dw_spi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/spi/dw_spi.h>
  24. #include <linux/spi/spi.h>
  25. #ifdef CONFIG_DEBUG_FS
  26. #include <linux/debugfs.h>
  27. #endif
  28. #define START_STATE ((void *)0)
  29. #define RUNNING_STATE ((void *)1)
  30. #define DONE_STATE ((void *)2)
  31. #define ERROR_STATE ((void *)-1)
  32. #define QUEUE_RUNNING 0
  33. #define QUEUE_STOPPED 1
  34. #define MRST_SPI_DEASSERT 0
  35. #define MRST_SPI_ASSERT 1
  36. /* Slave spi_dev related */
  37. struct chip_data {
  38. u16 cr0;
  39. u8 cs; /* chip select pin */
  40. u8 n_bytes; /* current is a 1/2/4 byte op */
  41. u8 tmode; /* TR/TO/RO/EEPROM */
  42. u8 type; /* SPI/SSP/MicroWire */
  43. u8 poll_mode; /* 1 means use poll mode */
  44. u32 dma_width;
  45. u32 rx_threshold;
  46. u32 tx_threshold;
  47. u8 enable_dma;
  48. u8 bits_per_word;
  49. u16 clk_div; /* baud rate divider */
  50. u32 speed_hz; /* baud rate */
  51. int (*write)(struct dw_spi *dws);
  52. int (*read)(struct dw_spi *dws);
  53. void (*cs_control)(u32 command);
  54. };
  55. #ifdef CONFIG_DEBUG_FS
  56. static int spi_show_regs_open(struct inode *inode, struct file *file)
  57. {
  58. file->private_data = inode->i_private;
  59. return 0;
  60. }
  61. #define SPI_REGS_BUFSIZE 1024
  62. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  63. size_t count, loff_t *ppos)
  64. {
  65. struct dw_spi *dws;
  66. char *buf;
  67. u32 len = 0;
  68. ssize_t ret;
  69. dws = file->private_data;
  70. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  71. if (!buf)
  72. return 0;
  73. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  74. "MRST SPI0 registers:\n");
  75. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  76. "=================================\n");
  77. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  78. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  79. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  80. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  81. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  82. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  83. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  84. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  85. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  86. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  87. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  88. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  89. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  90. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  91. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  92. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  93. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  94. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  95. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  96. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  97. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  98. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  99. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  100. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  101. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  102. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  103. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  104. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  105. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  106. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  107. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  108. "=================================\n");
  109. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  110. kfree(buf);
  111. return ret;
  112. }
  113. static const struct file_operations mrst_spi_regs_ops = {
  114. .owner = THIS_MODULE,
  115. .open = spi_show_regs_open,
  116. .read = spi_show_regs,
  117. };
  118. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  119. {
  120. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  121. if (!dws->debugfs)
  122. return -ENOMEM;
  123. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  124. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  125. return 0;
  126. }
  127. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  128. {
  129. if (dws->debugfs)
  130. debugfs_remove_recursive(dws->debugfs);
  131. }
  132. #else
  133. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  134. {
  135. }
  136. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  137. {
  138. }
  139. #endif /* CONFIG_DEBUG_FS */
  140. static void wait_till_not_busy(struct dw_spi *dws)
  141. {
  142. unsigned long end = jiffies + usecs_to_jiffies(1000);
  143. while (time_before(jiffies, end)) {
  144. if (!(dw_readw(dws, sr) & SR_BUSY))
  145. return;
  146. }
  147. dev_err(&dws->master->dev,
  148. "DW SPI: Stutus keeps busy for 1000us after a read/write!\n");
  149. }
  150. static void flush(struct dw_spi *dws)
  151. {
  152. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  153. dw_readw(dws, dr);
  154. wait_till_not_busy(dws);
  155. }
  156. static void null_cs_control(u32 command)
  157. {
  158. }
  159. static int null_writer(struct dw_spi *dws)
  160. {
  161. u8 n_bytes = dws->n_bytes;
  162. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  163. || (dws->tx == dws->tx_end))
  164. return 0;
  165. dw_writew(dws, dr, 0);
  166. dws->tx += n_bytes;
  167. wait_till_not_busy(dws);
  168. return 1;
  169. }
  170. static int null_reader(struct dw_spi *dws)
  171. {
  172. u8 n_bytes = dws->n_bytes;
  173. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  174. && (dws->rx < dws->rx_end)) {
  175. dw_readw(dws, dr);
  176. dws->rx += n_bytes;
  177. }
  178. wait_till_not_busy(dws);
  179. return dws->rx == dws->rx_end;
  180. }
  181. static int u8_writer(struct dw_spi *dws)
  182. {
  183. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  184. || (dws->tx == dws->tx_end))
  185. return 0;
  186. dw_writew(dws, dr, *(u8 *)(dws->tx));
  187. ++dws->tx;
  188. wait_till_not_busy(dws);
  189. return 1;
  190. }
  191. static int u8_reader(struct dw_spi *dws)
  192. {
  193. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  194. && (dws->rx < dws->rx_end)) {
  195. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  196. ++dws->rx;
  197. }
  198. wait_till_not_busy(dws);
  199. return dws->rx == dws->rx_end;
  200. }
  201. static int u16_writer(struct dw_spi *dws)
  202. {
  203. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  204. || (dws->tx == dws->tx_end))
  205. return 0;
  206. dw_writew(dws, dr, *(u16 *)(dws->tx));
  207. dws->tx += 2;
  208. wait_till_not_busy(dws);
  209. return 1;
  210. }
  211. static int u16_reader(struct dw_spi *dws)
  212. {
  213. u16 temp;
  214. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  215. && (dws->rx < dws->rx_end)) {
  216. temp = dw_readw(dws, dr);
  217. *(u16 *)(dws->rx) = temp;
  218. dws->rx += 2;
  219. }
  220. wait_till_not_busy(dws);
  221. return dws->rx == dws->rx_end;
  222. }
  223. static void *next_transfer(struct dw_spi *dws)
  224. {
  225. struct spi_message *msg = dws->cur_msg;
  226. struct spi_transfer *trans = dws->cur_transfer;
  227. /* Move to next transfer */
  228. if (trans->transfer_list.next != &msg->transfers) {
  229. dws->cur_transfer =
  230. list_entry(trans->transfer_list.next,
  231. struct spi_transfer,
  232. transfer_list);
  233. return RUNNING_STATE;
  234. } else
  235. return DONE_STATE;
  236. }
  237. /*
  238. * Note: first step is the protocol driver prepares
  239. * a dma-capable memory, and this func just need translate
  240. * the virt addr to physical
  241. */
  242. static int map_dma_buffers(struct dw_spi *dws)
  243. {
  244. if (!dws->cur_msg->is_dma_mapped || !dws->dma_inited
  245. || !dws->cur_chip->enable_dma)
  246. return 0;
  247. if (dws->cur_transfer->tx_dma)
  248. dws->tx_dma = dws->cur_transfer->tx_dma;
  249. if (dws->cur_transfer->rx_dma)
  250. dws->rx_dma = dws->cur_transfer->rx_dma;
  251. return 1;
  252. }
  253. /* Caller already set message->status; dma and pio irqs are blocked */
  254. static void giveback(struct dw_spi *dws)
  255. {
  256. struct spi_transfer *last_transfer;
  257. unsigned long flags;
  258. struct spi_message *msg;
  259. spin_lock_irqsave(&dws->lock, flags);
  260. msg = dws->cur_msg;
  261. dws->cur_msg = NULL;
  262. dws->cur_transfer = NULL;
  263. dws->prev_chip = dws->cur_chip;
  264. dws->cur_chip = NULL;
  265. dws->dma_mapped = 0;
  266. queue_work(dws->workqueue, &dws->pump_messages);
  267. spin_unlock_irqrestore(&dws->lock, flags);
  268. last_transfer = list_entry(msg->transfers.prev,
  269. struct spi_transfer,
  270. transfer_list);
  271. if (!last_transfer->cs_change)
  272. dws->cs_control(MRST_SPI_DEASSERT);
  273. msg->state = NULL;
  274. if (msg->complete)
  275. msg->complete(msg->context);
  276. }
  277. static void int_error_stop(struct dw_spi *dws, const char *msg)
  278. {
  279. /* Stop and reset hw */
  280. flush(dws);
  281. spi_enable_chip(dws, 0);
  282. dev_err(&dws->master->dev, "%s\n", msg);
  283. dws->cur_msg->state = ERROR_STATE;
  284. tasklet_schedule(&dws->pump_transfers);
  285. }
  286. static void transfer_complete(struct dw_spi *dws)
  287. {
  288. /* Update total byte transfered return count actual bytes read */
  289. dws->cur_msg->actual_length += dws->len;
  290. /* Move to next transfer */
  291. dws->cur_msg->state = next_transfer(dws);
  292. /* Handle end of message */
  293. if (dws->cur_msg->state == DONE_STATE) {
  294. dws->cur_msg->status = 0;
  295. giveback(dws);
  296. } else
  297. tasklet_schedule(&dws->pump_transfers);
  298. }
  299. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  300. {
  301. u16 irq_status, irq_mask = 0x3f;
  302. irq_status = dw_readw(dws, isr) & irq_mask;
  303. /* Error handling */
  304. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  305. dw_readw(dws, txoicr);
  306. dw_readw(dws, rxoicr);
  307. dw_readw(dws, rxuicr);
  308. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  309. return IRQ_HANDLED;
  310. }
  311. /* INT comes from tx */
  312. if (dws->tx && (irq_status & SPI_INT_TXEI)) {
  313. while (dws->tx < dws->tx_end)
  314. dws->write(dws);
  315. if (dws->tx == dws->tx_end) {
  316. spi_mask_intr(dws, SPI_INT_TXEI);
  317. transfer_complete(dws);
  318. }
  319. }
  320. /* INT comes from rx */
  321. if (dws->rx && (irq_status & SPI_INT_RXFI)) {
  322. if (dws->read(dws))
  323. transfer_complete(dws);
  324. }
  325. return IRQ_HANDLED;
  326. }
  327. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  328. {
  329. struct dw_spi *dws = dev_id;
  330. if (!dws->cur_msg) {
  331. spi_mask_intr(dws, SPI_INT_TXEI);
  332. /* Never fail */
  333. return IRQ_HANDLED;
  334. }
  335. return dws->transfer_handler(dws);
  336. }
  337. /* Must be called inside pump_transfers() */
  338. static void poll_transfer(struct dw_spi *dws)
  339. {
  340. if (dws->tx) {
  341. while (dws->write(dws))
  342. dws->read(dws);
  343. }
  344. dws->read(dws);
  345. transfer_complete(dws);
  346. }
  347. static void dma_transfer(struct dw_spi *dws, int cs_change)
  348. {
  349. }
  350. static void pump_transfers(unsigned long data)
  351. {
  352. struct dw_spi *dws = (struct dw_spi *)data;
  353. struct spi_message *message = NULL;
  354. struct spi_transfer *transfer = NULL;
  355. struct spi_transfer *previous = NULL;
  356. struct spi_device *spi = NULL;
  357. struct chip_data *chip = NULL;
  358. u8 bits = 0;
  359. u8 imask = 0;
  360. u8 cs_change = 0;
  361. u16 clk_div = 0;
  362. u32 speed = 0;
  363. u32 cr0 = 0;
  364. /* Get current state information */
  365. message = dws->cur_msg;
  366. transfer = dws->cur_transfer;
  367. chip = dws->cur_chip;
  368. spi = message->spi;
  369. if (message->state == ERROR_STATE) {
  370. message->status = -EIO;
  371. goto early_exit;
  372. }
  373. /* Handle end of message */
  374. if (message->state == DONE_STATE) {
  375. message->status = 0;
  376. goto early_exit;
  377. }
  378. /* Delay if requested at end of transfer*/
  379. if (message->state == RUNNING_STATE) {
  380. previous = list_entry(transfer->transfer_list.prev,
  381. struct spi_transfer,
  382. transfer_list);
  383. if (previous->delay_usecs)
  384. udelay(previous->delay_usecs);
  385. }
  386. dws->n_bytes = chip->n_bytes;
  387. dws->dma_width = chip->dma_width;
  388. dws->cs_control = chip->cs_control;
  389. dws->rx_dma = transfer->rx_dma;
  390. dws->tx_dma = transfer->tx_dma;
  391. dws->tx = (void *)transfer->tx_buf;
  392. dws->tx_end = dws->tx + transfer->len;
  393. dws->rx = transfer->rx_buf;
  394. dws->rx_end = dws->rx + transfer->len;
  395. dws->write = dws->tx ? chip->write : null_writer;
  396. dws->read = dws->rx ? chip->read : null_reader;
  397. dws->cs_change = transfer->cs_change;
  398. dws->len = dws->cur_transfer->len;
  399. if (chip != dws->prev_chip)
  400. cs_change = 1;
  401. cr0 = chip->cr0;
  402. /* Handle per transfer options for bpw and speed */
  403. if (transfer->speed_hz) {
  404. speed = chip->speed_hz;
  405. if (transfer->speed_hz != speed) {
  406. speed = transfer->speed_hz;
  407. if (speed > dws->max_freq) {
  408. printk(KERN_ERR "MRST SPI0: unsupported"
  409. "freq: %dHz\n", speed);
  410. message->status = -EIO;
  411. goto early_exit;
  412. }
  413. /* clk_div doesn't support odd number */
  414. clk_div = dws->max_freq / speed;
  415. clk_div = (clk_div >> 1) << 1;
  416. chip->speed_hz = speed;
  417. chip->clk_div = clk_div;
  418. }
  419. }
  420. if (transfer->bits_per_word) {
  421. bits = transfer->bits_per_word;
  422. switch (bits) {
  423. case 8:
  424. dws->n_bytes = 1;
  425. dws->dma_width = 1;
  426. dws->read = (dws->read != null_reader) ?
  427. u8_reader : null_reader;
  428. dws->write = (dws->write != null_writer) ?
  429. u8_writer : null_writer;
  430. break;
  431. case 16:
  432. dws->n_bytes = 2;
  433. dws->dma_width = 2;
  434. dws->read = (dws->read != null_reader) ?
  435. u16_reader : null_reader;
  436. dws->write = (dws->write != null_writer) ?
  437. u16_writer : null_writer;
  438. break;
  439. default:
  440. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  441. "%db\n", bits);
  442. message->status = -EIO;
  443. goto early_exit;
  444. }
  445. cr0 = (bits - 1)
  446. | (chip->type << SPI_FRF_OFFSET)
  447. | (spi->mode << SPI_MODE_OFFSET)
  448. | (chip->tmode << SPI_TMOD_OFFSET);
  449. }
  450. message->state = RUNNING_STATE;
  451. /* Check if current transfer is a DMA transaction */
  452. dws->dma_mapped = map_dma_buffers(dws);
  453. if (!dws->dma_mapped && !chip->poll_mode) {
  454. if (dws->rx)
  455. imask |= SPI_INT_RXFI;
  456. if (dws->tx)
  457. imask |= SPI_INT_TXEI;
  458. dws->transfer_handler = interrupt_transfer;
  459. }
  460. /*
  461. * Reprogram registers only if
  462. * 1. chip select changes
  463. * 2. clk_div is changed
  464. * 3. control value changes
  465. */
  466. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div) {
  467. spi_enable_chip(dws, 0);
  468. if (dw_readw(dws, ctrl0) != cr0)
  469. dw_writew(dws, ctrl0, cr0);
  470. /* Set the interrupt mask, for poll mode just diable all int */
  471. spi_mask_intr(dws, 0xff);
  472. if (!chip->poll_mode)
  473. spi_umask_intr(dws, imask);
  474. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  475. spi_chip_sel(dws, spi->chip_select);
  476. spi_enable_chip(dws, 1);
  477. if (cs_change)
  478. dws->prev_chip = chip;
  479. }
  480. if (dws->dma_mapped)
  481. dma_transfer(dws, cs_change);
  482. if (chip->poll_mode)
  483. poll_transfer(dws);
  484. return;
  485. early_exit:
  486. giveback(dws);
  487. return;
  488. }
  489. static void pump_messages(struct work_struct *work)
  490. {
  491. struct dw_spi *dws =
  492. container_of(work, struct dw_spi, pump_messages);
  493. unsigned long flags;
  494. /* Lock queue and check for queue work */
  495. spin_lock_irqsave(&dws->lock, flags);
  496. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  497. dws->busy = 0;
  498. spin_unlock_irqrestore(&dws->lock, flags);
  499. return;
  500. }
  501. /* Make sure we are not already running a message */
  502. if (dws->cur_msg) {
  503. spin_unlock_irqrestore(&dws->lock, flags);
  504. return;
  505. }
  506. /* Extract head of queue */
  507. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  508. list_del_init(&dws->cur_msg->queue);
  509. /* Initial message state*/
  510. dws->cur_msg->state = START_STATE;
  511. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  512. struct spi_transfer,
  513. transfer_list);
  514. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  515. /* Mark as busy and launch transfers */
  516. tasklet_schedule(&dws->pump_transfers);
  517. dws->busy = 1;
  518. spin_unlock_irqrestore(&dws->lock, flags);
  519. }
  520. /* spi_device use this to queue in their spi_msg */
  521. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  522. {
  523. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  524. unsigned long flags;
  525. spin_lock_irqsave(&dws->lock, flags);
  526. if (dws->run == QUEUE_STOPPED) {
  527. spin_unlock_irqrestore(&dws->lock, flags);
  528. return -ESHUTDOWN;
  529. }
  530. msg->actual_length = 0;
  531. msg->status = -EINPROGRESS;
  532. msg->state = START_STATE;
  533. list_add_tail(&msg->queue, &dws->queue);
  534. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  535. if (dws->cur_transfer || dws->cur_msg)
  536. queue_work(dws->workqueue,
  537. &dws->pump_messages);
  538. else {
  539. /* If no other data transaction in air, just go */
  540. spin_unlock_irqrestore(&dws->lock, flags);
  541. pump_messages(&dws->pump_messages);
  542. return 0;
  543. }
  544. }
  545. spin_unlock_irqrestore(&dws->lock, flags);
  546. return 0;
  547. }
  548. /* This may be called twice for each spi dev */
  549. static int dw_spi_setup(struct spi_device *spi)
  550. {
  551. struct dw_spi_chip *chip_info = NULL;
  552. struct chip_data *chip;
  553. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  554. return -EINVAL;
  555. /* Only alloc on first setup */
  556. chip = spi_get_ctldata(spi);
  557. if (!chip) {
  558. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  559. if (!chip)
  560. return -ENOMEM;
  561. chip->cs_control = null_cs_control;
  562. chip->enable_dma = 0;
  563. }
  564. /*
  565. * Protocol drivers may change the chip settings, so...
  566. * if chip_info exists, use it
  567. */
  568. chip_info = spi->controller_data;
  569. /* chip_info doesn't always exist */
  570. if (chip_info) {
  571. if (chip_info->cs_control)
  572. chip->cs_control = chip_info->cs_control;
  573. chip->poll_mode = chip_info->poll_mode;
  574. chip->type = chip_info->type;
  575. chip->rx_threshold = 0;
  576. chip->tx_threshold = 0;
  577. chip->enable_dma = chip_info->enable_dma;
  578. }
  579. if (spi->bits_per_word <= 8) {
  580. chip->n_bytes = 1;
  581. chip->dma_width = 1;
  582. chip->read = u8_reader;
  583. chip->write = u8_writer;
  584. } else if (spi->bits_per_word <= 16) {
  585. chip->n_bytes = 2;
  586. chip->dma_width = 2;
  587. chip->read = u16_reader;
  588. chip->write = u16_writer;
  589. } else {
  590. /* Never take >16b case for MRST SPIC */
  591. dev_err(&spi->dev, "invalid wordsize\n");
  592. return -EINVAL;
  593. }
  594. chip->bits_per_word = spi->bits_per_word;
  595. chip->speed_hz = spi->max_speed_hz;
  596. if (chip->speed_hz)
  597. chip->clk_div = 25000000 / chip->speed_hz;
  598. else
  599. chip->clk_div = 8; /* default value */
  600. chip->tmode = 0; /* Tx & Rx */
  601. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  602. chip->cr0 = (chip->bits_per_word - 1)
  603. | (chip->type << SPI_FRF_OFFSET)
  604. | (spi->mode << SPI_MODE_OFFSET)
  605. | (chip->tmode << SPI_TMOD_OFFSET);
  606. spi_set_ctldata(spi, chip);
  607. return 0;
  608. }
  609. static void dw_spi_cleanup(struct spi_device *spi)
  610. {
  611. struct chip_data *chip = spi_get_ctldata(spi);
  612. kfree(chip);
  613. }
  614. static int __init init_queue(struct dw_spi *dws)
  615. {
  616. INIT_LIST_HEAD(&dws->queue);
  617. spin_lock_init(&dws->lock);
  618. dws->run = QUEUE_STOPPED;
  619. dws->busy = 0;
  620. tasklet_init(&dws->pump_transfers,
  621. pump_transfers, (unsigned long)dws);
  622. INIT_WORK(&dws->pump_messages, pump_messages);
  623. dws->workqueue = create_singlethread_workqueue(
  624. dev_name(dws->master->dev.parent));
  625. if (dws->workqueue == NULL)
  626. return -EBUSY;
  627. return 0;
  628. }
  629. static int start_queue(struct dw_spi *dws)
  630. {
  631. unsigned long flags;
  632. spin_lock_irqsave(&dws->lock, flags);
  633. if (dws->run == QUEUE_RUNNING || dws->busy) {
  634. spin_unlock_irqrestore(&dws->lock, flags);
  635. return -EBUSY;
  636. }
  637. dws->run = QUEUE_RUNNING;
  638. dws->cur_msg = NULL;
  639. dws->cur_transfer = NULL;
  640. dws->cur_chip = NULL;
  641. dws->prev_chip = NULL;
  642. spin_unlock_irqrestore(&dws->lock, flags);
  643. queue_work(dws->workqueue, &dws->pump_messages);
  644. return 0;
  645. }
  646. static int stop_queue(struct dw_spi *dws)
  647. {
  648. unsigned long flags;
  649. unsigned limit = 50;
  650. int status = 0;
  651. spin_lock_irqsave(&dws->lock, flags);
  652. dws->run = QUEUE_STOPPED;
  653. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  654. spin_unlock_irqrestore(&dws->lock, flags);
  655. msleep(10);
  656. spin_lock_irqsave(&dws->lock, flags);
  657. }
  658. if (!list_empty(&dws->queue) || dws->busy)
  659. status = -EBUSY;
  660. spin_unlock_irqrestore(&dws->lock, flags);
  661. return status;
  662. }
  663. static int destroy_queue(struct dw_spi *dws)
  664. {
  665. int status;
  666. status = stop_queue(dws);
  667. if (status != 0)
  668. return status;
  669. destroy_workqueue(dws->workqueue);
  670. return 0;
  671. }
  672. /* Restart the controller, disable all interrupts, clean rx fifo */
  673. static void spi_hw_init(struct dw_spi *dws)
  674. {
  675. spi_enable_chip(dws, 0);
  676. spi_mask_intr(dws, 0xff);
  677. spi_enable_chip(dws, 1);
  678. flush(dws);
  679. }
  680. int __devinit dw_spi_add_host(struct dw_spi *dws)
  681. {
  682. struct spi_master *master;
  683. int ret;
  684. BUG_ON(dws == NULL);
  685. master = spi_alloc_master(dws->parent_dev, 0);
  686. if (!master) {
  687. ret = -ENOMEM;
  688. goto exit;
  689. }
  690. dws->master = master;
  691. dws->type = SSI_MOTO_SPI;
  692. dws->prev_chip = NULL;
  693. dws->dma_inited = 0;
  694. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  695. ret = request_irq(dws->irq, dw_spi_irq, 0,
  696. "dw_spi", dws);
  697. if (ret < 0) {
  698. dev_err(&master->dev, "can not get IRQ\n");
  699. goto err_free_master;
  700. }
  701. master->mode_bits = SPI_CPOL | SPI_CPHA;
  702. master->bus_num = dws->bus_num;
  703. master->num_chipselect = dws->num_cs;
  704. master->cleanup = dw_spi_cleanup;
  705. master->setup = dw_spi_setup;
  706. master->transfer = dw_spi_transfer;
  707. dws->dma_inited = 0;
  708. /* Basic HW init */
  709. spi_hw_init(dws);
  710. /* Initial and start queue */
  711. ret = init_queue(dws);
  712. if (ret) {
  713. dev_err(&master->dev, "problem initializing queue\n");
  714. goto err_diable_hw;
  715. }
  716. ret = start_queue(dws);
  717. if (ret) {
  718. dev_err(&master->dev, "problem starting queue\n");
  719. goto err_diable_hw;
  720. }
  721. spi_master_set_devdata(master, dws);
  722. ret = spi_register_master(master);
  723. if (ret) {
  724. dev_err(&master->dev, "problem registering spi master\n");
  725. goto err_queue_alloc;
  726. }
  727. mrst_spi_debugfs_init(dws);
  728. return 0;
  729. err_queue_alloc:
  730. destroy_queue(dws);
  731. err_diable_hw:
  732. spi_enable_chip(dws, 0);
  733. free_irq(dws->irq, dws);
  734. err_free_master:
  735. spi_master_put(master);
  736. exit:
  737. return ret;
  738. }
  739. EXPORT_SYMBOL(dw_spi_add_host);
  740. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  741. {
  742. int status = 0;
  743. if (!dws)
  744. return;
  745. mrst_spi_debugfs_remove(dws);
  746. /* Remove the queue */
  747. status = destroy_queue(dws);
  748. if (status != 0)
  749. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  750. "complete, message memory not freed\n");
  751. spi_enable_chip(dws, 0);
  752. /* Disable clk */
  753. spi_set_clk(dws, 0);
  754. free_irq(dws->irq, dws);
  755. /* Disconnect from the SPI framework */
  756. spi_unregister_master(dws->master);
  757. }
  758. int dw_spi_suspend_host(struct dw_spi *dws)
  759. {
  760. int ret = 0;
  761. ret = stop_queue(dws);
  762. if (ret)
  763. return ret;
  764. spi_enable_chip(dws, 0);
  765. spi_set_clk(dws, 0);
  766. return ret;
  767. }
  768. EXPORT_SYMBOL(dw_spi_suspend_host);
  769. int dw_spi_resume_host(struct dw_spi *dws)
  770. {
  771. int ret;
  772. spi_hw_init(dws);
  773. ret = start_queue(dws);
  774. if (ret)
  775. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  776. return ret;
  777. }
  778. EXPORT_SYMBOL(dw_spi_resume_host);
  779. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  780. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  781. MODULE_LICENSE("GPL v2");