rt2800pci.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  45. #define CONFIG_RT2800PCI_PCI
  46. #endif
  47. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  48. #define CONFIG_RT2800PCI_WISOC
  49. #endif
  50. /*
  51. * Allow hardware encryption to be disabled.
  52. */
  53. static int modparam_nohwcrypt = 1;
  54. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  55. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  56. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  57. {
  58. unsigned int i;
  59. u32 reg;
  60. for (i = 0; i < 200; i++) {
  61. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  62. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  65. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  66. break;
  67. udelay(REGISTER_BUSY_DELAY);
  68. }
  69. if (i == 200)
  70. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  72. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  73. }
  74. #ifdef CONFIG_RT2800PCI_WISOC
  75. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  76. {
  77. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  78. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  79. }
  80. #else
  81. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  82. {
  83. }
  84. #endif /* CONFIG_RT2800PCI_WISOC */
  85. #ifdef CONFIG_RT2800PCI_PCI
  86. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  87. {
  88. struct rt2x00_dev *rt2x00dev = eeprom->data;
  89. u32 reg;
  90. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  91. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  92. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  93. eeprom->reg_data_clock =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  95. eeprom->reg_chip_select =
  96. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  97. }
  98. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  99. {
  100. struct rt2x00_dev *rt2x00dev = eeprom->data;
  101. u32 reg = 0;
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  105. !!eeprom->reg_data_clock);
  106. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  107. !!eeprom->reg_chip_select);
  108. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  109. }
  110. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  111. {
  112. struct eeprom_93cx6 eeprom;
  113. u32 reg;
  114. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  115. eeprom.data = rt2x00dev;
  116. eeprom.register_read = rt2800pci_eepromregister_read;
  117. eeprom.register_write = rt2800pci_eepromregister_write;
  118. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  119. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  120. eeprom.reg_data_in = 0;
  121. eeprom.reg_data_out = 0;
  122. eeprom.reg_data_clock = 0;
  123. eeprom.reg_chip_select = 0;
  124. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  125. EEPROM_SIZE / sizeof(u16));
  126. }
  127. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  128. {
  129. return rt2800_efuse_detect(rt2x00dev);
  130. }
  131. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  132. {
  133. rt2800_read_eeprom_efuse(rt2x00dev);
  134. }
  135. #else
  136. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  137. {
  138. }
  139. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  140. {
  141. return 0;
  142. }
  143. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  144. {
  145. }
  146. #endif /* CONFIG_RT2800PCI_PCI */
  147. /*
  148. * Firmware functions
  149. */
  150. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  151. {
  152. return FIRMWARE_RT2860;
  153. }
  154. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  155. const u8 *data, const size_t len)
  156. {
  157. u16 fw_crc;
  158. u16 crc;
  159. /*
  160. * Only support 8kb firmware files.
  161. */
  162. if (len != 8192)
  163. return FW_BAD_LENGTH;
  164. /*
  165. * The last 2 bytes in the firmware array are the crc checksum itself,
  166. * this means that we should never pass those 2 bytes to the crc
  167. * algorithm.
  168. */
  169. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  170. /*
  171. * Use the crc ccitt algorithm.
  172. * This will return the same value as the legacy driver which
  173. * used bit ordering reversion on the both the firmware bytes
  174. * before input input as well as on the final output.
  175. * Obviously using crc ccitt directly is much more efficient.
  176. */
  177. crc = crc_ccitt(~0, data, len - 2);
  178. /*
  179. * There is a small difference between the crc-itu-t + bitrev and
  180. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  181. * will be swapped, use swab16 to convert the crc to the correct
  182. * value.
  183. */
  184. crc = swab16(crc);
  185. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  186. }
  187. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  188. const u8 *data, const size_t len)
  189. {
  190. unsigned int i;
  191. u32 reg;
  192. /*
  193. * Wait for stable hardware.
  194. */
  195. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  196. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  197. if (reg && reg != ~0)
  198. break;
  199. msleep(1);
  200. }
  201. if (i == REGISTER_BUSY_COUNT) {
  202. ERROR(rt2x00dev, "Unstable hardware.\n");
  203. return -EBUSY;
  204. }
  205. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  206. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  207. /*
  208. * Disable DMA, will be reenabled later when enabling
  209. * the radio.
  210. */
  211. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  212. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  213. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  214. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  215. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  216. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  217. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  218. /*
  219. * enable Host program ram write selection
  220. */
  221. reg = 0;
  222. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  223. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  224. /*
  225. * Write firmware to device.
  226. */
  227. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  228. data, len);
  229. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  230. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  231. /*
  232. * Wait for device to stabilize.
  233. */
  234. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  235. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  236. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  237. break;
  238. msleep(1);
  239. }
  240. if (i == REGISTER_BUSY_COUNT) {
  241. ERROR(rt2x00dev, "PBF system register not ready.\n");
  242. return -EBUSY;
  243. }
  244. /*
  245. * Disable interrupts
  246. */
  247. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  248. /*
  249. * Initialize BBP R/W access agent
  250. */
  251. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  252. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  253. return 0;
  254. }
  255. /*
  256. * Initialization functions.
  257. */
  258. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  259. {
  260. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  261. u32 word;
  262. if (entry->queue->qid == QID_RX) {
  263. rt2x00_desc_read(entry_priv->desc, 1, &word);
  264. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  265. } else {
  266. rt2x00_desc_read(entry_priv->desc, 1, &word);
  267. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  268. }
  269. }
  270. static void rt2800pci_clear_entry(struct queue_entry *entry)
  271. {
  272. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  273. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  274. u32 word;
  275. if (entry->queue->qid == QID_RX) {
  276. rt2x00_desc_read(entry_priv->desc, 0, &word);
  277. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  278. rt2x00_desc_write(entry_priv->desc, 0, word);
  279. rt2x00_desc_read(entry_priv->desc, 1, &word);
  280. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  281. rt2x00_desc_write(entry_priv->desc, 1, word);
  282. } else {
  283. rt2x00_desc_read(entry_priv->desc, 1, &word);
  284. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  285. rt2x00_desc_write(entry_priv->desc, 1, word);
  286. }
  287. }
  288. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  289. {
  290. struct queue_entry_priv_pci *entry_priv;
  291. u32 reg;
  292. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  293. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  294. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  295. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  296. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  297. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  298. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  299. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  300. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  301. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  302. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  303. /*
  304. * Initialize registers.
  305. */
  306. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  307. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  308. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  309. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  310. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  311. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  312. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  313. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  314. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  315. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  316. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  317. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  318. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  319. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  320. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  321. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  322. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  323. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  324. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  325. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  326. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  327. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  328. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  329. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  330. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  331. /*
  332. * Enable global DMA configuration
  333. */
  334. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  335. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  336. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  337. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  338. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  339. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  340. return 0;
  341. }
  342. /*
  343. * Device state switch handlers.
  344. */
  345. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  346. enum dev_state state)
  347. {
  348. u32 reg;
  349. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  350. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  351. (state == STATE_RADIO_RX_ON) ||
  352. (state == STATE_RADIO_RX_ON_LINK));
  353. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  354. }
  355. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  356. enum dev_state state)
  357. {
  358. int mask = (state == STATE_RADIO_IRQ_ON);
  359. u32 reg;
  360. /*
  361. * When interrupts are being enabled, the interrupt registers
  362. * should clear the register to assure a clean state.
  363. */
  364. if (state == STATE_RADIO_IRQ_ON) {
  365. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  366. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  367. }
  368. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  386. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  387. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  388. }
  389. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  390. {
  391. unsigned int i;
  392. u32 reg;
  393. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  394. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  395. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  396. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  397. return 0;
  398. msleep(1);
  399. }
  400. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  401. return -EACCES;
  402. }
  403. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  404. {
  405. u32 reg;
  406. u16 word;
  407. /*
  408. * Initialize all registers.
  409. */
  410. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  411. rt2800pci_init_queues(rt2x00dev) ||
  412. rt2800_init_registers(rt2x00dev) ||
  413. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  414. rt2800_init_bbp(rt2x00dev) ||
  415. rt2800_init_rfcsr(rt2x00dev)))
  416. return -EIO;
  417. /*
  418. * Send signal to firmware during boot time.
  419. */
  420. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  421. /*
  422. * Enable RX.
  423. */
  424. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  425. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  426. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  427. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  428. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  429. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  430. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  431. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  432. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  433. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  434. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  435. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  436. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  437. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  438. /*
  439. * Initialize LED control
  440. */
  441. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  442. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  443. word & 0xff, (word >> 8) & 0xff);
  444. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  445. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  446. word & 0xff, (word >> 8) & 0xff);
  447. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  448. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  449. word & 0xff, (word >> 8) & 0xff);
  450. return 0;
  451. }
  452. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  453. {
  454. u32 reg;
  455. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  456. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  457. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  458. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  459. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  460. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  461. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  462. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  463. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  464. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  465. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  466. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  467. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  468. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  469. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  470. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  471. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  472. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  473. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  474. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  475. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  476. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  477. /* Wait for DMA, ignore error */
  478. rt2800pci_wait_wpdma_ready(rt2x00dev);
  479. }
  480. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  481. enum dev_state state)
  482. {
  483. /*
  484. * Always put the device to sleep (even when we intend to wakeup!)
  485. * if the device is booting and wasn't asleep it will return
  486. * failure when attempting to wakeup.
  487. */
  488. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  489. if (state == STATE_AWAKE) {
  490. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  491. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  492. }
  493. return 0;
  494. }
  495. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  496. enum dev_state state)
  497. {
  498. int retval = 0;
  499. switch (state) {
  500. case STATE_RADIO_ON:
  501. /*
  502. * Before the radio can be enabled, the device first has
  503. * to be woken up. After that it needs a bit of time
  504. * to be fully awake and then the radio can be enabled.
  505. */
  506. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  507. msleep(1);
  508. retval = rt2800pci_enable_radio(rt2x00dev);
  509. break;
  510. case STATE_RADIO_OFF:
  511. /*
  512. * After the radio has been disabled, the device should
  513. * be put to sleep for powersaving.
  514. */
  515. rt2800pci_disable_radio(rt2x00dev);
  516. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  517. break;
  518. case STATE_RADIO_RX_ON:
  519. case STATE_RADIO_RX_ON_LINK:
  520. case STATE_RADIO_RX_OFF:
  521. case STATE_RADIO_RX_OFF_LINK:
  522. rt2800pci_toggle_rx(rt2x00dev, state);
  523. break;
  524. case STATE_RADIO_IRQ_ON:
  525. case STATE_RADIO_IRQ_OFF:
  526. rt2800pci_toggle_irq(rt2x00dev, state);
  527. break;
  528. case STATE_DEEP_SLEEP:
  529. case STATE_SLEEP:
  530. case STATE_STANDBY:
  531. case STATE_AWAKE:
  532. retval = rt2800pci_set_state(rt2x00dev, state);
  533. break;
  534. default:
  535. retval = -ENOTSUPP;
  536. break;
  537. }
  538. if (unlikely(retval))
  539. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  540. state, retval);
  541. return retval;
  542. }
  543. /*
  544. * TX descriptor initialization
  545. */
  546. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  547. struct sk_buff *skb,
  548. struct txentry_desc *txdesc)
  549. {
  550. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  551. __le32 *txd = skbdesc->desc;
  552. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
  553. u32 word;
  554. /*
  555. * Initialize TX Info descriptor
  556. */
  557. rt2x00_desc_read(txwi, 0, &word);
  558. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  559. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  560. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  561. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  562. rt2x00_set_field32(&word, TXWI_W0_TS,
  563. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  564. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  565. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  566. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  567. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  568. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  569. rt2x00_set_field32(&word, TXWI_W0_BW,
  570. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  571. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  572. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  573. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  574. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  575. rt2x00_desc_write(txwi, 0, word);
  576. rt2x00_desc_read(txwi, 1, &word);
  577. rt2x00_set_field32(&word, TXWI_W1_ACK,
  578. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  579. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  580. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  581. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  582. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  583. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  584. txdesc->key_idx : 0xff);
  585. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  586. skb->len - txdesc->l2pad);
  587. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  588. skbdesc->entry->queue->qid + 1);
  589. rt2x00_desc_write(txwi, 1, word);
  590. /*
  591. * Always write 0 to IV/EIV fields, hardware will insert the IV
  592. * from the IVEIV register when TXD_W3_WIV is set to 0.
  593. * When TXD_W3_WIV is set to 1 it will use the IV data
  594. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  595. * crypto entry in the registers should be used to encrypt the frame.
  596. */
  597. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  598. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  599. /*
  600. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  601. * must contains a TXWI structure + 802.11 header + padding + 802.11
  602. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  603. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  604. * data. It means that LAST_SEC0 is always 0.
  605. */
  606. /*
  607. * Initialize TX descriptor
  608. */
  609. rt2x00_desc_read(txd, 0, &word);
  610. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  611. rt2x00_desc_write(txd, 0, word);
  612. rt2x00_desc_read(txd, 1, &word);
  613. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  614. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  615. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  616. rt2x00_set_field32(&word, TXD_W1_BURST,
  617. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  618. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  619. rt2x00dev->ops->extra_tx_headroom);
  620. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  621. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  622. rt2x00_desc_write(txd, 1, word);
  623. rt2x00_desc_read(txd, 2, &word);
  624. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  625. skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
  626. rt2x00_desc_write(txd, 2, word);
  627. rt2x00_desc_read(txd, 3, &word);
  628. rt2x00_set_field32(&word, TXD_W3_WIV,
  629. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  630. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  631. rt2x00_desc_write(txd, 3, word);
  632. }
  633. /*
  634. * TX data initialization
  635. */
  636. static void rt2800pci_write_beacon(struct queue_entry *entry)
  637. {
  638. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  639. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  640. unsigned int beacon_base;
  641. u32 reg;
  642. /*
  643. * Disable beaconing while we are reloading the beacon data,
  644. * otherwise we might be sending out invalid data.
  645. */
  646. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  647. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  648. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  649. /*
  650. * Write entire beacon with descriptor to register.
  651. */
  652. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  653. rt2800_register_multiwrite(rt2x00dev,
  654. beacon_base,
  655. skbdesc->desc, skbdesc->desc_len);
  656. rt2800_register_multiwrite(rt2x00dev,
  657. beacon_base + skbdesc->desc_len,
  658. entry->skb->data, entry->skb->len);
  659. /*
  660. * Clean up beacon skb.
  661. */
  662. dev_kfree_skb_any(entry->skb);
  663. entry->skb = NULL;
  664. }
  665. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  666. const enum data_queue_qid queue_idx)
  667. {
  668. struct data_queue *queue;
  669. unsigned int idx, qidx = 0;
  670. u32 reg;
  671. if (queue_idx == QID_BEACON) {
  672. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  673. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  674. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  675. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  676. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  677. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  678. }
  679. return;
  680. }
  681. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  682. return;
  683. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  684. idx = queue->index[Q_INDEX];
  685. if (queue_idx == QID_MGMT)
  686. qidx = 5;
  687. else
  688. qidx = queue_idx;
  689. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  690. }
  691. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  692. const enum data_queue_qid qid)
  693. {
  694. u32 reg;
  695. if (qid == QID_BEACON) {
  696. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  697. return;
  698. }
  699. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  700. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  701. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  702. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  703. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  704. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  705. }
  706. /*
  707. * RX control handlers
  708. */
  709. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  710. struct rxdone_entry_desc *rxdesc)
  711. {
  712. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  713. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  714. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  715. __le32 *rxd = entry_priv->desc;
  716. __le32 *rxwi = (__le32 *)entry->skb->data;
  717. u32 rxd3;
  718. u32 rxwi0;
  719. u32 rxwi1;
  720. u32 rxwi2;
  721. u32 rxwi3;
  722. rt2x00_desc_read(rxd, 3, &rxd3);
  723. rt2x00_desc_read(rxwi, 0, &rxwi0);
  724. rt2x00_desc_read(rxwi, 1, &rxwi1);
  725. rt2x00_desc_read(rxwi, 2, &rxwi2);
  726. rt2x00_desc_read(rxwi, 3, &rxwi3);
  727. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  728. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  729. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  730. /*
  731. * Unfortunately we don't know the cipher type used during
  732. * decryption. This prevents us from correct providing
  733. * correct statistics through debugfs.
  734. */
  735. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  736. rxdesc->cipher_status =
  737. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  738. }
  739. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  740. /*
  741. * Hardware has stripped IV/EIV data from 802.11 frame during
  742. * decryption. Unfortunately the descriptor doesn't contain
  743. * any fields with the EIV/IV data either, so they can't
  744. * be restored by rt2x00lib.
  745. */
  746. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  747. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  748. rxdesc->flags |= RX_FLAG_DECRYPTED;
  749. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  750. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  751. }
  752. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  753. rxdesc->dev_flags |= RXDONE_MY_BSS;
  754. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
  755. rxdesc->dev_flags |= RXDONE_L2PAD;
  756. skbdesc->flags |= SKBDESC_L2_PADDED;
  757. }
  758. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  759. rxdesc->flags |= RX_FLAG_SHORT_GI;
  760. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  761. rxdesc->flags |= RX_FLAG_40MHZ;
  762. /*
  763. * Detect RX rate, always use MCS as signal type.
  764. */
  765. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  766. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  767. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  768. /*
  769. * Mask of 0x8 bit to remove the short preamble flag.
  770. */
  771. if (rxdesc->rate_mode == RATE_MODE_CCK)
  772. rxdesc->signal &= ~0x8;
  773. rxdesc->rssi =
  774. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  775. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  776. rxdesc->noise =
  777. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  778. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  779. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  780. /*
  781. * Set RX IDX in register to inform hardware that we have handled
  782. * this entry and it is available for reuse again.
  783. */
  784. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  785. /*
  786. * Remove TXWI descriptor from start of buffer.
  787. */
  788. skb_pull(entry->skb, RXWI_DESC_SIZE);
  789. skb_trim(entry->skb, rxdesc->size);
  790. }
  791. /*
  792. * Interrupt functions.
  793. */
  794. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  795. {
  796. struct data_queue *queue;
  797. struct queue_entry *entry;
  798. struct queue_entry *entry_done;
  799. struct queue_entry_priv_pci *entry_priv;
  800. struct txdone_entry_desc txdesc;
  801. u32 word;
  802. u32 reg;
  803. u32 old_reg;
  804. unsigned int type;
  805. unsigned int index;
  806. u16 mcs, real_mcs;
  807. /*
  808. * During each loop we will compare the freshly read
  809. * TX_STA_FIFO register value with the value read from
  810. * the previous loop. If the 2 values are equal then
  811. * we should stop processing because the chance it
  812. * quite big that the device has been unplugged and
  813. * we risk going into an endless loop.
  814. */
  815. old_reg = 0;
  816. while (1) {
  817. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  818. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  819. break;
  820. if (old_reg == reg)
  821. break;
  822. old_reg = reg;
  823. /*
  824. * Skip this entry when it contains an invalid
  825. * queue identication number.
  826. */
  827. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  828. if (type >= QID_RX)
  829. continue;
  830. queue = rt2x00queue_get_queue(rt2x00dev, type);
  831. if (unlikely(!queue))
  832. continue;
  833. /*
  834. * Skip this entry when it contains an invalid
  835. * index number.
  836. */
  837. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  838. if (unlikely(index >= queue->limit))
  839. continue;
  840. entry = &queue->entries[index];
  841. entry_priv = entry->priv_data;
  842. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  843. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  844. while (entry != entry_done) {
  845. /*
  846. * Catch up.
  847. * Just report any entries we missed as failed.
  848. */
  849. WARNING(rt2x00dev,
  850. "TX status report missed for entry %d\n",
  851. entry_done->entry_idx);
  852. txdesc.flags = 0;
  853. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  854. txdesc.retry = 0;
  855. rt2x00lib_txdone(entry_done, &txdesc);
  856. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  857. }
  858. /*
  859. * Obtain the status about this packet.
  860. */
  861. txdesc.flags = 0;
  862. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  863. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  864. else
  865. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  866. /*
  867. * Ralink has a retry mechanism using a global fallback
  868. * table. We setup this fallback table to try immediate
  869. * lower rate for all rates. In the TX_STA_FIFO,
  870. * the MCS field contains the MCS used for the successfull
  871. * transmission. If the first transmission succeed,
  872. * we have mcs == tx_mcs. On the second transmission,
  873. * we have mcs = tx_mcs - 1. So the number of
  874. * retry is (tx_mcs - mcs).
  875. */
  876. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  877. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  878. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  879. txdesc.retry = mcs - min(mcs, real_mcs);
  880. rt2x00lib_txdone(entry, &txdesc);
  881. }
  882. }
  883. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  884. {
  885. struct rt2x00_dev *rt2x00dev = dev_instance;
  886. u32 reg;
  887. /* Read status and ACK all interrupts */
  888. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  889. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  890. if (!reg)
  891. return IRQ_NONE;
  892. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  893. return IRQ_HANDLED;
  894. /*
  895. * 1 - Rx ring done interrupt.
  896. */
  897. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  898. rt2x00pci_rxdone(rt2x00dev);
  899. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  900. rt2800pci_txdone(rt2x00dev);
  901. return IRQ_HANDLED;
  902. }
  903. /*
  904. * Device probe functions.
  905. */
  906. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  907. {
  908. /*
  909. * Read EEPROM into buffer
  910. */
  911. switch (rt2x00dev->chip.rt) {
  912. case RT2880:
  913. case RT3052:
  914. rt2800pci_read_eeprom_soc(rt2x00dev);
  915. break;
  916. default:
  917. if (rt2800pci_efuse_detect(rt2x00dev))
  918. rt2800pci_read_eeprom_efuse(rt2x00dev);
  919. else
  920. rt2800pci_read_eeprom_pci(rt2x00dev);
  921. break;
  922. }
  923. return rt2800_validate_eeprom(rt2x00dev);
  924. }
  925. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  926. .register_read = rt2x00pci_register_read,
  927. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  928. .register_write = rt2x00pci_register_write,
  929. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  930. .register_multiread = rt2x00pci_register_multiread,
  931. .register_multiwrite = rt2x00pci_register_multiwrite,
  932. .regbusy_read = rt2x00pci_regbusy_read,
  933. };
  934. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  935. {
  936. int retval;
  937. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  938. /*
  939. * Allocate eeprom data.
  940. */
  941. retval = rt2800pci_validate_eeprom(rt2x00dev);
  942. if (retval)
  943. return retval;
  944. retval = rt2800_init_eeprom(rt2x00dev);
  945. if (retval)
  946. return retval;
  947. /*
  948. * Initialize hw specifications.
  949. */
  950. retval = rt2800_probe_hw_mode(rt2x00dev);
  951. if (retval)
  952. return retval;
  953. /*
  954. * This device has multiple filters for control frames
  955. * and has a separate filter for PS Poll frames.
  956. */
  957. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  958. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  959. /*
  960. * This device requires firmware.
  961. */
  962. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  963. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  964. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  965. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  966. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  967. if (!modparam_nohwcrypt)
  968. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  969. /*
  970. * Set the rssi offset.
  971. */
  972. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  973. return 0;
  974. }
  975. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  976. .irq_handler = rt2800pci_interrupt,
  977. .probe_hw = rt2800pci_probe_hw,
  978. .get_firmware_name = rt2800pci_get_firmware_name,
  979. .check_firmware = rt2800pci_check_firmware,
  980. .load_firmware = rt2800pci_load_firmware,
  981. .initialize = rt2x00pci_initialize,
  982. .uninitialize = rt2x00pci_uninitialize,
  983. .get_entry_state = rt2800pci_get_entry_state,
  984. .clear_entry = rt2800pci_clear_entry,
  985. .set_device_state = rt2800pci_set_device_state,
  986. .rfkill_poll = rt2800_rfkill_poll,
  987. .link_stats = rt2800_link_stats,
  988. .reset_tuner = rt2800_reset_tuner,
  989. .link_tuner = rt2800_link_tuner,
  990. .write_tx_desc = rt2800pci_write_tx_desc,
  991. .write_tx_data = rt2x00pci_write_tx_data,
  992. .write_beacon = rt2800pci_write_beacon,
  993. .kick_tx_queue = rt2800pci_kick_tx_queue,
  994. .kill_tx_queue = rt2800pci_kill_tx_queue,
  995. .fill_rxdone = rt2800pci_fill_rxdone,
  996. .config_shared_key = rt2800_config_shared_key,
  997. .config_pairwise_key = rt2800_config_pairwise_key,
  998. .config_filter = rt2800_config_filter,
  999. .config_intf = rt2800_config_intf,
  1000. .config_erp = rt2800_config_erp,
  1001. .config_ant = rt2800_config_ant,
  1002. .config = rt2800_config,
  1003. };
  1004. static const struct data_queue_desc rt2800pci_queue_rx = {
  1005. .entry_num = RX_ENTRIES,
  1006. .data_size = AGGREGATION_SIZE,
  1007. .desc_size = RXD_DESC_SIZE,
  1008. .priv_size = sizeof(struct queue_entry_priv_pci),
  1009. };
  1010. static const struct data_queue_desc rt2800pci_queue_tx = {
  1011. .entry_num = TX_ENTRIES,
  1012. .data_size = AGGREGATION_SIZE,
  1013. .desc_size = TXD_DESC_SIZE,
  1014. .priv_size = sizeof(struct queue_entry_priv_pci),
  1015. };
  1016. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1017. .entry_num = 8 * BEACON_ENTRIES,
  1018. .data_size = 0, /* No DMA required for beacons */
  1019. .desc_size = TXWI_DESC_SIZE,
  1020. .priv_size = sizeof(struct queue_entry_priv_pci),
  1021. };
  1022. static const struct rt2x00_ops rt2800pci_ops = {
  1023. .name = KBUILD_MODNAME,
  1024. .max_sta_intf = 1,
  1025. .max_ap_intf = 8,
  1026. .eeprom_size = EEPROM_SIZE,
  1027. .rf_size = RF_SIZE,
  1028. .tx_queues = NUM_TX_QUEUES,
  1029. .extra_tx_headroom = TXWI_DESC_SIZE,
  1030. .rx = &rt2800pci_queue_rx,
  1031. .tx = &rt2800pci_queue_tx,
  1032. .bcn = &rt2800pci_queue_bcn,
  1033. .lib = &rt2800pci_rt2x00_ops,
  1034. .hw = &rt2800_mac80211_ops,
  1035. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1036. .debugfs = &rt2800_rt2x00debug,
  1037. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1038. };
  1039. /*
  1040. * RT2800pci module information.
  1041. */
  1042. static struct pci_device_id rt2800pci_device_table[] = {
  1043. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1044. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1045. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1046. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1047. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1048. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1049. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1050. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1051. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1052. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1053. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1054. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1055. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1056. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1057. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1058. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1059. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1060. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1061. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1062. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1063. { 0, }
  1064. };
  1065. MODULE_AUTHOR(DRV_PROJECT);
  1066. MODULE_VERSION(DRV_VERSION);
  1067. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1068. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1069. #ifdef CONFIG_RT2800PCI_PCI
  1070. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1071. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1072. #endif /* CONFIG_RT2800PCI_PCI */
  1073. MODULE_LICENSE("GPL");
  1074. #ifdef CONFIG_RT2800PCI_WISOC
  1075. #if defined(CONFIG_RALINK_RT288X)
  1076. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1077. #elif defined(CONFIG_RALINK_RT305X)
  1078. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1079. #endif
  1080. static struct platform_driver rt2800soc_driver = {
  1081. .driver = {
  1082. .name = "rt2800_wmac",
  1083. .owner = THIS_MODULE,
  1084. .mod_name = KBUILD_MODNAME,
  1085. },
  1086. .probe = __rt2x00soc_probe,
  1087. .remove = __devexit_p(rt2x00soc_remove),
  1088. .suspend = rt2x00soc_suspend,
  1089. .resume = rt2x00soc_resume,
  1090. };
  1091. #endif /* CONFIG_RT2800PCI_WISOC */
  1092. #ifdef CONFIG_RT2800PCI_PCI
  1093. static struct pci_driver rt2800pci_driver = {
  1094. .name = KBUILD_MODNAME,
  1095. .id_table = rt2800pci_device_table,
  1096. .probe = rt2x00pci_probe,
  1097. .remove = __devexit_p(rt2x00pci_remove),
  1098. .suspend = rt2x00pci_suspend,
  1099. .resume = rt2x00pci_resume,
  1100. };
  1101. #endif /* CONFIG_RT2800PCI_PCI */
  1102. static int __init rt2800pci_init(void)
  1103. {
  1104. int ret = 0;
  1105. #ifdef CONFIG_RT2800PCI_WISOC
  1106. ret = platform_driver_register(&rt2800soc_driver);
  1107. if (ret)
  1108. return ret;
  1109. #endif
  1110. #ifdef CONFIG_RT2800PCI_PCI
  1111. ret = pci_register_driver(&rt2800pci_driver);
  1112. if (ret) {
  1113. #ifdef CONFIG_RT2800PCI_WISOC
  1114. platform_driver_unregister(&rt2800soc_driver);
  1115. #endif
  1116. return ret;
  1117. }
  1118. #endif
  1119. return ret;
  1120. }
  1121. static void __exit rt2800pci_exit(void)
  1122. {
  1123. #ifdef CONFIG_RT2800PCI_PCI
  1124. pci_unregister_driver(&rt2800pci_driver);
  1125. #endif
  1126. #ifdef CONFIG_RT2800PCI_WISOC
  1127. platform_driver_unregister(&rt2800soc_driver);
  1128. #endif
  1129. }
  1130. module_init(rt2800pci_init);
  1131. module_exit(rt2800pci_exit);