472. /* Frees request packet, called by gadget driver */
  473. static void
  474. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  475. {
  476. struct udc_ep *ep;
  477. struct udc_request *req;
  478. if (!usbep || !usbreq)
  479. return;
  480. ep = container_of(usbep, struct udc_ep, ep);
  481. req = container_of(usbreq, struct udc_request, req);
  482. VDBG(ep->dev, "free_req req=%p\n", req);
  483. BUG_ON(!list_empty(&req->queue));
  484. if (req->td_data) {
  485. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  486. /* free dma chain if created */
  487. if (req->chain_len > 1) {
  488. udc_free_dma_chain(ep->dev, req);
  489. }
  490. pci_pool_free(ep->dev->data_requests, req->td_data,
  491. req->td_phys);
  492. }
  493. kfree(req);
  494. }
  495. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  496. static void udc_init_bna_dummy(struct udc_request *req)
  497. {
  498. if (req) {
  499. /* set last bit */
  500. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  501. /* set next pointer to itself */
  502. req->td_data->next = req->td_phys;
  503. /* set HOST BUSY */
  504. req->td_data->status
  505. = AMD_ADDBITS(req->td_data->status,
  506. UDC_DMA_STP_STS_BS_DMA_DONE,
  507. UDC_DMA_STP_STS_BS);
  508. #ifdef UDC_VERBOSE
  509. pr_debug("bna desc = %p, sts = %08x\n",
  510. req->td_data, req->td_data->status);
  511. #endif
  512. }
  513. }
  514. /* Allocate BNA dummy descriptor */
  515. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  516. {
  517. struct udc_request *req = NULL;
  518. struct usb_request *_req = NULL;
  519. /* alloc the dummy request */
  520. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  521. if (_req) {
  522. req = container_of(_req, struct udc_request, req);
  523. ep->bna_dummy_req = req;
  524. udc_init_bna_dummy(req);
  525. }
  526. return req;
  527. }
  528. /* Write data to TX fifo for IN packets */
  529. static void
  530. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  531. {
  532. u8 *req_buf;
  533. u32 *buf;
  534. int i, j;
  535. unsigned bytes = 0;
  536. unsigned remaining = 0;
  537. if (!req || !ep)
  538. return;
  539. req_buf = req->buf + req->actual;
  540. prefetch(req_buf);
  541. remaining = req->length - req->actual;
  542. buf = (u32 *) req_buf;
  543. bytes = ep->ep.maxpacket;
  544. if (bytes > remaining)
  545. bytes = remaining;
  546. /* dwords first */
  547. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  548. writel(*(buf + i), ep->txfifo);
  549. }
  550. /* remaining bytes must be written by byte access */
  551. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  552. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  553. ep->txfifo);
  554. }
  555. /* dummy write confirm */
  556. writel(0, &ep->regs->confirm);
  557. }
  558. /* Read dwords from RX fifo for OUT transfers */
  559. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  560. {
  561. int i;
  562. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  563. for (i = 0; i < dwords; i++) {
  564. *(buf + i) = readl(dev->rxfifo);
  565. }
  566. return 0;
  567. }
  568. /* Read bytes from RX fifo for OUT transfers */
  569. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  570. {
  571. int i, j;
  572. u32 tmp;
  573. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  574. /* dwords first */
  575. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  576. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  577. }
  578. /* remaining bytes must be read by byte access */
  579. if (bytes % UDC_DWORD_BYTES) {
  580. tmp = readl(dev->rxfifo);
  581. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  582. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  583. tmp = tmp >> UDC_BITS_PER_BYTE;
  584. }
  585. }
  586. return 0;
  587. }
  588. /* Read data from RX fifo for OUT transfers */
  589. static int
  590. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  591. {
  592. u8 *buf;
  593. unsigned buf_space;
  594. unsigned bytes = 0;
  595. unsigned finished = 0;
  596. /* received number bytes */
  597. bytes = readl(&ep->regs->sts);
  598. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  599. buf_space = req->req.length - req->req.actual;
  600. buf = req->req.buf + req->req.actual;
  601. if (bytes > buf_space) {
  602. if ((buf_space % ep->ep.maxpacket) != 0) {
  603. DBG(ep->dev,
  604. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  605. ep->ep.name, bytes, buf_space);
  606. req->req.status = -EOVERFLOW;
  607. }
  608. bytes = buf_space;
  609. }
  610. req->req.actual += bytes;
  611. /* last packet ? */
  612. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  613. || ((req->req.actual == req->req.length) && !req->req.zero))
  614. finished = 1;
  615. /* read rx fifo bytes */
  616. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  617. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  618. return finished;
  619. }
  620. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  621. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  622. {
  623. int retval = 0;
  624. u32 tmp;
  625. VDBG(ep->dev, "prep_dma\n");
  626. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  627. ep->num, req->td_data);
  628. /* set buffer pointer */
  629. req->td_data->bufptr = req->req.dma;
  630. /* set last bit */
  631. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  632. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  633. if (use_dma_ppb) {
  634. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  635. if (retval != 0) {
  636. if (retval == -ENOMEM)
  637. DBG(ep->dev, "Out of DMA memory\n");
  638. return retval;
  639. }
  640. if (ep->in) {
  641. if (req->req.length == ep->ep.maxpacket) {
  642. /* write tx bytes */
  643. req->td_data->status =
  644. AMD_ADDBITS(req->td_data->status,
  645. ep->ep.maxpacket,
  646. UDC_DMA_IN_STS_TXBYTES);
  647. }
  648. }
  649. }
  650. if (ep->in) {
  651. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  652. "maxpacket=%d ep%d\n",
  653. use_dma_ppb, req->req.length,
  654. ep->ep.maxpacket, ep->num);
  655. /*
  656. * if bytes < max packet then tx bytes must
  657. * be written in packet per buffer mode
  658. */
  659. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  660. || ep->num == UDC_EP0OUT_IX
  661. || ep->num == UDC_EP0IN_IX) {
  662. /* write tx bytes */
  663. req->td_data->status =
  664. AMD_ADDBITS(req->td_data->status,
  665. req->req.length,
  666. UDC_DMA_IN_STS_TXBYTES);
  667. /* reset frame num */
  668. req->td_data->status =
  669. AMD_ADDBITS(req->td_data->status,
  670. 0,
  671. UDC_DMA_IN_STS_FRAMENUM);
  672. }
  673. /* set HOST BUSY */
  674. req->td_data->status =
  675. AMD_ADDBITS(req->td_data->status,
  676. UDC_DMA_STP_STS_BS_HOST_BUSY,
  677. UDC_DMA_STP_STS_BS);
  678. } else {
  679. VDBG(ep->dev, "OUT set host ready\n");
  680. /* set HOST READY */
  681. req->td_data->status =
  682. AMD_ADDBITS(req->td_data->status,
  683. UDC_DMA_STP_STS_BS_HOST_READY,
  684. UDC_DMA_STP_STS_BS);
  685. /* clear NAK by writing CNAK */
  686. if (ep->naking) {
  687. tmp = readl(&ep->regs->ctl);
  688. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  689. writel(tmp, &ep->regs->ctl);
  690. ep->naking = 0;
  691. UDC_QUEUE_CNAK(ep, ep->num);
  692. }
  693. }
  694. return retval;
  695. }
  696. /* Completes request packet ... caller MUST hold lock */
  697. static void
  698. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  699. __releases(ep->dev->lock)
  700. __acquires(ep->dev->lock)
  701. {
  702. struct udc *dev;
  703. unsigned halted;
  704. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  705. dev = ep->dev;
  706. /* unmap DMA */
  707. if (req->dma_mapping) {
  708. if (ep->in)
  709. pci_unmap_single(dev->pdev,
  710. req->req.dma,
  711. req->req.length,
  712. PCI_DMA_TODEVICE);
  713. else
  714. pci_unmap_single(dev->pdev,
  715. req->req.dma,
  716. req->req.length,
  717. PCI_DMA_FROMDEVICE);
  718. req->dma_mapping = 0;
  719. req->req.dma = DMA_DONT_USE;
  720. }
  721. halted = ep->halted;
  722. ep->halted = 1;
  723. /* set new status if pending */
  724. if (req->req.status == -EINPROGRESS)
  725. req->req.status = sts;
  726. /* remove from ep queue */
  727. list_del_init(&req->queue);
  728. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  729. &req->req, req->req.length, ep->ep.name, sts);
  730. spin_unlock(&dev->lock);
  731. req->req.complete(&ep->ep, &req->req);
  732. spin_lock(&dev->lock);
  733. ep->halted = halted;
  734. }
  735. /* frees pci pool descriptors of a DMA chain */
  736. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  737. {
  738. int ret_val = 0;
  739. struct udc_data_dma *td;
  740. struct udc_data_dma *td_last = NULL;
  741. unsigned int i;
  742. DBG(dev, "free chain req = %p\n", req);
  743. /* do not free first desc., will be done by free for request */
  744. td_last = req->td_data;
  745. td = phys_to_virt(td_last->next);
  746. for (i = 1; i < req->chain_len; i++) {
  747. pci_pool_free(dev->data_requests, td,
  748. (dma_addr_t) td_last->next);
  749. td_last = td;
  750. td = phys_to_virt(td_last->next);
  751. }
  752. return ret_val;
  753. }
  754. /* Iterates to the end of a DMA chain and returns last descriptor */
  755. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  756. {
  757. struct udc_data_dma *td;
  758. td = req->td_data;
  759. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  760. td = phys_to_virt(td->next);
  761. }
  762. return td;
  763. }
  764. /* Iterates to the end of a DMA chain and counts bytes received */
  765. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  766. {
  767. struct udc_data_dma *td;
  768. u32 count;
  769. td = req->td_data;
  770. /* received number bytes */
  771. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  772. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  773. td = phys_to_virt(td->next);
  774. /* received number bytes */
  775. if (td) {
  776. count += AMD_GETBITS(td->status,
  777. UDC_DMA_OUT_STS_RXBYTES);
  778. }
  779. }
  780. return count;
  781. }
  782. /* Creates or re-inits a DMA chain */
  783. static int udc_create_dma_chain(
  784. struct udc_ep *ep,
  785. struct udc_request *req,
  786. unsigned long buf_len, gfp_t gfp_flags
  787. )
  788. {
  789. unsigned long bytes = req->req.length;
  790. unsigned int i;
  791. dma_addr_t dma_addr;
  792. struct udc_data_dma *td = NULL;
  793. struct udc_data_dma *last = NULL;
  794. unsigned long txbytes;
  795. unsigned create_new_chain = 0;
  796. unsigned len;
  797. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  798. bytes, buf_len);
  799. dma_addr = DMA_DONT_USE;
  800. /* unset L bit in first desc for OUT */
  801. if (!ep->in) {
  802. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  803. }
  804. /* alloc only new desc's if not already available */
  805. len = req->req.length / ep->ep.maxpacket;
  806. if (req->req.length % ep->ep.maxpacket) {
  807. len++;
  808. }
  809. if (len > req->chain_len) {
  810. /* shorter chain already allocated before */
  811. if (req->chain_len > 1) {
  812. udc_free_dma_chain(ep->dev, req);
  813. }
  814. req->chain_len = len;
  815. create_new_chain = 1;
  816. }
  817. td = req->td_data;
  818. /* gen. required number of descriptors and buffers */
  819. for (i = buf_len; i < bytes; i += buf_len) {
  820. /* create or determine next desc. */
  821. if (create_new_chain) {
  822. td = pci_pool_alloc(ep->dev->data_requests,
  823. gfp_flags, &dma_addr);
  824. if (!td)
  825. return -ENOMEM;
  826. td->status = 0;
  827. } else if (i == buf_len) {
  828. /* first td */
  829. td = (struct udc_data_dma *) phys_to_virt(
  830. req->td_data->next);
  831. td->status = 0;
  832. } else {
  833. td = (struct udc_data_dma *) phys_to_virt(last->next);
  834. td->status = 0;
  835. }
  836. if (td)
  837. td->bufptr = req->req.dma + i; /* assign buffer */
  838. else
  839. break;
  840. /* short packet ? */
  841. if ((bytes - i) >= buf_len) {
  842. txbytes = buf_len;
  843. } else {
  844. /* short packet */
  845. txbytes = bytes - i;
  846. }
  847. /* link td and assign tx bytes */
  848. if (i == buf_len) {
  849. if (create_new_chain) {
  850. req->td_data->next = dma_addr;
  851. } else {
  852. /* req->td_data->next = virt_to_phys(td); */
  853. }
  854. /* write tx bytes */
  855. if (ep->in) {
  856. /* first desc */
  857. req->td_data->status =
  858. AMD_ADDBITS(req->td_data->status,
  859. ep->ep.maxpacket,
  860. UDC_DMA_IN_STS_TXBYTES);
  861. /* second desc */
  862. td->status = AMD_ADDBITS(td->status,
  863. txbytes,
  864. UDC_DMA_IN_STS_TXBYTES);
  865. }
  866. } else {
  867. if (create_new_chain) {
  868. last->next = dma_addr;
  869. } else {
  870. /* last->next = virt_to_phys(td); */
  871. }
  872. if (ep->in) {
  873. /* write tx bytes */
  874. td->status = AMD_ADDBITS(td->status,
  875. txbytes,
  876. UDC_DMA_IN_STS_TXBYTES);
  877. }
  878. }
  879. last = td;
  880. }
  881. /* set last bit */
  882. if (td) {
  883. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  884. /* last desc. points to itself */
  885. req->td_data_last = td;
  886. }
  887. return 0;
  888. }
  889. /* Enabling RX DMA */
  890. static void udc_set_rde(struct udc *dev)
  891. {
  892. u32 tmp;
  893. VDBG(dev, "udc_set_rde()\n");
  894. /* stop RDE timer */
  895. if (timer_pending(&udc_timer)) {
  896. set_rde = 0;
  897. mod_timer(&udc_timer, jiffies - 1);
  898. }
  899. /* set RDE */
  900. tmp = readl(&dev->regs->ctl);
  901. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  902. writel(tmp, &dev->regs->ctl);
  903. }
  904. /* Queues a request packet, called by gadget driver */
  905. static int
  906. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  907. {
  908. int retval = 0;
  909. u8 open_rxfifo = 0;
  910. unsigned long iflags;
  911. struct udc_ep *ep;
  912. struct udc_request *req;
  913. struct udc *dev;
  914. u32 tmp;
  915. /* check the inputs */
  916. req = container_of(usbreq, struct udc_request, req);
  917. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  918. || !list_empty(&req->queue))
  919. return -EINVAL;
  920. ep = container_of(usbep, struct udc_ep, ep);
  921. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  922. return -EINVAL;
  923. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  924. dev = ep->dev;
  925. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  926. return -ESHUTDOWN;
  927. /* map dma (usually done before) */
  928. if (ep->dma && usbreq->length != 0
  929. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  930. VDBG(dev, "DMA map req %p\n", req);
  931. if (ep->in)
  932. usbreq->dma = pci_map_single(dev->pdev,
  933. usbreq->buf,
  934. usbreq->length,
  935. PCI_DMA_TODEVICE);
  936. else
  937. usbreq->dma = pci_map_single(dev->pdev,
  938. usbreq->buf,
  939. usbreq->length,
  940. PCI_DMA_FROMDEVICE);
  941. req->dma_mapping = 1;
  942. }
  943. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  944. usbep->name, usbreq, usbreq->length,
  945. req->td_data, usbreq->buf);
  946. spin_lock_irqsave(&dev->lock, iflags);
  947. usbreq->actual = 0;
  948. usbreq->status = -EINPROGRESS;
  949. req->dma_done = 0;
  950. /* on empty queue just do first transfer */
  951. if (list_empty(&ep->queue)) {
  952. /* zlp */
  953. if (usbreq->length == 0) {
  954. /* IN zlp's are handled by hardware */
  955. complete_req(ep, req, 0);
  956. VDBG(dev, "%s: zlp\n", ep->ep.name);
  957. /*
  958. * if set_config or set_intf is waiting for ack by zlp
  959. * then set CSR_DONE
  960. */
  961. if (dev->set_cfg_not_acked) {
  962. tmp = readl(&dev->regs->ctl);
  963. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  964. writel(tmp, &dev->regs->ctl);
  965. dev->set_cfg_not_acked = 0;
  966. }
  967. /* setup command is ACK'ed now by zlp */
  968. if (dev->waiting_zlp_ack_ep0in) {
  969. /* clear NAK by writing CNAK in EP0_IN */
  970. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  971. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  972. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  973. dev->ep[UDC_EP0IN_IX].naking = 0;
  974. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  975. UDC_EP0IN_IX);
  976. dev->waiting_zlp_ack_ep0in = 0;
  977. }
  978. goto finished;
  979. }
  980. if (ep->dma) {
  981. retval = prep_dma(ep, req, gfp);
  982. if (retval != 0)
  983. goto finished;
  984. /* write desc pointer to enable DMA */
  985. if (ep->in) {
  986. /* set HOST READY */
  987. req->td_data->status =
  988. AMD_ADDBITS(req->td_data->status,
  989. UDC_DMA_IN_STS_BS_HOST_READY,
  990. UDC_DMA_IN_STS_BS);
  991. }
  992. /* disabled rx dma while descriptor update */
  993. if (!ep->in) {
  994. /* stop RDE timer */
  995. if (timer_pending(&udc_timer)) {
  996. set_rde = 0;
  997. mod_timer(&udc_timer, jiffies - 1);
  998. }
  999. /* clear RDE */
  1000. tmp = readl(&dev->regs->ctl);
  1001. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1002. writel(tmp, &dev->regs->ctl);
  1003. open_rxfifo = 1;
  1004. /*
  1005. * if BNA occurred then let BNA dummy desc.
  1006. * point to current desc.
  1007. */
  1008. if (ep->bna_occurred) {
  1009. VDBG(dev, "copy to BNA dummy desc.\n");
  1010. memcpy(ep->bna_dummy_req->td_data,
  1011. req->td_data,
  1012. sizeof(struct udc_data_dma));
  1013. }
  1014. }
  1015. /* write desc pointer */
  1016. writel(req->td_phys, &ep->regs->desptr);
  1017. /* clear NAK by writing CNAK */
  1018. if (ep->naking) {
  1019. tmp = readl(&ep->regs->ctl);
  1020. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1021. writel(tmp, &ep->regs->ctl);
  1022. ep->naking = 0;
  1023. UDC_QUEUE_CNAK(ep, ep->num);
  1024. }
  1025. if (ep->in) {
  1026. /* enable ep irq */
  1027. tmp = readl(&dev->regs->ep_irqmsk);
  1028. tmp &= AMD_UNMASK_BIT(ep->num);
  1029. writel(tmp, &dev->regs->ep_irqmsk);
  1030. }
  1031. } else if (ep->in) {
  1032. /* enable ep irq */
  1033. tmp = readl(&dev->regs->ep_irqmsk);
  1034. tmp &= AMD_UNMASK_BIT(ep->num);
  1035. writel(tmp, &dev->regs->ep_irqmsk);
  1036. }
  1037. } else if (ep->dma) {
  1038. /*
  1039. * prep_dma not used for OUT ep's, this is not possible
  1040. * for PPB modes, because of chain creation reasons
  1041. */
  1042. if (ep->in) {
  1043. retval = prep_dma(ep, req, gfp);
  1044. if (retval != 0)
  1045. goto finished;
  1046. }
  1047. }
  1048. VDBG(dev, "list_add\n");
  1049. /* add request to ep queue */
  1050. if (req) {
  1051. list_add_tail(&req->queue, &ep->queue);
  1052. /* open rxfifo if out data queued */
  1053. if (open_rxfifo) {
  1054. /* enable DMA */
  1055. req->dma_going = 1;
  1056. udc_set_rde(dev);
  1057. if (ep->num != UDC_EP0OUT_IX)
  1058. dev->data_ep_queued = 1;
  1059. }
  1060. /* stop OUT naking */
  1061. if (!ep->in) {
  1062. if (!use_dma && udc_rxfifo_pending) {
  1063. DBG(dev, "udc_queue(): pending bytes in "
  1064. "rxfifo after nyet\n");
  1065. /*
  1066. * read pending bytes afer nyet:
  1067. * referring to isr
  1068. */
  1069. if (udc_rxfifo_read(ep, req)) {
  1070. /* finish */
  1071. complete_req(ep, req, 0);
  1072. }
  1073. udc_rxfifo_pending = 0;
  1074. }
  1075. }
  1076. }
  1077. finished:
  1078. spin_unlock_irqrestore(&dev->lock, iflags);
  1079. return retval;
  1080. }
  1081. /* Empty request queue of an endpoint; caller holds spinlock */
  1082. static void empty_req_queue(struct udc_ep *ep)
  1083. {
  1084. struct udc_request *req;
  1085. ep->halted = 1;
  1086. while (!list_empty(&ep->queue)) {
  1087. req = list_entry(ep->queue.next,
  1088. struct udc_request,
  1089. queue);
  1090. complete_req(ep, req, -ESHUTDOWN);
  1091. }
  1092. }
  1093. /* Dequeues a request packet, called by gadget driver */
  1094. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1095. {
  1096. struct udc_ep *ep;
  1097. struct udc_request *req;
  1098. unsigned halted;
  1099. unsigned long iflags;
  1100. ep = container_of(usbep, struct udc_ep, ep);
  1101. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1102. && ep->num != UDC_EP0OUT_IX)))
  1103. return -EINVAL;
  1104. req = container_of(usbreq, struct udc_request, req);
  1105. spin_lock_irqsave(&ep->dev->lock, iflags);
  1106. halted = ep->halted;
  1107. ep->halted = 1;
  1108. /* request in processing or next one */
  1109. if (ep->queue.next == &req->queue) {
  1110. if (ep->dma && req->dma_going) {
  1111. if (ep->in)
  1112. ep->cancel_transfer = 1;
  1113. else {
  1114. u32 tmp;
  1115. u32 dma_sts;
  1116. /* stop potential receive DMA */
  1117. tmp = readl(&udc->regs->ctl);
  1118. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1119. &udc->regs->ctl);
  1120. /*
  1121. * Cancel transfer later in ISR
  1122. * if descriptor was touched.
  1123. */
  1124. dma_sts = AMD_GETBITS(req->td_data->status,
  1125. UDC_DMA_OUT_STS_BS);
  1126. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1127. ep->cancel_transfer = 1;
  1128. else {
  1129. udc_init_bna_dummy(ep->req);
  1130. writel(ep->bna_dummy_req->td_phys,
  1131. &ep->regs->desptr);
  1132. }
  1133. writel(tmp, &udc->regs->ctl);
  1134. }
  1135. }
  1136. }
  1137. complete_req(ep, req, -ECONNRESET);
  1138. ep->halted = halted;
  1139. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1140. return 0;
  1141. }
  1142. /* Halt or clear halt of endpoint */
  1143. static int
  1144. udc_set_halt(struct usb_ep *usbep, int halt)
  1145. {
  1146. struct udc_ep *ep;
  1147. u32 tmp;
  1148. unsigned long iflags;
  1149. int retval = 0;
  1150. if (!usbep)
  1151. return -EINVAL;
  1152. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1153. ep = container_of(usbep, struct udc_ep, ep);
  1154. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1155. return -EINVAL;
  1156. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1157. return -ESHUTDOWN;
  1158. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1159. /* halt or clear halt */
  1160. if (halt) {
  1161. if (ep->num == 0)
  1162. ep->dev->stall_ep0in = 1;
  1163. else {
  1164. /*
  1165. * set STALL
  1166. * rxfifo empty not taken into acount
  1167. */
  1168. tmp = readl(&ep->regs->ctl);
  1169. tmp |= AMD_BIT(UDC_EPCTL_S);
  1170. writel(tmp, &ep->regs->ctl);
  1171. ep->halted = 1;
  1172. /* setup poll timer */
  1173. if (!timer_pending(&udc_pollstall_timer)) {
  1174. udc_pollstall_timer.expires = jiffies +
  1175. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1176. / (1000 * 1000);
  1177. if (!stop_pollstall_timer) {
  1178. DBG(ep->dev, "start polltimer\n");
  1179. add_timer(&udc_pollstall_timer);
  1180. }
  1181. }
  1182. }
  1183. } else {
  1184. /* ep is halted by set_halt() before */
  1185. if (ep->halted) {
  1186. tmp = readl(&ep->regs->ctl);
  1187. /* clear stall bit */
  1188. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1189. /* clear NAK by writing CNAK */
  1190. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1191. writel(tmp, &ep->regs->ctl);
  1192. ep->halted = 0;
  1193. UDC_QUEUE_CNAK(ep, ep->num);
  1194. }
  1195. }
  1196. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1197. return retval;
  1198. }
  1199. /* gadget interface */
  1200. static const struct usb_ep_ops udc_ep_ops = {
  1201. .enable = udc_ep_enable,
  1202. .disable = udc_ep_disable,
  1203. .alloc_request = udc_alloc_request,
  1204. .free_request = udc_free_request,
  1205. .queue = udc_queue,
  1206. .dequeue = udc_dequeue,
  1207. .set_halt = udc_set_halt,
  1208. /* fifo ops not implemented */
  1209. };
  1210. /*-------------------------------------------------------------------------*/
  1211. /* Get frame counter (not implemented) */
  1212. static int udc_get_frame(struct usb_gadget *gadget)
  1213. {
  1214. return -EOPNOTSUPP;
  1215. }
  1216. /* Remote wakeup gadget interface */
  1217. static int udc_wakeup(struct usb_gadget *gadget)
  1218. {
  1219. struct udc *dev;
  1220. if (!gadget)
  1221. return -EINVAL;
  1222. dev = container_of(gadget, struct udc, gadget);
  1223. udc_remote_wakeup(dev);
  1224. return 0;
  1225. }
  1226. /* gadget operations */
  1227. static const struct usb_gadget_ops udc_ops = {
  1228. .wakeup = udc_wakeup,
  1229. .get_frame = udc_get_frame,
  1230. };
  1231. /* Setups endpoint parameters, adds endpoints to linked list */
  1232. static void make_ep_lists(struct udc *dev)
  1233. {
  1234. /* make gadget ep lists */
  1235. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1236. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1237. &dev->gadget.ep_list);
  1238. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1239. &dev->gadget.ep_list);
  1240. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1241. &dev->gadget.ep_list);
  1242. /* fifo config */
  1243. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1244. if (dev->gadget.speed == USB_SPEED_FULL)
  1245. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1246. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1247. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1248. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1249. }
  1250. /* init registers at driver load time */
  1251. static int startup_registers(struct udc *dev)
  1252. {
  1253. u32 tmp;
  1254. /* init controller by soft reset */
  1255. udc_soft_reset(dev);
  1256. /* mask not needed interrupts */
  1257. udc_mask_unused_interrupts(dev);
  1258. /* put into initial config */
  1259. udc_basic_init(dev);
  1260. /* link up all endpoints */
  1261. udc_setup_endpoints(dev);
  1262. /* program speed */
  1263. tmp = readl(&dev->regs->cfg);
  1264. if (use_fullspeed) {
  1265. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1266. } else {
  1267. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1268. }
  1269. writel(tmp, &dev->regs->cfg);
  1270. return 0;
  1271. }
  1272. /* Inits UDC context */
  1273. static void udc_basic_init(struct udc *dev)
  1274. {
  1275. u32 tmp;
  1276. DBG(dev, "udc_basic_init()\n");
  1277. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1278. /* stop RDE timer */
  1279. if (timer_pending(&udc_timer)) {
  1280. set_rde = 0;
  1281. mod_timer(&udc_timer, jiffies - 1);
  1282. }
  1283. /* stop poll stall timer */
  1284. if (timer_pending(&udc_pollstall_timer)) {
  1285. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1286. }
  1287. /* disable DMA */
  1288. tmp = readl(&dev->regs->ctl);
  1289. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1290. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1291. writel(tmp, &dev->regs->ctl);
  1292. /* enable dynamic CSR programming */
  1293. tmp = readl(&dev->regs->cfg);
  1294. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1295. /* set self powered */
  1296. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1297. /* set remote wakeupable */
  1298. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1299. writel(tmp, &dev->regs->cfg);
  1300. make_ep_lists(dev);
  1301. dev->data_ep_enabled = 0;
  1302. dev->data_ep_queued = 0;
  1303. }
  1304. /* Sets initial endpoint parameters */
  1305. static void udc_setup_endpoints(struct udc *dev)
  1306. {
  1307. struct udc_ep *ep;
  1308. u32 tmp;
  1309. u32 reg;
  1310. DBG(dev, "udc_setup_endpoints()\n");
  1311. /* read enum speed */
  1312. tmp = readl(&dev->regs->sts);
  1313. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1314. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1315. dev->gadget.speed = USB_SPEED_HIGH;
  1316. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1317. dev->gadget.speed = USB_SPEED_FULL;
  1318. }
  1319. /* set basic ep parameters */
  1320. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1321. ep = &dev->ep[tmp];
  1322. ep->dev = dev;
  1323. ep->ep.name = ep_string[tmp];
  1324. ep->num = tmp;
  1325. /* txfifo size is calculated at enable time */
  1326. ep->txfifo = dev->txfifo;
  1327. /* fifo size */
  1328. if (tmp < UDC_EPIN_NUM) {
  1329. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1330. ep->in = 1;
  1331. } else {
  1332. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1333. ep->in = 0;
  1334. }
  1335. ep->regs = &dev->ep_regs[tmp];
  1336. /*
  1337. * ep will be reset only if ep was not enabled before to avoid
  1338. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1339. * not enabled by gadget driver
  1340. */
  1341. if (!ep->desc) {
  1342. ep_init(dev->regs, ep);
  1343. }
  1344. if (use_dma) {
  1345. /*
  1346. * ep->dma is not really used, just to indicate that
  1347. * DMA is active: remove this
  1348. * dma regs = dev control regs
  1349. */
  1350. ep->dma = &dev->regs->ctl;
  1351. /* nak OUT endpoints until enable - not for ep0 */
  1352. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1353. && tmp > UDC_EPIN_NUM) {
  1354. /* set NAK */
  1355. reg = readl(&dev->ep[tmp].regs->ctl);
  1356. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1357. writel(reg, &dev->ep[tmp].regs->ctl);
  1358. dev->ep[tmp].naking = 1;
  1359. }
  1360. }
  1361. }
  1362. /* EP0 max packet */
  1363. if (dev->gadget.speed == USB_SPEED_FULL) {
  1364. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1365. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1366. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1367. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1368. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1369. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1370. }
  1371. /*
  1372. * with suspend bug workaround, ep0 params for gadget driver
  1373. * are set at gadget driver bind() call
  1374. */
  1375. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1376. dev->ep[UDC_EP0IN_IX].halted = 0;
  1377. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1378. /* init cfg/alt/int */
  1379. dev->cur_config = 0;
  1380. dev->cur_intf = 0;
  1381. dev->cur_alt = 0;
  1382. }
  1383. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1384. static void usb_connect(struct udc *dev)
  1385. {
  1386. dev_info(&dev->pdev->dev, "USB Connect\n");
  1387. dev->connected = 1;
  1388. /* put into initial config */
  1389. udc_basic_init(dev);
  1390. /* enable device setup interrupts */
  1391. udc_enable_dev_setup_interrupts(dev);
  1392. }
  1393. /*
  1394. * Calls gadget with disconnect event and resets the UDC and makes
  1395. * initial bringup to be ready for ep0 events
  1396. */
  1397. static void usb_disconnect(struct udc *dev)
  1398. {
  1399. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1400. dev->connected = 0;
  1401. /* mask interrupts */
  1402. udc_mask_unused_interrupts(dev);
  1403. /* REVISIT there doesn't seem to be a point to having this
  1404. * talk to a tasklet ... do it directly, we already hold
  1405. * the spinlock needed to process the disconnect.
  1406. */
  1407. tasklet_schedule(&disconnect_tasklet);
  1408. }
  1409. /* Tasklet for disconnect to be outside of interrupt context */
  1410. static void udc_tasklet_disconnect(unsigned long par)
  1411. {
  1412. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1413. u32 tmp;
  1414. DBG(dev, "Tasklet disconnect\n");
  1415. spin_lock_irq(&dev->lock);
  1416. if (dev->driver) {
  1417. spin_unlock(&dev->lock);
  1418. dev->driver->disconnect(&dev->gadget);
  1419. spin_lock(&dev->lock);
  1420. /* empty queues */
  1421. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1422. empty_req_queue(&dev->ep[tmp]);
  1423. }
  1424. }
  1425. /* disable ep0 */
  1426. ep_init(dev->regs,
  1427. &dev->ep[UDC_EP0IN_IX]);
  1428. if (!soft_reset_occured) {
  1429. /* init controller by soft reset */
  1430. udc_soft_reset(dev);
  1431. soft_reset_occured++;
  1432. }
  1433. /* re-enable dev interrupts */
  1434. udc_enable_dev_setup_interrupts(dev);
  1435. /* back to full speed ? */
  1436. if (use_fullspeed) {
  1437. tmp = readl(&dev->regs->cfg);
  1438. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1439. writel(tmp, &dev->regs->cfg);
  1440. }
  1441. spin_unlock_irq(&dev->lock);
  1442. }
  1443. /* Reset the UDC core */
  1444. static void udc_soft_reset(struct udc *dev)
  1445. {
  1446. unsigned long flags;
  1447. DBG(dev, "Soft reset\n");
  1448. /*
  1449. * reset possible waiting interrupts, because int.
  1450. * status is lost after soft reset,
  1451. * ep int. status reset
  1452. */
  1453. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1454. /* device int. status reset */
  1455. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1456. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1457. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1458. readl(&dev->regs->cfg);
  1459. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1460. }
  1461. /* RDE timer callback to set RDE bit */
  1462. static void udc_timer_function(unsigned long v)
  1463. {
  1464. u32 tmp;
  1465. spin_lock_irq(&udc_irq_spinlock);
  1466. if (set_rde > 0) {
  1467. /*
  1468. * open the fifo if fifo was filled on last timer call
  1469. * conditionally
  1470. */
  1471. if (set_rde > 1) {
  1472. /* set RDE to receive setup data */
  1473. tmp = readl(&udc->regs->ctl);
  1474. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1475. writel(tmp, &udc->regs->ctl);
  1476. set_rde = -1;
  1477. } else if (readl(&udc->regs->sts)
  1478. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1479. /*
  1480. * if fifo empty setup polling, do not just
  1481. * open the fifo
  1482. */
  1483. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1484. if (!stop_timer) {
  1485. add_timer(&udc_timer);
  1486. }
  1487. } else {
  1488. /*
  1489. * fifo contains data now, setup timer for opening
  1490. * the fifo when timer expires to be able to receive
  1491. * setup packets, when data packets gets queued by
  1492. * gadget layer then timer will forced to expire with
  1493. * set_rde=0 (RDE is set in udc_queue())
  1494. */
  1495. set_rde++;
  1496. /* debug: lhadmot_timer_start = 221070 */
  1497. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1498. if (!stop_timer) {
  1499. add_timer(&udc_timer);
  1500. }
  1501. }
  1502. } else
  1503. set_rde = -1; /* RDE was set by udc_queue() */
  1504. spin_unlock_irq(&udc_irq_spinlock);
  1505. if (stop_timer)
  1506. complete(&on_exit);
  1507. }
  1508. /* Handle halt state, used in stall poll timer */
  1509. static void udc_handle_halt_state(struct udc_ep *ep)
  1510. {
  1511. u32 tmp;
  1512. /* set stall as long not halted */
  1513. if (ep->halted == 1) {
  1514. tmp = readl(&ep->regs->ctl);
  1515. /* STALL cleared ? */
  1516. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1517. /*
  1518. * FIXME: MSC spec requires that stall remains
  1519. * even on receivng of CLEAR_FEATURE HALT. So
  1520. * we would set STALL again here to be compliant.
  1521. * But with current mass storage drivers this does
  1522. * not work (would produce endless host retries).
  1523. * So we clear halt on CLEAR_FEATURE.
  1524. *
  1525. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1526. tmp |= AMD_BIT(UDC_EPCTL_S);
  1527. writel(tmp, &ep->regs->ctl);*/
  1528. /* clear NAK by writing CNAK */
  1529. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1530. writel(tmp, &ep->regs->ctl);
  1531. ep->halted = 0;
  1532. UDC_QUEUE_CNAK(ep, ep->num);
  1533. }
  1534. }
  1535. }
  1536. /* Stall timer callback to poll S bit and set it again after */
  1537. static void udc_pollstall_timer_function(unsigned long v)
  1538. {
  1539. struct udc_ep *ep;
  1540. int halted = 0;
  1541. spin_lock_irq(&udc_stall_spinlock);
  1542. /*
  1543. * only one IN and OUT endpoints are handled
  1544. * IN poll stall
  1545. */
  1546. ep = &udc->ep[UDC_EPIN_IX];
  1547. udc_handle_halt_state(ep);
  1548. if (ep->halted)
  1549. halted = 1;
  1550. /* OUT poll stall */
  1551. ep = &udc->ep[UDC_EPOUT_IX];
  1552. udc_handle_halt_state(ep);
  1553. if (ep->halted)
  1554. halted = 1;
  1555. /* setup timer again when still halted */
  1556. if (!stop_pollstall_timer && halted) {
  1557. udc_pollstall_timer.expires = jiffies +
  1558. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1559. / (1000 * 1000);
  1560. add_timer(&udc_pollstall_timer);
  1561. }
  1562. spin_unlock_irq(&udc_stall_spinlock);
  1563. if (stop_pollstall_timer)
  1564. complete(&on_pollstall_exit);
  1565. }
  1566. /* Inits endpoint 0 so that SETUP packets are processed */
  1567. static void activate_control_endpoints(struct udc *dev)
  1568. {
  1569. u32 tmp;
  1570. DBG(dev, "activate_control_endpoints\n");
  1571. /* flush fifo */
  1572. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1573. tmp |= AMD_BIT(UDC_EPCTL_F);
  1574. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1575. /* set ep0 directions */
  1576. dev->ep[UDC_EP0IN_IX].in = 1;
  1577. dev->ep[UDC_EP0OUT_IX].in = 0;
  1578. /* set buffer size (tx fifo entries) of EP0_IN */
  1579. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1580. if (dev->gadget.speed == USB_SPEED_FULL)
  1581. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1582. UDC_EPIN_BUFF_SIZE);
  1583. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1584. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1585. UDC_EPIN_BUFF_SIZE);
  1586. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1587. /* set max packet size of EP0_IN */
  1588. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1589. if (dev->gadget.speed == USB_SPEED_FULL)
  1590. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1591. UDC_EP_MAX_PKT_SIZE);
  1592. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1593. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1594. UDC_EP_MAX_PKT_SIZE);
  1595. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1596. /* set max packet size of EP0_OUT */
  1597. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1598. if (dev->gadget.speed == USB_SPEED_FULL)
  1599. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1600. UDC_EP_MAX_PKT_SIZE);
  1601. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1602. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1603. UDC_EP_MAX_PKT_SIZE);
  1604. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1605. /* set max packet size of EP0 in UDC CSR */
  1606. tmp = readl(&dev->csr->ne[0]);
  1607. if (dev->gadget.speed == USB_SPEED_FULL)
  1608. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1609. UDC_CSR_NE_MAX_PKT);
  1610. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1611. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1612. UDC_CSR_NE_MAX_PKT);
  1613. writel(tmp, &dev->csr->ne[0]);
  1614. if (use_dma) {
  1615. dev->ep[UDC_EP0OUT_IX].td->status |=
  1616. AMD_BIT(UDC_DMA_OUT_STS_L);
  1617. /* write dma desc address */
  1618. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1619. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1620. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1621. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1622. /* stop RDE timer */
  1623. if (timer_pending(&udc_timer)) {
  1624. set_rde = 0;
  1625. mod_timer(&udc_timer, jiffies - 1);
  1626. }
  1627. /* stop pollstall timer */
  1628. if (timer_pending(&udc_pollstall_timer)) {
  1629. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1630. }
  1631. /* enable DMA */
  1632. tmp = readl(&dev->regs->ctl);
  1633. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1634. | AMD_BIT(UDC_DEVCTL_RDE)
  1635. | AMD_BIT(UDC_DEVCTL_TDE);
  1636. if (use_dma_bufferfill_mode) {
  1637. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1638. } else if (use_dma_ppb_du) {
  1639. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1640. }
  1641. writel(tmp, &dev->regs->ctl);
  1642. }
  1643. /* clear NAK by writing CNAK for EP0IN */
  1644. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1645. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1646. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1647. dev->ep[UDC_EP0IN_IX].naking = 0;
  1648. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1649. /* clear NAK by writing CNAK for EP0OUT */
  1650. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1651. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1652. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1653. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1654. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1655. }
  1656. /* Make endpoint 0 ready for control traffic */
  1657. static int setup_ep0(struct udc *dev)
  1658. {
  1659. activate_control_endpoints(dev);
  1660. /* enable ep0 interrupts */
  1661. udc_enable_ep0_interrupts(dev);
  1662. /* enable device setup interrupts */
  1663. udc_enable_dev_setup_interrupts(dev);
  1664. return 0;
  1665. }
  1666. /* Called by gadget driver to register itself */
  1667. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1668. {
  1669. struct udc *dev = udc;
  1670. int retval;
  1671. u32 tmp;
  1672. if (!driver || !driver->bind || !driver->setup
  1673. || driver->speed != USB_SPEED_HIGH)
  1674. return -EINVAL;
  1675. if (!dev)
  1676. return -ENODEV;
  1677. if (dev->driver)
  1678. return -EBUSY;
  1679. driver->driver.bus = NULL;
  1680. dev->driver = driver;
  1681. dev->gadget.dev.driver = &driver->driver;
  1682. retval = driver->bind(&dev->gadget);
  1683. /* Some gadget drivers use both ep0 directions.
  1684. * NOTE: to gadget driver, ep0 is just one endpoint...
  1685. */
  1686. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1687. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1688. if (retval) {
  1689. DBG(dev, "binding to %s returning %d\n",
  1690. driver->driver.name, retval);
  1691. dev->driver = NULL;
  1692. dev->gadget.dev.driver = NULL;
  1693. return retval;
  1694. }
  1695. /* get ready for ep0 traffic */
  1696. setup_ep0(dev);
  1697. /* clear SD */
  1698. tmp = readl(&dev->regs->ctl);
  1699. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1700. writel(tmp, &dev->regs->ctl);
  1701. usb_connect(dev);
  1702. return 0;
  1703. }
  1704. EXPORT_SYMBOL(usb_gadget_register_driver);
  1705. /* shutdown requests and disconnect from gadget */
  1706. static void
  1707. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1708. __releases(dev->lock)
  1709. __acquires(dev->lock)
  1710. {
  1711. int tmp;
  1712. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1713. spin_unlock(&dev->lock);
  1714. driver->disconnect(&dev->gadget);
  1715. spin_lock(&dev->lock);
  1716. }
  1717. /* empty queues and init hardware */
  1718. udc_basic_init(dev);
  1719. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1720. empty_req_queue(&dev->ep[tmp]);
  1721. udc_setup_endpoints(dev);
  1722. }
  1723. /* Called by gadget driver to unregister itself */
  1724. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  1725. {
  1726. struct udc *dev = udc;
  1727. unsigned long flags;
  1728. u32 tmp;
  1729. if (!dev)
  1730. return -ENODEV;
  1731. if (!driver || driver != dev->driver || !driver->unbind)
  1732. return -EINVAL;
  1733. spin_lock_irqsave(&dev->lock, flags);
  1734. udc_mask_unused_interrupts(dev);
  1735. shutdown(dev, driver);
  1736. spin_unlock_irqrestore(&dev->lock, flags);
  1737. driver->unbind(&dev->gadget);
  1738. dev->gadget.dev.driver = NULL;
  1739. dev->driver = NULL;
  1740. /* set SD */
  1741. tmp = readl(&dev->regs->ctl);
  1742. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1743. writel(tmp, &dev->regs->ctl);
  1744. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1745. return 0;
  1746. }
  1747. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  1748. /* Clear pending NAK bits */
  1749. static void udc_process_cnak_queue(struct udc *dev)
  1750. {
  1751. u32 tmp;
  1752. u32 reg;
  1753. /* check epin's */
  1754. DBG(dev, "CNAK pending queue processing\n");
  1755. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1756. if (cnak_pending & (1 << tmp)) {
  1757. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1758. /* clear NAK by writing CNAK */
  1759. reg = readl(&dev->ep[tmp].regs->ctl);
  1760. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1761. writel(reg, &dev->ep[tmp].regs->ctl);
  1762. dev->ep[tmp].naking = 0;
  1763. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1764. }
  1765. }
  1766. /* ... and ep0out */
  1767. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1768. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1769. /* clear NAK by writing CNAK */
  1770. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1771. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1772. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1773. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1774. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1775. dev->ep[UDC_EP0OUT_IX].num);
  1776. }
  1777. }
  1778. /* Enabling RX DMA after setup packet */
  1779. static void udc_ep0_set_rde(struct udc *dev)
  1780. {
  1781. if (use_dma) {
  1782. /*
  1783. * only enable RXDMA when no data endpoint enabled
  1784. * or data is queued
  1785. */
  1786. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1787. udc_set_rde(dev);
  1788. } else {
  1789. /*
  1790. * setup timer for enabling RDE (to not enable
  1791. * RXFIFO DMA for data endpoints to early)
  1792. */
  1793. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1794. udc_timer.expires =
  1795. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1796. set_rde = 1;
  1797. if (!stop_timer) {
  1798. add_timer(&udc_timer);
  1799. }
  1800. }
  1801. }
  1802. }
  1803. }
  1804. /* Interrupt handler for data OUT traffic */
  1805. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1806. {
  1807. irqreturn_t ret_val = IRQ_NONE;
  1808. u32 tmp;
  1809. struct udc_ep *ep;
  1810. struct udc_request *req;
  1811. unsigned int count;
  1812. struct udc_data_dma *td = NULL;
  1813. unsigned dma_done;
  1814. VDBG(dev, "ep%d irq\n", ep_ix);
  1815. ep = &dev->ep[ep_ix];
  1816. tmp = readl(&ep->regs->sts);
  1817. if (use_dma) {
  1818. /* BNA event ? */
  1819. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1820. DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
  1821. ep->num, readl(&ep->regs->desptr));
  1822. /* clear BNA */
  1823. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1824. if (!ep->cancel_transfer)
  1825. ep->bna_occurred = 1;
  1826. else
  1827. ep->cancel_transfer = 0;
  1828. ret_val = IRQ_HANDLED;
  1829. goto finished;
  1830. }
  1831. }
  1832. /* HE event ? */
  1833. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1834. dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
  1835. /* clear HE */
  1836. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1837. ret_val = IRQ_HANDLED;
  1838. goto finished;
  1839. }
  1840. if (!list_empty(&ep->queue)) {
  1841. /* next request */
  1842. req = list_entry(ep->queue.next,
  1843. struct udc_request, queue);
  1844. } else {
  1845. req = NULL;
  1846. udc_rxfifo_pending = 1;
  1847. }
  1848. VDBG(dev, "req = %p\n", req);
  1849. /* fifo mode */
  1850. if (!use_dma) {
  1851. /* read fifo */
  1852. if (req && udc_rxfifo_read(ep, req)) {
  1853. ret_val = IRQ_HANDLED;
  1854. /* finish */
  1855. complete_req(ep, req, 0);
  1856. /* next request */
  1857. if (!list_empty(&ep->queue) && !ep->halted) {
  1858. req = list_entry(ep->queue.next,
  1859. struct udc_request, queue);
  1860. } else
  1861. req = NULL;
  1862. }
  1863. /* DMA */
  1864. } else if (!ep->cancel_transfer && req != NULL) {
  1865. ret_val = IRQ_HANDLED;
  1866. /* check for DMA done */
  1867. if (!use_dma_ppb) {
  1868. dma_done = AMD_GETBITS(req->td_data->status,
  1869. UDC_DMA_OUT_STS_BS);
  1870. /* packet per buffer mode - rx bytes */
  1871. } else {
  1872. /*
  1873. * if BNA occurred then recover desc. from
  1874. * BNA dummy desc.
  1875. */
  1876. if (ep->bna_occurred) {
  1877. VDBG(dev, "Recover desc. from BNA dummy\n");
  1878. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1879. sizeof(struct udc_data_dma));
  1880. ep->bna_occurred = 0;
  1881. udc_init_bna_dummy(ep->req);
  1882. }
  1883. td = udc_get_last_dma_desc(req);
  1884. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1885. }
  1886. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1887. /* buffer fill mode - rx bytes */
  1888. if (!use_dma_ppb) {
  1889. /* received number bytes */
  1890. count = AMD_GETBITS(req->td_data->status,
  1891. UDC_DMA_OUT_STS_RXBYTES);
  1892. VDBG(dev, "rx bytes=%u\n", count);
  1893. /* packet per buffer mode - rx bytes */
  1894. } else {
  1895. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1896. VDBG(dev, "last desc = %p\n", td);
  1897. /* received number bytes */
  1898. if (use_dma_ppb_du) {
  1899. /* every desc. counts bytes */
  1900. count = udc_get_ppbdu_rxbytes(req);
  1901. } else {
  1902. /* last desc. counts bytes */
  1903. count = AMD_GETBITS(td->status,
  1904. UDC_DMA_OUT_STS_RXBYTES);
  1905. if (!count && req->req.length
  1906. == UDC_DMA_MAXPACKET) {
  1907. /*
  1908. * on 64k packets the RXBYTES
  1909. * field is zero
  1910. */
  1911. count = UDC_DMA_MAXPACKET;
  1912. }
  1913. }
  1914. VDBG(dev, "last desc rx bytes=%u\n", count);
  1915. }
  1916. tmp = req->req.length - req->req.actual;
  1917. if (count > tmp) {
  1918. if ((tmp % ep->ep.maxpacket) != 0) {
  1919. DBG(dev, "%s: rx %db, space=%db\n",
  1920. ep->ep.name, count, tmp);
  1921. req->req.status = -EOVERFLOW;
  1922. }
  1923. count = tmp;
  1924. }
  1925. req->req.actual += count;
  1926. req->dma_going = 0;
  1927. /* complete request */
  1928. complete_req(ep, req, 0);
  1929. /* next request */
  1930. if (!list_empty(&ep->queue) && !ep->halted) {
  1931. req = list_entry(ep->queue.next,
  1932. struct udc_request,
  1933. queue);
  1934. /*
  1935. * DMA may be already started by udc_queue()
  1936. * called by gadget drivers completion
  1937. * routine. This happens when queue
  1938. * holds one request only.
  1939. */
  1940. if (req->dma_going == 0) {
  1941. /* next dma */
  1942. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1943. goto finished;
  1944. /* write desc pointer */
  1945. writel(req->td_phys,
  1946. &ep->regs->desptr);
  1947. req->dma_going = 1;
  1948. /* enable DMA */
  1949. udc_set_rde(dev);
  1950. }
  1951. } else {
  1952. /*
  1953. * implant BNA dummy descriptor to allow
  1954. * RXFIFO opening by RDE
  1955. */
  1956. if (ep->bna_dummy_req) {
  1957. /* write desc pointer */
  1958. writel(ep->bna_dummy_req->td_phys,
  1959. &ep->regs->desptr);
  1960. ep->bna_occurred = 0;
  1961. }
  1962. /*
  1963. * schedule timer for setting RDE if queue
  1964. * remains empty to allow ep0 packets pass
  1965. * through
  1966. */
  1967. if (set_rde != 0
  1968. && !timer_pending(&udc_timer)) {
  1969. udc_timer.expires =
  1970. jiffies
  1971. + HZ*UDC_RDE_TIMER_SECONDS;
  1972. set_rde = 1;
  1973. if (!stop_timer) {
  1974. add_timer(&udc_timer);
  1975. }
  1976. }
  1977. if (ep->num != UDC_EP0OUT_IX)
  1978. dev->data_ep_queued = 0;
  1979. }
  1980. } else {
  1981. /*
  1982. * RX DMA must be reenabled for each desc in PPBDU mode
  1983. * and must be enabled for PPBNDU mode in case of BNA
  1984. */
  1985. udc_set_rde(dev);
  1986. }
  1987. } else if (ep->cancel_transfer) {
  1988. ret_val = IRQ_HANDLED;
  1989. ep->cancel_transfer = 0;
  1990. }
  1991. /* check pending CNAKS */
  1992. if (cnak_pending) {
  1993. /* CNAk processing when rxfifo empty only */
  1994. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1995. udc_process_cnak_queue(dev);
  1996. }
  1997. }
  1998. /* clear OUT bits in ep status */
  1999. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  2000. finished:
  2001. return ret_val;
  2002. }
  2003. /* Interrupt handler for data IN traffic */
  2004. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2005. {
  2006. irqreturn_t ret_val = IRQ_NONE;
  2007. u32 tmp;
  2008. u32 epsts;
  2009. struct udc_ep *ep;
  2010. struct udc_request *req;
  2011. struct udc_data_dma *td;
  2012. unsigned dma_done;
  2013. unsigned len;
  2014. ep = &dev->ep[ep_ix];
  2015. epsts = readl(&ep->regs->sts);
  2016. if (use_dma) {
  2017. /* BNA ? */
  2018. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2019. dev_err(&dev->pdev->dev,
  2020. "BNA ep%din occured - DESPTR = %08lx \n",
  2021. ep->num,
  2022. (unsigned long) readl(&ep->regs->desptr));
  2023. /* clear BNA */
  2024. writel(epsts, &ep->regs->sts);
  2025. ret_val = IRQ_HANDLED;
  2026. goto finished;
  2027. }
  2028. }
  2029. /* HE event ? */
  2030. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2031. dev_err(&dev->pdev->dev,
  2032. "HE ep%dn occured - DESPTR = %08lx \n",
  2033. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2034. /* clear HE */
  2035. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2036. ret_val = IRQ_HANDLED;
  2037. goto finished;
  2038. }
  2039. /* DMA completion */
  2040. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2041. VDBG(dev, "TDC set- completion\n");
  2042. ret_val = IRQ_HANDLED;
  2043. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2044. req = list_entry(ep->queue.next,
  2045. struct udc_request, queue);
  2046. /*
  2047. * length bytes transfered
  2048. * check dma done of last desc. in PPBDU mode
  2049. */
  2050. if (use_dma_ppb_du) {
  2051. td = udc_get_last_dma_desc(req);
  2052. if (td) {
  2053. dma_done =
  2054. AMD_GETBITS(td->status,
  2055. UDC_DMA_IN_STS_BS);
  2056. /* don't care DMA done */
  2057. req->req.actual = req->req.length;
  2058. }
  2059. } else {
  2060. /* assume all bytes transferred */
  2061. req->req.actual = req->req.length;
  2062. }
  2063. if (req->req.actual == req->req.length) {
  2064. /* complete req */
  2065. complete_req(ep, req, 0);
  2066. req->dma_going = 0;
  2067. /* further request available ? */
  2068. if (list_empty(&ep->queue)) {
  2069. /* disable interrupt */
  2070. tmp = readl(&dev->regs->ep_irqmsk);
  2071. tmp |= AMD_BIT(ep->num);
  2072. writel(tmp, &dev->regs->ep_irqmsk);
  2073. }
  2074. }
  2075. }
  2076. ep->cancel_transfer = 0;
  2077. }
  2078. /*
  2079. * status reg has IN bit set and TDC not set (if TDC was handled,
  2080. * IN must not be handled (UDC defect) ?
  2081. */
  2082. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2083. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2084. ret_val = IRQ_HANDLED;
  2085. if (!list_empty(&ep->queue)) {
  2086. /* next request */
  2087. req = list_entry(ep->queue.next,
  2088. struct udc_request, queue);
  2089. /* FIFO mode */
  2090. if (!use_dma) {
  2091. /* write fifo */
  2092. udc_txfifo_write(ep, &req->req);
  2093. len = req->req.length - req->req.actual;
  2094. if (len > ep->ep.maxpacket)
  2095. len = ep->ep.maxpacket;
  2096. req->req.actual += len;
  2097. if (req->req.actual == req->req.length
  2098. || (len != ep->ep.maxpacket)) {
  2099. /* complete req */
  2100. complete_req(ep, req, 0);
  2101. }
  2102. /* DMA */
  2103. } else if (req && !req->dma_going) {
  2104. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2105. req, req->td_data);
  2106. if (req->td_data) {
  2107. req->dma_going = 1;
  2108. /*
  2109. * unset L bit of first desc.
  2110. * for chain
  2111. */
  2112. if (use_dma_ppb && req->req.length >
  2113. ep->ep.maxpacket) {
  2114. req->td_data->status &=
  2115. AMD_CLEAR_BIT(
  2116. UDC_DMA_IN_STS_L);
  2117. }
  2118. /* write desc pointer */
  2119. writel(req->td_phys, &ep->regs->desptr);
  2120. /* set HOST READY */
  2121. req->td_data->status =
  2122. AMD_ADDBITS(
  2123. req->td_data->status,
  2124. UDC_DMA_IN_STS_BS_HOST_READY,
  2125. UDC_DMA_IN_STS_BS);
  2126. /* set poll demand bit */
  2127. tmp = readl(&ep->regs->ctl);
  2128. tmp |= AMD_BIT(UDC_EPCTL_P);
  2129. writel(tmp, &ep->regs->ctl);
  2130. }
  2131. }
  2132. } else if (!use_dma && ep->in) {
  2133. /* disable interrupt */
  2134. tmp = readl(
  2135. &dev->regs->ep_irqmsk);
  2136. tmp |= AMD_BIT(ep->num);
  2137. writel(tmp,
  2138. &dev->regs->ep_irqmsk);
  2139. }
  2140. }
  2141. /* clear status bits */
  2142. writel(epsts, &ep->regs->sts);
  2143. finished:
  2144. return ret_val;
  2145. }
  2146. /* Interrupt handler for Control OUT traffic */
  2147. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2148. __releases(dev->lock)
  2149. __acquires(dev->lock)
  2150. {
  2151. irqreturn_t ret_val = IRQ_NONE;
  2152. u32 tmp;
  2153. int setup_supported;
  2154. u32 count;
  2155. int set = 0;
  2156. struct udc_ep *ep;
  2157. struct udc_ep *ep_tmp;
  2158. ep = &dev->ep[UDC_EP0OUT_IX];
  2159. /* clear irq */
  2160. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2161. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2162. /* check BNA and clear if set */
  2163. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2164. VDBG(dev, "ep0: BNA set\n");
  2165. writel(AMD_BIT(UDC_EPSTS_BNA),
  2166. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2167. ep->bna_occurred = 1;
  2168. ret_val = IRQ_HANDLED;
  2169. goto finished;
  2170. }
  2171. /* type of data: SETUP or DATA 0 bytes */
  2172. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2173. VDBG(dev, "data_typ = %x\n", tmp);
  2174. /* setup data */
  2175. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2176. ret_val = IRQ_HANDLED;
  2177. ep->dev->stall_ep0in = 0;
  2178. dev->waiting_zlp_ack_ep0in = 0;
  2179. /* set NAK for EP0_IN */
  2180. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2181. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2182. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2183. dev->ep[UDC_EP0IN_IX].naking = 1;
  2184. /* get setup data */
  2185. if (use_dma) {
  2186. /* clear OUT bits in ep status */
  2187. writel(UDC_EPSTS_OUT_CLEAR,
  2188. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2189. setup_data.data[0] =
  2190. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2191. setup_data.data[1] =
  2192. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2193. /* set HOST READY */
  2194. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2195. UDC_DMA_STP_STS_BS_HOST_READY;
  2196. } else {
  2197. /* read fifo */
  2198. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2199. }
  2200. /* determine direction of control data */
  2201. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2202. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2203. /* enable RDE */
  2204. udc_ep0_set_rde(dev);
  2205. set = 0;
  2206. } else {
  2207. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2208. /*
  2209. * implant BNA dummy descriptor to allow RXFIFO opening
  2210. * by RDE
  2211. */
  2212. if (ep->bna_dummy_req) {
  2213. /* write desc pointer */
  2214. writel(ep->bna_dummy_req->td_phys,
  2215. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2216. ep->bna_occurred = 0;
  2217. }
  2218. set = 1;
  2219. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2220. /*
  2221. * setup timer for enabling RDE (to not enable
  2222. * RXFIFO DMA for data to early)
  2223. */
  2224. set_rde = 1;
  2225. if (!timer_pending(&udc_timer)) {
  2226. udc_timer.expires = jiffies +
  2227. HZ/UDC_RDE_TIMER_DIV;
  2228. if (!stop_timer) {
  2229. add_timer(&udc_timer);
  2230. }
  2231. }
  2232. }
  2233. /*
  2234. * mass storage reset must be processed here because
  2235. * next packet may be a CLEAR_FEATURE HALT which would not
  2236. * clear the stall bit when no STALL handshake was received
  2237. * before (autostall can cause this)
  2238. */
  2239. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2240. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2241. DBG(dev, "MSC Reset\n");
  2242. /*
  2243. * clear stall bits
  2244. * only one IN and OUT endpoints are handled
  2245. */
  2246. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2247. udc_set_halt(&ep_tmp->ep, 0);
  2248. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2249. udc_set_halt(&ep_tmp->ep, 0);
  2250. }
  2251. /* call gadget with setup data received */
  2252. spin_unlock(&dev->lock);
  2253. setup_supported = dev->driver->setup(&dev->gadget,
  2254. &setup_data.request);
  2255. spin_lock(&dev->lock);
  2256. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2257. /* ep0 in returns data (not zlp) on IN phase */
  2258. if (setup_supported >= 0 && setup_supported <
  2259. UDC_EP0IN_MAXPACKET) {
  2260. /* clear NAK by writing CNAK in EP0_IN */
  2261. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2262. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2263. dev->ep[UDC_EP0IN_IX].naking = 0;
  2264. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2265. /* if unsupported request then stall */
  2266. } else if (setup_supported < 0) {
  2267. tmp |= AMD_BIT(UDC_EPCTL_S);
  2268. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2269. } else
  2270. dev->waiting_zlp_ack_ep0in = 1;
  2271. /* clear NAK by writing CNAK in EP0_OUT */
  2272. if (!set) {
  2273. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2274. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2275. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2276. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2277. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2278. }
  2279. if (!use_dma) {
  2280. /* clear OUT bits in ep status */
  2281. writel(UDC_EPSTS_OUT_CLEAR,
  2282. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2283. }
  2284. /* data packet 0 bytes */
  2285. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2286. /* clear OUT bits in ep status */
  2287. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2288. /* get setup data: only 0 packet */
  2289. if (use_dma) {
  2290. /* no req if 0 packet, just reactivate */
  2291. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2292. VDBG(dev, "ZLP\n");
  2293. /* set HOST READY */
  2294. dev->ep[UDC_EP0OUT_IX].td->status =
  2295. AMD_ADDBITS(
  2296. dev->ep[UDC_EP0OUT_IX].td->status,
  2297. UDC_DMA_OUT_STS_BS_HOST_READY,
  2298. UDC_DMA_OUT_STS_BS);
  2299. /* enable RDE */
  2300. udc_ep0_set_rde(dev);
  2301. ret_val = IRQ_HANDLED;
  2302. } else {
  2303. /* control write */
  2304. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2305. /* re-program desc. pointer for possible ZLPs */
  2306. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2307. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2308. /* enable RDE */
  2309. udc_ep0_set_rde(dev);
  2310. }
  2311. } else {
  2312. /* received number bytes */
  2313. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2314. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2315. /* out data for fifo mode not working */
  2316. count = 0;
  2317. /* 0 packet or real data ? */
  2318. if (count != 0) {
  2319. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2320. } else {
  2321. /* dummy read confirm */
  2322. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2323. ret_val = IRQ_HANDLED;
  2324. }
  2325. }
  2326. }
  2327. /* check pending CNAKS */
  2328. if (cnak_pending) {
  2329. /* CNAk processing when rxfifo empty only */
  2330. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2331. udc_process_cnak_queue(dev);
  2332. }
  2333. }
  2334. finished:
  2335. return ret_val;
  2336. }
  2337. /* Interrupt handler for Control IN traffic */
  2338. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2339. {
  2340. irqreturn_t ret_val = IRQ_NONE;
  2341. u32 tmp;
  2342. struct udc_ep *ep;
  2343. struct udc_request *req;
  2344. unsigned len;
  2345. ep = &dev->ep[UDC_EP0IN_IX];
  2346. /* clear irq */
  2347. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2348. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2349. /* DMA completion */
  2350. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2351. VDBG(dev, "isr: TDC clear \n");
  2352. ret_val = IRQ_HANDLED;
  2353. /* clear TDC bit */
  2354. writel(AMD_BIT(UDC_EPSTS_TDC),
  2355. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2356. /* status reg has IN bit set ? */
  2357. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2358. ret_val = IRQ_HANDLED;
  2359. if (ep->dma) {
  2360. /* clear IN bit */
  2361. writel(AMD_BIT(UDC_EPSTS_IN),
  2362. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2363. }
  2364. if (dev->stall_ep0in) {
  2365. DBG(dev, "stall ep0in\n");
  2366. /* halt ep0in */
  2367. tmp = readl(&ep->regs->ctl);
  2368. tmp |= AMD_BIT(UDC_EPCTL_S);
  2369. writel(tmp, &ep->regs->ctl);
  2370. } else {
  2371. if (!list_empty(&ep->queue)) {
  2372. /* next request */
  2373. req = list_entry(ep->queue.next,
  2374. struct udc_request, queue);
  2375. if (ep->dma) {
  2376. /* write desc pointer */
  2377. writel(req->td_phys, &ep->regs->desptr);
  2378. /* set HOST READY */
  2379. req->td_data->status =
  2380. AMD_ADDBITS(
  2381. req->td_data->status,
  2382. UDC_DMA_STP_STS_BS_HOST_READY,
  2383. UDC_DMA_STP_STS_BS);
  2384. /* set poll demand bit */
  2385. tmp =
  2386. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2387. tmp |= AMD_BIT(UDC_EPCTL_P);
  2388. writel(tmp,
  2389. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2390. /* all bytes will be transferred */
  2391. req->req.actual = req->req.length;
  2392. /* complete req */
  2393. complete_req(ep, req, 0);
  2394. } else {
  2395. /* write fifo */
  2396. udc_txfifo_write(ep, &req->req);
  2397. /* lengh bytes transfered */
  2398. len = req->req.length - req->req.actual;
  2399. if (len > ep->ep.maxpacket)
  2400. len = ep->ep.maxpacket;
  2401. req->req.actual += len;
  2402. if (req->req.actual == req->req.length
  2403. || (len != ep->ep.maxpacket)) {
  2404. /* complete req */
  2405. complete_req(ep, req, 0);
  2406. }
  2407. }
  2408. }
  2409. }
  2410. ep->halted = 0;
  2411. dev->stall_ep0in = 0;
  2412. if (!ep->dma) {
  2413. /* clear IN bit */
  2414. writel(AMD_BIT(UDC_EPSTS_IN),
  2415. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2416. }
  2417. }
  2418. return ret_val;
  2419. }
  2420. /* Interrupt handler for global device events */
  2421. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2422. __releases(dev->lock)
  2423. __acquires(dev->lock)
  2424. {
  2425. irqreturn_t ret_val = IRQ_NONE;
  2426. u32 tmp;
  2427. u32 cfg;
  2428. struct udc_ep *ep;
  2429. u16 i;
  2430. u8 udc_csr_epix;
  2431. /* SET_CONFIG irq ? */
  2432. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2433. ret_val = IRQ_HANDLED;
  2434. /* read config value */
  2435. tmp = readl(&dev->regs->sts);
  2436. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2437. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2438. dev->cur_config = cfg;
  2439. dev->set_cfg_not_acked = 1;
  2440. /* make usb request for gadget driver */
  2441. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2442. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2443. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2444. /* programm the NE registers */
  2445. for (i = 0; i < UDC_EP_NUM; i++) {
  2446. ep = &dev->ep[i];
  2447. if (ep->in) {
  2448. /* ep ix in UDC CSR register space */
  2449. udc_csr_epix = ep->num;
  2450. /* OUT ep */
  2451. } else {
  2452. /* ep ix in UDC CSR register space */
  2453. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2454. }
  2455. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2456. /* ep cfg */
  2457. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2458. UDC_CSR_NE_CFG);
  2459. /* write reg */
  2460. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2461. /* clear stall bits */
  2462. ep->halted = 0;
  2463. tmp = readl(&ep->regs->ctl);
  2464. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2465. writel(tmp, &ep->regs->ctl);
  2466. }
  2467. /* call gadget zero with setup data received */
  2468. spin_unlock(&dev->lock);
  2469. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2470. spin_lock(&dev->lock);
  2471. } /* SET_INTERFACE ? */
  2472. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2473. ret_val = IRQ_HANDLED;
  2474. dev->set_cfg_not_acked = 1;
  2475. /* read interface and alt setting values */
  2476. tmp = readl(&dev->regs->sts);
  2477. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2478. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2479. /* make usb request for gadget driver */
  2480. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2481. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2482. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2483. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2484. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2485. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2486. dev->cur_alt, dev->cur_intf);
  2487. /* programm the NE registers */
  2488. for (i = 0; i < UDC_EP_NUM; i++) {
  2489. ep = &dev->ep[i];
  2490. if (ep->in) {
  2491. /* ep ix in UDC CSR register space */
  2492. udc_csr_epix = ep->num;
  2493. /* OUT ep */
  2494. } else {
  2495. /* ep ix in UDC CSR register space */
  2496. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2497. }
  2498. /* UDC CSR reg */
  2499. /* set ep values */
  2500. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2501. /* ep interface */
  2502. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2503. UDC_CSR_NE_INTF);
  2504. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2505. /* ep alt */
  2506. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2507. UDC_CSR_NE_ALT);
  2508. /* write reg */
  2509. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2510. /* clear stall bits */
  2511. ep->halted = 0;
  2512. tmp = readl(&ep->regs->ctl);
  2513. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2514. writel(tmp, &ep->regs->ctl);
  2515. }
  2516. /* call gadget zero with setup data received */
  2517. spin_unlock(&dev->lock);
  2518. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2519. spin_lock(&dev->lock);
  2520. } /* USB reset */
  2521. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2522. DBG(dev, "USB Reset interrupt\n");
  2523. ret_val = IRQ_HANDLED;
  2524. /* allow soft reset when suspend occurs */
  2525. soft_reset_occured = 0;
  2526. dev->waiting_zlp_ack_ep0in = 0;
  2527. dev->set_cfg_not_acked = 0;
  2528. /* mask not needed interrupts */
  2529. udc_mask_unused_interrupts(dev);
  2530. /* call gadget to resume and reset configs etc. */
  2531. spin_unlock(&dev->lock);
  2532. if (dev->sys_suspended && dev->driver->resume) {
  2533. dev->driver->resume(&dev->gadget);
  2534. dev->sys_suspended = 0;
  2535. }
  2536. dev->driver->disconnect(&dev->gadget);
  2537. spin_lock(&dev->lock);
  2538. /* disable ep0 to empty req queue */
  2539. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2540. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2541. /* soft reset when rxfifo not empty */
  2542. tmp = readl(&dev->regs->sts);
  2543. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2544. && !soft_reset_after_usbreset_occured) {
  2545. udc_soft_reset(dev);
  2546. soft_reset_after_usbreset_occured++;
  2547. }
  2548. /*
  2549. * DMA reset to kill potential old DMA hw hang,
  2550. * POLL bit is already reset by ep_init() through
  2551. * disconnect()
  2552. */
  2553. DBG(dev, "DMA machine reset\n");
  2554. tmp = readl(&dev->regs->cfg);
  2555. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2556. writel(tmp, &dev->regs->cfg);
  2557. /* put into initial config */
  2558. udc_basic_init(dev);
  2559. /* enable device setup interrupts */
  2560. udc_enable_dev_setup_interrupts(dev);
  2561. /* enable suspend interrupt */
  2562. tmp = readl(&dev->regs->irqmsk);
  2563. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2564. writel(tmp, &dev->regs->irqmsk);
  2565. } /* USB suspend */
  2566. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2567. DBG(dev, "USB Suspend interrupt\n");
  2568. ret_val = IRQ_HANDLED;
  2569. if (dev->driver->suspend) {
  2570. spin_unlock(&dev->lock);
  2571. dev->sys_suspended = 1;
  2572. dev->driver->suspend(&dev->gadget);
  2573. spin_lock(&dev->lock);
  2574. }
  2575. } /* new speed ? */
  2576. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2577. DBG(dev, "ENUM interrupt\n");
  2578. ret_val = IRQ_HANDLED;
  2579. soft_reset_after_usbreset_occured = 0;
  2580. /* disable ep0 to empty req queue */
  2581. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2582. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2583. /* link up all endpoints */
  2584. udc_setup_endpoints(dev);
  2585. if (dev->gadget.speed == USB_SPEED_HIGH) {
  2586. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2587. "high");
  2588. } else if (dev->gadget.speed == USB_SPEED_FULL) {
  2589. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2590. "full");
  2591. }
  2592. /* init ep 0 */
  2593. activate_control_endpoints(dev);
  2594. /* enable ep0 interrupts */
  2595. udc_enable_ep0_interrupts(dev);
  2596. }
  2597. /* session valid change interrupt */
  2598. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2599. DBG(dev, "USB SVC interrupt\n");
  2600. ret_val = IRQ_HANDLED;
  2601. /* check that session is not valid to detect disconnect */
  2602. tmp = readl(&dev->regs->sts);
  2603. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2604. /* disable suspend interrupt */
  2605. tmp = readl(&dev->regs->irqmsk);
  2606. tmp |= AMD_BIT(UDC_DEVINT_US);
  2607. writel(tmp, &dev->regs->irqmsk);
  2608. DBG(dev, "USB Disconnect (session valid low)\n");
  2609. /* cleanup on disconnect */
  2610. usb_disconnect(udc);
  2611. }
  2612. }
  2613. return ret_val;
  2614. }
  2615. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2616. static irqreturn_t udc_irq(int irq, void *pdev)
  2617. {
  2618. struct udc *dev = pdev;
  2619. u32 reg;
  2620. u16 i;
  2621. u32 ep_irq;
  2622. irqreturn_t ret_val = IRQ_NONE;
  2623. spin_lock(&dev->lock);
  2624. /* check for ep irq */
  2625. reg = readl(&dev->regs->ep_irqsts);
  2626. if (reg) {
  2627. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2628. ret_val |= udc_control_out_isr(dev);
  2629. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2630. ret_val |= udc_control_in_isr(dev);
  2631. /*
  2632. * data endpoint
  2633. * iterate ep's
  2634. */
  2635. for (i = 1; i < UDC_EP_NUM; i++) {
  2636. ep_irq = 1 << i;
  2637. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2638. continue;
  2639. /* clear irq status */
  2640. writel(ep_irq, &dev->regs->ep_irqsts);
  2641. /* irq for out ep ? */
  2642. if (i > UDC_EPIN_NUM)
  2643. ret_val |= udc_data_out_isr(dev, i);
  2644. else
  2645. ret_val |= udc_data_in_isr(dev, i);
  2646. }
  2647. }
  2648. /* check for dev irq */
  2649. reg = readl(&dev->regs->irqsts);
  2650. if (reg) {
  2651. /* clear irq */
  2652. writel(reg, &dev->regs->irqsts);
  2653. ret_val |= udc_dev_isr(dev, reg);
  2654. }
  2655. spin_unlock(&dev->lock);
  2656. return ret_val;
  2657. }
  2658. /* Tears down device */
  2659. static void gadget_release(struct device *pdev)
  2660. {
  2661. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2662. kfree(dev);
  2663. }
  2664. /* Cleanup on device remove */
  2665. static void udc_remove(struct udc *dev)
  2666. {
  2667. /* remove timer */
  2668. stop_timer++;
  2669. if (timer_pending(&udc_timer))
  2670. wait_for_completion(&on_exit);
  2671. if (udc_timer.data)
  2672. del_timer_sync(&udc_timer);
  2673. /* remove pollstall timer */
  2674. stop_pollstall_timer++;
  2675. if (timer_pending(&udc_pollstall_timer))
  2676. wait_for_completion(&on_pollstall_exit);
  2677. if (udc_pollstall_timer.data)
  2678. del_timer_sync(&udc_pollstall_timer);
  2679. udc = NULL;
  2680. }
  2681. /* Reset all pci context */
  2682. static void udc_pci_remove(struct pci_dev *pdev)
  2683. {
  2684. struct udc *dev;
  2685. dev = pci_get_drvdata(pdev);
  2686. /* gadget driver must not be registered */
  2687. BUG_ON(dev->driver != NULL);
  2688. /* dma pool cleanup */
  2689. if (dev->data_requests)
  2690. pci_pool_destroy(dev->data_requests);
  2691. if (dev->stp_requests) {
  2692. /* cleanup DMA desc's for ep0in */
  2693. pci_pool_free(dev->stp_requests,
  2694. dev->ep[UDC_EP0OUT_IX].td_stp,
  2695. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2696. pci_pool_free(dev->stp_requests,
  2697. dev->ep[UDC_EP0OUT_IX].td,
  2698. dev->ep[UDC_EP0OUT_IX].td_phys);
  2699. pci_pool_destroy(dev->stp_requests);
  2700. }
  2701. /* reset controller */
  2702. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2703. if (dev->irq_registered)
  2704. free_irq(pdev->irq, dev);
  2705. if (dev->regs)
  2706. iounmap(dev->regs);
  2707. if (dev->mem_region)
  2708. release_mem_region(pci_resource_start(pdev, 0),
  2709. pci_resource_len(pdev, 0));
  2710. if (dev->active)
  2711. pci_disable_device(pdev);
  2712. device_unregister(&dev->gadget.dev);
  2713. pci_set_drvdata(pdev, NULL);
  2714. udc_remove(dev);
  2715. }
  2716. /* create dma pools on init */
  2717. static int init_dma_pools(struct udc *dev)
  2718. {
  2719. struct udc_stp_dma *td_stp;
  2720. struct udc_data_dma *td_data;
  2721. int retval;
  2722. /* consistent DMA mode setting ? */
  2723. if (use_dma_ppb) {
  2724. use_dma_bufferfill_mode = 0;
  2725. } else {
  2726. use_dma_ppb_du = 0;
  2727. use_dma_bufferfill_mode = 1;
  2728. }
  2729. /* DMA setup */
  2730. dev->data_requests = dma_pool_create("data_requests", NULL,
  2731. sizeof(struct udc_data_dma), 0, 0);
  2732. if (!dev->data_requests) {
  2733. DBG(dev, "can't get request data pool\n");
  2734. retval = -ENOMEM;
  2735. goto finished;
  2736. }
  2737. /* EP0 in dma regs = dev control regs */
  2738. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2739. /* dma desc for setup data */
  2740. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2741. sizeof(struct udc_stp_dma), 0, 0);
  2742. if (!dev->stp_requests) {
  2743. DBG(dev, "can't get stp request pool\n");
  2744. retval = -ENOMEM;
  2745. goto finished;
  2746. }
  2747. /* setup */
  2748. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2749. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2750. if (td_stp == NULL) {
  2751. retval = -ENOMEM;
  2752. goto finished;
  2753. }
  2754. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2755. /* data: 0 packets !? */
  2756. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2757. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2758. if (td_data == NULL) {
  2759. retval = -ENOMEM;
  2760. goto finished;
  2761. }
  2762. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2763. return 0;
  2764. finished:
  2765. return retval;
  2766. }
  2767. /* Called by pci bus driver to init pci context */
  2768. static int udc_pci_probe(
  2769. struct pci_dev *pdev,
  2770. const struct pci_device_id *id
  2771. )
  2772. {
  2773. struct udc *dev;
  2774. unsigned long resource;
  2775. unsigned long len;
  2776. int retval = 0;
  2777. /* one udc only */
  2778. if (udc) {
  2779. dev_dbg(&pdev->dev, "already probed\n");
  2780. return -EBUSY;
  2781. }
  2782. /* init */
  2783. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2784. if (!dev) {
  2785. retval = -ENOMEM;
  2786. goto finished;
  2787. }
  2788. /* pci setup */
  2789. if (pci_enable_device(pdev) < 0) {
  2790. kfree(dev);
  2791. dev = NULL;
  2792. retval = -ENODEV;
  2793. goto finished;
  2794. }
  2795. dev->active = 1;
  2796. /* PCI resource allocation */
  2797. resource = pci_resource_start(pdev, 0);
  2798. len = pci_resource_len(pdev, 0);
  2799. if (!request_mem_region(resource, len, name)) {
  2800. dev_dbg(&pdev->dev, "pci device used already\n");
  2801. kfree(dev);
  2802. dev = NULL;
  2803. retval = -EBUSY;
  2804. goto finished;
  2805. }
  2806. dev->mem_region = 1;
  2807. dev->virt_addr = ioremap_nocache(resource, len);
  2808. if (dev->virt_addr == NULL) {
  2809. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2810. kfree(dev);
  2811. dev = NULL;
  2812. retval = -EFAULT;
  2813. goto finished;
  2814. }
  2815. if (!pdev->irq) {
  2816. dev_err(&dev->pdev->dev, "irq not set\n");
  2817. kfree(dev);
  2818. dev = NULL;
  2819. retval = -ENODEV;
  2820. goto finished;
  2821. }
  2822. spin_lock_init(&dev->lock);
  2823. /* udc csr registers base */
  2824. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2825. /* dev registers base */
  2826. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2827. /* ep registers base */
  2828. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2829. /* fifo's base */
  2830. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2831. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2832. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2833. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2834. kfree(dev);
  2835. dev = NULL;
  2836. retval = -EBUSY;
  2837. goto finished;
  2838. }
  2839. dev->irq_registered = 1;
  2840. pci_set_drvdata(pdev, dev);
  2841. /* chip revision for Hs AMD5536 */
  2842. dev->chiprev = pdev->revision;
  2843. pci_set_master(pdev);
  2844. pci_try_set_mwi(pdev);
  2845. /* init dma pools */
  2846. if (use_dma) {
  2847. retval = init_dma_pools(dev);
  2848. if (retval != 0)
  2849. goto finished;
  2850. }
  2851. dev->phys_addr = resource;
  2852. dev->irq = pdev->irq;
  2853. dev->pdev = pdev;
  2854. dev->gadget.dev.parent = &pdev->dev;
  2855. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2856. /* general probing */
  2857. if (udc_probe(dev) == 0)
  2858. return 0;
  2859. finished:
  2860. if (dev)
  2861. udc_pci_remove(pdev);
  2862. return retval;
  2863. }
  2864. /* general probe */
  2865. static int udc_probe(struct udc *dev)
  2866. {
  2867. char tmp[128];
  2868. u32 reg;
  2869. int retval;
  2870. /* mark timer as not initialized */
  2871. udc_timer.data = 0;
  2872. udc_pollstall_timer.data = 0;
  2873. /* device struct setup */
  2874. dev->gadget.ops = &udc_ops;
  2875. dev_set_name(&dev->gadget.dev, "gadget");
  2876. dev->gadget.dev.release = gadget_release;
  2877. dev->gadget.name = name;
  2878. dev->gadget.name = name;
  2879. dev->gadget.is_dualspeed = 1;
  2880. /* init registers, interrupts, ... */
  2881. startup_registers(dev);
  2882. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2883. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2884. dev_info(&dev->pdev->dev,
  2885. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2886. tmp, dev->phys_addr, dev->chiprev,
  2887. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2888. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2889. if (dev->chiprev == UDC_HSA0_REV) {
  2890. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2891. retval = -ENODEV;
  2892. goto finished;
  2893. }
  2894. dev_info(&dev->pdev->dev,
  2895. "driver version: %s(for Geode5536 B1)\n", tmp);
  2896. udc = dev;
  2897. retval = device_register(&dev->gadget.dev);
  2898. if (retval)
  2899. goto finished;
  2900. /* timer init */
  2901. init_timer(&udc_timer);
  2902. udc_timer.function = udc_timer_function;
  2903. udc_timer.data = 1;
  2904. /* timer pollstall init */
  2905. init_timer(&udc_pollstall_timer);
  2906. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2907. udc_pollstall_timer.data = 1;
  2908. /* set SD */
  2909. reg = readl(&dev->regs->ctl);
  2910. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2911. writel(reg, &dev->regs->ctl);
  2912. /* print dev register info */
  2913. print_regs(dev);
  2914. return 0;
  2915. finished:
  2916. return retval;
  2917. }
  2918. /* Initiates a remote wakeup */
  2919. static int udc_remote_wakeup(struct udc *dev)
  2920. {
  2921. unsigned long flags;
  2922. u32 tmp;
  2923. DBG(dev, "UDC initiates remote wakeup\n");
  2924. spin_lock_irqsave(&dev->lock, flags);
  2925. tmp = readl(&dev->regs->ctl);
  2926. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2927. writel(tmp, &dev->regs->ctl);
  2928. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2929. writel(tmp, &dev->regs->ctl);
  2930. spin_unlock_irqrestore(&dev->lock, flags);
  2931. return 0;
  2932. }
  2933. /* PCI device parameters */
  2934. static const struct pci_device_id pci_id[] = {
  2935. {
  2936. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2937. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2938. .class_mask = 0xffffffff,
  2939. },
  2940. {},
  2941. };
  2942. MODULE_DEVICE_TABLE(pci, pci_id);
  2943. /* PCI functions */
  2944. static struct pci_driver udc_pci_driver = {
  2945. .name = (char *) name,
  2946. .id_table = pci_id,
  2947. .probe = udc_pci_probe,
  2948. .remove = udc_pci_remove,
  2949. };
  2950. /* Inits driver */
  2951. static int __init init(void)
  2952. {
  2953. return pci_register_driver(&udc_pci_driver);
  2954. }
  2955. module_init(init);
  2956. /* Cleans driver */
  2957. static void __exit cleanup(void)
  2958. {
  2959. pci_unregister_driver(&udc_pci_driver);
  2960. }
  2961. module_exit(cleanup);
  2962. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2963. MODULE_AUTHOR("Thomas Dahlmann");
  2964. MODULE_LICENSE("GPL");