cfg80211.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /*
  2. * Intel Wireless Multicomm 3200 WiFi driver
  3. *
  4. * Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
  5. * Samuel Ortiz <samuel.ortiz@intel.com>
  6. * Zhu Yi <yi.zhu@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/sched.h>
  26. #include <linux/etherdevice.h>
  27. #include <linux/wireless.h>
  28. #include <linux/ieee80211.h>
  29. #include <net/cfg80211.h>
  30. #include "iwm.h"
  31. #include "commands.h"
  32. #include "cfg80211.h"
  33. #include "debug.h"
  34. #define RATETAB_ENT(_rate, _rateid, _flags) \
  35. { \
  36. .bitrate = (_rate), \
  37. .hw_value = (_rateid), \
  38. .flags = (_flags), \
  39. }
  40. #define CHAN2G(_channel, _freq, _flags) { \
  41. .band = IEEE80211_BAND_2GHZ, \
  42. .center_freq = (_freq), \
  43. .hw_value = (_channel), \
  44. .flags = (_flags), \
  45. .max_antenna_gain = 0, \
  46. .max_power = 30, \
  47. }
  48. #define CHAN5G(_channel, _flags) { \
  49. .band = IEEE80211_BAND_5GHZ, \
  50. .center_freq = 5000 + (5 * (_channel)), \
  51. .hw_value = (_channel), \
  52. .flags = (_flags), \
  53. .max_antenna_gain = 0, \
  54. .max_power = 30, \
  55. }
  56. static struct ieee80211_rate iwm_rates[] = {
  57. RATETAB_ENT(10, 0x1, 0),
  58. RATETAB_ENT(20, 0x2, 0),
  59. RATETAB_ENT(55, 0x4, 0),
  60. RATETAB_ENT(110, 0x8, 0),
  61. RATETAB_ENT(60, 0x10, 0),
  62. RATETAB_ENT(90, 0x20, 0),
  63. RATETAB_ENT(120, 0x40, 0),
  64. RATETAB_ENT(180, 0x80, 0),
  65. RATETAB_ENT(240, 0x100, 0),
  66. RATETAB_ENT(360, 0x200, 0),
  67. RATETAB_ENT(480, 0x400, 0),
  68. RATETAB_ENT(540, 0x800, 0),
  69. };
  70. #define iwm_a_rates (iwm_rates + 4)
  71. #define iwm_a_rates_size 8
  72. #define iwm_g_rates (iwm_rates + 0)
  73. #define iwm_g_rates_size 12
  74. static struct ieee80211_channel iwm_2ghz_channels[] = {
  75. CHAN2G(1, 2412, 0),
  76. CHAN2G(2, 2417, 0),
  77. CHAN2G(3, 2422, 0),
  78. CHAN2G(4, 2427, 0),
  79. CHAN2G(5, 2432, 0),
  80. CHAN2G(6, 2437, 0),
  81. CHAN2G(7, 2442, 0),
  82. CHAN2G(8, 2447, 0),
  83. CHAN2G(9, 2452, 0),
  84. CHAN2G(10, 2457, 0),
  85. CHAN2G(11, 2462, 0),
  86. CHAN2G(12, 2467, 0),
  87. CHAN2G(13, 2472, 0),
  88. CHAN2G(14, 2484, 0),
  89. };
  90. static struct ieee80211_channel iwm_5ghz_a_channels[] = {
  91. CHAN5G(34, 0), CHAN5G(36, 0),
  92. CHAN5G(38, 0), CHAN5G(40, 0),
  93. CHAN5G(42, 0), CHAN5G(44, 0),
  94. CHAN5G(46, 0), CHAN5G(48, 0),
  95. CHAN5G(52, 0), CHAN5G(56, 0),
  96. CHAN5G(60, 0), CHAN5G(64, 0),
  97. CHAN5G(100, 0), CHAN5G(104, 0),
  98. CHAN5G(108, 0), CHAN5G(112, 0),
  99. CHAN5G(116, 0), CHAN5G(120, 0),
  100. CHAN5G(124, 0), CHAN5G(128, 0),
  101. CHAN5G(132, 0), CHAN5G(136, 0),
  102. CHAN5G(140, 0), CHAN5G(149, 0),
  103. CHAN5G(153, 0), CHAN5G(157, 0),
  104. CHAN5G(161, 0), CHAN5G(165, 0),
  105. CHAN5G(184, 0), CHAN5G(188, 0),
  106. CHAN5G(192, 0), CHAN5G(196, 0),
  107. CHAN5G(200, 0), CHAN5G(204, 0),
  108. CHAN5G(208, 0), CHAN5G(212, 0),
  109. CHAN5G(216, 0),
  110. };
  111. static struct ieee80211_supported_band iwm_band_2ghz = {
  112. .channels = iwm_2ghz_channels,
  113. .n_channels = ARRAY_SIZE(iwm_2ghz_channels),
  114. .bitrates = iwm_g_rates,
  115. .n_bitrates = iwm_g_rates_size,
  116. };
  117. static struct ieee80211_supported_band iwm_band_5ghz = {
  118. .channels = iwm_5ghz_a_channels,
  119. .n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
  120. .bitrates = iwm_a_rates,
  121. .n_bitrates = iwm_a_rates_size,
  122. };
  123. static int iwm_key_init(struct iwm_key *key, u8 key_index,
  124. const u8 *mac_addr, struct key_params *params)
  125. {
  126. key->hdr.key_idx = key_index;
  127. if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
  128. key->hdr.multicast = 1;
  129. memset(key->hdr.mac, 0xff, ETH_ALEN);
  130. } else {
  131. key->hdr.multicast = 0;
  132. memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
  133. }
  134. if (params) {
  135. if (params->key_len > WLAN_MAX_KEY_LEN ||
  136. params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
  137. return -EINVAL;
  138. key->cipher = params->cipher;
  139. key->key_len = params->key_len;
  140. key->seq_len = params->seq_len;
  141. memcpy(key->key, params->key, key->key_len);
  142. memcpy(key->seq, params->seq, key->seq_len);
  143. }
  144. return 0;
  145. }
  146. static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
  147. u8 key_index, const u8 *mac_addr,
  148. struct key_params *params)
  149. {
  150. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  151. struct iwm_key *key = &iwm->keys[key_index];
  152. int ret;
  153. IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
  154. memset(key, 0, sizeof(struct iwm_key));
  155. ret = iwm_key_init(key, key_index, mac_addr, params);
  156. if (ret < 0) {
  157. IWM_ERR(iwm, "Invalid key_params\n");
  158. return ret;
  159. }
  160. return iwm_set_key(iwm, 0, key);
  161. }
  162. static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
  163. u8 key_index, const u8 *mac_addr, void *cookie,
  164. void (*callback)(void *cookie,
  165. struct key_params*))
  166. {
  167. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  168. struct iwm_key *key = &iwm->keys[key_index];
  169. struct key_params params;
  170. IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
  171. memset(&params, 0, sizeof(params));
  172. params.cipher = key->cipher;
  173. params.key_len = key->key_len;
  174. params.seq_len = key->seq_len;
  175. params.seq = key->seq;
  176. params.key = key->key;
  177. callback(cookie, &params);
  178. return key->key_len ? 0 : -ENOENT;
  179. }
  180. static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
  181. u8 key_index, const u8 *mac_addr)
  182. {
  183. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  184. struct iwm_key *key = &iwm->keys[key_index];
  185. if (!iwm->keys[key_index].key_len) {
  186. IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
  187. return 0;
  188. }
  189. if (key_index == iwm->default_key)
  190. iwm->default_key = -1;
  191. return iwm_set_key(iwm, 1, key);
  192. }
  193. static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
  194. struct net_device *ndev,
  195. u8 key_index)
  196. {
  197. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  198. IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
  199. if (!iwm->keys[key_index].key_len) {
  200. IWM_ERR(iwm, "Key %d not used\n", key_index);
  201. return -EINVAL;
  202. }
  203. iwm->default_key = key_index;
  204. return iwm_set_tx_key(iwm, key_index);
  205. }
  206. static int iwm_cfg80211_get_station(struct wiphy *wiphy,
  207. struct net_device *ndev,
  208. u8 *mac, struct station_info *sinfo)
  209. {
  210. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  211. if (memcmp(mac, iwm->bssid, ETH_ALEN))
  212. return -ENOENT;
  213. sinfo->filled |= STATION_INFO_TX_BITRATE;
  214. sinfo->txrate.legacy = iwm->rate * 10;
  215. if (test_bit(IWM_STATUS_ASSOCIATED, &iwm->status)) {
  216. sinfo->filled |= STATION_INFO_SIGNAL;
  217. sinfo->signal = iwm->wstats.qual.level;
  218. }
  219. return 0;
  220. }
  221. int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
  222. {
  223. struct wiphy *wiphy = iwm_to_wiphy(iwm);
  224. struct iwm_bss_info *bss, *next;
  225. struct iwm_umac_notif_bss_info *umac_bss;
  226. struct ieee80211_mgmt *mgmt;
  227. struct ieee80211_channel *channel;
  228. struct ieee80211_supported_band *band;
  229. s32 signal;
  230. int freq;
  231. list_for_each_entry_safe(bss, next, &iwm->bss_list, node) {
  232. umac_bss = bss->bss;
  233. mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
  234. if (umac_bss->band == UMAC_BAND_2GHZ)
  235. band = wiphy->bands[IEEE80211_BAND_2GHZ];
  236. else if (umac_bss->band == UMAC_BAND_5GHZ)
  237. band = wiphy->bands[IEEE80211_BAND_5GHZ];
  238. else {
  239. IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
  240. return -EINVAL;
  241. }
  242. freq = ieee80211_channel_to_frequency(umac_bss->channel);
  243. channel = ieee80211_get_channel(wiphy, freq);
  244. signal = umac_bss->rssi * 100;
  245. if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
  246. le16_to_cpu(umac_bss->frame_len),
  247. signal, GFP_KERNEL))
  248. return -EINVAL;
  249. }
  250. return 0;
  251. }
  252. static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
  253. struct net_device *ndev,
  254. enum nl80211_iftype type, u32 *flags,
  255. struct vif_params *params)
  256. {
  257. struct wireless_dev *wdev;
  258. struct iwm_priv *iwm;
  259. u32 old_mode;
  260. wdev = ndev->ieee80211_ptr;
  261. iwm = ndev_to_iwm(ndev);
  262. old_mode = iwm->conf.mode;
  263. switch (type) {
  264. case NL80211_IFTYPE_STATION:
  265. iwm->conf.mode = UMAC_MODE_BSS;
  266. break;
  267. case NL80211_IFTYPE_ADHOC:
  268. iwm->conf.mode = UMAC_MODE_IBSS;
  269. break;
  270. default:
  271. return -EOPNOTSUPP;
  272. }
  273. wdev->iftype = type;
  274. if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
  275. return 0;
  276. iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
  277. if (iwm->umac_profile_active)
  278. iwm_invalidate_mlme_profile(iwm);
  279. return 0;
  280. }
  281. static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
  282. struct cfg80211_scan_request *request)
  283. {
  284. struct iwm_priv *iwm = ndev_to_iwm(ndev);
  285. int ret;
  286. if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
  287. IWM_ERR(iwm, "Scan while device is not ready\n");
  288. return -EIO;
  289. }
  290. if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
  291. IWM_ERR(iwm, "Scanning already\n");
  292. return -EAGAIN;
  293. }
  294. if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
  295. IWM_ERR(iwm, "Scanning being aborted\n");
  296. return -EAGAIN;
  297. }
  298. set_bit(IWM_STATUS_SCANNING, &iwm->status);
  299. ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
  300. if (ret) {
  301. clear_bit(IWM_STATUS_SCANNING, &iwm->status);
  302. return ret;
  303. }
  304. iwm->scan_request = request;
  305. return 0;
  306. }
  307. static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
  308. {
  309. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  310. if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
  311. (iwm->conf.rts_threshold != wiphy->rts_threshold)) {
  312. int ret;
  313. iwm->conf.rts_threshold = wiphy->rts_threshold;
  314. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  315. CFG_RTS_THRESHOLD,
  316. iwm->conf.rts_threshold);
  317. if (ret < 0)
  318. return ret;
  319. }
  320. if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
  321. (iwm->conf.frag_threshold != wiphy->frag_threshold)) {
  322. int ret;
  323. iwm->conf.frag_threshold = wiphy->frag_threshold;
  324. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
  325. CFG_FRAG_THRESHOLD,
  326. iwm->conf.frag_threshold);
  327. if (ret < 0)
  328. return ret;
  329. }
  330. return 0;
  331. }
  332. static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
  333. struct cfg80211_ibss_params *params)
  334. {
  335. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  336. struct ieee80211_channel *chan = params->channel;
  337. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  338. return -EIO;
  339. /* UMAC doesn't support creating or joining an IBSS network
  340. * with specified bssid. */
  341. if (params->bssid)
  342. return -EOPNOTSUPP;
  343. iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
  344. iwm->umac_profile->ibss.band = chan->band;
  345. iwm->umac_profile->ibss.channel = iwm->channel;
  346. iwm->umac_profile->ssid.ssid_len = params->ssid_len;
  347. memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
  348. return iwm_send_mlme_profile(iwm);
  349. }
  350. static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
  351. {
  352. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  353. if (iwm->umac_profile_active)
  354. return iwm_invalidate_mlme_profile(iwm);
  355. return 0;
  356. }
  357. static int iwm_set_auth_type(struct iwm_priv *iwm,
  358. enum nl80211_auth_type sme_auth_type)
  359. {
  360. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  361. switch (sme_auth_type) {
  362. case NL80211_AUTHTYPE_AUTOMATIC:
  363. case NL80211_AUTHTYPE_OPEN_SYSTEM:
  364. IWM_DBG_WEXT(iwm, DBG, "OPEN auth\n");
  365. *auth_type = UMAC_AUTH_TYPE_OPEN;
  366. break;
  367. case NL80211_AUTHTYPE_SHARED_KEY:
  368. if (iwm->umac_profile->sec.flags &
  369. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) {
  370. IWM_DBG_WEXT(iwm, DBG, "WPA auth alg\n");
  371. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  372. } else {
  373. IWM_DBG_WEXT(iwm, DBG, "WEP shared key auth alg\n");
  374. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  375. }
  376. break;
  377. default:
  378. IWM_ERR(iwm, "Unsupported auth alg: 0x%x\n", sme_auth_type);
  379. return -ENOTSUPP;
  380. }
  381. return 0;
  382. }
  383. static int iwm_set_wpa_version(struct iwm_priv *iwm, u32 wpa_version)
  384. {
  385. IWM_DBG_WEXT(iwm, DBG, "wpa_version: %d\n", wpa_version);
  386. if (!wpa_version) {
  387. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_LEGACY_PROFILE;
  388. return 0;
  389. }
  390. if (wpa_version & NL80211_WPA_VERSION_1)
  391. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WPA_ON_MSK;
  392. if (wpa_version & NL80211_WPA_VERSION_2)
  393. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_RSNA_ON_MSK;
  394. return 0;
  395. }
  396. static int iwm_set_cipher(struct iwm_priv *iwm, u32 cipher, bool ucast)
  397. {
  398. u8 *profile_cipher = ucast ? &iwm->umac_profile->sec.ucast_cipher :
  399. &iwm->umac_profile->sec.mcast_cipher;
  400. if (!cipher) {
  401. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  402. return 0;
  403. }
  404. IWM_DBG_WEXT(iwm, DBG, "%ccast cipher is 0x%x\n", ucast ? 'u' : 'm',
  405. cipher);
  406. switch (cipher) {
  407. case IW_AUTH_CIPHER_NONE:
  408. *profile_cipher = UMAC_CIPHER_TYPE_NONE;
  409. break;
  410. case WLAN_CIPHER_SUITE_WEP40:
  411. *profile_cipher = UMAC_CIPHER_TYPE_WEP_40;
  412. break;
  413. case WLAN_CIPHER_SUITE_WEP104:
  414. *profile_cipher = UMAC_CIPHER_TYPE_WEP_104;
  415. break;
  416. case WLAN_CIPHER_SUITE_TKIP:
  417. *profile_cipher = UMAC_CIPHER_TYPE_TKIP;
  418. break;
  419. case WLAN_CIPHER_SUITE_CCMP:
  420. *profile_cipher = UMAC_CIPHER_TYPE_CCMP;
  421. break;
  422. default:
  423. IWM_ERR(iwm, "Unsupported cipher: 0x%x\n", cipher);
  424. return -ENOTSUPP;
  425. }
  426. return 0;
  427. }
  428. static int iwm_set_key_mgt(struct iwm_priv *iwm, u32 key_mgt)
  429. {
  430. u8 *auth_type = &iwm->umac_profile->sec.auth_type;
  431. IWM_DBG_WEXT(iwm, DBG, "key_mgt: 0x%x\n", key_mgt);
  432. if (key_mgt == WLAN_AKM_SUITE_8021X)
  433. *auth_type = UMAC_AUTH_TYPE_8021X;
  434. else if (key_mgt == WLAN_AKM_SUITE_PSK) {
  435. if (iwm->umac_profile->sec.flags &
  436. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK))
  437. *auth_type = UMAC_AUTH_TYPE_RSNA_PSK;
  438. else
  439. *auth_type = UMAC_AUTH_TYPE_LEGACY_PSK;
  440. } else {
  441. IWM_ERR(iwm, "Invalid key mgt: 0x%x\n", key_mgt);
  442. return -EINVAL;
  443. }
  444. return 0;
  445. }
  446. static int iwm_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
  447. struct cfg80211_connect_params *sme)
  448. {
  449. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  450. struct ieee80211_channel *chan = sme->channel;
  451. struct key_params key_param;
  452. int ret;
  453. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  454. return -EIO;
  455. if (!sme->ssid)
  456. return -EINVAL;
  457. if (iwm->umac_profile_active) {
  458. ret = iwm_invalidate_mlme_profile(iwm);
  459. if (ret) {
  460. IWM_ERR(iwm, "Couldn't invalidate profile\n");
  461. return ret;
  462. }
  463. }
  464. if (chan)
  465. iwm->channel =
  466. ieee80211_frequency_to_channel(chan->center_freq);
  467. iwm->umac_profile->ssid.ssid_len = sme->ssid_len;
  468. memcpy(iwm->umac_profile->ssid.ssid, sme->ssid, sme->ssid_len);
  469. if (sme->bssid) {
  470. IWM_DBG_WEXT(iwm, DBG, "BSSID: %pM\n", sme->bssid);
  471. memcpy(&iwm->umac_profile->bssid[0], sme->bssid, ETH_ALEN);
  472. iwm->umac_profile->bss_num = 1;
  473. } else {
  474. memset(&iwm->umac_profile->bssid[0], 0, ETH_ALEN);
  475. iwm->umac_profile->bss_num = 0;
  476. }
  477. ret = iwm_set_wpa_version(iwm, sme->crypto.wpa_versions);
  478. if (ret < 0)
  479. return ret;
  480. ret = iwm_set_auth_type(iwm, sme->auth_type);
  481. if (ret < 0)
  482. return ret;
  483. if (sme->crypto.n_ciphers_pairwise) {
  484. ret = iwm_set_cipher(iwm, sme->crypto.ciphers_pairwise[0],
  485. true);
  486. if (ret < 0)
  487. return ret;
  488. }
  489. ret = iwm_set_cipher(iwm, sme->crypto.cipher_group, false);
  490. if (ret < 0)
  491. return ret;
  492. if (sme->crypto.n_akm_suites) {
  493. ret = iwm_set_key_mgt(iwm, sme->crypto.akm_suites[0]);
  494. if (ret < 0)
  495. return ret;
  496. }
  497. /*
  498. * We save the WEP key in case we want to do shared authentication.
  499. * We have to do it so because UMAC will assert whenever it gets a
  500. * key before a profile.
  501. */
  502. if (sme->key) {
  503. key_param.key = kmemdup(sme->key, sme->key_len, GFP_KERNEL);
  504. if (key_param.key == NULL)
  505. return -ENOMEM;
  506. key_param.key_len = sme->key_len;
  507. key_param.seq_len = 0;
  508. key_param.cipher = sme->crypto.ciphers_pairwise[0];
  509. ret = iwm_key_init(&iwm->keys[sme->key_idx], sme->key_idx,
  510. NULL, &key_param);
  511. kfree(key_param.key);
  512. if (ret < 0) {
  513. IWM_ERR(iwm, "Invalid key_params\n");
  514. return ret;
  515. }
  516. iwm->default_key = sme->key_idx;
  517. }
  518. /* WPA and open AUTH type from wpa_s means WPS (a.k.a. WSC) */
  519. if ((iwm->umac_profile->sec.flags &
  520. (UMAC_SEC_FLG_WPA_ON_MSK | UMAC_SEC_FLG_RSNA_ON_MSK)) &&
  521. iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_OPEN) {
  522. iwm->umac_profile->sec.flags = UMAC_SEC_FLG_WSC_ON_MSK;
  523. }
  524. ret = iwm_send_mlme_profile(iwm);
  525. if (iwm->umac_profile->sec.auth_type != UMAC_AUTH_TYPE_LEGACY_PSK ||
  526. sme->key == NULL)
  527. return ret;
  528. /*
  529. * We want to do shared auth.
  530. * We need to actually set the key we previously cached,
  531. * and then tell the UMAC it's the default one.
  532. * That will trigger the auth+assoc UMAC machinery, and again,
  533. * this must be done after setting the profile.
  534. */
  535. ret = iwm_set_key(iwm, 0, &iwm->keys[sme->key_idx]);
  536. if (ret < 0)
  537. return ret;
  538. return iwm_set_tx_key(iwm, iwm->default_key);
  539. }
  540. static int iwm_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev,
  541. u16 reason_code)
  542. {
  543. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  544. IWM_DBG_WEXT(iwm, DBG, "Active: %d\n", iwm->umac_profile_active);
  545. if (iwm->umac_profile_active)
  546. iwm_invalidate_mlme_profile(iwm);
  547. return 0;
  548. }
  549. static int iwm_cfg80211_set_txpower(struct wiphy *wiphy,
  550. enum tx_power_setting type, int dbm)
  551. {
  552. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  553. int ret;
  554. switch (type) {
  555. case TX_POWER_AUTOMATIC:
  556. return 0;
  557. case TX_POWER_FIXED:
  558. if (!test_bit(IWM_STATUS_READY, &iwm->status))
  559. return 0;
  560. ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  561. CFG_TX_PWR_LIMIT_USR, dbm * 2);
  562. if (ret < 0)
  563. return ret;
  564. return iwm_tx_power_trigger(iwm);
  565. default:
  566. IWM_ERR(iwm, "Unsupported power type: %d\n", type);
  567. return -EOPNOTSUPP;
  568. }
  569. return 0;
  570. }
  571. static int iwm_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
  572. {
  573. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  574. *dbm = iwm->txpower >> 1;
  575. return 0;
  576. }
  577. static int iwm_cfg80211_set_power_mgmt(struct wiphy *wiphy,
  578. struct net_device *dev,
  579. bool enabled, int timeout)
  580. {
  581. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  582. u32 power_index;
  583. if (enabled)
  584. power_index = IWM_POWER_INDEX_DEFAULT;
  585. else
  586. power_index = IWM_POWER_INDEX_MIN;
  587. if (power_index == iwm->conf.power_index)
  588. return 0;
  589. iwm->conf.power_index = power_index;
  590. return iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
  591. CFG_POWER_INDEX, iwm->conf.power_index);
  592. }
  593. int iwm_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *netdev,
  594. struct cfg80211_pmksa *pmksa)
  595. {
  596. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  597. return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_ADD);
  598. }
  599. int iwm_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *netdev,
  600. struct cfg80211_pmksa *pmksa)
  601. {
  602. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  603. return iwm_send_pmkid_update(iwm, pmksa, IWM_CMD_PMKID_DEL);
  604. }
  605. int iwm_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev)
  606. {
  607. struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
  608. struct cfg80211_pmksa pmksa;
  609. memset(&pmksa, 0, sizeof(struct cfg80211_pmksa));
  610. return iwm_send_pmkid_update(iwm, &pmksa, IWM_CMD_PMKID_FLUSH);
  611. }
  612. static struct cfg80211_ops iwm_cfg80211_ops = {
  613. .change_virtual_intf = iwm_cfg80211_change_iface,
  614. .add_key = iwm_cfg80211_add_key,
  615. .get_key = iwm_cfg80211_get_key,
  616. .del_key = iwm_cfg80211_del_key,
  617. .set_default_key = iwm_cfg80211_set_default_key,
  618. .get_station = iwm_cfg80211_get_station,
  619. .scan = iwm_cfg80211_scan,
  620. .set_wiphy_params = iwm_cfg80211_set_wiphy_params,
  621. .connect = iwm_cfg80211_connect,
  622. .disconnect = iwm_cfg80211_disconnect,
  623. .join_ibss = iwm_cfg80211_join_ibss,
  624. .leave_ibss = iwm_cfg80211_leave_ibss,
  625. .set_tx_power = iwm_cfg80211_set_txpower,
  626. .get_tx_power = iwm_cfg80211_get_txpower,
  627. .set_power_mgmt = iwm_cfg80211_set_power_mgmt,
  628. .set_pmksa = iwm_cfg80211_set_pmksa,
  629. .del_pmksa = iwm_cfg80211_del_pmksa,
  630. .flush_pmksa = iwm_cfg80211_flush_pmksa,
  631. };
  632. static const u32 cipher_suites[] = {
  633. WLAN_CIPHER_SUITE_WEP40,
  634. WLAN_CIPHER_SUITE_WEP104,
  635. WLAN_CIPHER_SUITE_TKIP,
  636. WLAN_CIPHER_SUITE_CCMP,
  637. };
  638. struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
  639. {
  640. int ret = 0;
  641. struct wireless_dev *wdev;
  642. /*
  643. * We're trying to have the following memory
  644. * layout:
  645. *
  646. * +-------------------------+
  647. * | struct wiphy |
  648. * +-------------------------+
  649. * | struct iwm_priv |
  650. * +-------------------------+
  651. * | bus private data |
  652. * | (e.g. iwm_priv_sdio) |
  653. * +-------------------------+
  654. *
  655. */
  656. wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
  657. if (!wdev) {
  658. dev_err(dev, "Couldn't allocate wireless device\n");
  659. return ERR_PTR(-ENOMEM);
  660. }
  661. wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
  662. sizeof(struct iwm_priv) + sizeof_bus);
  663. if (!wdev->wiphy) {
  664. dev_err(dev, "Couldn't allocate wiphy device\n");
  665. ret = -ENOMEM;
  666. goto out_err_new;
  667. }
  668. set_wiphy_dev(wdev->wiphy, dev);
  669. wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
  670. wdev->wiphy->max_num_pmkids = UMAC_MAX_NUM_PMKIDS;
  671. wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  672. BIT(NL80211_IFTYPE_ADHOC);
  673. wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
  674. wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
  675. wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
  676. wdev->wiphy->cipher_suites = cipher_suites;
  677. wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
  678. ret = wiphy_register(wdev->wiphy);
  679. if (ret < 0) {
  680. dev_err(dev, "Couldn't register wiphy device\n");
  681. goto out_err_register;
  682. }
  683. return wdev;
  684. out_err_register:
  685. wiphy_free(wdev->wiphy);
  686. out_err_new:
  687. kfree(wdev);
  688. return ERR_PTR(ret);
  689. }
  690. void iwm_wdev_free(struct iwm_priv *iwm)
  691. {
  692. struct wireless_dev *wdev = iwm_to_wdev(iwm);
  693. if (!wdev)
  694. return;
  695. wiphy_unregister(wdev->wiphy);
  696. wiphy_free(wdev->wiphy);
  697. kfree(wdev);
  698. }