phy_lp.c 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11a/g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. Copyright (c) 2009 Gábor Stefanik <netrolller.3d@gmail.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; see the file COPYING. If not, write to
  16. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  17. Boston, MA 02110-1301, USA.
  18. */
  19. #include "b43.h"
  20. #include "main.h"
  21. #include "phy_lp.h"
  22. #include "phy_common.h"
  23. #include "tables_lpphy.h"
  24. static inline u16 channel2freq_lp(u8 channel)
  25. {
  26. if (channel < 14)
  27. return (2407 + 5 * channel);
  28. else if (channel == 14)
  29. return 2484;
  30. else if (channel < 184)
  31. return (5000 + 5 * channel);
  32. else
  33. return (4000 + 5 * channel);
  34. }
  35. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  36. {
  37. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  38. return 1;
  39. return 36;
  40. }
  41. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  42. {
  43. struct b43_phy_lp *lpphy;
  44. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  45. if (!lpphy)
  46. return -ENOMEM;
  47. dev->phy.lp = lpphy;
  48. return 0;
  49. }
  50. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  51. {
  52. struct b43_phy *phy = &dev->phy;
  53. struct b43_phy_lp *lpphy = phy->lp;
  54. memset(lpphy, 0, sizeof(*lpphy));
  55. lpphy->antenna = B43_ANTENNA_DEFAULT;
  56. //TODO
  57. }
  58. static void b43_lpphy_op_free(struct b43_wldev *dev)
  59. {
  60. struct b43_phy_lp *lpphy = dev->phy.lp;
  61. kfree(lpphy);
  62. dev->phy.lp = NULL;
  63. }
  64. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  65. {
  66. struct b43_phy_lp *lpphy = dev->phy.lp;
  67. struct ssb_bus *bus = dev->dev->bus;
  68. u16 cckpo, maxpwr;
  69. u32 ofdmpo;
  70. int i;
  71. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  72. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  73. lpphy->bx_arch = bus->sprom.bxa2g;
  74. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  75. lpphy->rssi_vf = bus->sprom.rssismf2g;
  76. lpphy->rssi_vc = bus->sprom.rssismc2g;
  77. lpphy->rssi_gs = bus->sprom.rssisav2g;
  78. lpphy->txpa[0] = bus->sprom.pa0b0;
  79. lpphy->txpa[1] = bus->sprom.pa0b1;
  80. lpphy->txpa[2] = bus->sprom.pa0b2;
  81. maxpwr = bus->sprom.maxpwr_bg;
  82. lpphy->max_tx_pwr_med_band = maxpwr;
  83. cckpo = bus->sprom.cck2gpo;
  84. ofdmpo = bus->sprom.ofdm2gpo;
  85. if (cckpo) {
  86. for (i = 0; i < 4; i++) {
  87. lpphy->tx_max_rate[i] =
  88. maxpwr - (ofdmpo & 0xF) * 2;
  89. ofdmpo >>= 4;
  90. }
  91. ofdmpo = bus->sprom.ofdm2gpo;
  92. for (i = 4; i < 15; i++) {
  93. lpphy->tx_max_rate[i] =
  94. maxpwr - (ofdmpo & 0xF) * 2;
  95. ofdmpo >>= 4;
  96. }
  97. } else {
  98. ofdmpo &= 0xFF;
  99. for (i = 0; i < 4; i++)
  100. lpphy->tx_max_rate[i] = maxpwr;
  101. for (i = 4; i < 15; i++)
  102. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  103. }
  104. } else { /* 5GHz */
  105. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  106. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  107. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  108. lpphy->bx_arch = bus->sprom.bxa5g;
  109. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  110. lpphy->rssi_vf = bus->sprom.rssismf5g;
  111. lpphy->rssi_vc = bus->sprom.rssismc5g;
  112. lpphy->rssi_gs = bus->sprom.rssisav5g;
  113. lpphy->txpa[0] = bus->sprom.pa1b0;
  114. lpphy->txpa[1] = bus->sprom.pa1b1;
  115. lpphy->txpa[2] = bus->sprom.pa1b2;
  116. lpphy->txpal[0] = bus->sprom.pa1lob0;
  117. lpphy->txpal[1] = bus->sprom.pa1lob1;
  118. lpphy->txpal[2] = bus->sprom.pa1lob2;
  119. lpphy->txpah[0] = bus->sprom.pa1hib0;
  120. lpphy->txpah[1] = bus->sprom.pa1hib1;
  121. lpphy->txpah[2] = bus->sprom.pa1hib2;
  122. maxpwr = bus->sprom.maxpwr_al;
  123. ofdmpo = bus->sprom.ofdm5glpo;
  124. lpphy->max_tx_pwr_low_band = maxpwr;
  125. for (i = 4; i < 12; i++) {
  126. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  127. ofdmpo >>= 4;
  128. }
  129. maxpwr = bus->sprom.maxpwr_a;
  130. ofdmpo = bus->sprom.ofdm5gpo;
  131. lpphy->max_tx_pwr_med_band = maxpwr;
  132. for (i = 4; i < 12; i++) {
  133. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  134. ofdmpo >>= 4;
  135. }
  136. maxpwr = bus->sprom.maxpwr_ah;
  137. ofdmpo = bus->sprom.ofdm5ghpo;
  138. lpphy->max_tx_pwr_hi_band = maxpwr;
  139. for (i = 4; i < 12; i++) {
  140. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  141. ofdmpo >>= 4;
  142. }
  143. }
  144. }
  145. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  146. {
  147. struct b43_phy_lp *lpphy = dev->phy.lp;
  148. u16 temp[3];
  149. u16 isolation;
  150. B43_WARN_ON(dev->phy.rev >= 2);
  151. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  152. isolation = lpphy->tx_isolation_med_band;
  153. else if (freq <= 5320)
  154. isolation = lpphy->tx_isolation_low_band;
  155. else if (freq <= 5700)
  156. isolation = lpphy->tx_isolation_med_band;
  157. else
  158. isolation = lpphy->tx_isolation_hi_band;
  159. temp[0] = ((isolation - 26) / 12) << 12;
  160. temp[1] = temp[0] + 0x1000;
  161. temp[2] = temp[0] + 0x2000;
  162. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  163. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  164. }
  165. static void lpphy_table_init(struct b43_wldev *dev)
  166. {
  167. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  168. if (dev->phy.rev < 2)
  169. lpphy_rev0_1_table_init(dev);
  170. else
  171. lpphy_rev2plus_table_init(dev);
  172. lpphy_init_tx_gain_table(dev);
  173. if (dev->phy.rev < 2)
  174. lpphy_adjust_gain_table(dev, freq);
  175. }
  176. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  177. {
  178. struct ssb_bus *bus = dev->dev->bus;
  179. struct b43_phy_lp *lpphy = dev->phy.lp;
  180. u16 tmp, tmp2;
  181. b43_phy_mask(dev, B43_LPPHY_AFE_DAC_CTL, 0xF7FF);
  182. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0);
  183. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  184. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  185. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  186. b43_phy_set(dev, B43_LPPHY_AFE_DAC_CTL, 0x0004);
  187. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x0078);
  188. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  189. b43_phy_write(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x0016);
  190. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_0, 0xFFF8, 0x0004);
  191. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5400);
  192. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2400);
  193. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  194. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0x0006);
  195. b43_phy_mask(dev, B43_LPPHY_RX_RADIO_CTL, 0xFFFE);
  196. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x0005);
  197. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0x0180);
  198. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x3C00);
  199. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFFF0, 0x0005);
  200. b43_phy_maskset(dev, B43_LPPHY_GAIN_MISMATCH_LIMIT, 0xFFC0, 0x001A);
  201. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0x00B3);
  202. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  203. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB,
  204. 0xFF00, lpphy->rx_pwr_offset);
  205. if ((bus->sprom.boardflags_lo & B43_BFL_FEM) &&
  206. ((b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) ||
  207. (bus->sprom.boardflags_hi & B43_BFH_PAREF))) {
  208. ssb_pmu_set_ldo_voltage(&bus->chipco, LDO_PAREF, 0x28);
  209. ssb_pmu_set_ldo_paref(&bus->chipco, true);
  210. if (dev->phy.rev == 0) {
  211. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  212. 0xFFCF, 0x0010);
  213. }
  214. b43_lptab_write(dev, B43_LPTAB16(11, 7), 60);
  215. } else {
  216. ssb_pmu_set_ldo_paref(&bus->chipco, false);
  217. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  218. 0xFFCF, 0x0020);
  219. b43_lptab_write(dev, B43_LPTAB16(11, 7), 100);
  220. }
  221. tmp = lpphy->rssi_vf | lpphy->rssi_vc << 4 | 0xA000;
  222. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, tmp);
  223. if (bus->sprom.boardflags_hi & B43_BFH_RSSIINV)
  224. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x0AAA);
  225. else
  226. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x02AA);
  227. b43_lptab_write(dev, B43_LPTAB16(11, 1), 24);
  228. b43_phy_maskset(dev, B43_LPPHY_RX_RADIO_CTL,
  229. 0xFFF9, (lpphy->bx_arch << 1));
  230. if (dev->phy.rev == 1 &&
  231. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  232. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  233. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  234. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  235. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  236. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  237. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  238. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  239. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  240. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  241. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  242. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  243. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  244. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  245. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  246. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  247. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  248. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  249. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  250. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  251. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  252. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  253. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  254. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  255. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  256. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  257. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  258. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  259. } else if (dev->phy.rev == 1 ||
  260. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  261. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  262. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  263. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  264. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  265. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  266. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  267. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  268. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  269. } else {
  270. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  271. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  272. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  273. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  274. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  275. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  276. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  277. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  278. }
  279. if (dev->phy.rev == 1 && (bus->sprom.boardflags_hi & B43_BFH_PAREF)) {
  280. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  281. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  282. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  283. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  284. }
  285. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  286. (bus->chip_id == 0x5354) &&
  287. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  288. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  289. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  290. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  291. //FIXME the Broadcom driver caches & delays this HF write!
  292. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  293. }
  294. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  295. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  296. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  297. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  298. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  299. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  300. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  301. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  302. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  303. } else { /* 5GHz */
  304. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  305. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  306. }
  307. if (dev->phy.rev == 1) {
  308. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  309. tmp2 = (tmp & 0x03E0) >> 5;
  310. tmp2 |= tmp2 << 5;
  311. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  312. tmp = b43_phy_read(dev, B43_LPPHY_GAINDIRECTMISMATCH);
  313. tmp2 = (tmp & 0x1F00) >> 8;
  314. tmp2 |= tmp2 << 5;
  315. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  316. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  317. tmp2 = tmp & 0x00FF;
  318. tmp2 |= tmp << 8;
  319. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  320. }
  321. }
  322. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  323. {
  324. static const u16 addr[] = {
  325. B43_PHY_OFDM(0xC1),
  326. B43_PHY_OFDM(0xC2),
  327. B43_PHY_OFDM(0xC3),
  328. B43_PHY_OFDM(0xC4),
  329. B43_PHY_OFDM(0xC5),
  330. B43_PHY_OFDM(0xC6),
  331. B43_PHY_OFDM(0xC7),
  332. B43_PHY_OFDM(0xC8),
  333. B43_PHY_OFDM(0xCF),
  334. };
  335. static const u16 coefs[] = {
  336. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  337. 0x0026, 0x1420, 0x0020, 0xFE08,
  338. 0x0008,
  339. };
  340. struct b43_phy_lp *lpphy = dev->phy.lp;
  341. int i;
  342. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  343. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  344. b43_phy_write(dev, addr[i], coefs[i]);
  345. }
  346. }
  347. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  348. {
  349. static const u16 addr[] = {
  350. B43_PHY_OFDM(0xC1),
  351. B43_PHY_OFDM(0xC2),
  352. B43_PHY_OFDM(0xC3),
  353. B43_PHY_OFDM(0xC4),
  354. B43_PHY_OFDM(0xC5),
  355. B43_PHY_OFDM(0xC6),
  356. B43_PHY_OFDM(0xC7),
  357. B43_PHY_OFDM(0xC8),
  358. B43_PHY_OFDM(0xCF),
  359. };
  360. struct b43_phy_lp *lpphy = dev->phy.lp;
  361. int i;
  362. for (i = 0; i < ARRAY_SIZE(addr); i++)
  363. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  364. }
  365. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  366. {
  367. struct ssb_bus *bus = dev->dev->bus;
  368. struct b43_phy_lp *lpphy = dev->phy.lp;
  369. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  370. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  371. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  372. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  373. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  374. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  375. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  376. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  377. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  378. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  379. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  380. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  381. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  382. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  383. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  384. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  385. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  386. if (bus->boardinfo.rev >= 0x18) {
  387. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  388. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  389. } else {
  390. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  391. }
  392. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  393. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  394. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  395. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  396. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  397. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  398. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  399. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  400. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0xA0);
  401. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  402. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  403. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  404. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  405. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  406. } else {
  407. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  408. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  409. }
  410. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  411. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  412. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  413. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  414. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  415. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  416. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  417. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  418. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  419. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  420. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  421. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  422. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  423. }
  424. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  425. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  426. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  427. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  428. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  429. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  430. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  431. } else /* 5GHz */
  432. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  433. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  434. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  435. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  436. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  437. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  438. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  439. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  440. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  441. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  442. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  443. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  444. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  445. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  446. }
  447. lpphy_save_dig_flt_state(dev);
  448. }
  449. static void lpphy_baseband_init(struct b43_wldev *dev)
  450. {
  451. lpphy_table_init(dev);
  452. if (dev->phy.rev >= 2)
  453. lpphy_baseband_rev2plus_init(dev);
  454. else
  455. lpphy_baseband_rev0_1_init(dev);
  456. }
  457. struct b2062_freqdata {
  458. u16 freq;
  459. u8 data[6];
  460. };
  461. /* Initialize the 2062 radio. */
  462. static void lpphy_2062_init(struct b43_wldev *dev)
  463. {
  464. struct b43_phy_lp *lpphy = dev->phy.lp;
  465. struct ssb_bus *bus = dev->dev->bus;
  466. u32 crystalfreq, tmp, ref;
  467. unsigned int i;
  468. const struct b2062_freqdata *fd = NULL;
  469. static const struct b2062_freqdata freqdata_tab[] = {
  470. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  471. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  472. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  473. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  474. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  475. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  476. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  477. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  478. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  479. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  480. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  481. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  482. };
  483. b2062_upload_init_table(dev);
  484. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  485. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  486. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  487. b43_radio_write(dev, B2062_N_TX_CTL6, 0);
  488. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  489. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  490. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  491. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  492. if (dev->phy.rev > 0) {
  493. b43_radio_write(dev, B2062_S_BG_CTL1,
  494. (b43_radio_read(dev, B2062_N_COMM2) >> 1) | 0x80);
  495. }
  496. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  497. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  498. else
  499. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  500. /* Get the crystal freq, in Hz. */
  501. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  502. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  503. B43_WARN_ON(crystalfreq == 0);
  504. if (crystalfreq <= 30000000) {
  505. lpphy->pdiv = 1;
  506. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  507. } else {
  508. lpphy->pdiv = 2;
  509. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  510. }
  511. tmp = (((800000000 * lpphy->pdiv + crystalfreq) /
  512. (2 * crystalfreq)) - 8) & 0xFF;
  513. b43_radio_write(dev, B2062_S_RFPLL_CTL7, tmp);
  514. tmp = (((100 * crystalfreq + 16000000 * lpphy->pdiv) /
  515. (32000000 * lpphy->pdiv)) - 1) & 0xFF;
  516. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  517. tmp = (((2 * crystalfreq + 1000000 * lpphy->pdiv) /
  518. (2000000 * lpphy->pdiv)) - 1) & 0xFF;
  519. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  520. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  521. ref &= 0xFFFF;
  522. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  523. if (ref < freqdata_tab[i].freq) {
  524. fd = &freqdata_tab[i];
  525. break;
  526. }
  527. }
  528. if (!fd)
  529. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  530. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  531. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  532. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  533. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  534. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  535. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  536. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  537. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  538. }
  539. /* Initialize the 2063 radio. */
  540. static void lpphy_2063_init(struct b43_wldev *dev)
  541. {
  542. b2063_upload_init_table(dev);
  543. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  544. b43_radio_set(dev, B2063_COMM8, 0x38);
  545. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  546. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  547. b43_radio_write(dev, B2063_PA_SP7, 0);
  548. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  549. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  550. if (dev->phy.rev == 2) {
  551. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  552. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  553. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  554. } else {
  555. b43_radio_write(dev, B2063_PA_SP3, 0x20);
  556. b43_radio_write(dev, B2063_PA_SP2, 0x20);
  557. }
  558. }
  559. struct lpphy_stx_table_entry {
  560. u16 phy_offset;
  561. u16 phy_shift;
  562. u16 rf_addr;
  563. u16 rf_shift;
  564. u16 mask;
  565. };
  566. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  567. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  568. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  569. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  570. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  571. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  572. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  573. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  574. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  575. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  576. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  577. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  578. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  579. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  580. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  581. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  582. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  583. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  584. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  585. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  586. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  587. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  588. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  589. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  590. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  591. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  592. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  593. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  594. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  595. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  596. };
  597. static void lpphy_sync_stx(struct b43_wldev *dev)
  598. {
  599. const struct lpphy_stx_table_entry *e;
  600. unsigned int i;
  601. u16 tmp;
  602. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  603. e = &lpphy_stx_table[i];
  604. tmp = b43_radio_read(dev, e->rf_addr);
  605. tmp >>= e->rf_shift;
  606. tmp <<= e->phy_shift;
  607. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  608. ~(e->mask << e->phy_shift), tmp);
  609. }
  610. }
  611. static void lpphy_radio_init(struct b43_wldev *dev)
  612. {
  613. /* The radio is attached through the 4wire bus. */
  614. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  615. udelay(1);
  616. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  617. udelay(1);
  618. if (dev->phy.radio_ver == 0x2062) {
  619. lpphy_2062_init(dev);
  620. } else {
  621. lpphy_2063_init(dev);
  622. lpphy_sync_stx(dev);
  623. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  624. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  625. if (dev->dev->bus->chip_id == 0x4325) {
  626. // TODO SSB PMU recalibration
  627. }
  628. }
  629. }
  630. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  631. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  632. {
  633. struct b43_phy_lp *lpphy = dev->phy.lp;
  634. u8 rc_cap = (lpphy->rc_cap & 0x1F) >> 1;
  635. if (dev->phy.rev == 1) //FIXME check channel 14!
  636. rc_cap = min_t(u8, rc_cap + 5, 15);
  637. b43_radio_write(dev, B2062_N_RXBB_CALIB2,
  638. max_t(u8, lpphy->rc_cap - 4, 0x80));
  639. b43_radio_write(dev, B2062_N_TX_CTL_A, rc_cap | 0x80);
  640. b43_radio_write(dev, B2062_S_RXG_CNT16,
  641. ((lpphy->rc_cap & 0x1F) >> 2) | 0x80);
  642. }
  643. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  644. {
  645. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  646. }
  647. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  648. {
  649. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  650. }
  651. static void lpphy_set_deaf(struct b43_wldev *dev, bool user)
  652. {
  653. struct b43_phy_lp *lpphy = dev->phy.lp;
  654. if (user)
  655. lpphy->crs_usr_disable = 1;
  656. else
  657. lpphy->crs_sys_disable = 1;
  658. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  659. }
  660. static void lpphy_clear_deaf(struct b43_wldev *dev, bool user)
  661. {
  662. struct b43_phy_lp *lpphy = dev->phy.lp;
  663. if (user)
  664. lpphy->crs_usr_disable = 0;
  665. else
  666. lpphy->crs_sys_disable = 0;
  667. if (!lpphy->crs_usr_disable && !lpphy->crs_sys_disable) {
  668. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  669. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  670. 0xFF1F, 0x60);
  671. else
  672. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  673. 0xFF1F, 0x20);
  674. }
  675. }
  676. static void lpphy_set_trsw_over(struct b43_wldev *dev, bool tx, bool rx)
  677. {
  678. u16 trsw = (tx << 1) | rx;
  679. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, trsw);
  680. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  681. }
  682. static void lpphy_disable_crs(struct b43_wldev *dev, bool user)
  683. {
  684. lpphy_set_deaf(dev, user);
  685. lpphy_set_trsw_over(dev, false, true);
  686. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  687. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  688. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFF7);
  689. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  690. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  691. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  692. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  693. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  694. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  695. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  696. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  697. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  698. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  699. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  700. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  701. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  702. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  703. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  704. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  705. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  706. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  707. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  708. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  709. }
  710. static void lpphy_restore_crs(struct b43_wldev *dev, bool user)
  711. {
  712. lpphy_clear_deaf(dev, user);
  713. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  714. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  715. }
  716. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  717. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  718. {
  719. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  720. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  721. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  722. if (dev->phy.rev >= 2) {
  723. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  724. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  725. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  726. b43_phy_mask(dev, B43_PHY_OFDM(0xE5), 0xFFF7);
  727. }
  728. } else {
  729. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  730. }
  731. }
  732. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  733. {
  734. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  735. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  736. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  737. if (dev->phy.rev >= 2) {
  738. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  739. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  740. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  741. b43_phy_set(dev, B43_PHY_OFDM(0xE5), 0x8);
  742. }
  743. } else {
  744. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  745. }
  746. }
  747. static void lpphy_disable_tx_gain_override(struct b43_wldev *dev)
  748. {
  749. if (dev->phy.rev < 2)
  750. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  751. else {
  752. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F);
  753. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF);
  754. }
  755. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFBF);
  756. }
  757. static void lpphy_enable_tx_gain_override(struct b43_wldev *dev)
  758. {
  759. if (dev->phy.rev < 2)
  760. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  761. else {
  762. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x80);
  763. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x4000);
  764. }
  765. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x40);
  766. }
  767. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  768. {
  769. struct lpphy_tx_gains gains;
  770. u16 tmp;
  771. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  772. if (dev->phy.rev < 2) {
  773. tmp = b43_phy_read(dev,
  774. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  775. gains.gm = tmp & 0x0007;
  776. gains.pga = (tmp & 0x0078) >> 3;
  777. gains.pad = (tmp & 0x780) >> 7;
  778. } else {
  779. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  780. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  781. gains.gm = tmp & 0xFF;
  782. gains.pga = (tmp >> 8) & 0xFF;
  783. }
  784. return gains;
  785. }
  786. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  787. {
  788. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  789. ctl |= dac << 7;
  790. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  791. }
  792. static u16 lpphy_get_pa_gain(struct b43_wldev *dev)
  793. {
  794. return b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F;
  795. }
  796. static void lpphy_set_pa_gain(struct b43_wldev *dev, u16 gain)
  797. {
  798. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB), 0xE03F, gain << 6);
  799. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD), 0x80FF, gain << 8);
  800. }
  801. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  802. struct lpphy_tx_gains gains)
  803. {
  804. u16 rf_gain, pa_gain;
  805. if (dev->phy.rev < 2) {
  806. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  807. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  808. 0xF800, rf_gain);
  809. } else {
  810. pa_gain = lpphy_get_pa_gain(dev);
  811. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  812. (gains.pga << 8) | gains.gm);
  813. /*
  814. * SPEC FIXME The spec calls for (pa_gain << 8) here, but that
  815. * conflicts with the spec for set_pa_gain! Vendor driver bug?
  816. */
  817. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB),
  818. 0x8000, gains.pad | (pa_gain << 6));
  819. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  820. (gains.pga << 8) | gains.gm);
  821. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  822. 0x8000, gains.pad | (pa_gain << 8));
  823. }
  824. lpphy_set_dac_gain(dev, gains.dac);
  825. lpphy_enable_tx_gain_override(dev);
  826. }
  827. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  828. {
  829. u16 trsw = gain & 0x1;
  830. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  831. u16 ext_lna = (gain & 2) >> 1;
  832. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  833. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  834. 0xFBFF, ext_lna << 10);
  835. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  836. 0xF7FF, ext_lna << 11);
  837. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  838. }
  839. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  840. {
  841. u16 low_gain = gain & 0xFFFF;
  842. u16 high_gain = (gain >> 16) & 0xF;
  843. u16 ext_lna = (gain >> 21) & 0x1;
  844. u16 trsw = ~(gain >> 20) & 0x1;
  845. u16 tmp;
  846. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  847. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  848. 0xFDFF, ext_lna << 9);
  849. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  850. 0xFBFF, ext_lna << 10);
  851. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  852. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  853. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  854. tmp = (gain >> 2) & 0x3;
  855. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  856. 0xE7FF, tmp<<11);
  857. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  858. }
  859. }
  860. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  861. {
  862. if (dev->phy.rev < 2)
  863. lpphy_rev0_1_set_rx_gain(dev, gain);
  864. else
  865. lpphy_rev2plus_set_rx_gain(dev, gain);
  866. lpphy_enable_rx_gain_override(dev);
  867. }
  868. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  869. {
  870. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  871. lpphy_set_rx_gain(dev, gain);
  872. }
  873. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  874. {
  875. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  876. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  877. }
  878. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  879. int incr1, int incr2, int scale_idx)
  880. {
  881. lpphy_stop_ddfs(dev);
  882. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  883. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  884. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  885. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  886. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  887. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  888. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  889. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  890. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  891. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x20);
  892. }
  893. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  894. struct lpphy_iq_est *iq_est)
  895. {
  896. int i;
  897. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  898. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  899. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  900. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  901. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0x200);
  902. for (i = 0; i < 500; i++) {
  903. if (!(b43_phy_read(dev,
  904. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  905. break;
  906. msleep(1);
  907. }
  908. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  909. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  910. return false;
  911. }
  912. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  913. iq_est->iq_prod <<= 16;
  914. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  915. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  916. iq_est->i_pwr <<= 16;
  917. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  918. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  919. iq_est->q_pwr <<= 16;
  920. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  921. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  922. return true;
  923. }
  924. static int lpphy_loopback(struct b43_wldev *dev)
  925. {
  926. struct lpphy_iq_est iq_est;
  927. int i, index = -1;
  928. u32 tmp;
  929. memset(&iq_est, 0, sizeof(iq_est));
  930. lpphy_set_trsw_over(dev, true, true);
  931. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 1);
  932. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  933. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  934. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  935. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  936. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  937. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  938. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  939. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  940. for (i = 0; i < 32; i++) {
  941. lpphy_set_rx_gain_by_index(dev, i);
  942. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  943. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  944. continue;
  945. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  946. if ((tmp > 4000) && (tmp < 10000)) {
  947. index = i;
  948. break;
  949. }
  950. }
  951. lpphy_stop_ddfs(dev);
  952. return index;
  953. }
  954. /* Fixed-point division algorithm using only integer math. */
  955. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  956. {
  957. u32 quotient, remainder;
  958. if (divisor == 0)
  959. return 0;
  960. quotient = dividend / divisor;
  961. remainder = dividend % divisor;
  962. while (precision > 0) {
  963. quotient <<= 1;
  964. if (remainder << 1 >= divisor) {
  965. quotient++;
  966. remainder = (remainder << 1) - divisor;
  967. }
  968. precision--;
  969. }
  970. if (remainder << 1 >= divisor)
  971. quotient++;
  972. return quotient;
  973. }
  974. /* Read the TX power control mode from hardware. */
  975. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  976. {
  977. struct b43_phy_lp *lpphy = dev->phy.lp;
  978. u16 ctl;
  979. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  980. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  981. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  982. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  983. break;
  984. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  985. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  986. break;
  987. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  988. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  989. break;
  990. default:
  991. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  992. B43_WARN_ON(1);
  993. break;
  994. }
  995. }
  996. /* Set the TX power control mode in hardware. */
  997. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  998. {
  999. struct b43_phy_lp *lpphy = dev->phy.lp;
  1000. u16 ctl;
  1001. switch (lpphy->txpctl_mode) {
  1002. case B43_LPPHY_TXPCTL_OFF:
  1003. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  1004. break;
  1005. case B43_LPPHY_TXPCTL_HW:
  1006. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  1007. break;
  1008. case B43_LPPHY_TXPCTL_SW:
  1009. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  1010. break;
  1011. default:
  1012. ctl = 0;
  1013. B43_WARN_ON(1);
  1014. }
  1015. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1016. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  1017. }
  1018. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  1019. enum b43_lpphy_txpctl_mode mode)
  1020. {
  1021. struct b43_phy_lp *lpphy = dev->phy.lp;
  1022. enum b43_lpphy_txpctl_mode oldmode;
  1023. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1024. oldmode = lpphy->txpctl_mode;
  1025. if (oldmode == mode)
  1026. return;
  1027. lpphy->txpctl_mode = mode;
  1028. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  1029. //TODO Update TX Power NPT
  1030. //TODO Clear all TX Power offsets
  1031. } else {
  1032. if (mode == B43_LPPHY_TXPCTL_HW) {
  1033. //TODO Recalculate target TX power
  1034. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1035. 0xFF80, lpphy->tssi_idx);
  1036. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  1037. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  1038. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  1039. lpphy_disable_tx_gain_override(dev);
  1040. lpphy->tx_pwr_idx_over = -1;
  1041. }
  1042. }
  1043. if (dev->phy.rev >= 2) {
  1044. if (mode == B43_LPPHY_TXPCTL_HW)
  1045. b43_phy_set(dev, B43_PHY_OFDM(0xD0), 0x2);
  1046. else
  1047. b43_phy_mask(dev, B43_PHY_OFDM(0xD0), 0xFFFD);
  1048. }
  1049. lpphy_write_tx_pctl_mode_to_hardware(dev);
  1050. }
  1051. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1052. unsigned int new_channel);
  1053. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  1054. {
  1055. struct b43_phy_lp *lpphy = dev->phy.lp;
  1056. struct lpphy_iq_est iq_est;
  1057. struct lpphy_tx_gains tx_gains;
  1058. static const u32 ideal_pwr_table[21] = {
  1059. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  1060. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  1061. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  1062. 0x0004c, 0x0002c, 0x0001a,
  1063. };
  1064. bool old_txg_ovr;
  1065. u8 old_bbmult;
  1066. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  1067. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl;
  1068. enum b43_lpphy_txpctl_mode old_txpctl;
  1069. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  1070. int loopback, i, j, inner_sum, err;
  1071. memset(&iq_est, 0, sizeof(iq_est));
  1072. err = b43_lpphy_op_switch_channel(dev, 7);
  1073. if (err) {
  1074. b43dbg(dev->wl,
  1075. "RC calib: Failed to switch to channel 7, error = %d\n",
  1076. err);
  1077. }
  1078. old_txg_ovr = !!(b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40);
  1079. old_bbmult = lpphy_get_bb_mult(dev);
  1080. if (old_txg_ovr)
  1081. tx_gains = lpphy_get_tx_gains(dev);
  1082. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  1083. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  1084. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  1085. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  1086. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  1087. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  1088. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  1089. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1090. old_txpctl = lpphy->txpctl_mode;
  1091. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1092. lpphy_disable_crs(dev, true);
  1093. loopback = lpphy_loopback(dev);
  1094. if (loopback == -1)
  1095. goto finish;
  1096. lpphy_set_rx_gain_by_index(dev, loopback);
  1097. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  1098. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  1099. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  1100. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  1101. for (i = 128; i <= 159; i++) {
  1102. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  1103. inner_sum = 0;
  1104. for (j = 5; j <= 25; j++) {
  1105. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  1106. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  1107. goto finish;
  1108. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  1109. if (j == 5)
  1110. tmp = mean_sq_pwr;
  1111. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  1112. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  1113. mean_sq_pwr = ideal_pwr - normal_pwr;
  1114. mean_sq_pwr *= mean_sq_pwr;
  1115. inner_sum += mean_sq_pwr;
  1116. if ((i == 128) || (inner_sum < mean_sq_pwr_min)) {
  1117. lpphy->rc_cap = i;
  1118. mean_sq_pwr_min = inner_sum;
  1119. }
  1120. }
  1121. }
  1122. lpphy_stop_ddfs(dev);
  1123. finish:
  1124. lpphy_restore_crs(dev, true);
  1125. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1126. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1127. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1128. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1129. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1130. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1131. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1132. lpphy_set_bb_mult(dev, old_bbmult);
  1133. if (old_txg_ovr) {
  1134. /*
  1135. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1136. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1137. * has a Set here, while v4.174.64.19 has a Get - regression in
  1138. * the vendor driver? This should be tested this once the code
  1139. * is testable.
  1140. */
  1141. lpphy_set_tx_gains(dev, tx_gains);
  1142. }
  1143. lpphy_set_tx_power_control(dev, old_txpctl);
  1144. if (lpphy->rc_cap)
  1145. lpphy_set_rc_cap(dev);
  1146. }
  1147. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1148. {
  1149. struct ssb_bus *bus = dev->dev->bus;
  1150. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1151. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1152. int i;
  1153. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1154. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1155. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1156. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1157. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1158. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1159. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1160. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1161. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1162. for (i = 0; i < 10000; i++) {
  1163. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1164. break;
  1165. msleep(1);
  1166. }
  1167. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1168. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1169. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1170. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1171. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1172. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1173. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1174. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1175. if (crystal_freq == 24000000) {
  1176. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1177. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1178. } else {
  1179. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1180. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1181. }
  1182. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1183. for (i = 0; i < 10000; i++) {
  1184. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1185. break;
  1186. msleep(1);
  1187. }
  1188. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1189. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1190. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1191. }
  1192. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1193. {
  1194. struct b43_phy_lp *lpphy = dev->phy.lp;
  1195. if (dev->phy.rev >= 2) {
  1196. lpphy_rev2plus_rc_calib(dev);
  1197. } else if (!lpphy->rc_cap) {
  1198. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1199. lpphy_rev0_1_rc_calib(dev);
  1200. } else {
  1201. lpphy_set_rc_cap(dev);
  1202. }
  1203. }
  1204. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1205. {
  1206. if (dev->phy.rev >= 2)
  1207. return; // rev2+ doesn't support antenna diversity
  1208. if (B43_WARN_ON(antenna > B43_ANTENNA_AUTO1))
  1209. return;
  1210. b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP);
  1211. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFD, antenna & 0x2);
  1212. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFE, antenna & 0x1);
  1213. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP);
  1214. dev->phy.lp->antenna = antenna;
  1215. }
  1216. static void lpphy_set_tx_iqcc(struct b43_wldev *dev, u16 a, u16 b)
  1217. {
  1218. u16 tmp[2];
  1219. tmp[0] = a;
  1220. tmp[1] = b;
  1221. b43_lptab_write_bulk(dev, B43_LPTAB16(0, 80), 2, tmp);
  1222. }
  1223. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1224. {
  1225. struct b43_phy_lp *lpphy = dev->phy.lp;
  1226. struct lpphy_tx_gains gains;
  1227. u32 iq_comp, tx_gain, coeff, rf_power;
  1228. lpphy->tx_pwr_idx_over = index;
  1229. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1230. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1231. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1232. if (dev->phy.rev >= 2) {
  1233. iq_comp = b43_lptab_read(dev, B43_LPTAB32(7, index + 320));
  1234. tx_gain = b43_lptab_read(dev, B43_LPTAB32(7, index + 192));
  1235. gains.pad = (tx_gain >> 16) & 0xFF;
  1236. gains.gm = tx_gain & 0xFF;
  1237. gains.pga = (tx_gain >> 8) & 0xFF;
  1238. gains.dac = (iq_comp >> 28) & 0xFF;
  1239. lpphy_set_tx_gains(dev, gains);
  1240. } else {
  1241. iq_comp = b43_lptab_read(dev, B43_LPTAB32(10, index + 320));
  1242. tx_gain = b43_lptab_read(dev, B43_LPTAB32(10, index + 192));
  1243. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  1244. 0xF800, (tx_gain >> 4) & 0x7FFF);
  1245. lpphy_set_dac_gain(dev, tx_gain & 0x7);
  1246. lpphy_set_pa_gain(dev, (tx_gain >> 24) & 0x7F);
  1247. }
  1248. lpphy_set_bb_mult(dev, (iq_comp >> 20) & 0xFF);
  1249. lpphy_set_tx_iqcc(dev, (iq_comp >> 10) & 0x3FF, iq_comp & 0x3FF);
  1250. if (dev->phy.rev >= 2) {
  1251. coeff = b43_lptab_read(dev, B43_LPTAB32(7, index + 448));
  1252. } else {
  1253. coeff = b43_lptab_read(dev, B43_LPTAB32(10, index + 448));
  1254. }
  1255. b43_lptab_write(dev, B43_LPTAB16(0, 85), coeff & 0xFFFF);
  1256. if (dev->phy.rev >= 2) {
  1257. rf_power = b43_lptab_read(dev, B43_LPTAB32(7, index + 576));
  1258. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00,
  1259. rf_power & 0xFFFF);//SPEC FIXME mask & set != 0
  1260. }
  1261. lpphy_enable_tx_gain_override(dev);
  1262. }
  1263. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1264. {
  1265. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1266. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1267. }
  1268. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1269. bool blocked)
  1270. {
  1271. //TODO check MAC control register
  1272. if (blocked) {
  1273. if (dev->phy.rev >= 2) {
  1274. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x83FF);
  1275. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1276. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0x80FF);
  1277. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xDFFF);
  1278. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0808);
  1279. } else {
  1280. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xE0FF);
  1281. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1282. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFCFF);
  1283. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0018);
  1284. }
  1285. } else {
  1286. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xE0FF);
  1287. if (dev->phy.rev >= 2)
  1288. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xF7F7);
  1289. else
  1290. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFE7);
  1291. }
  1292. }
  1293. /* This was previously called lpphy_japan_filter */
  1294. static void lpphy_set_analog_filter(struct b43_wldev *dev, int channel)
  1295. {
  1296. struct b43_phy_lp *lpphy = dev->phy.lp;
  1297. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1298. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1299. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1300. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1301. lpphy_set_rc_cap(dev);
  1302. } else {
  1303. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1304. }
  1305. }
  1306. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1307. {
  1308. if (mode != TSSI_MUX_EXT) {
  1309. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1310. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1311. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1312. if (mode == TSSI_MUX_POSTPA) {
  1313. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1314. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1315. } else {
  1316. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1317. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1318. 0xFFC7, 0x20);
  1319. }
  1320. } else {
  1321. B43_WARN_ON(1);
  1322. }
  1323. }
  1324. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1325. {
  1326. u16 tmp;
  1327. int i;
  1328. //SPEC TODO Call LP PHY Clear TX Power offsets
  1329. for (i = 0; i < 64; i++) {
  1330. if (dev->phy.rev >= 2)
  1331. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1332. else
  1333. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1334. }
  1335. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1336. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1337. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1338. if (dev->phy.rev < 2) {
  1339. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1340. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1341. } else {
  1342. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1343. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1344. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1345. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1346. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1347. }
  1348. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1349. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1350. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1351. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1352. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1353. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1354. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1355. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1356. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1357. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1358. if (dev->phy.rev < 2) {
  1359. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1360. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1361. } else {
  1362. lpphy_set_tx_power_by_index(dev, 0x7F);
  1363. }
  1364. b43_dummy_transmission(dev, true, true);
  1365. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1366. if (tmp & 0x8000) {
  1367. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1368. 0xFFC0, (tmp & 0xFF) - 32);
  1369. }
  1370. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1371. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1372. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1373. }
  1374. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1375. {
  1376. struct lpphy_tx_gains gains;
  1377. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1378. gains.gm = 4;
  1379. gains.pad = 12;
  1380. gains.pga = 12;
  1381. gains.dac = 0;
  1382. } else {
  1383. gains.gm = 7;
  1384. gains.pad = 14;
  1385. gains.pga = 15;
  1386. gains.dac = 0;
  1387. }
  1388. lpphy_set_tx_gains(dev, gains);
  1389. lpphy_set_bb_mult(dev, 150);
  1390. }
  1391. /* Initialize TX power control */
  1392. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1393. {
  1394. if (0/*FIXME HWPCTL capable */) {
  1395. lpphy_tx_pctl_init_hw(dev);
  1396. } else { /* This device is only software TX power control capable. */
  1397. lpphy_tx_pctl_init_sw(dev);
  1398. }
  1399. }
  1400. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1401. {
  1402. struct b43_phy_lp *lpphy = dev->phy.lp;
  1403. u32 *saved_tab;
  1404. const unsigned int saved_tab_size = 256;
  1405. enum b43_lpphy_txpctl_mode txpctl_mode;
  1406. s8 tx_pwr_idx_over;
  1407. u16 tssi_npt, tssi_idx;
  1408. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1409. if (!saved_tab) {
  1410. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1411. return;
  1412. }
  1413. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1414. txpctl_mode = lpphy->txpctl_mode;
  1415. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1416. tssi_npt = lpphy->tssi_npt;
  1417. tssi_idx = lpphy->tssi_idx;
  1418. if (dev->phy.rev < 2) {
  1419. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1420. saved_tab_size, saved_tab);
  1421. } else {
  1422. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1423. saved_tab_size, saved_tab);
  1424. }
  1425. //FIXME PHY reset
  1426. lpphy_table_init(dev); //FIXME is table init needed?
  1427. lpphy_baseband_init(dev);
  1428. lpphy_tx_pctl_init(dev);
  1429. b43_lpphy_op_software_rfkill(dev, false);
  1430. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1431. if (dev->phy.rev < 2) {
  1432. b43_lptab_write_bulk(dev, B43_LPTAB32(10, 0x140),
  1433. saved_tab_size, saved_tab);
  1434. } else {
  1435. b43_lptab_write_bulk(dev, B43_LPTAB32(7, 0x140),
  1436. saved_tab_size, saved_tab);
  1437. }
  1438. b43_write16(dev, B43_MMIO_CHANNEL, lpphy->channel);
  1439. lpphy->tssi_npt = tssi_npt;
  1440. lpphy->tssi_idx = tssi_idx;
  1441. lpphy_set_analog_filter(dev, lpphy->channel);
  1442. if (tx_pwr_idx_over != -1)
  1443. lpphy_set_tx_power_by_index(dev, tx_pwr_idx_over);
  1444. if (lpphy->rc_cap)
  1445. lpphy_set_rc_cap(dev);
  1446. b43_lpphy_op_set_rx_antenna(dev, lpphy->antenna);
  1447. lpphy_set_tx_power_control(dev, txpctl_mode);
  1448. kfree(saved_tab);
  1449. }
  1450. struct lpphy_rx_iq_comp { u8 chan; s8 c1, c0; };
  1451. static const struct lpphy_rx_iq_comp lpphy_5354_iq_table[] = {
  1452. { .chan = 1, .c1 = -66, .c0 = 15, },
  1453. { .chan = 2, .c1 = -66, .c0 = 15, },
  1454. { .chan = 3, .c1 = -66, .c0 = 15, },
  1455. { .chan = 4, .c1 = -66, .c0 = 15, },
  1456. { .chan = 5, .c1 = -66, .c0 = 15, },
  1457. { .chan = 6, .c1 = -66, .c0 = 15, },
  1458. { .chan = 7, .c1 = -66, .c0 = 14, },
  1459. { .chan = 8, .c1 = -66, .c0 = 14, },
  1460. { .chan = 9, .c1 = -66, .c0 = 14, },
  1461. { .chan = 10, .c1 = -66, .c0 = 14, },
  1462. { .chan = 11, .c1 = -66, .c0 = 14, },
  1463. { .chan = 12, .c1 = -66, .c0 = 13, },
  1464. { .chan = 13, .c1 = -66, .c0 = 13, },
  1465. { .chan = 14, .c1 = -66, .c0 = 13, },
  1466. };
  1467. static const struct lpphy_rx_iq_comp lpphy_rev0_1_iq_table[] = {
  1468. { .chan = 1, .c1 = -64, .c0 = 13, },
  1469. { .chan = 2, .c1 = -64, .c0 = 13, },
  1470. { .chan = 3, .c1 = -64, .c0 = 13, },
  1471. { .chan = 4, .c1 = -64, .c0 = 13, },
  1472. { .chan = 5, .c1 = -64, .c0 = 12, },
  1473. { .chan = 6, .c1 = -64, .c0 = 12, },
  1474. { .chan = 7, .c1 = -64, .c0 = 12, },
  1475. { .chan = 8, .c1 = -64, .c0 = 12, },
  1476. { .chan = 9, .c1 = -64, .c0 = 12, },
  1477. { .chan = 10, .c1 = -64, .c0 = 11, },
  1478. { .chan = 11, .c1 = -64, .c0 = 11, },
  1479. { .chan = 12, .c1 = -64, .c0 = 11, },
  1480. { .chan = 13, .c1 = -64, .c0 = 11, },
  1481. { .chan = 14, .c1 = -64, .c0 = 10, },
  1482. { .chan = 34, .c1 = -62, .c0 = 24, },
  1483. { .chan = 38, .c1 = -62, .c0 = 24, },
  1484. { .chan = 42, .c1 = -62, .c0 = 24, },
  1485. { .chan = 46, .c1 = -62, .c0 = 23, },
  1486. { .chan = 36, .c1 = -62, .c0 = 24, },
  1487. { .chan = 40, .c1 = -62, .c0 = 24, },
  1488. { .chan = 44, .c1 = -62, .c0 = 23, },
  1489. { .chan = 48, .c1 = -62, .c0 = 23, },
  1490. { .chan = 52, .c1 = -62, .c0 = 23, },
  1491. { .chan = 56, .c1 = -62, .c0 = 22, },
  1492. { .chan = 60, .c1 = -62, .c0 = 22, },
  1493. { .chan = 64, .c1 = -62, .c0 = 22, },
  1494. { .chan = 100, .c1 = -62, .c0 = 16, },
  1495. { .chan = 104, .c1 = -62, .c0 = 16, },
  1496. { .chan = 108, .c1 = -62, .c0 = 15, },
  1497. { .chan = 112, .c1 = -62, .c0 = 14, },
  1498. { .chan = 116, .c1 = -62, .c0 = 14, },
  1499. { .chan = 120, .c1 = -62, .c0 = 13, },
  1500. { .chan = 124, .c1 = -62, .c0 = 12, },
  1501. { .chan = 128, .c1 = -62, .c0 = 12, },
  1502. { .chan = 132, .c1 = -62, .c0 = 12, },
  1503. { .chan = 136, .c1 = -62, .c0 = 11, },
  1504. { .chan = 140, .c1 = -62, .c0 = 10, },
  1505. { .chan = 149, .c1 = -61, .c0 = 9, },
  1506. { .chan = 153, .c1 = -61, .c0 = 9, },
  1507. { .chan = 157, .c1 = -61, .c0 = 9, },
  1508. { .chan = 161, .c1 = -61, .c0 = 8, },
  1509. { .chan = 165, .c1 = -61, .c0 = 8, },
  1510. { .chan = 184, .c1 = -62, .c0 = 25, },
  1511. { .chan = 188, .c1 = -62, .c0 = 25, },
  1512. { .chan = 192, .c1 = -62, .c0 = 25, },
  1513. { .chan = 196, .c1 = -62, .c0 = 25, },
  1514. { .chan = 200, .c1 = -62, .c0 = 25, },
  1515. { .chan = 204, .c1 = -62, .c0 = 25, },
  1516. { .chan = 208, .c1 = -62, .c0 = 25, },
  1517. { .chan = 212, .c1 = -62, .c0 = 25, },
  1518. { .chan = 216, .c1 = -62, .c0 = 26, },
  1519. };
  1520. static const struct lpphy_rx_iq_comp lpphy_rev2plus_iq_comp = {
  1521. .chan = 0,
  1522. .c1 = -64,
  1523. .c0 = 0,
  1524. };
  1525. static u8 lpphy_nbits(s32 val)
  1526. {
  1527. u32 tmp = abs(val);
  1528. u8 nbits = 0;
  1529. while (tmp != 0) {
  1530. nbits++;
  1531. tmp >>= 1;
  1532. }
  1533. return nbits;
  1534. }
  1535. static int lpphy_calc_rx_iq_comp(struct b43_wldev *dev, u16 samples)
  1536. {
  1537. struct lpphy_iq_est iq_est;
  1538. u16 c0, c1;
  1539. int prod, ipwr, qpwr, prod_msb, q_msb, tmp1, tmp2, tmp3, tmp4, ret;
  1540. c1 = b43_phy_read(dev, B43_LPPHY_RX_COMP_COEFF_S);
  1541. c0 = c1 >> 8;
  1542. c1 |= 0xFF;
  1543. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, 0x00C0);
  1544. b43_phy_mask(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF);
  1545. ret = lpphy_rx_iq_est(dev, samples, 32, &iq_est);
  1546. if (!ret)
  1547. goto out;
  1548. prod = iq_est.iq_prod;
  1549. ipwr = iq_est.i_pwr;
  1550. qpwr = iq_est.q_pwr;
  1551. if (ipwr + qpwr < 2) {
  1552. ret = 0;
  1553. goto out;
  1554. }
  1555. prod_msb = lpphy_nbits(prod);
  1556. q_msb = lpphy_nbits(qpwr);
  1557. tmp1 = prod_msb - 20;
  1558. if (tmp1 >= 0) {
  1559. tmp3 = ((prod << (30 - prod_msb)) + (ipwr >> (1 + tmp1))) /
  1560. (ipwr >> tmp1);
  1561. } else {
  1562. tmp3 = ((prod << (30 - prod_msb)) + (ipwr << (-1 - tmp1))) /
  1563. (ipwr << -tmp1);
  1564. }
  1565. tmp2 = q_msb - 11;
  1566. if (tmp2 >= 0)
  1567. tmp4 = (qpwr << (31 - q_msb)) / (ipwr >> tmp2);
  1568. else
  1569. tmp4 = (qpwr << (31 - q_msb)) / (ipwr << -tmp2);
  1570. tmp4 -= tmp3 * tmp3;
  1571. tmp4 = -int_sqrt(tmp4);
  1572. c0 = tmp3 >> 3;
  1573. c1 = tmp4 >> 4;
  1574. out:
  1575. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, c1);
  1576. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF, c0 << 8);
  1577. return ret;
  1578. }
  1579. /* Complex number using 2 32-bit signed integers */
  1580. typedef struct {s32 i, q;} lpphy_c32;
  1581. static lpphy_c32 lpphy_cordic(int theta)
  1582. {
  1583. u32 arctg[] = { 2949120, 1740967, 919879, 466945, 234379, 117304,
  1584. 58666, 29335, 14668, 7334, 3667, 1833, 917, 458,
  1585. 229, 115, 57, 29, };
  1586. int i, tmp, signx = 1, angle = 0;
  1587. lpphy_c32 ret = { .i = 39797, .q = 0, };
  1588. theta = clamp_t(int, theta, -180, 180);
  1589. if (theta > 90) {
  1590. theta -= 180;
  1591. signx = -1;
  1592. } else if (theta < -90) {
  1593. theta += 180;
  1594. signx = -1;
  1595. }
  1596. for (i = 0; i <= 17; i++) {
  1597. if (theta > angle) {
  1598. tmp = ret.i - (ret.q >> i);
  1599. ret.q += ret.i >> i;
  1600. ret.i = tmp;
  1601. angle += arctg[i];
  1602. } else {
  1603. tmp = ret.i + (ret.q >> i);
  1604. ret.q -= ret.i >> i;
  1605. ret.i = tmp;
  1606. angle -= arctg[i];
  1607. }
  1608. }
  1609. ret.i *= signx;
  1610. ret.q *= signx;
  1611. return ret;
  1612. }
  1613. static void lpphy_run_samples(struct b43_wldev *dev, u16 samples, u16 loops,
  1614. u16 wait)
  1615. {
  1616. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL,
  1617. 0xFFC0, samples - 1);
  1618. if (loops != 0xFFFF)
  1619. loops--;
  1620. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000, loops);
  1621. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL, 0x3F, wait << 6);
  1622. b43_phy_set(dev, B43_LPPHY_A_PHY_CTL_ADDR, 0x1);
  1623. }
  1624. //SPEC FIXME what does a negative freq mean?
  1625. static void lpphy_start_tx_tone(struct b43_wldev *dev, s32 freq, u16 max)
  1626. {
  1627. struct b43_phy_lp *lpphy = dev->phy.lp;
  1628. u16 buf[64];
  1629. int i, samples = 0, angle = 0, rotation = (9 * freq) / 500;
  1630. lpphy_c32 sample;
  1631. lpphy->tx_tone_freq = freq;
  1632. if (freq) {
  1633. /* Find i for which abs(freq) integrally divides 20000 * i */
  1634. for (i = 1; samples * abs(freq) != 20000 * i; i++) {
  1635. samples = (20000 * i) / abs(freq);
  1636. if(B43_WARN_ON(samples > 63))
  1637. return;
  1638. }
  1639. } else {
  1640. samples = 2;
  1641. }
  1642. for (i = 0; i < samples; i++) {
  1643. sample = lpphy_cordic(angle);
  1644. angle += rotation;
  1645. buf[i] = ((sample.i * max) & 0xFF) << 8;
  1646. buf[i] |= (sample.q * max) & 0xFF;
  1647. }
  1648. b43_lptab_write_bulk(dev, B43_LPTAB16(5, 0), samples, buf);
  1649. lpphy_run_samples(dev, samples, 0xFFFF, 0);
  1650. }
  1651. static void lpphy_stop_tx_tone(struct b43_wldev *dev)
  1652. {
  1653. struct b43_phy_lp *lpphy = dev->phy.lp;
  1654. int i;
  1655. lpphy->tx_tone_freq = 0;
  1656. b43_phy_mask(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000);
  1657. for (i = 0; i < 31; i++) {
  1658. if (!(b43_phy_read(dev, B43_LPPHY_A_PHY_CTL_ADDR) & 0x1))
  1659. break;
  1660. udelay(100);
  1661. }
  1662. }
  1663. static void lpphy_papd_cal(struct b43_wldev *dev, struct lpphy_tx_gains gains,
  1664. int mode, bool useindex, u8 index)
  1665. {
  1666. //TODO
  1667. }
  1668. static void lpphy_papd_cal_txpwr(struct b43_wldev *dev)
  1669. {
  1670. struct b43_phy_lp *lpphy = dev->phy.lp;
  1671. struct ssb_bus *bus = dev->dev->bus;
  1672. struct lpphy_tx_gains gains, oldgains;
  1673. int old_txpctl, old_afe_ovr, old_rf, old_bbmult;
  1674. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1675. old_txpctl = lpphy->txpctl_mode;
  1676. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1677. if (old_afe_ovr)
  1678. oldgains = lpphy_get_tx_gains(dev);
  1679. old_rf = b43_phy_read(dev, B43_LPPHY_RF_PWR_OVERRIDE) & 0xFF;
  1680. old_bbmult = lpphy_get_bb_mult(dev);
  1681. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1682. if (bus->chip_id == 0x4325 && bus->chip_rev == 0)
  1683. lpphy_papd_cal(dev, gains, 0, 1, 30);
  1684. else
  1685. lpphy_papd_cal(dev, gains, 0, 1, 65);
  1686. if (old_afe_ovr)
  1687. lpphy_set_tx_gains(dev, oldgains);
  1688. lpphy_set_bb_mult(dev, old_bbmult);
  1689. lpphy_set_tx_power_control(dev, old_txpctl);
  1690. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00, old_rf);
  1691. }
  1692. static int lpphy_rx_iq_cal(struct b43_wldev *dev, bool noise, bool tx,
  1693. bool rx, bool pa, struct lpphy_tx_gains *gains)
  1694. {
  1695. struct b43_phy_lp *lpphy = dev->phy.lp;
  1696. struct ssb_bus *bus = dev->dev->bus;
  1697. const struct lpphy_rx_iq_comp *iqcomp = NULL;
  1698. struct lpphy_tx_gains nogains, oldgains;
  1699. u16 tmp;
  1700. int i, ret;
  1701. memset(&nogains, 0, sizeof(nogains));
  1702. memset(&oldgains, 0, sizeof(oldgains));
  1703. if (bus->chip_id == 0x5354) {
  1704. for (i = 0; i < ARRAY_SIZE(lpphy_5354_iq_table); i++) {
  1705. if (lpphy_5354_iq_table[i].chan == lpphy->channel) {
  1706. iqcomp = &lpphy_5354_iq_table[i];
  1707. }
  1708. }
  1709. } else if (dev->phy.rev >= 2) {
  1710. iqcomp = &lpphy_rev2plus_iq_comp;
  1711. } else {
  1712. for (i = 0; i < ARRAY_SIZE(lpphy_rev0_1_iq_table); i++) {
  1713. if (lpphy_rev0_1_iq_table[i].chan == lpphy->channel) {
  1714. iqcomp = &lpphy_rev0_1_iq_table[i];
  1715. }
  1716. }
  1717. }
  1718. if (B43_WARN_ON(!iqcomp))
  1719. return 0;
  1720. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, iqcomp->c1);
  1721. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S,
  1722. 0x00FF, iqcomp->c0 << 8);
  1723. if (noise) {
  1724. tx = true;
  1725. rx = false;
  1726. pa = false;
  1727. }
  1728. lpphy_set_trsw_over(dev, tx, rx);
  1729. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1730. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  1731. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1732. 0xFFF7, pa << 3);
  1733. } else {
  1734. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  1735. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1736. 0xFFDF, pa << 5);
  1737. }
  1738. tmp = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1739. if (noise)
  1740. lpphy_set_rx_gain(dev, 0x2D5D);
  1741. else {
  1742. if (tmp)
  1743. oldgains = lpphy_get_tx_gains(dev);
  1744. if (!gains)
  1745. gains = &nogains;
  1746. lpphy_set_tx_gains(dev, *gains);
  1747. }
  1748. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1749. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  1750. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  1751. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  1752. lpphy_set_deaf(dev, false);
  1753. if (noise)
  1754. ret = lpphy_calc_rx_iq_comp(dev, 0xFFF0);
  1755. else {
  1756. lpphy_start_tx_tone(dev, 4000, 100);
  1757. ret = lpphy_calc_rx_iq_comp(dev, 0x4000);
  1758. lpphy_stop_tx_tone(dev);
  1759. }
  1760. lpphy_clear_deaf(dev, false);
  1761. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFC);
  1762. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  1763. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFDF);
  1764. if (!noise) {
  1765. if (tmp)
  1766. lpphy_set_tx_gains(dev, oldgains);
  1767. else
  1768. lpphy_disable_tx_gain_override(dev);
  1769. }
  1770. lpphy_disable_rx_gain_override(dev);
  1771. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1772. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xF7FF);
  1773. return ret;
  1774. }
  1775. static void lpphy_calibration(struct b43_wldev *dev)
  1776. {
  1777. struct b43_phy_lp *lpphy = dev->phy.lp;
  1778. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1779. bool full_cal = false;
  1780. if (lpphy->full_calib_chan != lpphy->channel) {
  1781. full_cal = true;
  1782. lpphy->full_calib_chan = lpphy->channel;
  1783. }
  1784. b43_mac_suspend(dev);
  1785. lpphy_btcoex_override(dev);
  1786. if (dev->phy.rev >= 2)
  1787. lpphy_save_dig_flt_state(dev);
  1788. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1789. saved_pctl_mode = lpphy->txpctl_mode;
  1790. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1791. //TODO Perform transmit power table I/Q LO calibration
  1792. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1793. lpphy_pr41573_workaround(dev);
  1794. if ((dev->phy.rev >= 2) && full_cal) {
  1795. lpphy_papd_cal_txpwr(dev);
  1796. }
  1797. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1798. if (dev->phy.rev >= 2)
  1799. lpphy_restore_dig_flt_state(dev);
  1800. lpphy_rx_iq_cal(dev, true, true, false, false, NULL);
  1801. b43_mac_enable(dev);
  1802. }
  1803. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1804. {
  1805. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1806. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1807. }
  1808. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1809. {
  1810. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1811. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1812. }
  1813. static void b43_lpphy_op_maskset(struct b43_wldev *dev, u16 reg, u16 mask,
  1814. u16 set)
  1815. {
  1816. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1817. b43_write16(dev, B43_MMIO_PHY_DATA,
  1818. (b43_read16(dev, B43_MMIO_PHY_DATA) & mask) | set);
  1819. }
  1820. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1821. {
  1822. /* Register 1 is a 32-bit register. */
  1823. B43_WARN_ON(reg == 1);
  1824. /* LP-PHY needs a special bit set for read access */
  1825. if (dev->phy.rev < 2) {
  1826. if (reg != 0x4001)
  1827. reg |= 0x100;
  1828. } else
  1829. reg |= 0x200;
  1830. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1831. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1832. }
  1833. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1834. {
  1835. /* Register 1 is a 32-bit register. */
  1836. B43_WARN_ON(reg == 1);
  1837. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1838. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1839. }
  1840. struct b206x_channel {
  1841. u8 channel;
  1842. u16 freq;
  1843. u8 data[12];
  1844. };
  1845. static const struct b206x_channel b2062_chantbl[] = {
  1846. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1847. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1848. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1849. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1850. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1851. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1852. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1853. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1854. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1855. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1856. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1857. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1858. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1859. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1860. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1861. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1862. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1863. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1864. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1865. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1866. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1867. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1868. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1869. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1870. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1871. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1872. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1873. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1874. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1875. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1876. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1877. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1878. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1879. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1880. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1881. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1882. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1883. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1884. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1885. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1886. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1887. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1888. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1889. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1890. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1891. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1892. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1893. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1894. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1895. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1896. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1897. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1898. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1899. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1900. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1901. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1902. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1903. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1904. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1905. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1906. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1907. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1908. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1909. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1910. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1911. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1912. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1913. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1914. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1915. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1916. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1917. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1918. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1919. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1920. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1921. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1922. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1923. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1924. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1925. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1926. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1927. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1928. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1929. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1930. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1931. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1932. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1933. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1934. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1935. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1936. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1937. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1938. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1939. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1940. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1941. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1942. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1943. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1944. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1945. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1946. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1947. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1948. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1949. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1950. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1951. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1952. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1953. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1954. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1955. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1956. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1957. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1958. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1959. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1960. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1961. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1962. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1963. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1964. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1965. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1966. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1967. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1968. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1969. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1970. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1971. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1972. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1973. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1974. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1975. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1976. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1977. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1978. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1979. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1980. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1981. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1982. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1983. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1984. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1985. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1986. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1987. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1988. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1989. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1990. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1991. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1992. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1993. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1994. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1995. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1996. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1997. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1998. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1999. };
  2000. static const struct b206x_channel b2063_chantbl[] = {
  2001. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  2002. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2003. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2004. .data[10] = 0x80, .data[11] = 0x70, },
  2005. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  2006. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2007. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2008. .data[10] = 0x80, .data[11] = 0x70, },
  2009. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  2010. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2011. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2012. .data[10] = 0x80, .data[11] = 0x70, },
  2013. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  2014. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2015. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2016. .data[10] = 0x80, .data[11] = 0x70, },
  2017. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  2018. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2019. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2020. .data[10] = 0x80, .data[11] = 0x70, },
  2021. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  2022. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2023. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2024. .data[10] = 0x80, .data[11] = 0x70, },
  2025. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  2026. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2027. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2028. .data[10] = 0x80, .data[11] = 0x70, },
  2029. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  2030. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2031. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2032. .data[10] = 0x80, .data[11] = 0x70, },
  2033. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  2034. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2035. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2036. .data[10] = 0x80, .data[11] = 0x70, },
  2037. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  2038. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2039. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2040. .data[10] = 0x80, .data[11] = 0x70, },
  2041. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  2042. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2043. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2044. .data[10] = 0x80, .data[11] = 0x70, },
  2045. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  2046. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2047. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2048. .data[10] = 0x80, .data[11] = 0x70, },
  2049. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  2050. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2051. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2052. .data[10] = 0x80, .data[11] = 0x70, },
  2053. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  2054. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2055. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2056. .data[10] = 0x80, .data[11] = 0x70, },
  2057. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  2058. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  2059. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  2060. .data[10] = 0x20, .data[11] = 0x00, },
  2061. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  2062. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  2063. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2064. .data[10] = 0x20, .data[11] = 0x00, },
  2065. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  2066. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2067. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2068. .data[10] = 0x20, .data[11] = 0x00, },
  2069. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  2070. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2071. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2072. .data[10] = 0x20, .data[11] = 0x00, },
  2073. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  2074. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2075. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2076. .data[10] = 0x20, .data[11] = 0x00, },
  2077. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  2078. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  2079. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2080. .data[10] = 0x20, .data[11] = 0x00, },
  2081. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  2082. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2083. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2084. .data[10] = 0x20, .data[11] = 0x00, },
  2085. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  2086. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2087. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  2088. .data[10] = 0x20, .data[11] = 0x00, },
  2089. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  2090. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  2091. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  2092. .data[10] = 0x20, .data[11] = 0x00, },
  2093. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  2094. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2095. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2096. .data[10] = 0x10, .data[11] = 0x00, },
  2097. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  2098. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2099. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2100. .data[10] = 0x10, .data[11] = 0x00, },
  2101. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  2102. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2103. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2104. .data[10] = 0x10, .data[11] = 0x00, },
  2105. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  2106. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2107. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2108. .data[10] = 0x00, .data[11] = 0x00, },
  2109. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  2110. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2111. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2112. .data[10] = 0x00, .data[11] = 0x00, },
  2113. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  2114. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2115. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2116. .data[10] = 0x00, .data[11] = 0x00, },
  2117. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  2118. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2119. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2120. .data[10] = 0x00, .data[11] = 0x00, },
  2121. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  2122. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2123. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2124. .data[10] = 0x00, .data[11] = 0x00, },
  2125. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  2126. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2127. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2128. .data[10] = 0x00, .data[11] = 0x00, },
  2129. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  2130. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2131. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2132. .data[10] = 0x00, .data[11] = 0x00, },
  2133. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  2134. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2135. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2136. .data[10] = 0x00, .data[11] = 0x00, },
  2137. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  2138. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2139. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2140. .data[10] = 0x00, .data[11] = 0x00, },
  2141. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  2142. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2143. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2144. .data[10] = 0x00, .data[11] = 0x00, },
  2145. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  2146. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2147. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2148. .data[10] = 0x00, .data[11] = 0x00, },
  2149. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  2150. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2151. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2152. .data[10] = 0x00, .data[11] = 0x00, },
  2153. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  2154. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2155. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2156. .data[10] = 0x00, .data[11] = 0x00, },
  2157. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  2158. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2159. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2160. .data[10] = 0x00, .data[11] = 0x00, },
  2161. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  2162. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2163. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2164. .data[10] = 0x00, .data[11] = 0x00, },
  2165. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  2166. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2167. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2168. .data[10] = 0x00, .data[11] = 0x00, },
  2169. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  2170. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  2171. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  2172. .data[10] = 0x50, .data[11] = 0x00, },
  2173. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  2174. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  2175. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2176. .data[10] = 0x50, .data[11] = 0x00, },
  2177. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  2178. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2179. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2180. .data[10] = 0x50, .data[11] = 0x00, },
  2181. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  2182. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2183. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2184. .data[10] = 0x40, .data[11] = 0x00, },
  2185. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  2186. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  2187. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2188. .data[10] = 0x40, .data[11] = 0x00, },
  2189. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  2190. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  2191. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2192. .data[10] = 0x40, .data[11] = 0x00, },
  2193. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  2194. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  2195. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2196. .data[10] = 0x40, .data[11] = 0x00, },
  2197. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  2198. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  2199. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2200. .data[10] = 0x40, .data[11] = 0x00, },
  2201. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  2202. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  2203. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2204. .data[10] = 0x40, .data[11] = 0x00, },
  2205. };
  2206. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  2207. {
  2208. struct ssb_bus *bus = dev->dev->bus;
  2209. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  2210. udelay(20);
  2211. if (bus->chip_id == 0x5354) {
  2212. b43_radio_write(dev, B2062_N_COMM1, 4);
  2213. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  2214. } else {
  2215. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  2216. }
  2217. udelay(5);
  2218. }
  2219. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  2220. {
  2221. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  2222. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  2223. udelay(200);
  2224. }
  2225. static int lpphy_b2062_tune(struct b43_wldev *dev,
  2226. unsigned int channel)
  2227. {
  2228. struct b43_phy_lp *lpphy = dev->phy.lp;
  2229. struct ssb_bus *bus = dev->dev->bus;
  2230. const struct b206x_channel *chandata = NULL;
  2231. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2232. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  2233. int i, err = 0;
  2234. for (i = 0; i < ARRAY_SIZE(b2062_chantbl); i++) {
  2235. if (b2062_chantbl[i].channel == channel) {
  2236. chandata = &b2062_chantbl[i];
  2237. break;
  2238. }
  2239. }
  2240. if (B43_WARN_ON(!chandata))
  2241. return -EINVAL;
  2242. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  2243. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  2244. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  2245. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  2246. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  2247. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  2248. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  2249. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  2250. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  2251. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  2252. tmp1 = crystal_freq / 1000;
  2253. tmp2 = lpphy->pdiv * 1000;
  2254. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  2255. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  2256. lpphy_b2062_reset_pll_bias(dev);
  2257. tmp3 = tmp2 * channel2freq_lp(channel);
  2258. if (channel2freq_lp(channel) < 4000)
  2259. tmp3 *= 2;
  2260. tmp4 = 48 * tmp1;
  2261. tmp6 = tmp3 / tmp4;
  2262. tmp7 = tmp3 % tmp4;
  2263. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  2264. tmp5 = tmp7 * 0x100;
  2265. tmp6 = tmp5 / tmp4;
  2266. tmp7 = tmp5 % tmp4;
  2267. b43_radio_write(dev, B2062_S_RFPLL_CTL27, tmp6);
  2268. tmp5 = tmp7 * 0x100;
  2269. tmp6 = tmp5 / tmp4;
  2270. tmp7 = tmp5 % tmp4;
  2271. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  2272. tmp5 = tmp7 * 0x100;
  2273. tmp6 = tmp5 / tmp4;
  2274. tmp7 = tmp5 % tmp4;
  2275. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  2276. tmp8 = b43_radio_read(dev, B2062_S_RFPLL_CTL19);
  2277. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  2278. b43_radio_write(dev, B2062_S_RFPLL_CTL23, (tmp9 >> 8) + 16);
  2279. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  2280. lpphy_b2062_vco_calib(dev);
  2281. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  2282. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  2283. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  2284. lpphy_b2062_reset_pll_bias(dev);
  2285. lpphy_b2062_vco_calib(dev);
  2286. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  2287. err = -EIO;
  2288. }
  2289. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  2290. return err;
  2291. }
  2292. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  2293. {
  2294. u16 tmp;
  2295. b43_radio_mask(dev, B2063_PLL_SP1, ~0x40);
  2296. tmp = b43_radio_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  2297. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  2298. udelay(1);
  2299. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  2300. udelay(1);
  2301. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  2302. udelay(1);
  2303. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  2304. udelay(300);
  2305. b43_radio_set(dev, B2063_PLL_SP1, 0x40);
  2306. }
  2307. static int lpphy_b2063_tune(struct b43_wldev *dev,
  2308. unsigned int channel)
  2309. {
  2310. struct ssb_bus *bus = dev->dev->bus;
  2311. static const struct b206x_channel *chandata = NULL;
  2312. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2313. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  2314. u16 old_comm15, scale;
  2315. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  2316. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  2317. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  2318. if (b2063_chantbl[i].channel == channel) {
  2319. chandata = &b2063_chantbl[i];
  2320. break;
  2321. }
  2322. }
  2323. if (B43_WARN_ON(!chandata))
  2324. return -EINVAL;
  2325. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  2326. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  2327. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  2328. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  2329. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  2330. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  2331. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  2332. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  2333. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  2334. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  2335. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  2336. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  2337. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  2338. b43_radio_set(dev, B2063_COMM15, 0x1E);
  2339. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  2340. vco_freq = chandata->freq << 1;
  2341. else
  2342. vco_freq = chandata->freq << 2;
  2343. freqref = crystal_freq * 3;
  2344. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  2345. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  2346. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  2347. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  2348. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  2349. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  2350. 0xFFF8, timeout >> 2);
  2351. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2352. 0xFF9F,timeout << 5);
  2353. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  2354. 999999) / 1000000) + 1;
  2355. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  2356. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  2357. count *= (timeout + 1) * (timeoutref + 1);
  2358. count--;
  2359. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2360. 0xF0, count >> 8);
  2361. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  2362. tmp1 = ((val3 * 62500) / freqref) << 4;
  2363. tmp2 = ((val3 * 62500) % freqref) << 4;
  2364. while (tmp2 >= freqref) {
  2365. tmp1++;
  2366. tmp2 -= freqref;
  2367. }
  2368. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  2369. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  2370. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  2371. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  2372. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  2373. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  2374. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  2375. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  2376. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  2377. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  2378. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  2379. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  2380. scale = 1;
  2381. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  2382. } else {
  2383. scale = 0;
  2384. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  2385. }
  2386. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  2387. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  2388. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  2389. tmp6 *= (tmp5 * 8) * (scale + 1);
  2390. if (tmp6 > 150)
  2391. tmp6 = 0;
  2392. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  2393. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  2394. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  2395. if (crystal_freq > 26000000)
  2396. b43_radio_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  2397. else
  2398. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  2399. if (val1 == 45)
  2400. b43_radio_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  2401. else
  2402. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  2403. b43_radio_set(dev, B2063_PLL_SP2, 0x3);
  2404. udelay(1);
  2405. b43_radio_mask(dev, B2063_PLL_SP2, 0xFFFC);
  2406. lpphy_b2063_vco_calib(dev);
  2407. b43_radio_write(dev, B2063_COMM15, old_comm15);
  2408. return 0;
  2409. }
  2410. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  2411. unsigned int new_channel)
  2412. {
  2413. struct b43_phy_lp *lpphy = dev->phy.lp;
  2414. int err;
  2415. if (dev->phy.radio_ver == 0x2063) {
  2416. err = lpphy_b2063_tune(dev, new_channel);
  2417. if (err)
  2418. return err;
  2419. } else {
  2420. err = lpphy_b2062_tune(dev, new_channel);
  2421. if (err)
  2422. return err;
  2423. lpphy_set_analog_filter(dev, new_channel);
  2424. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  2425. }
  2426. lpphy->channel = new_channel;
  2427. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  2428. return 0;
  2429. }
  2430. static int b43_lpphy_op_init(struct b43_wldev *dev)
  2431. {
  2432. int err;
  2433. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  2434. lpphy_baseband_init(dev);
  2435. lpphy_radio_init(dev);
  2436. lpphy_calibrate_rc(dev);
  2437. err = b43_lpphy_op_switch_channel(dev, 7);
  2438. if (err) {
  2439. b43dbg(dev->wl, "Switch to channel 7 failed, error = %d.\n",
  2440. err);
  2441. }
  2442. lpphy_tx_pctl_init(dev);
  2443. lpphy_calibration(dev);
  2444. //TODO ACI init
  2445. return 0;
  2446. }
  2447. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  2448. {
  2449. //TODO
  2450. }
  2451. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  2452. bool ignore_tssi)
  2453. {
  2454. //TODO
  2455. return B43_TXPWR_RES_DONE;
  2456. }
  2457. void b43_lpphy_op_switch_analog(struct b43_wldev *dev, bool on)
  2458. {
  2459. if (on) {
  2460. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xfff8);
  2461. } else {
  2462. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0x0007);
  2463. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x0007);
  2464. }
  2465. }
  2466. static void b43_lpphy_op_pwork_15sec(struct b43_wldev *dev)
  2467. {
  2468. //TODO
  2469. }
  2470. const struct b43_phy_operations b43_phyops_lp = {
  2471. .allocate = b43_lpphy_op_allocate,
  2472. .free = b43_lpphy_op_free,
  2473. .prepare_structs = b43_lpphy_op_prepare_structs,
  2474. .init = b43_lpphy_op_init,
  2475. .phy_read = b43_lpphy_op_read,
  2476. .phy_write = b43_lpphy_op_write,
  2477. .phy_maskset = b43_lpphy_op_maskset,
  2478. .radio_read = b43_lpphy_op_radio_read,
  2479. .radio_write = b43_lpphy_op_radio_write,
  2480. .software_rfkill = b43_lpphy_op_software_rfkill,
  2481. .switch_analog = b43_lpphy_op_switch_analog,
  2482. .switch_channel = b43_lpphy_op_switch_channel,
  2483. .get_default_chan = b43_lpphy_op_get_default_chan,
  2484. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  2485. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  2486. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  2487. .pwork_15sec = b43_lpphy_op_pwork_15sec,
  2488. .pwork_60sec = lpphy_calibration,
  2489. };