eeprom.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. u32 cksum, offset;
  90. /*
  91. * Read values from EEPROM and store them in the capability structure
  92. */
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  98. /* Return if we have an old EEPROM */
  99. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  100. return 0;
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  106. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  107. cksum ^= val;
  108. }
  109. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  110. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  111. return -EIO;
  112. }
  113. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  114. ee_ant_gain);
  115. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  116. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  118. /* XXX: Don't know which versions include these two */
  119. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  120. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  121. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  122. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  123. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  126. }
  127. }
  128. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  129. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  130. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  131. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  132. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  133. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  134. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  135. }
  136. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  137. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  138. ee->ee_is_hb63 = true;
  139. else
  140. ee->ee_is_hb63 = false;
  141. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  142. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  143. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  144. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  145. * and enable serdes programming if needed.
  146. *
  147. * XXX: Serdes values seem to be fixed so
  148. * no need to read them here, we write them
  149. * during ath5k_hw_attach */
  150. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  151. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  152. true : false;
  153. return 0;
  154. }
  155. /*
  156. * Read antenna infos from eeprom
  157. */
  158. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  159. unsigned int mode)
  160. {
  161. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  162. u32 o = *offset;
  163. u16 val;
  164. int ret, i = 0;
  165. AR5K_EEPROM_READ(o++, val);
  166. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  167. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  168. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  169. AR5K_EEPROM_READ(o++, val);
  170. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  171. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  172. ee->ee_ant_control[mode][i++] = val & 0x3f;
  173. AR5K_EEPROM_READ(o++, val);
  174. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  175. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  176. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  177. AR5K_EEPROM_READ(o++, val);
  178. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  179. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  180. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  181. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  182. AR5K_EEPROM_READ(o++, val);
  183. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  184. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  185. ee->ee_ant_control[mode][i++] = val & 0x3f;
  186. /* Get antenna switch tables */
  187. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  188. (ee->ee_ant_control[mode][0] << 4);
  189. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  190. ee->ee_ant_control[mode][1] |
  191. (ee->ee_ant_control[mode][2] << 6) |
  192. (ee->ee_ant_control[mode][3] << 12) |
  193. (ee->ee_ant_control[mode][4] << 18) |
  194. (ee->ee_ant_control[mode][5] << 24);
  195. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  196. ee->ee_ant_control[mode][6] |
  197. (ee->ee_ant_control[mode][7] << 6) |
  198. (ee->ee_ant_control[mode][8] << 12) |
  199. (ee->ee_ant_control[mode][9] << 18) |
  200. (ee->ee_ant_control[mode][10] << 24);
  201. /* return new offset */
  202. *offset = o;
  203. return 0;
  204. }
  205. /*
  206. * Read supported modes and some mode-specific calibration data
  207. * from eeprom
  208. */
  209. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  210. unsigned int mode)
  211. {
  212. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  213. u32 o = *offset;
  214. u16 val;
  215. int ret;
  216. ee->ee_n_piers[mode] = 0;
  217. AR5K_EEPROM_READ(o++, val);
  218. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  219. switch(mode) {
  220. case AR5K_EEPROM_MODE_11A:
  221. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  222. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  223. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  224. AR5K_EEPROM_READ(o++, val);
  225. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  226. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  227. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  228. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  229. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  230. ee->ee_db[mode][0] = val & 0x7;
  231. break;
  232. case AR5K_EEPROM_MODE_11G:
  233. case AR5K_EEPROM_MODE_11B:
  234. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  235. ee->ee_db[mode][1] = val & 0x7;
  236. break;
  237. }
  238. AR5K_EEPROM_READ(o++, val);
  239. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  240. ee->ee_thr_62[mode] = val & 0xff;
  241. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  242. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  243. AR5K_EEPROM_READ(o++, val);
  244. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  245. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  246. AR5K_EEPROM_READ(o++, val);
  247. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  248. if ((val & 0xff) & 0x80)
  249. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  250. else
  251. ee->ee_noise_floor_thr[mode] = val & 0xff;
  252. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  253. ee->ee_noise_floor_thr[mode] =
  254. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  255. AR5K_EEPROM_READ(o++, val);
  256. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  257. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  258. ee->ee_xpd[mode] = val & 0x1;
  259. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  260. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  261. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  262. AR5K_EEPROM_READ(o++, val);
  263. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  264. if (mode == AR5K_EEPROM_MODE_11A)
  265. ee->ee_xr_power[mode] = val & 0x3f;
  266. else {
  267. ee->ee_ob[mode][0] = val & 0x7;
  268. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  269. }
  270. }
  271. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  272. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  273. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  274. } else {
  275. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  276. AR5K_EEPROM_READ(o++, val);
  277. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  278. if (mode == AR5K_EEPROM_MODE_11G) {
  279. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  280. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  281. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  282. }
  283. }
  284. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  285. mode == AR5K_EEPROM_MODE_11A) {
  286. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  287. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  288. }
  289. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  290. goto done;
  291. /* Note: >= v5 have bg freq piers on another location
  292. * so these freq piers are ignored for >= v5 (should be 0xff
  293. * anyway) */
  294. switch(mode) {
  295. case AR5K_EEPROM_MODE_11A:
  296. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  297. break;
  298. AR5K_EEPROM_READ(o++, val);
  299. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  300. break;
  301. case AR5K_EEPROM_MODE_11B:
  302. AR5K_EEPROM_READ(o++, val);
  303. ee->ee_pwr_cal_b[0].freq =
  304. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  305. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  306. ee->ee_n_piers[mode]++;
  307. ee->ee_pwr_cal_b[1].freq =
  308. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  309. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  310. ee->ee_n_piers[mode]++;
  311. AR5K_EEPROM_READ(o++, val);
  312. ee->ee_pwr_cal_b[2].freq =
  313. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  314. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  315. ee->ee_n_piers[mode]++;
  316. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  317. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  318. break;
  319. case AR5K_EEPROM_MODE_11G:
  320. AR5K_EEPROM_READ(o++, val);
  321. ee->ee_pwr_cal_g[0].freq =
  322. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  323. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  324. ee->ee_n_piers[mode]++;
  325. ee->ee_pwr_cal_g[1].freq =
  326. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  327. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  328. ee->ee_n_piers[mode]++;
  329. AR5K_EEPROM_READ(o++, val);
  330. ee->ee_turbo_max_power[mode] = val & 0x7f;
  331. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  332. AR5K_EEPROM_READ(o++, val);
  333. ee->ee_pwr_cal_g[2].freq =
  334. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  335. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  336. ee->ee_n_piers[mode]++;
  337. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  338. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  339. AR5K_EEPROM_READ(o++, val);
  340. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  341. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  342. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  343. AR5K_EEPROM_READ(o++, val);
  344. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  345. }
  346. break;
  347. }
  348. /*
  349. * Read turbo mode information on newer EEPROM versions
  350. */
  351. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  352. goto done;
  353. switch (mode){
  354. case AR5K_EEPROM_MODE_11A:
  355. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  356. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  357. AR5K_EEPROM_READ(o++, val);
  358. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  359. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  360. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  361. AR5K_EEPROM_READ(o++, val);
  362. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  363. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  364. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  365. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  366. break;
  367. case AR5K_EEPROM_MODE_11G:
  368. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  369. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  370. AR5K_EEPROM_READ(o++, val);
  371. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  372. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  373. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  374. AR5K_EEPROM_READ(o++, val);
  375. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  376. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  377. break;
  378. }
  379. done:
  380. /* return new offset */
  381. *offset = o;
  382. return 0;
  383. }
  384. /* Read mode-specific data (except power calibration data) */
  385. static int
  386. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  387. {
  388. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  389. u32 mode_offset[3];
  390. unsigned int mode;
  391. u32 offset;
  392. int ret;
  393. /*
  394. * Get values for all modes
  395. */
  396. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  397. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  398. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  399. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  400. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  401. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  402. offset = mode_offset[mode];
  403. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  404. if (ret)
  405. return ret;
  406. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  407. if (ret)
  408. return ret;
  409. }
  410. /* override for older eeprom versions for better performance */
  411. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  412. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  413. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  414. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  415. }
  416. return 0;
  417. }
  418. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  419. * frequency mask) */
  420. static inline int
  421. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  422. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  423. {
  424. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  425. int o = *offset;
  426. int i = 0;
  427. u8 freq1, freq2;
  428. int ret;
  429. u16 val;
  430. ee->ee_n_piers[mode] = 0;
  431. while(i < max) {
  432. AR5K_EEPROM_READ(o++, val);
  433. freq1 = val & 0xff;
  434. if (!freq1)
  435. break;
  436. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  437. freq1, mode);
  438. ee->ee_n_piers[mode]++;
  439. freq2 = (val >> 8) & 0xff;
  440. if (!freq2)
  441. break;
  442. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  443. freq2, mode);
  444. ee->ee_n_piers[mode]++;
  445. }
  446. /* return new offset */
  447. *offset = o;
  448. return 0;
  449. }
  450. /* Read frequency piers for 802.11a */
  451. static int
  452. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  453. {
  454. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  455. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  456. int i, ret;
  457. u16 val;
  458. u8 mask;
  459. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  460. ath5k_eeprom_read_freq_list(ah, &offset,
  461. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  462. AR5K_EEPROM_MODE_11A);
  463. } else {
  464. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  465. AR5K_EEPROM_READ(offset++, val);
  466. pcal[0].freq = (val >> 9) & mask;
  467. pcal[1].freq = (val >> 2) & mask;
  468. pcal[2].freq = (val << 5) & mask;
  469. AR5K_EEPROM_READ(offset++, val);
  470. pcal[2].freq |= (val >> 11) & 0x1f;
  471. pcal[3].freq = (val >> 4) & mask;
  472. pcal[4].freq = (val << 3) & mask;
  473. AR5K_EEPROM_READ(offset++, val);
  474. pcal[4].freq |= (val >> 13) & 0x7;
  475. pcal[5].freq = (val >> 6) & mask;
  476. pcal[6].freq = (val << 1) & mask;
  477. AR5K_EEPROM_READ(offset++, val);
  478. pcal[6].freq |= (val >> 15) & 0x1;
  479. pcal[7].freq = (val >> 8) & mask;
  480. pcal[8].freq = (val >> 1) & mask;
  481. pcal[9].freq = (val << 6) & mask;
  482. AR5K_EEPROM_READ(offset++, val);
  483. pcal[9].freq |= (val >> 10) & 0x3f;
  484. /* Fixed number of piers */
  485. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  486. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  487. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  488. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  489. }
  490. }
  491. return 0;
  492. }
  493. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  494. static inline int
  495. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  496. {
  497. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  498. struct ath5k_chan_pcal_info *pcal;
  499. switch(mode) {
  500. case AR5K_EEPROM_MODE_11B:
  501. pcal = ee->ee_pwr_cal_b;
  502. break;
  503. case AR5K_EEPROM_MODE_11G:
  504. pcal = ee->ee_pwr_cal_g;
  505. break;
  506. default:
  507. return -EINVAL;
  508. }
  509. ath5k_eeprom_read_freq_list(ah, &offset,
  510. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  511. mode);
  512. return 0;
  513. }
  514. /*
  515. * Read power calibration for RF5111 chips
  516. *
  517. * For RF5111 we have an XPD -eXternal Power Detector- curve
  518. * for each calibrated channel. Each curve has 0,5dB Power steps
  519. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  520. * exponential function. To recreate the curve we read 11 points
  521. * here and interpolate later.
  522. */
  523. /* Used to match PCDAC steps with power values on RF5111 chips
  524. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  525. * steps that match with the power values we read from eeprom. On
  526. * older eeprom versions (< 3.2) these steps are equaly spaced at
  527. * 10% of the pcdac curve -until the curve reaches it's maximum-
  528. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  529. * these 11 steps are spaced in a different way. This function returns
  530. * the pcdac steps based on eeprom version and curve min/max so that we
  531. * can have pcdac/pwr points.
  532. */
  533. static inline void
  534. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  535. {
  536. static const u16 intercepts3[] =
  537. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  538. static const u16 intercepts3_2[] =
  539. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  540. const u16 *ip;
  541. int i;
  542. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  543. ip = intercepts3_2;
  544. else
  545. ip = intercepts3;
  546. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  547. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  548. }
  549. /* Convert RF5111 specific data to generic raw data
  550. * used by interpolation code */
  551. static int
  552. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  553. struct ath5k_chan_pcal_info *chinfo)
  554. {
  555. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  556. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  557. struct ath5k_pdgain_info *pd;
  558. u8 pier, point, idx;
  559. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  560. /* Fill raw data for each calibration pier */
  561. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  562. pcinfo = &chinfo[pier].rf5111_info;
  563. /* Allocate pd_curves for this cal pier */
  564. chinfo[pier].pd_curves =
  565. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  566. sizeof(struct ath5k_pdgain_info),
  567. GFP_KERNEL);
  568. if (!chinfo[pier].pd_curves)
  569. return -ENOMEM;
  570. /* Only one curve for RF5111
  571. * find out which one and place
  572. * in in pd_curves.
  573. * Note: ee_x_gain is reversed here */
  574. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  575. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  576. pdgain_idx[0] = idx;
  577. break;
  578. }
  579. }
  580. ee->ee_pd_gains[mode] = 1;
  581. pd = &chinfo[pier].pd_curves[idx];
  582. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  583. /* Allocate pd points for this curve */
  584. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  585. sizeof(u8), GFP_KERNEL);
  586. if (!pd->pd_step)
  587. return -ENOMEM;
  588. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  589. sizeof(s16), GFP_KERNEL);
  590. if (!pd->pd_pwr)
  591. return -ENOMEM;
  592. /* Fill raw dataset
  593. * (convert power to 0.25dB units
  594. * for RF5112 combatibility) */
  595. for (point = 0; point < pd->pd_points; point++) {
  596. /* Absolute values */
  597. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  598. /* Already sorted */
  599. pd->pd_step[point] = pcinfo->pcdac[point];
  600. }
  601. /* Set min/max pwr */
  602. chinfo[pier].min_pwr = pd->pd_pwr[0];
  603. chinfo[pier].max_pwr = pd->pd_pwr[10];
  604. }
  605. return 0;
  606. }
  607. /* Parse EEPROM data */
  608. static int
  609. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  610. {
  611. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  612. struct ath5k_chan_pcal_info *pcal;
  613. int offset, ret;
  614. int i;
  615. u16 val;
  616. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  617. switch(mode) {
  618. case AR5K_EEPROM_MODE_11A:
  619. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  620. return 0;
  621. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  622. offset + AR5K_EEPROM_GROUP1_OFFSET);
  623. if (ret < 0)
  624. return ret;
  625. offset += AR5K_EEPROM_GROUP2_OFFSET;
  626. pcal = ee->ee_pwr_cal_a;
  627. break;
  628. case AR5K_EEPROM_MODE_11B:
  629. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  630. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  631. return 0;
  632. pcal = ee->ee_pwr_cal_b;
  633. offset += AR5K_EEPROM_GROUP3_OFFSET;
  634. /* fixed piers */
  635. pcal[0].freq = 2412;
  636. pcal[1].freq = 2447;
  637. pcal[2].freq = 2484;
  638. ee->ee_n_piers[mode] = 3;
  639. break;
  640. case AR5K_EEPROM_MODE_11G:
  641. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  642. return 0;
  643. pcal = ee->ee_pwr_cal_g;
  644. offset += AR5K_EEPROM_GROUP4_OFFSET;
  645. /* fixed piers */
  646. pcal[0].freq = 2312;
  647. pcal[1].freq = 2412;
  648. pcal[2].freq = 2484;
  649. ee->ee_n_piers[mode] = 3;
  650. break;
  651. default:
  652. return -EINVAL;
  653. }
  654. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  655. struct ath5k_chan_pcal_info_rf5111 *cdata =
  656. &pcal[i].rf5111_info;
  657. AR5K_EEPROM_READ(offset++, val);
  658. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  659. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  660. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  661. AR5K_EEPROM_READ(offset++, val);
  662. cdata->pwr[0] |= ((val >> 14) & 0x3);
  663. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  664. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  665. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  666. AR5K_EEPROM_READ(offset++, val);
  667. cdata->pwr[3] |= ((val >> 12) & 0xf);
  668. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  669. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  670. AR5K_EEPROM_READ(offset++, val);
  671. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  672. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  673. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  674. AR5K_EEPROM_READ(offset++, val);
  675. cdata->pwr[8] |= ((val >> 14) & 0x3);
  676. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  677. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  678. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  679. cdata->pcdac_max, cdata->pcdac);
  680. }
  681. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  682. }
  683. /*
  684. * Read power calibration for RF5112 chips
  685. *
  686. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  687. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  688. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  689. * power steps on x axis and PCDAC steps on y axis and looks like a
  690. * linear function. To recreate the curve and pass the power values
  691. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  692. * and 3 points for xpd 3 (higher gain -> lower power) here and
  693. * interpolate later.
  694. *
  695. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  696. */
  697. /* Convert RF5112 specific data to generic raw data
  698. * used by interpolation code */
  699. static int
  700. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  701. struct ath5k_chan_pcal_info *chinfo)
  702. {
  703. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  704. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  705. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  706. unsigned int pier, pdg, point;
  707. /* Fill raw data for each calibration pier */
  708. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  709. pcinfo = &chinfo[pier].rf5112_info;
  710. /* Allocate pd_curves for this cal pier */
  711. chinfo[pier].pd_curves =
  712. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  713. sizeof(struct ath5k_pdgain_info),
  714. GFP_KERNEL);
  715. if (!chinfo[pier].pd_curves)
  716. return -ENOMEM;
  717. /* Fill pd_curves */
  718. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  719. u8 idx = pdgain_idx[pdg];
  720. struct ath5k_pdgain_info *pd =
  721. &chinfo[pier].pd_curves[idx];
  722. /* Lowest gain curve (max power) */
  723. if (pdg == 0) {
  724. /* One more point for better accuracy */
  725. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  726. /* Allocate pd points for this curve */
  727. pd->pd_step = kcalloc(pd->pd_points,
  728. sizeof(u8), GFP_KERNEL);
  729. if (!pd->pd_step)
  730. return -ENOMEM;
  731. pd->pd_pwr = kcalloc(pd->pd_points,
  732. sizeof(s16), GFP_KERNEL);
  733. if (!pd->pd_pwr)
  734. return -ENOMEM;
  735. /* Fill raw dataset
  736. * (all power levels are in 0.25dB units) */
  737. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  738. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  739. for (point = 1; point < pd->pd_points;
  740. point++) {
  741. /* Absolute values */
  742. pd->pd_pwr[point] =
  743. pcinfo->pwr_x0[point];
  744. /* Deltas */
  745. pd->pd_step[point] =
  746. pd->pd_step[point - 1] +
  747. pcinfo->pcdac_x0[point];
  748. }
  749. /* Set min power for this frequency */
  750. chinfo[pier].min_pwr = pd->pd_pwr[0];
  751. /* Highest gain curve (min power) */
  752. } else if (pdg == 1) {
  753. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  754. /* Allocate pd points for this curve */
  755. pd->pd_step = kcalloc(pd->pd_points,
  756. sizeof(u8), GFP_KERNEL);
  757. if (!pd->pd_step)
  758. return -ENOMEM;
  759. pd->pd_pwr = kcalloc(pd->pd_points,
  760. sizeof(s16), GFP_KERNEL);
  761. if (!pd->pd_pwr)
  762. return -ENOMEM;
  763. /* Fill raw dataset
  764. * (all power levels are in 0.25dB units) */
  765. for (point = 0; point < pd->pd_points;
  766. point++) {
  767. /* Absolute values */
  768. pd->pd_pwr[point] =
  769. pcinfo->pwr_x3[point];
  770. /* Fixed points */
  771. pd->pd_step[point] =
  772. pcinfo->pcdac_x3[point];
  773. }
  774. /* Since we have a higher gain curve
  775. * override min power */
  776. chinfo[pier].min_pwr = pd->pd_pwr[0];
  777. }
  778. }
  779. }
  780. return 0;
  781. }
  782. /* Parse EEPROM data */
  783. static int
  784. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  785. {
  786. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  787. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  788. struct ath5k_chan_pcal_info *gen_chan_info;
  789. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  790. u32 offset;
  791. u8 i, c;
  792. u16 val;
  793. int ret;
  794. u8 pd_gains = 0;
  795. /* Count how many curves we have and
  796. * identify them (which one of the 4
  797. * available curves we have on each count).
  798. * Curves are stored from lower (x0) to
  799. * higher (x3) gain */
  800. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  801. /* ee_x_gain[mode] is x gain mask */
  802. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  803. pdgain_idx[pd_gains++] = i;
  804. }
  805. ee->ee_pd_gains[mode] = pd_gains;
  806. if (pd_gains == 0 || pd_gains > 2)
  807. return -EINVAL;
  808. switch (mode) {
  809. case AR5K_EEPROM_MODE_11A:
  810. /*
  811. * Read 5GHz EEPROM channels
  812. */
  813. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  814. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  815. offset += AR5K_EEPROM_GROUP2_OFFSET;
  816. gen_chan_info = ee->ee_pwr_cal_a;
  817. break;
  818. case AR5K_EEPROM_MODE_11B:
  819. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  820. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  821. offset += AR5K_EEPROM_GROUP3_OFFSET;
  822. /* NB: frequency piers parsed during mode init */
  823. gen_chan_info = ee->ee_pwr_cal_b;
  824. break;
  825. case AR5K_EEPROM_MODE_11G:
  826. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  827. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  828. offset += AR5K_EEPROM_GROUP4_OFFSET;
  829. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  830. offset += AR5K_EEPROM_GROUP2_OFFSET;
  831. /* NB: frequency piers parsed during mode init */
  832. gen_chan_info = ee->ee_pwr_cal_g;
  833. break;
  834. default:
  835. return -EINVAL;
  836. }
  837. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  838. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  839. /* Power values in quarter dB
  840. * for the lower xpd gain curve
  841. * (0 dBm -> higher output power) */
  842. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  843. AR5K_EEPROM_READ(offset++, val);
  844. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  845. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  846. }
  847. /* PCDAC steps
  848. * corresponding to the above power
  849. * measurements */
  850. AR5K_EEPROM_READ(offset++, val);
  851. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  852. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  853. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  854. /* Power values in quarter dB
  855. * for the higher xpd gain curve
  856. * (18 dBm -> lower output power) */
  857. AR5K_EEPROM_READ(offset++, val);
  858. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  859. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  860. AR5K_EEPROM_READ(offset++, val);
  861. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  862. /* PCDAC steps
  863. * corresponding to the above power
  864. * measurements (fixed) */
  865. chan_pcal_info->pcdac_x3[0] = 20;
  866. chan_pcal_info->pcdac_x3[1] = 35;
  867. chan_pcal_info->pcdac_x3[2] = 63;
  868. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  869. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  870. /* Last xpd0 power level is also channel maximum */
  871. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  872. } else {
  873. chan_pcal_info->pcdac_x0[0] = 1;
  874. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  875. }
  876. }
  877. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  878. }
  879. /*
  880. * Read power calibration for RF2413 chips
  881. *
  882. * For RF2413 we have a Power to PDDAC table (Power Detector)
  883. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  884. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  885. * axis and looks like an exponential function like the RF5111 curve.
  886. *
  887. * To recreate the curves we read here the points and interpolate
  888. * later. Note that in most cases only 2 (higher and lower) curves are
  889. * used (like RF5112) but vendors have the oportunity to include all
  890. * 4 curves on eeprom. The final curve (higher power) has an extra
  891. * point for better accuracy like RF5112.
  892. */
  893. /* For RF2413 power calibration data doesn't start on a fixed location and
  894. * if a mode is not supported, it's section is missing -not zeroed-.
  895. * So we need to calculate the starting offset for each section by using
  896. * these two functions */
  897. /* Return the size of each section based on the mode and the number of pd
  898. * gains available (maximum 4). */
  899. static inline unsigned int
  900. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  901. {
  902. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  903. unsigned int sz;
  904. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  905. sz *= ee->ee_n_piers[mode];
  906. return sz;
  907. }
  908. /* Return the starting offset for a section based on the modes supported
  909. * and each section's size. */
  910. static unsigned int
  911. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  912. {
  913. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  914. switch(mode) {
  915. case AR5K_EEPROM_MODE_11G:
  916. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  917. offset += ath5k_pdgains_size_2413(ee,
  918. AR5K_EEPROM_MODE_11B) +
  919. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  920. /* fall through */
  921. case AR5K_EEPROM_MODE_11B:
  922. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  923. offset += ath5k_pdgains_size_2413(ee,
  924. AR5K_EEPROM_MODE_11A) +
  925. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  926. /* fall through */
  927. case AR5K_EEPROM_MODE_11A:
  928. break;
  929. default:
  930. break;
  931. }
  932. return offset;
  933. }
  934. /* Convert RF2413 specific data to generic raw data
  935. * used by interpolation code */
  936. static int
  937. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  938. struct ath5k_chan_pcal_info *chinfo)
  939. {
  940. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  941. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  942. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  943. unsigned int pier, pdg, point;
  944. /* Fill raw data for each calibration pier */
  945. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  946. pcinfo = &chinfo[pier].rf2413_info;
  947. /* Allocate pd_curves for this cal pier */
  948. chinfo[pier].pd_curves =
  949. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  950. sizeof(struct ath5k_pdgain_info),
  951. GFP_KERNEL);
  952. if (!chinfo[pier].pd_curves)
  953. return -ENOMEM;
  954. /* Fill pd_curves */
  955. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  956. u8 idx = pdgain_idx[pdg];
  957. struct ath5k_pdgain_info *pd =
  958. &chinfo[pier].pd_curves[idx];
  959. /* One more point for the highest power
  960. * curve (lowest gain) */
  961. if (pdg == ee->ee_pd_gains[mode] - 1)
  962. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  963. else
  964. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  965. /* Allocate pd points for this curve */
  966. pd->pd_step = kcalloc(pd->pd_points,
  967. sizeof(u8), GFP_KERNEL);
  968. if (!pd->pd_step)
  969. return -ENOMEM;
  970. pd->pd_pwr = kcalloc(pd->pd_points,
  971. sizeof(s16), GFP_KERNEL);
  972. if (!pd->pd_pwr)
  973. return -ENOMEM;
  974. /* Fill raw dataset
  975. * convert all pwr levels to
  976. * quarter dB for RF5112 combatibility */
  977. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  978. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  979. for (point = 1; point < pd->pd_points; point++) {
  980. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  981. 2 * pcinfo->pwr[pdg][point - 1];
  982. pd->pd_step[point] = pd->pd_step[point - 1] +
  983. pcinfo->pddac[pdg][point - 1];
  984. }
  985. /* Highest gain curve -> min power */
  986. if (pdg == 0)
  987. chinfo[pier].min_pwr = pd->pd_pwr[0];
  988. /* Lowest gain curve -> max power */
  989. if (pdg == ee->ee_pd_gains[mode] - 1)
  990. chinfo[pier].max_pwr =
  991. pd->pd_pwr[pd->pd_points - 1];
  992. }
  993. }
  994. return 0;
  995. }
  996. /* Parse EEPROM data */
  997. static int
  998. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  999. {
  1000. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1001. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1002. struct ath5k_chan_pcal_info *chinfo;
  1003. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1004. u32 offset;
  1005. int idx, i, ret;
  1006. u16 val;
  1007. u8 pd_gains = 0;
  1008. /* Count how many curves we have and
  1009. * identify them (which one of the 4
  1010. * available curves we have on each count).
  1011. * Curves are stored from higher to
  1012. * lower gain so we go backwards */
  1013. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1014. /* ee_x_gain[mode] is x gain mask */
  1015. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1016. pdgain_idx[pd_gains++] = idx;
  1017. }
  1018. ee->ee_pd_gains[mode] = pd_gains;
  1019. if (pd_gains == 0)
  1020. return -EINVAL;
  1021. offset = ath5k_cal_data_offset_2413(ee, mode);
  1022. switch (mode) {
  1023. case AR5K_EEPROM_MODE_11A:
  1024. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1025. return 0;
  1026. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1027. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1028. chinfo = ee->ee_pwr_cal_a;
  1029. break;
  1030. case AR5K_EEPROM_MODE_11B:
  1031. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1032. return 0;
  1033. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1034. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1035. chinfo = ee->ee_pwr_cal_b;
  1036. break;
  1037. case AR5K_EEPROM_MODE_11G:
  1038. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1039. return 0;
  1040. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1041. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1042. chinfo = ee->ee_pwr_cal_g;
  1043. break;
  1044. default:
  1045. return -EINVAL;
  1046. }
  1047. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1048. pcinfo = &chinfo[i].rf2413_info;
  1049. /*
  1050. * Read pwr_i, pddac_i and the first
  1051. * 2 pd points (pwr, pddac)
  1052. */
  1053. AR5K_EEPROM_READ(offset++, val);
  1054. pcinfo->pwr_i[0] = val & 0x1f;
  1055. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1056. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1057. AR5K_EEPROM_READ(offset++, val);
  1058. pcinfo->pddac[0][0] = val & 0x3f;
  1059. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1060. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1061. AR5K_EEPROM_READ(offset++, val);
  1062. pcinfo->pwr[0][2] = val & 0xf;
  1063. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1064. pcinfo->pwr[0][3] = 0;
  1065. pcinfo->pddac[0][3] = 0;
  1066. if (pd_gains > 1) {
  1067. /*
  1068. * Pd gain 0 is not the last pd gain
  1069. * so it only has 2 pd points.
  1070. * Continue wih pd gain 1.
  1071. */
  1072. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1073. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1074. AR5K_EEPROM_READ(offset++, val);
  1075. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1076. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1077. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1078. AR5K_EEPROM_READ(offset++, val);
  1079. pcinfo->pwr[1][1] = val & 0xf;
  1080. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1081. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1082. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1083. AR5K_EEPROM_READ(offset++, val);
  1084. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1085. pcinfo->pwr[1][3] = 0;
  1086. pcinfo->pddac[1][3] = 0;
  1087. } else if (pd_gains == 1) {
  1088. /*
  1089. * Pd gain 0 is the last one so
  1090. * read the extra point.
  1091. */
  1092. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1093. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1094. AR5K_EEPROM_READ(offset++, val);
  1095. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1096. }
  1097. /*
  1098. * Proceed with the other pd_gains
  1099. * as above.
  1100. */
  1101. if (pd_gains > 2) {
  1102. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1103. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1104. AR5K_EEPROM_READ(offset++, val);
  1105. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1106. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1107. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1108. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1109. AR5K_EEPROM_READ(offset++, val);
  1110. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1111. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1112. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1113. pcinfo->pwr[2][3] = 0;
  1114. pcinfo->pddac[2][3] = 0;
  1115. } else if (pd_gains == 2) {
  1116. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1117. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1118. }
  1119. if (pd_gains > 3) {
  1120. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1121. AR5K_EEPROM_READ(offset++, val);
  1122. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1123. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1124. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1125. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1126. AR5K_EEPROM_READ(offset++, val);
  1127. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1128. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1129. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1130. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1131. AR5K_EEPROM_READ(offset++, val);
  1132. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1133. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1134. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1135. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1136. AR5K_EEPROM_READ(offset++, val);
  1137. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1138. } else if (pd_gains == 3) {
  1139. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1140. AR5K_EEPROM_READ(offset++, val);
  1141. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1142. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1143. }
  1144. }
  1145. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1146. }
  1147. /*
  1148. * Read per rate target power (this is the maximum tx power
  1149. * supported by the card). This info is used when setting
  1150. * tx power, no matter the channel.
  1151. *
  1152. * This also works for v5 EEPROMs.
  1153. */
  1154. static int
  1155. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1156. {
  1157. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1158. struct ath5k_rate_pcal_info *rate_pcal_info;
  1159. u8 *rate_target_pwr_num;
  1160. u32 offset;
  1161. u16 val;
  1162. int ret, i;
  1163. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1164. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1165. switch (mode) {
  1166. case AR5K_EEPROM_MODE_11A:
  1167. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1168. rate_pcal_info = ee->ee_rate_tpwr_a;
  1169. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1170. break;
  1171. case AR5K_EEPROM_MODE_11B:
  1172. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1173. rate_pcal_info = ee->ee_rate_tpwr_b;
  1174. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1175. break;
  1176. case AR5K_EEPROM_MODE_11G:
  1177. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1178. rate_pcal_info = ee->ee_rate_tpwr_g;
  1179. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1180. break;
  1181. default:
  1182. return -EINVAL;
  1183. }
  1184. /* Different freq mask for older eeproms (<= v3.2) */
  1185. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1186. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1187. AR5K_EEPROM_READ(offset++, val);
  1188. rate_pcal_info[i].freq =
  1189. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1190. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1191. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1192. AR5K_EEPROM_READ(offset++, val);
  1193. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1194. val == 0) {
  1195. (*rate_target_pwr_num) = i;
  1196. break;
  1197. }
  1198. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1199. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1200. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1201. }
  1202. } else {
  1203. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1204. AR5K_EEPROM_READ(offset++, val);
  1205. rate_pcal_info[i].freq =
  1206. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1207. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1208. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1209. AR5K_EEPROM_READ(offset++, val);
  1210. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1211. val == 0) {
  1212. (*rate_target_pwr_num) = i;
  1213. break;
  1214. }
  1215. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1216. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1217. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1218. }
  1219. }
  1220. return 0;
  1221. }
  1222. /*
  1223. * Read per channel calibration info from EEPROM
  1224. *
  1225. * This info is used to calibrate the baseband power table. Imagine
  1226. * that for each channel there is a power curve that's hw specific
  1227. * (depends on amplifier etc) and we try to "correct" this curve using
  1228. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1229. * it can use accurate power values when setting tx power (takes amplifier's
  1230. * performance on each channel into account).
  1231. *
  1232. * EEPROM provides us with the offsets for some pre-calibrated channels
  1233. * and we have to interpolate to create the full table for these channels and
  1234. * also the table for any channel.
  1235. */
  1236. static int
  1237. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1238. {
  1239. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1240. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1241. int mode;
  1242. int err;
  1243. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1244. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1245. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1246. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1247. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1248. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1249. else
  1250. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1251. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1252. mode++) {
  1253. err = read_pcal(ah, mode);
  1254. if (err)
  1255. return err;
  1256. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1257. if (err < 0)
  1258. return err;
  1259. }
  1260. return 0;
  1261. }
  1262. static int
  1263. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1264. {
  1265. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1266. struct ath5k_chan_pcal_info *chinfo;
  1267. u8 pier, pdg;
  1268. switch (mode) {
  1269. case AR5K_EEPROM_MODE_11A:
  1270. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1271. return 0;
  1272. chinfo = ee->ee_pwr_cal_a;
  1273. break;
  1274. case AR5K_EEPROM_MODE_11B:
  1275. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1276. return 0;
  1277. chinfo = ee->ee_pwr_cal_b;
  1278. break;
  1279. case AR5K_EEPROM_MODE_11G:
  1280. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1281. return 0;
  1282. chinfo = ee->ee_pwr_cal_g;
  1283. break;
  1284. default:
  1285. return -EINVAL;
  1286. }
  1287. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1288. if (!chinfo[pier].pd_curves)
  1289. continue;
  1290. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1291. struct ath5k_pdgain_info *pd =
  1292. &chinfo[pier].pd_curves[pdg];
  1293. if (pd != NULL) {
  1294. kfree(pd->pd_step);
  1295. kfree(pd->pd_pwr);
  1296. }
  1297. }
  1298. kfree(chinfo[pier].pd_curves);
  1299. }
  1300. return 0;
  1301. }
  1302. void
  1303. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1304. {
  1305. u8 mode;
  1306. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1307. ath5k_eeprom_free_pcal_info(ah, mode);
  1308. }
  1309. /* Read conformance test limits used for regulatory control */
  1310. static int
  1311. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1312. {
  1313. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1314. struct ath5k_edge_power *rep;
  1315. unsigned int fmask, pmask;
  1316. unsigned int ctl_mode;
  1317. int ret, i, j;
  1318. u32 offset;
  1319. u16 val;
  1320. pmask = AR5K_EEPROM_POWER_M;
  1321. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1322. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1323. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1324. for (i = 0; i < ee->ee_ctls; i += 2) {
  1325. AR5K_EEPROM_READ(offset++, val);
  1326. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1327. ee->ee_ctl[i + 1] = val & 0xff;
  1328. }
  1329. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1330. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1331. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1332. AR5K_EEPROM_GROUP5_OFFSET;
  1333. else
  1334. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1335. rep = ee->ee_ctl_pwr;
  1336. for(i = 0; i < ee->ee_ctls; i++) {
  1337. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1338. case AR5K_CTL_11A:
  1339. case AR5K_CTL_TURBO:
  1340. ctl_mode = AR5K_EEPROM_MODE_11A;
  1341. break;
  1342. default:
  1343. ctl_mode = AR5K_EEPROM_MODE_11G;
  1344. break;
  1345. }
  1346. if (ee->ee_ctl[i] == 0) {
  1347. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1348. offset += 8;
  1349. else
  1350. offset += 7;
  1351. rep += AR5K_EEPROM_N_EDGES;
  1352. continue;
  1353. }
  1354. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1355. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1356. AR5K_EEPROM_READ(offset++, val);
  1357. rep[j].freq = (val >> 8) & fmask;
  1358. rep[j + 1].freq = val & fmask;
  1359. }
  1360. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1361. AR5K_EEPROM_READ(offset++, val);
  1362. rep[j].edge = (val >> 8) & pmask;
  1363. rep[j].flag = (val >> 14) & 1;
  1364. rep[j + 1].edge = val & pmask;
  1365. rep[j + 1].flag = (val >> 6) & 1;
  1366. }
  1367. } else {
  1368. AR5K_EEPROM_READ(offset++, val);
  1369. rep[0].freq = (val >> 9) & fmask;
  1370. rep[1].freq = (val >> 2) & fmask;
  1371. rep[2].freq = (val << 5) & fmask;
  1372. AR5K_EEPROM_READ(offset++, val);
  1373. rep[2].freq |= (val >> 11) & 0x1f;
  1374. rep[3].freq = (val >> 4) & fmask;
  1375. rep[4].freq = (val << 3) & fmask;
  1376. AR5K_EEPROM_READ(offset++, val);
  1377. rep[4].freq |= (val >> 13) & 0x7;
  1378. rep[5].freq = (val >> 6) & fmask;
  1379. rep[6].freq = (val << 1) & fmask;
  1380. AR5K_EEPROM_READ(offset++, val);
  1381. rep[6].freq |= (val >> 15) & 0x1;
  1382. rep[7].freq = (val >> 8) & fmask;
  1383. rep[0].edge = (val >> 2) & pmask;
  1384. rep[1].edge = (val << 4) & pmask;
  1385. AR5K_EEPROM_READ(offset++, val);
  1386. rep[1].edge |= (val >> 12) & 0xf;
  1387. rep[2].edge = (val >> 6) & pmask;
  1388. rep[3].edge = val & pmask;
  1389. AR5K_EEPROM_READ(offset++, val);
  1390. rep[4].edge = (val >> 10) & pmask;
  1391. rep[5].edge = (val >> 4) & pmask;
  1392. rep[6].edge = (val << 2) & pmask;
  1393. AR5K_EEPROM_READ(offset++, val);
  1394. rep[6].edge |= (val >> 14) & 0x3;
  1395. rep[7].edge = (val >> 8) & pmask;
  1396. }
  1397. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1398. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1399. rep[j].freq, ctl_mode);
  1400. }
  1401. rep += AR5K_EEPROM_N_EDGES;
  1402. }
  1403. return 0;
  1404. }
  1405. static int
  1406. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1407. {
  1408. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1409. u32 offset;
  1410. u16 val;
  1411. int ret = 0, i;
  1412. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1413. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1414. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1415. /* No spur info for 5GHz */
  1416. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1417. /* 2 channels for 2GHz (2464/2420) */
  1418. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1419. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1420. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1421. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1422. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1423. AR5K_EEPROM_READ(offset, val);
  1424. ee->ee_spur_chans[i][0] = val;
  1425. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1426. val);
  1427. ee->ee_spur_chans[i][1] = val;
  1428. offset++;
  1429. }
  1430. }
  1431. return ret;
  1432. }
  1433. /*
  1434. * Initialize eeprom data structure
  1435. */
  1436. int
  1437. ath5k_eeprom_init(struct ath5k_hw *ah)
  1438. {
  1439. int err;
  1440. err = ath5k_eeprom_init_header(ah);
  1441. if (err < 0)
  1442. return err;
  1443. err = ath5k_eeprom_init_modes(ah);
  1444. if (err < 0)
  1445. return err;
  1446. err = ath5k_eeprom_read_pcal_info(ah);
  1447. if (err < 0)
  1448. return err;
  1449. err = ath5k_eeprom_read_ctl_info(ah);
  1450. if (err < 0)
  1451. return err;
  1452. err = ath5k_eeprom_read_spur_chans(ah);
  1453. if (err < 0)
  1454. return err;
  1455. return 0;
  1456. }
  1457. /*
  1458. * Read the MAC address from eeprom
  1459. */
  1460. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1461. {
  1462. u8 mac_d[ETH_ALEN] = {};
  1463. u32 total, offset;
  1464. u16 data;
  1465. int octet, ret;
  1466. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1467. if (ret)
  1468. return ret;
  1469. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1470. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1471. if (ret)
  1472. return ret;
  1473. total += data;
  1474. mac_d[octet + 1] = data & 0xff;
  1475. mac_d[octet] = data >> 8;
  1476. octet += 2;
  1477. }
  1478. if (!total || total == 3 * 0xffff)
  1479. return -EINVAL;
  1480. memcpy(mac, mac_d, ETH_ALEN);
  1481. return 0;
  1482. }