vxge-config.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100
  1. /******************************************************************************
  2. * This software may be used and distributed according to the terms of
  3. * the GNU General Public License (GPL), incorporated herein by reference.
  4. * Drivers based on or derived from this code fall under the GPL and must
  5. * retain the authorship, copyright and license notice. This file is not
  6. * a complete program and may only be used when the entire operating
  7. * system is licensed under the GPL.
  8. * See the file COPYING in this distribution for more information.
  9. *
  10. * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
  11. * Virtualized Server Adapter.
  12. * Copyright(c) 2002-2009 Neterion Inc.
  13. ******************************************************************************/
  14. #include <linux/vmalloc.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci_hotplug.h>
  18. #include "vxge-traffic.h"
  19. #include "vxge-config.h"
  20. /*
  21. * __vxge_hw_channel_allocate - Allocate memory for channel
  22. * This function allocates required memory for the channel and various arrays
  23. * in the channel
  24. */
  25. struct __vxge_hw_channel*
  26. __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
  27. enum __vxge_hw_channel_type type,
  28. u32 length, u32 per_dtr_space, void *userdata)
  29. {
  30. struct __vxge_hw_channel *channel;
  31. struct __vxge_hw_device *hldev;
  32. int size = 0;
  33. u32 vp_id;
  34. hldev = vph->vpath->hldev;
  35. vp_id = vph->vpath->vp_id;
  36. switch (type) {
  37. case VXGE_HW_CHANNEL_TYPE_FIFO:
  38. size = sizeof(struct __vxge_hw_fifo);
  39. break;
  40. case VXGE_HW_CHANNEL_TYPE_RING:
  41. size = sizeof(struct __vxge_hw_ring);
  42. break;
  43. default:
  44. break;
  45. }
  46. channel = kzalloc(size, GFP_KERNEL);
  47. if (channel == NULL)
  48. goto exit0;
  49. INIT_LIST_HEAD(&channel->item);
  50. channel->common_reg = hldev->common_reg;
  51. channel->first_vp_id = hldev->first_vp_id;
  52. channel->type = type;
  53. channel->devh = hldev;
  54. channel->vph = vph;
  55. channel->userdata = userdata;
  56. channel->per_dtr_space = per_dtr_space;
  57. channel->length = length;
  58. channel->vp_id = vp_id;
  59. channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  60. if (channel->work_arr == NULL)
  61. goto exit1;
  62. channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  63. if (channel->free_arr == NULL)
  64. goto exit1;
  65. channel->free_ptr = length;
  66. channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  67. if (channel->reserve_arr == NULL)
  68. goto exit1;
  69. channel->reserve_ptr = length;
  70. channel->reserve_top = 0;
  71. channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  72. if (channel->orig_arr == NULL)
  73. goto exit1;
  74. return channel;
  75. exit1:
  76. __vxge_hw_channel_free(channel);
  77. exit0:
  78. return NULL;
  79. }
  80. /*
  81. * __vxge_hw_channel_free - Free memory allocated for channel
  82. * This function deallocates memory from the channel and various arrays
  83. * in the channel
  84. */
  85. void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
  86. {
  87. kfree(channel->work_arr);
  88. kfree(channel->free_arr);
  89. kfree(channel->reserve_arr);
  90. kfree(channel->orig_arr);
  91. kfree(channel);
  92. }
  93. /*
  94. * __vxge_hw_channel_initialize - Initialize a channel
  95. * This function initializes a channel by properly setting the
  96. * various references
  97. */
  98. enum vxge_hw_status
  99. __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
  100. {
  101. u32 i;
  102. struct __vxge_hw_virtualpath *vpath;
  103. vpath = channel->vph->vpath;
  104. if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
  105. for (i = 0; i < channel->length; i++)
  106. channel->orig_arr[i] = channel->reserve_arr[i];
  107. }
  108. switch (channel->type) {
  109. case VXGE_HW_CHANNEL_TYPE_FIFO:
  110. vpath->fifoh = (struct __vxge_hw_fifo *)channel;
  111. channel->stats = &((struct __vxge_hw_fifo *)
  112. channel)->stats->common_stats;
  113. break;
  114. case VXGE_HW_CHANNEL_TYPE_RING:
  115. vpath->ringh = (struct __vxge_hw_ring *)channel;
  116. channel->stats = &((struct __vxge_hw_ring *)
  117. channel)->stats->common_stats;
  118. break;
  119. default:
  120. break;
  121. }
  122. return VXGE_HW_OK;
  123. }
  124. /*
  125. * __vxge_hw_channel_reset - Resets a channel
  126. * This function resets a channel by properly setting the various references
  127. */
  128. enum vxge_hw_status
  129. __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
  130. {
  131. u32 i;
  132. for (i = 0; i < channel->length; i++) {
  133. if (channel->reserve_arr != NULL)
  134. channel->reserve_arr[i] = channel->orig_arr[i];
  135. if (channel->free_arr != NULL)
  136. channel->free_arr[i] = NULL;
  137. if (channel->work_arr != NULL)
  138. channel->work_arr[i] = NULL;
  139. }
  140. channel->free_ptr = channel->length;
  141. channel->reserve_ptr = channel->length;
  142. channel->reserve_top = 0;
  143. channel->post_index = 0;
  144. channel->compl_index = 0;
  145. return VXGE_HW_OK;
  146. }
  147. /*
  148. * __vxge_hw_device_pci_e_init
  149. * Initialize certain PCI/PCI-X configuration registers
  150. * with recommended values. Save config space for future hw resets.
  151. */
  152. void
  153. __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
  154. {
  155. u16 cmd = 0;
  156. /* Set the PErr Repconse bit and SERR in PCI command register. */
  157. pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
  158. cmd |= 0x140;
  159. pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
  160. pci_save_state(hldev->pdev);
  161. return;
  162. }
  163. /*
  164. * __vxge_hw_device_register_poll
  165. * Will poll certain register for specified amount of time.
  166. * Will poll until masked bit is not cleared.
  167. */
  168. enum vxge_hw_status
  169. __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
  170. {
  171. u64 val64;
  172. u32 i = 0;
  173. enum vxge_hw_status ret = VXGE_HW_FAIL;
  174. udelay(10);
  175. do {
  176. val64 = readq(reg);
  177. if (!(val64 & mask))
  178. return VXGE_HW_OK;
  179. udelay(100);
  180. } while (++i <= 9);
  181. i = 0;
  182. do {
  183. val64 = readq(reg);
  184. if (!(val64 & mask))
  185. return VXGE_HW_OK;
  186. mdelay(1);
  187. } while (++i <= max_millis);
  188. return ret;
  189. }
  190. /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
  191. * in progress
  192. * This routine checks the vpath reset in progress register is turned zero
  193. */
  194. enum vxge_hw_status
  195. __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
  196. {
  197. enum vxge_hw_status status;
  198. status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
  199. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
  200. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  201. return status;
  202. }
  203. /*
  204. * __vxge_hw_device_toc_get
  205. * This routine sets the swapper and reads the toc pointer and returns the
  206. * memory mapped address of the toc
  207. */
  208. struct vxge_hw_toc_reg __iomem *
  209. __vxge_hw_device_toc_get(void __iomem *bar0)
  210. {
  211. u64 val64;
  212. struct vxge_hw_toc_reg __iomem *toc = NULL;
  213. enum vxge_hw_status status;
  214. struct vxge_hw_legacy_reg __iomem *legacy_reg =
  215. (struct vxge_hw_legacy_reg __iomem *)bar0;
  216. status = __vxge_hw_legacy_swapper_set(legacy_reg);
  217. if (status != VXGE_HW_OK)
  218. goto exit;
  219. val64 = readq(&legacy_reg->toc_first_pointer);
  220. toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
  221. exit:
  222. return toc;
  223. }
  224. /*
  225. * __vxge_hw_device_reg_addr_get
  226. * This routine sets the swapper and reads the toc pointer and initializes the
  227. * register location pointers in the device object. It waits until the ric is
  228. * completed initializing registers.
  229. */
  230. enum vxge_hw_status
  231. __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
  232. {
  233. u64 val64;
  234. u32 i;
  235. enum vxge_hw_status status = VXGE_HW_OK;
  236. hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
  237. hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
  238. if (hldev->toc_reg == NULL) {
  239. status = VXGE_HW_FAIL;
  240. goto exit;
  241. }
  242. val64 = readq(&hldev->toc_reg->toc_common_pointer);
  243. hldev->common_reg =
  244. (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
  245. val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
  246. hldev->mrpcim_reg =
  247. (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
  248. for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
  249. val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
  250. hldev->srpcim_reg[i] =
  251. (struct vxge_hw_srpcim_reg __iomem *)
  252. (hldev->bar0 + val64);
  253. }
  254. for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
  255. val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
  256. hldev->vpmgmt_reg[i] =
  257. (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
  258. }
  259. for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
  260. val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
  261. hldev->vpath_reg[i] =
  262. (struct vxge_hw_vpath_reg __iomem *)
  263. (hldev->bar0 + val64);
  264. }
  265. val64 = readq(&hldev->toc_reg->toc_kdfc);
  266. switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
  267. case 0:
  268. hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
  269. VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
  270. break;
  271. default:
  272. break;
  273. }
  274. status = __vxge_hw_device_vpath_reset_in_prog_check(
  275. (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
  276. exit:
  277. return status;
  278. }
  279. /*
  280. * __vxge_hw_device_id_get
  281. * This routine returns sets the device id and revision numbers into the device
  282. * structure
  283. */
  284. void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
  285. {
  286. u64 val64;
  287. val64 = readq(&hldev->common_reg->titan_asic_id);
  288. hldev->device_id =
  289. (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
  290. hldev->major_revision =
  291. (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
  292. hldev->minor_revision =
  293. (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
  294. return;
  295. }
  296. /*
  297. * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
  298. * This routine returns the Access Rights of the driver
  299. */
  300. static u32
  301. __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
  302. {
  303. u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
  304. switch (host_type) {
  305. case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
  306. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  307. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  308. break;
  309. case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
  310. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  311. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  312. break;
  313. case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
  314. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  315. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  316. break;
  317. case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
  318. case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
  319. case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
  320. break;
  321. case VXGE_HW_SR_VH_FUNCTION0:
  322. case VXGE_HW_VH_NORMAL_FUNCTION:
  323. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  324. break;
  325. }
  326. return access_rights;
  327. }
  328. /*
  329. * __vxge_hw_device_is_privilaged
  330. * This routine checks if the device function is privilaged or not
  331. */
  332. enum vxge_hw_status
  333. __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
  334. {
  335. if (__vxge_hw_device_access_rights_get(host_type,
  336. func_id) &
  337. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
  338. return VXGE_HW_OK;
  339. else
  340. return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  341. }
  342. /*
  343. * __vxge_hw_device_host_info_get
  344. * This routine returns the host type assignments
  345. */
  346. void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
  347. {
  348. u64 val64;
  349. u32 i;
  350. val64 = readq(&hldev->common_reg->host_type_assignments);
  351. hldev->host_type =
  352. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  353. hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
  354. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  355. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  356. continue;
  357. hldev->func_id =
  358. __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
  359. hldev->access_rights = __vxge_hw_device_access_rights_get(
  360. hldev->host_type, hldev->func_id);
  361. hldev->first_vp_id = i;
  362. break;
  363. }
  364. return;
  365. }
  366. /*
  367. * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
  368. * link width and signalling rate.
  369. */
  370. static enum vxge_hw_status
  371. __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
  372. {
  373. int exp_cap;
  374. u16 lnk;
  375. /* Get the negotiated link width and speed from PCI config space */
  376. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  377. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  378. if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
  379. return VXGE_HW_ERR_INVALID_PCI_INFO;
  380. switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
  381. case PCIE_LNK_WIDTH_RESRV:
  382. case PCIE_LNK_X1:
  383. case PCIE_LNK_X2:
  384. case PCIE_LNK_X4:
  385. case PCIE_LNK_X8:
  386. break;
  387. default:
  388. return VXGE_HW_ERR_INVALID_PCI_INFO;
  389. }
  390. return VXGE_HW_OK;
  391. }
  392. /*
  393. * __vxge_hw_device_initialize
  394. * Initialize Titan-V hardware.
  395. */
  396. enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
  397. {
  398. enum vxge_hw_status status = VXGE_HW_OK;
  399. if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
  400. hldev->func_id)) {
  401. /* Validate the pci-e link width and speed */
  402. status = __vxge_hw_verify_pci_e_info(hldev);
  403. if (status != VXGE_HW_OK)
  404. goto exit;
  405. }
  406. exit:
  407. return status;
  408. }
  409. /**
  410. * vxge_hw_device_hw_info_get - Get the hw information
  411. * Returns the vpath mask that has the bits set for each vpath allocated
  412. * for the driver, FW version information and the first mac addresse for
  413. * each vpath
  414. */
  415. enum vxge_hw_status __devinit
  416. vxge_hw_device_hw_info_get(void __iomem *bar0,
  417. struct vxge_hw_device_hw_info *hw_info)
  418. {
  419. u32 i;
  420. u64 val64;
  421. struct vxge_hw_toc_reg __iomem *toc;
  422. struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
  423. struct vxge_hw_common_reg __iomem *common_reg;
  424. struct vxge_hw_vpath_reg __iomem *vpath_reg;
  425. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  426. enum vxge_hw_status status;
  427. memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
  428. toc = __vxge_hw_device_toc_get(bar0);
  429. if (toc == NULL) {
  430. status = VXGE_HW_ERR_CRITICAL;
  431. goto exit;
  432. }
  433. val64 = readq(&toc->toc_common_pointer);
  434. common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
  435. status = __vxge_hw_device_vpath_reset_in_prog_check(
  436. (u64 __iomem *)&common_reg->vpath_rst_in_prog);
  437. if (status != VXGE_HW_OK)
  438. goto exit;
  439. hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
  440. val64 = readq(&common_reg->host_type_assignments);
  441. hw_info->host_type =
  442. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  443. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  444. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  445. continue;
  446. val64 = readq(&toc->toc_vpmgmt_pointer[i]);
  447. vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
  448. (bar0 + val64);
  449. hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
  450. if (__vxge_hw_device_access_rights_get(hw_info->host_type,
  451. hw_info->func_id) &
  452. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
  453. val64 = readq(&toc->toc_mrpcim_pointer);
  454. mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
  455. (bar0 + val64);
  456. writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
  457. wmb();
  458. }
  459. val64 = readq(&toc->toc_vpath_pointer[i]);
  460. vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
  461. hw_info->function_mode =
  462. __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
  463. status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
  464. if (status != VXGE_HW_OK)
  465. goto exit;
  466. status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
  467. if (status != VXGE_HW_OK)
  468. goto exit;
  469. break;
  470. }
  471. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  472. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  473. continue;
  474. val64 = readq(&toc->toc_vpath_pointer[i]);
  475. vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
  476. status = __vxge_hw_vpath_addr_get(i, vpath_reg,
  477. hw_info->mac_addrs[i],
  478. hw_info->mac_addr_masks[i]);
  479. if (status != VXGE_HW_OK)
  480. goto exit;
  481. }
  482. exit:
  483. return status;
  484. }
  485. /*
  486. * vxge_hw_device_initialize - Initialize Titan device.
  487. * Initialize Titan device. Note that all the arguments of this public API
  488. * are 'IN', including @hldev. Driver cooperates with
  489. * OS to find new Titan device, locate its PCI and memory spaces.
  490. *
  491. * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
  492. * to enable the latter to perform Titan hardware initialization.
  493. */
  494. enum vxge_hw_status __devinit
  495. vxge_hw_device_initialize(
  496. struct __vxge_hw_device **devh,
  497. struct vxge_hw_device_attr *attr,
  498. struct vxge_hw_device_config *device_config)
  499. {
  500. u32 i;
  501. u32 nblocks = 0;
  502. struct __vxge_hw_device *hldev = NULL;
  503. enum vxge_hw_status status = VXGE_HW_OK;
  504. status = __vxge_hw_device_config_check(device_config);
  505. if (status != VXGE_HW_OK)
  506. goto exit;
  507. hldev = (struct __vxge_hw_device *)
  508. vmalloc(sizeof(struct __vxge_hw_device));
  509. if (hldev == NULL) {
  510. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  511. goto exit;
  512. }
  513. memset(hldev, 0, sizeof(struct __vxge_hw_device));
  514. hldev->magic = VXGE_HW_DEVICE_MAGIC;
  515. vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
  516. /* apply config */
  517. memcpy(&hldev->config, device_config,
  518. sizeof(struct vxge_hw_device_config));
  519. hldev->bar0 = attr->bar0;
  520. hldev->pdev = attr->pdev;
  521. hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
  522. hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
  523. hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
  524. __vxge_hw_device_pci_e_init(hldev);
  525. status = __vxge_hw_device_reg_addr_get(hldev);
  526. if (status != VXGE_HW_OK)
  527. goto exit;
  528. __vxge_hw_device_id_get(hldev);
  529. __vxge_hw_device_host_info_get(hldev);
  530. /* Incrementing for stats blocks */
  531. nblocks++;
  532. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  533. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  534. continue;
  535. if (device_config->vp_config[i].ring.enable ==
  536. VXGE_HW_RING_ENABLE)
  537. nblocks += device_config->vp_config[i].ring.ring_blocks;
  538. if (device_config->vp_config[i].fifo.enable ==
  539. VXGE_HW_FIFO_ENABLE)
  540. nblocks += device_config->vp_config[i].fifo.fifo_blocks;
  541. nblocks++;
  542. }
  543. if (__vxge_hw_blockpool_create(hldev,
  544. &hldev->block_pool,
  545. device_config->dma_blockpool_initial + nblocks,
  546. device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
  547. vxge_hw_device_terminate(hldev);
  548. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  549. goto exit;
  550. }
  551. status = __vxge_hw_device_initialize(hldev);
  552. if (status != VXGE_HW_OK) {
  553. vxge_hw_device_terminate(hldev);
  554. goto exit;
  555. }
  556. *devh = hldev;
  557. exit:
  558. return status;
  559. }
  560. /*
  561. * vxge_hw_device_terminate - Terminate Titan device.
  562. * Terminate HW device.
  563. */
  564. void
  565. vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
  566. {
  567. vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
  568. hldev->magic = VXGE_HW_DEVICE_DEAD;
  569. __vxge_hw_blockpool_destroy(&hldev->block_pool);
  570. vfree(hldev);
  571. }
  572. /*
  573. * vxge_hw_device_stats_get - Get the device hw statistics.
  574. * Returns the vpath h/w stats for the device.
  575. */
  576. enum vxge_hw_status
  577. vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
  578. struct vxge_hw_device_stats_hw_info *hw_stats)
  579. {
  580. u32 i;
  581. enum vxge_hw_status status = VXGE_HW_OK;
  582. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  583. if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
  584. (hldev->virtual_paths[i].vp_open ==
  585. VXGE_HW_VP_NOT_OPEN))
  586. continue;
  587. memcpy(hldev->virtual_paths[i].hw_stats_sav,
  588. hldev->virtual_paths[i].hw_stats,
  589. sizeof(struct vxge_hw_vpath_stats_hw_info));
  590. status = __vxge_hw_vpath_stats_get(
  591. &hldev->virtual_paths[i],
  592. hldev->virtual_paths[i].hw_stats);
  593. }
  594. memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
  595. sizeof(struct vxge_hw_device_stats_hw_info));
  596. return status;
  597. }
  598. /*
  599. * vxge_hw_driver_stats_get - Get the device sw statistics.
  600. * Returns the vpath s/w stats for the device.
  601. */
  602. enum vxge_hw_status vxge_hw_driver_stats_get(
  603. struct __vxge_hw_device *hldev,
  604. struct vxge_hw_device_stats_sw_info *sw_stats)
  605. {
  606. enum vxge_hw_status status = VXGE_HW_OK;
  607. memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
  608. sizeof(struct vxge_hw_device_stats_sw_info));
  609. return status;
  610. }
  611. /*
  612. * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
  613. * and offset and perform an operation
  614. * Get the statistics from the given location and offset.
  615. */
  616. enum vxge_hw_status
  617. vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
  618. u32 operation, u32 location, u32 offset, u64 *stat)
  619. {
  620. u64 val64;
  621. enum vxge_hw_status status = VXGE_HW_OK;
  622. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  623. hldev->func_id);
  624. if (status != VXGE_HW_OK)
  625. goto exit;
  626. val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
  627. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
  628. VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
  629. VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
  630. status = __vxge_hw_pio_mem_write64(val64,
  631. &hldev->mrpcim_reg->xmac_stats_sys_cmd,
  632. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
  633. hldev->config.device_poll_millis);
  634. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  635. *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
  636. else
  637. *stat = 0;
  638. exit:
  639. return status;
  640. }
  641. /*
  642. * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
  643. * Get the Statistics on aggregate port
  644. */
  645. enum vxge_hw_status
  646. vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
  647. struct vxge_hw_xmac_aggr_stats *aggr_stats)
  648. {
  649. u64 *val64;
  650. int i;
  651. u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
  652. enum vxge_hw_status status = VXGE_HW_OK;
  653. val64 = (u64 *)aggr_stats;
  654. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  655. hldev->func_id);
  656. if (status != VXGE_HW_OK)
  657. goto exit;
  658. for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
  659. status = vxge_hw_mrpcim_stats_access(hldev,
  660. VXGE_HW_STATS_OP_READ,
  661. VXGE_HW_STATS_LOC_AGGR,
  662. ((offset + (104 * port)) >> 3), val64);
  663. if (status != VXGE_HW_OK)
  664. goto exit;
  665. offset += 8;
  666. val64++;
  667. }
  668. exit:
  669. return status;
  670. }
  671. /*
  672. * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
  673. * Get the Statistics on port
  674. */
  675. enum vxge_hw_status
  676. vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
  677. struct vxge_hw_xmac_port_stats *port_stats)
  678. {
  679. u64 *val64;
  680. enum vxge_hw_status status = VXGE_HW_OK;
  681. int i;
  682. u32 offset = 0x0;
  683. val64 = (u64 *) port_stats;
  684. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  685. hldev->func_id);
  686. if (status != VXGE_HW_OK)
  687. goto exit;
  688. for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
  689. status = vxge_hw_mrpcim_stats_access(hldev,
  690. VXGE_HW_STATS_OP_READ,
  691. VXGE_HW_STATS_LOC_AGGR,
  692. ((offset + (608 * port)) >> 3), val64);
  693. if (status != VXGE_HW_OK)
  694. goto exit;
  695. offset += 8;
  696. val64++;
  697. }
  698. exit:
  699. return status;
  700. }
  701. /*
  702. * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
  703. * Get the XMAC Statistics
  704. */
  705. enum vxge_hw_status
  706. vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
  707. struct vxge_hw_xmac_stats *xmac_stats)
  708. {
  709. enum vxge_hw_status status = VXGE_HW_OK;
  710. u32 i;
  711. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  712. 0, &xmac_stats->aggr_stats[0]);
  713. if (status != VXGE_HW_OK)
  714. goto exit;
  715. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  716. 1, &xmac_stats->aggr_stats[1]);
  717. if (status != VXGE_HW_OK)
  718. goto exit;
  719. for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  720. status = vxge_hw_device_xmac_port_stats_get(hldev,
  721. i, &xmac_stats->port_stats[i]);
  722. if (status != VXGE_HW_OK)
  723. goto exit;
  724. }
  725. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  726. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  727. continue;
  728. status = __vxge_hw_vpath_xmac_tx_stats_get(
  729. &hldev->virtual_paths[i],
  730. &xmac_stats->vpath_tx_stats[i]);
  731. if (status != VXGE_HW_OK)
  732. goto exit;
  733. status = __vxge_hw_vpath_xmac_rx_stats_get(
  734. &hldev->virtual_paths[i],
  735. &xmac_stats->vpath_rx_stats[i]);
  736. if (status != VXGE_HW_OK)
  737. goto exit;
  738. }
  739. exit:
  740. return status;
  741. }
  742. /*
  743. * vxge_hw_device_debug_set - Set the debug module, level and timestamp
  744. * This routine is used to dynamically change the debug output
  745. */
  746. void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
  747. enum vxge_debug_level level, u32 mask)
  748. {
  749. if (hldev == NULL)
  750. return;
  751. #if defined(VXGE_DEBUG_TRACE_MASK) || \
  752. defined(VXGE_DEBUG_ERR_MASK)
  753. hldev->debug_module_mask = mask;
  754. hldev->debug_level = level;
  755. #endif
  756. #if defined(VXGE_DEBUG_ERR_MASK)
  757. hldev->level_err = level & VXGE_ERR;
  758. #endif
  759. #if defined(VXGE_DEBUG_TRACE_MASK)
  760. hldev->level_trace = level & VXGE_TRACE;
  761. #endif
  762. }
  763. /*
  764. * vxge_hw_device_error_level_get - Get the error level
  765. * This routine returns the current error level set
  766. */
  767. u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
  768. {
  769. #if defined(VXGE_DEBUG_ERR_MASK)
  770. if (hldev == NULL)
  771. return VXGE_ERR;
  772. else
  773. return hldev->level_err;
  774. #else
  775. return 0;
  776. #endif
  777. }
  778. /*
  779. * vxge_hw_device_trace_level_get - Get the trace level
  780. * This routine returns the current trace level set
  781. */
  782. u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
  783. {
  784. #if defined(VXGE_DEBUG_TRACE_MASK)
  785. if (hldev == NULL)
  786. return VXGE_TRACE;
  787. else
  788. return hldev->level_trace;
  789. #else
  790. return 0;
  791. #endif
  792. }
  793. /*
  794. * vxge_hw_device_debug_mask_get - Get the debug mask
  795. * This routine returns the current debug mask set
  796. */
  797. u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
  798. {
  799. #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
  800. if (hldev == NULL)
  801. return 0;
  802. return hldev->debug_module_mask;
  803. #else
  804. return 0;
  805. #endif
  806. }
  807. /*
  808. * vxge_hw_getpause_data -Pause frame frame generation and reception.
  809. * Returns the Pause frame generation and reception capability of the NIC.
  810. */
  811. enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
  812. u32 port, u32 *tx, u32 *rx)
  813. {
  814. u64 val64;
  815. enum vxge_hw_status status = VXGE_HW_OK;
  816. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  817. status = VXGE_HW_ERR_INVALID_DEVICE;
  818. goto exit;
  819. }
  820. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  821. status = VXGE_HW_ERR_INVALID_PORT;
  822. goto exit;
  823. }
  824. if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  825. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  826. goto exit;
  827. }
  828. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  829. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
  830. *tx = 1;
  831. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
  832. *rx = 1;
  833. exit:
  834. return status;
  835. }
  836. /*
  837. * vxge_hw_device_setpause_data - set/reset pause frame generation.
  838. * It can be used to set or reset Pause frame generation or reception
  839. * support of the NIC.
  840. */
  841. enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
  842. u32 port, u32 tx, u32 rx)
  843. {
  844. u64 val64;
  845. enum vxge_hw_status status = VXGE_HW_OK;
  846. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  847. status = VXGE_HW_ERR_INVALID_DEVICE;
  848. goto exit;
  849. }
  850. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  851. status = VXGE_HW_ERR_INVALID_PORT;
  852. goto exit;
  853. }
  854. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  855. hldev->func_id);
  856. if (status != VXGE_HW_OK)
  857. goto exit;
  858. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  859. if (tx)
  860. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  861. else
  862. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  863. if (rx)
  864. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  865. else
  866. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  867. writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  868. exit:
  869. return status;
  870. }
  871. u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
  872. {
  873. int link_width, exp_cap;
  874. u16 lnk;
  875. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  876. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  877. link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
  878. return link_width;
  879. }
  880. /*
  881. * __vxge_hw_ring_block_memblock_idx - Return the memblock index
  882. * This function returns the index of memory block
  883. */
  884. static inline u32
  885. __vxge_hw_ring_block_memblock_idx(u8 *block)
  886. {
  887. return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
  888. }
  889. /*
  890. * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
  891. * This function sets index to a memory block
  892. */
  893. static inline void
  894. __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
  895. {
  896. *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
  897. }
  898. /*
  899. * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
  900. * in RxD block
  901. * Sets the next block pointer in RxD block
  902. */
  903. static inline void
  904. __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
  905. {
  906. *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
  907. }
  908. /*
  909. * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
  910. * first block
  911. * Returns the dma address of the first RxD block
  912. */
  913. u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
  914. {
  915. struct vxge_hw_mempool_dma *dma_object;
  916. dma_object = ring->mempool->memblocks_dma_arr;
  917. vxge_assert(dma_object != NULL);
  918. return dma_object->addr;
  919. }
  920. /*
  921. * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
  922. * This function returns the dma address of a given item
  923. */
  924. static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
  925. void *item)
  926. {
  927. u32 memblock_idx;
  928. void *memblock;
  929. struct vxge_hw_mempool_dma *memblock_dma_object;
  930. ptrdiff_t dma_item_offset;
  931. /* get owner memblock index */
  932. memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
  933. /* get owner memblock by memblock index */
  934. memblock = mempoolh->memblocks_arr[memblock_idx];
  935. /* get memblock DMA object by memblock index */
  936. memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
  937. /* calculate offset in the memblock of this item */
  938. dma_item_offset = (u8 *)item - (u8 *)memblock;
  939. return memblock_dma_object->addr + dma_item_offset;
  940. }
  941. /*
  942. * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
  943. * This function returns the dma address of a given item
  944. */
  945. static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
  946. struct __vxge_hw_ring *ring, u32 from,
  947. u32 to)
  948. {
  949. u8 *to_item , *from_item;
  950. dma_addr_t to_dma;
  951. /* get "from" RxD block */
  952. from_item = mempoolh->items_arr[from];
  953. vxge_assert(from_item);
  954. /* get "to" RxD block */
  955. to_item = mempoolh->items_arr[to];
  956. vxge_assert(to_item);
  957. /* return address of the beginning of previous RxD block */
  958. to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
  959. /* set next pointer for this RxD block to point on
  960. * previous item's DMA start address */
  961. __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
  962. }
  963. /*
  964. * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
  965. * block callback
  966. * This function is callback passed to __vxge_hw_mempool_create to create memory
  967. * pool for RxD block
  968. */
  969. static void
  970. __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
  971. u32 memblock_index,
  972. struct vxge_hw_mempool_dma *dma_object,
  973. u32 index, u32 is_last)
  974. {
  975. u32 i;
  976. void *item = mempoolh->items_arr[index];
  977. struct __vxge_hw_ring *ring =
  978. (struct __vxge_hw_ring *)mempoolh->userdata;
  979. /* format rxds array */
  980. for (i = 0; i < ring->rxds_per_block; i++) {
  981. void *rxdblock_priv;
  982. void *uld_priv;
  983. struct vxge_hw_ring_rxd_1 *rxdp;
  984. u32 reserve_index = ring->channel.reserve_ptr -
  985. (index * ring->rxds_per_block + i + 1);
  986. u32 memblock_item_idx;
  987. ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
  988. i * ring->rxd_size;
  989. /* Note: memblock_item_idx is index of the item within
  990. * the memblock. For instance, in case of three RxD-blocks
  991. * per memblock this value can be 0, 1 or 2. */
  992. rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
  993. memblock_index, item,
  994. &memblock_item_idx);
  995. rxdp = (struct vxge_hw_ring_rxd_1 *)
  996. ring->channel.reserve_arr[reserve_index];
  997. uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
  998. /* pre-format Host_Control */
  999. rxdp->host_control = (u64)(size_t)uld_priv;
  1000. }
  1001. __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
  1002. if (is_last) {
  1003. /* link last one with first one */
  1004. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
  1005. }
  1006. if (index > 0) {
  1007. /* link this RxD block with previous one */
  1008. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
  1009. }
  1010. return;
  1011. }
  1012. /*
  1013. * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs
  1014. * This function replenishes the RxDs from reserve array to work array
  1015. */
  1016. enum vxge_hw_status
  1017. vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag)
  1018. {
  1019. void *rxd;
  1020. int i = 0;
  1021. struct __vxge_hw_channel *channel;
  1022. enum vxge_hw_status status = VXGE_HW_OK;
  1023. channel = &ring->channel;
  1024. while (vxge_hw_channel_dtr_count(channel) > 0) {
  1025. status = vxge_hw_ring_rxd_reserve(ring, &rxd);
  1026. vxge_assert(status == VXGE_HW_OK);
  1027. if (ring->rxd_init) {
  1028. status = ring->rxd_init(rxd, channel->userdata);
  1029. if (status != VXGE_HW_OK) {
  1030. vxge_hw_ring_rxd_free(ring, rxd);
  1031. goto exit;
  1032. }
  1033. }
  1034. vxge_hw_ring_rxd_post(ring, rxd);
  1035. if (min_flag) {
  1036. i++;
  1037. if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION)
  1038. break;
  1039. }
  1040. }
  1041. status = VXGE_HW_OK;
  1042. exit:
  1043. return status;
  1044. }
  1045. /*
  1046. * __vxge_hw_ring_create - Create a Ring
  1047. * This function creates Ring and initializes it.
  1048. *
  1049. */
  1050. enum vxge_hw_status
  1051. __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
  1052. struct vxge_hw_ring_attr *attr)
  1053. {
  1054. enum vxge_hw_status status = VXGE_HW_OK;
  1055. struct __vxge_hw_ring *ring;
  1056. u32 ring_length;
  1057. struct vxge_hw_ring_config *config;
  1058. struct __vxge_hw_device *hldev;
  1059. u32 vp_id;
  1060. struct vxge_hw_mempool_cbs ring_mp_callback;
  1061. if ((vp == NULL) || (attr == NULL)) {
  1062. status = VXGE_HW_FAIL;
  1063. goto exit;
  1064. }
  1065. hldev = vp->vpath->hldev;
  1066. vp_id = vp->vpath->vp_id;
  1067. config = &hldev->config.vp_config[vp_id].ring;
  1068. ring_length = config->ring_blocks *
  1069. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  1070. ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
  1071. VXGE_HW_CHANNEL_TYPE_RING,
  1072. ring_length,
  1073. attr->per_rxd_space,
  1074. attr->userdata);
  1075. if (ring == NULL) {
  1076. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1077. goto exit;
  1078. }
  1079. vp->vpath->ringh = ring;
  1080. ring->vp_id = vp_id;
  1081. ring->vp_reg = vp->vpath->vp_reg;
  1082. ring->common_reg = hldev->common_reg;
  1083. ring->stats = &vp->vpath->sw_stats->ring_stats;
  1084. ring->config = config;
  1085. ring->callback = attr->callback;
  1086. ring->rxd_init = attr->rxd_init;
  1087. ring->rxd_term = attr->rxd_term;
  1088. ring->buffer_mode = config->buffer_mode;
  1089. ring->rxds_limit = config->rxds_limit;
  1090. ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
  1091. ring->rxd_priv_size =
  1092. sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
  1093. ring->per_rxd_space = attr->per_rxd_space;
  1094. ring->rxd_priv_size =
  1095. ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  1096. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  1097. /* how many RxDs can fit into one block. Depends on configured
  1098. * buffer_mode. */
  1099. ring->rxds_per_block =
  1100. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  1101. /* calculate actual RxD block private size */
  1102. ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
  1103. ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
  1104. ring->mempool = __vxge_hw_mempool_create(hldev,
  1105. VXGE_HW_BLOCK_SIZE,
  1106. VXGE_HW_BLOCK_SIZE,
  1107. ring->rxdblock_priv_size,
  1108. ring->config->ring_blocks,
  1109. ring->config->ring_blocks,
  1110. &ring_mp_callback,
  1111. ring);
  1112. if (ring->mempool == NULL) {
  1113. __vxge_hw_ring_delete(vp);
  1114. return VXGE_HW_ERR_OUT_OF_MEMORY;
  1115. }
  1116. status = __vxge_hw_channel_initialize(&ring->channel);
  1117. if (status != VXGE_HW_OK) {
  1118. __vxge_hw_ring_delete(vp);
  1119. goto exit;
  1120. }
  1121. /* Note:
  1122. * Specifying rxd_init callback means two things:
  1123. * 1) rxds need to be initialized by driver at channel-open time;
  1124. * 2) rxds need to be posted at channel-open time
  1125. * (that's what the initial_replenish() below does)
  1126. * Currently we don't have a case when the 1) is done without the 2).
  1127. */
  1128. if (ring->rxd_init) {
  1129. status = vxge_hw_ring_replenish(ring, 1);
  1130. if (status != VXGE_HW_OK) {
  1131. __vxge_hw_ring_delete(vp);
  1132. goto exit;
  1133. }
  1134. }
  1135. /* initial replenish will increment the counter in its post() routine,
  1136. * we have to reset it */
  1137. ring->stats->common_stats.usage_cnt = 0;
  1138. exit:
  1139. return status;
  1140. }
  1141. /*
  1142. * __vxge_hw_ring_abort - Returns the RxD
  1143. * This function terminates the RxDs of ring
  1144. */
  1145. enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
  1146. {
  1147. void *rxdh;
  1148. struct __vxge_hw_channel *channel;
  1149. channel = &ring->channel;
  1150. for (;;) {
  1151. vxge_hw_channel_dtr_try_complete(channel, &rxdh);
  1152. if (rxdh == NULL)
  1153. break;
  1154. vxge_hw_channel_dtr_complete(channel);
  1155. if (ring->rxd_term)
  1156. ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
  1157. channel->userdata);
  1158. vxge_hw_channel_dtr_free(channel, rxdh);
  1159. }
  1160. return VXGE_HW_OK;
  1161. }
  1162. /*
  1163. * __vxge_hw_ring_reset - Resets the ring
  1164. * This function resets the ring during vpath reset operation
  1165. */
  1166. enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
  1167. {
  1168. enum vxge_hw_status status = VXGE_HW_OK;
  1169. struct __vxge_hw_channel *channel;
  1170. channel = &ring->channel;
  1171. __vxge_hw_ring_abort(ring);
  1172. status = __vxge_hw_channel_reset(channel);
  1173. if (status != VXGE_HW_OK)
  1174. goto exit;
  1175. if (ring->rxd_init) {
  1176. status = vxge_hw_ring_replenish(ring, 1);
  1177. if (status != VXGE_HW_OK)
  1178. goto exit;
  1179. }
  1180. exit:
  1181. return status;
  1182. }
  1183. /*
  1184. * __vxge_hw_ring_delete - Removes the ring
  1185. * This function freeup the memory pool and removes the ring
  1186. */
  1187. enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
  1188. {
  1189. struct __vxge_hw_ring *ring = vp->vpath->ringh;
  1190. __vxge_hw_ring_abort(ring);
  1191. if (ring->mempool)
  1192. __vxge_hw_mempool_destroy(ring->mempool);
  1193. vp->vpath->ringh = NULL;
  1194. __vxge_hw_channel_free(&ring->channel);
  1195. return VXGE_HW_OK;
  1196. }
  1197. /*
  1198. * __vxge_hw_mempool_grow
  1199. * Will resize mempool up to %num_allocate value.
  1200. */
  1201. enum vxge_hw_status
  1202. __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
  1203. u32 *num_allocated)
  1204. {
  1205. u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
  1206. u32 n_items = mempool->items_per_memblock;
  1207. u32 start_block_idx = mempool->memblocks_allocated;
  1208. u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
  1209. enum vxge_hw_status status = VXGE_HW_OK;
  1210. *num_allocated = 0;
  1211. if (end_block_idx > mempool->memblocks_max) {
  1212. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1213. goto exit;
  1214. }
  1215. for (i = start_block_idx; i < end_block_idx; i++) {
  1216. u32 j;
  1217. u32 is_last = ((end_block_idx - 1) == i);
  1218. struct vxge_hw_mempool_dma *dma_object =
  1219. mempool->memblocks_dma_arr + i;
  1220. void *the_memblock;
  1221. /* allocate memblock's private part. Each DMA memblock
  1222. * has a space allocated for item's private usage upon
  1223. * mempool's user request. Each time mempool grows, it will
  1224. * allocate new memblock and its private part at once.
  1225. * This helps to minimize memory usage a lot. */
  1226. mempool->memblocks_priv_arr[i] =
  1227. vmalloc(mempool->items_priv_size * n_items);
  1228. if (mempool->memblocks_priv_arr[i] == NULL) {
  1229. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1230. goto exit;
  1231. }
  1232. memset(mempool->memblocks_priv_arr[i], 0,
  1233. mempool->items_priv_size * n_items);
  1234. /* allocate DMA-capable memblock */
  1235. mempool->memblocks_arr[i] =
  1236. __vxge_hw_blockpool_malloc(mempool->devh,
  1237. mempool->memblock_size, dma_object);
  1238. if (mempool->memblocks_arr[i] == NULL) {
  1239. vfree(mempool->memblocks_priv_arr[i]);
  1240. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1241. goto exit;
  1242. }
  1243. (*num_allocated)++;
  1244. mempool->memblocks_allocated++;
  1245. memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
  1246. the_memblock = mempool->memblocks_arr[i];
  1247. /* fill the items hash array */
  1248. for (j = 0; j < n_items; j++) {
  1249. u32 index = i * n_items + j;
  1250. if (first_time && index >= mempool->items_initial)
  1251. break;
  1252. mempool->items_arr[index] =
  1253. ((char *)the_memblock + j*mempool->item_size);
  1254. /* let caller to do more job on each item */
  1255. if (mempool->item_func_alloc != NULL)
  1256. mempool->item_func_alloc(mempool, i,
  1257. dma_object, index, is_last);
  1258. mempool->items_current = index + 1;
  1259. }
  1260. if (first_time && mempool->items_current ==
  1261. mempool->items_initial)
  1262. break;
  1263. }
  1264. exit:
  1265. return status;
  1266. }
  1267. /*
  1268. * vxge_hw_mempool_create
  1269. * This function will create memory pool object. Pool may grow but will
  1270. * never shrink. Pool consists of number of dynamically allocated blocks
  1271. * with size enough to hold %items_initial number of items. Memory is
  1272. * DMA-able but client must map/unmap before interoperating with the device.
  1273. */
  1274. struct vxge_hw_mempool*
  1275. __vxge_hw_mempool_create(
  1276. struct __vxge_hw_device *devh,
  1277. u32 memblock_size,
  1278. u32 item_size,
  1279. u32 items_priv_size,
  1280. u32 items_initial,
  1281. u32 items_max,
  1282. struct vxge_hw_mempool_cbs *mp_callback,
  1283. void *userdata)
  1284. {
  1285. enum vxge_hw_status status = VXGE_HW_OK;
  1286. u32 memblocks_to_allocate;
  1287. struct vxge_hw_mempool *mempool = NULL;
  1288. u32 allocated;
  1289. if (memblock_size < item_size) {
  1290. status = VXGE_HW_FAIL;
  1291. goto exit;
  1292. }
  1293. mempool = (struct vxge_hw_mempool *)
  1294. vmalloc(sizeof(struct vxge_hw_mempool));
  1295. if (mempool == NULL) {
  1296. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1297. goto exit;
  1298. }
  1299. memset(mempool, 0, sizeof(struct vxge_hw_mempool));
  1300. mempool->devh = devh;
  1301. mempool->memblock_size = memblock_size;
  1302. mempool->items_max = items_max;
  1303. mempool->items_initial = items_initial;
  1304. mempool->item_size = item_size;
  1305. mempool->items_priv_size = items_priv_size;
  1306. mempool->item_func_alloc = mp_callback->item_func_alloc;
  1307. mempool->userdata = userdata;
  1308. mempool->memblocks_allocated = 0;
  1309. mempool->items_per_memblock = memblock_size / item_size;
  1310. mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
  1311. mempool->items_per_memblock;
  1312. /* allocate array of memblocks */
  1313. mempool->memblocks_arr =
  1314. (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
  1315. if (mempool->memblocks_arr == NULL) {
  1316. __vxge_hw_mempool_destroy(mempool);
  1317. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1318. mempool = NULL;
  1319. goto exit;
  1320. }
  1321. memset(mempool->memblocks_arr, 0,
  1322. sizeof(void *) * mempool->memblocks_max);
  1323. /* allocate array of private parts of items per memblocks */
  1324. mempool->memblocks_priv_arr =
  1325. (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
  1326. if (mempool->memblocks_priv_arr == NULL) {
  1327. __vxge_hw_mempool_destroy(mempool);
  1328. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1329. mempool = NULL;
  1330. goto exit;
  1331. }
  1332. memset(mempool->memblocks_priv_arr, 0,
  1333. sizeof(void *) * mempool->memblocks_max);
  1334. /* allocate array of memblocks DMA objects */
  1335. mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
  1336. vmalloc(sizeof(struct vxge_hw_mempool_dma) *
  1337. mempool->memblocks_max);
  1338. if (mempool->memblocks_dma_arr == NULL) {
  1339. __vxge_hw_mempool_destroy(mempool);
  1340. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1341. mempool = NULL;
  1342. goto exit;
  1343. }
  1344. memset(mempool->memblocks_dma_arr, 0,
  1345. sizeof(struct vxge_hw_mempool_dma) *
  1346. mempool->memblocks_max);
  1347. /* allocate hash array of items */
  1348. mempool->items_arr =
  1349. (void **) vmalloc(sizeof(void *) * mempool->items_max);
  1350. if (mempool->items_arr == NULL) {
  1351. __vxge_hw_mempool_destroy(mempool);
  1352. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1353. mempool = NULL;
  1354. goto exit;
  1355. }
  1356. memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
  1357. /* calculate initial number of memblocks */
  1358. memblocks_to_allocate = (mempool->items_initial +
  1359. mempool->items_per_memblock - 1) /
  1360. mempool->items_per_memblock;
  1361. /* pre-allocate the mempool */
  1362. status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
  1363. &allocated);
  1364. if (status != VXGE_HW_OK) {
  1365. __vxge_hw_mempool_destroy(mempool);
  1366. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1367. mempool = NULL;
  1368. goto exit;
  1369. }
  1370. exit:
  1371. return mempool;
  1372. }
  1373. /*
  1374. * vxge_hw_mempool_destroy
  1375. */
  1376. void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
  1377. {
  1378. u32 i, j;
  1379. struct __vxge_hw_device *devh = mempool->devh;
  1380. for (i = 0; i < mempool->memblocks_allocated; i++) {
  1381. struct vxge_hw_mempool_dma *dma_object;
  1382. vxge_assert(mempool->memblocks_arr[i]);
  1383. vxge_assert(mempool->memblocks_dma_arr + i);
  1384. dma_object = mempool->memblocks_dma_arr + i;
  1385. for (j = 0; j < mempool->items_per_memblock; j++) {
  1386. u32 index = i * mempool->items_per_memblock + j;
  1387. /* to skip last partially filled(if any) memblock */
  1388. if (index >= mempool->items_current)
  1389. break;
  1390. }
  1391. vfree(mempool->memblocks_priv_arr[i]);
  1392. __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
  1393. mempool->memblock_size, dma_object);
  1394. }
  1395. vfree(mempool->items_arr);
  1396. vfree(mempool->memblocks_dma_arr);
  1397. vfree(mempool->memblocks_priv_arr);
  1398. vfree(mempool->memblocks_arr);
  1399. vfree(mempool);
  1400. }
  1401. /*
  1402. * __vxge_hw_device_fifo_config_check - Check fifo configuration.
  1403. * Check the fifo configuration
  1404. */
  1405. enum vxge_hw_status
  1406. __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
  1407. {
  1408. if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
  1409. (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
  1410. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  1411. return VXGE_HW_OK;
  1412. }
  1413. /*
  1414. * __vxge_hw_device_vpath_config_check - Check vpath configuration.
  1415. * Check the vpath configuration
  1416. */
  1417. enum vxge_hw_status
  1418. __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
  1419. {
  1420. enum vxge_hw_status status;
  1421. if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
  1422. (vp_config->min_bandwidth >
  1423. VXGE_HW_VPATH_BANDWIDTH_MAX))
  1424. return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
  1425. status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
  1426. if (status != VXGE_HW_OK)
  1427. return status;
  1428. if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
  1429. ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
  1430. (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
  1431. return VXGE_HW_BADCFG_VPATH_MTU;
  1432. if ((vp_config->rpa_strip_vlan_tag !=
  1433. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
  1434. (vp_config->rpa_strip_vlan_tag !=
  1435. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
  1436. (vp_config->rpa_strip_vlan_tag !=
  1437. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
  1438. return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
  1439. return VXGE_HW_OK;
  1440. }
  1441. /*
  1442. * __vxge_hw_device_config_check - Check device configuration.
  1443. * Check the device configuration
  1444. */
  1445. enum vxge_hw_status
  1446. __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
  1447. {
  1448. u32 i;
  1449. enum vxge_hw_status status;
  1450. if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
  1451. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
  1452. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
  1453. (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
  1454. return VXGE_HW_BADCFG_INTR_MODE;
  1455. if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
  1456. (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
  1457. return VXGE_HW_BADCFG_RTS_MAC_EN;
  1458. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1459. status = __vxge_hw_device_vpath_config_check(
  1460. &new_config->vp_config[i]);
  1461. if (status != VXGE_HW_OK)
  1462. return status;
  1463. }
  1464. return VXGE_HW_OK;
  1465. }
  1466. /*
  1467. * vxge_hw_device_config_default_get - Initialize device config with defaults.
  1468. * Initialize Titan device config with default values.
  1469. */
  1470. enum vxge_hw_status __devinit
  1471. vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
  1472. {
  1473. u32 i;
  1474. device_config->dma_blockpool_initial =
  1475. VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
  1476. device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
  1477. device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
  1478. device_config->rth_en = VXGE_HW_RTH_DEFAULT;
  1479. device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
  1480. device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
  1481. device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
  1482. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1483. device_config->vp_config[i].vp_id = i;
  1484. device_config->vp_config[i].min_bandwidth =
  1485. VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
  1486. device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
  1487. device_config->vp_config[i].ring.ring_blocks =
  1488. VXGE_HW_DEF_RING_BLOCKS;
  1489. device_config->vp_config[i].ring.buffer_mode =
  1490. VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
  1491. device_config->vp_config[i].ring.scatter_mode =
  1492. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
  1493. device_config->vp_config[i].ring.rxds_limit =
  1494. VXGE_HW_DEF_RING_RXDS_LIMIT;
  1495. device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
  1496. device_config->vp_config[i].fifo.fifo_blocks =
  1497. VXGE_HW_MIN_FIFO_BLOCKS;
  1498. device_config->vp_config[i].fifo.max_frags =
  1499. VXGE_HW_MAX_FIFO_FRAGS;
  1500. device_config->vp_config[i].fifo.memblock_size =
  1501. VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
  1502. device_config->vp_config[i].fifo.alignment_size =
  1503. VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
  1504. device_config->vp_config[i].fifo.intr =
  1505. VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
  1506. device_config->vp_config[i].fifo.no_snoop_bits =
  1507. VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
  1508. device_config->vp_config[i].tti.intr_enable =
  1509. VXGE_HW_TIM_INTR_DEFAULT;
  1510. device_config->vp_config[i].tti.btimer_val =
  1511. VXGE_HW_USE_FLASH_DEFAULT;
  1512. device_config->vp_config[i].tti.timer_ac_en =
  1513. VXGE_HW_USE_FLASH_DEFAULT;
  1514. device_config->vp_config[i].tti.timer_ci_en =
  1515. VXGE_HW_USE_FLASH_DEFAULT;
  1516. device_config->vp_config[i].tti.timer_ri_en =
  1517. VXGE_HW_USE_FLASH_DEFAULT;
  1518. device_config->vp_config[i].tti.rtimer_val =
  1519. VXGE_HW_USE_FLASH_DEFAULT;
  1520. device_config->vp_config[i].tti.util_sel =
  1521. VXGE_HW_USE_FLASH_DEFAULT;
  1522. device_config->vp_config[i].tti.ltimer_val =
  1523. VXGE_HW_USE_FLASH_DEFAULT;
  1524. device_config->vp_config[i].tti.urange_a =
  1525. VXGE_HW_USE_FLASH_DEFAULT;
  1526. device_config->vp_config[i].tti.uec_a =
  1527. VXGE_HW_USE_FLASH_DEFAULT;
  1528. device_config->vp_config[i].tti.urange_b =
  1529. VXGE_HW_USE_FLASH_DEFAULT;
  1530. device_config->vp_config[i].tti.uec_b =
  1531. VXGE_HW_USE_FLASH_DEFAULT;
  1532. device_config->vp_config[i].tti.urange_c =
  1533. VXGE_HW_USE_FLASH_DEFAULT;
  1534. device_config->vp_config[i].tti.uec_c =
  1535. VXGE_HW_USE_FLASH_DEFAULT;
  1536. device_config->vp_config[i].tti.uec_d =
  1537. VXGE_HW_USE_FLASH_DEFAULT;
  1538. device_config->vp_config[i].rti.intr_enable =
  1539. VXGE_HW_TIM_INTR_DEFAULT;
  1540. device_config->vp_config[i].rti.btimer_val =
  1541. VXGE_HW_USE_FLASH_DEFAULT;
  1542. device_config->vp_config[i].rti.timer_ac_en =
  1543. VXGE_HW_USE_FLASH_DEFAULT;
  1544. device_config->vp_config[i].rti.timer_ci_en =
  1545. VXGE_HW_USE_FLASH_DEFAULT;
  1546. device_config->vp_config[i].rti.timer_ri_en =
  1547. VXGE_HW_USE_FLASH_DEFAULT;
  1548. device_config->vp_config[i].rti.rtimer_val =
  1549. VXGE_HW_USE_FLASH_DEFAULT;
  1550. device_config->vp_config[i].rti.util_sel =
  1551. VXGE_HW_USE_FLASH_DEFAULT;
  1552. device_config->vp_config[i].rti.ltimer_val =
  1553. VXGE_HW_USE_FLASH_DEFAULT;
  1554. device_config->vp_config[i].rti.urange_a =
  1555. VXGE_HW_USE_FLASH_DEFAULT;
  1556. device_config->vp_config[i].rti.uec_a =
  1557. VXGE_HW_USE_FLASH_DEFAULT;
  1558. device_config->vp_config[i].rti.urange_b =
  1559. VXGE_HW_USE_FLASH_DEFAULT;
  1560. device_config->vp_config[i].rti.uec_b =
  1561. VXGE_HW_USE_FLASH_DEFAULT;
  1562. device_config->vp_config[i].rti.urange_c =
  1563. VXGE_HW_USE_FLASH_DEFAULT;
  1564. device_config->vp_config[i].rti.uec_c =
  1565. VXGE_HW_USE_FLASH_DEFAULT;
  1566. device_config->vp_config[i].rti.uec_d =
  1567. VXGE_HW_USE_FLASH_DEFAULT;
  1568. device_config->vp_config[i].mtu =
  1569. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
  1570. device_config->vp_config[i].rpa_strip_vlan_tag =
  1571. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
  1572. }
  1573. return VXGE_HW_OK;
  1574. }
  1575. /*
  1576. * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
  1577. * Set the swapper bits appropriately for the lagacy section.
  1578. */
  1579. enum vxge_hw_status
  1580. __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
  1581. {
  1582. u64 val64;
  1583. enum vxge_hw_status status = VXGE_HW_OK;
  1584. val64 = readq(&legacy_reg->toc_swapper_fb);
  1585. wmb();
  1586. switch (val64) {
  1587. case VXGE_HW_SWAPPER_INITIAL_VALUE:
  1588. return status;
  1589. case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
  1590. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  1591. &legacy_reg->pifm_rd_swap_en);
  1592. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  1593. &legacy_reg->pifm_rd_flip_en);
  1594. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  1595. &legacy_reg->pifm_wr_swap_en);
  1596. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  1597. &legacy_reg->pifm_wr_flip_en);
  1598. break;
  1599. case VXGE_HW_SWAPPER_BYTE_SWAPPED:
  1600. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  1601. &legacy_reg->pifm_rd_swap_en);
  1602. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  1603. &legacy_reg->pifm_wr_swap_en);
  1604. break;
  1605. case VXGE_HW_SWAPPER_BIT_FLIPPED:
  1606. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  1607. &legacy_reg->pifm_rd_flip_en);
  1608. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  1609. &legacy_reg->pifm_wr_flip_en);
  1610. break;
  1611. }
  1612. wmb();
  1613. val64 = readq(&legacy_reg->toc_swapper_fb);
  1614. if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
  1615. status = VXGE_HW_ERR_SWAPPER_CTRL;
  1616. return status;
  1617. }
  1618. /*
  1619. * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
  1620. * Set the swapper bits appropriately for the vpath.
  1621. */
  1622. enum vxge_hw_status
  1623. __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
  1624. {
  1625. #ifndef __BIG_ENDIAN
  1626. u64 val64;
  1627. val64 = readq(&vpath_reg->vpath_general_cfg1);
  1628. wmb();
  1629. val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
  1630. writeq(val64, &vpath_reg->vpath_general_cfg1);
  1631. wmb();
  1632. #endif
  1633. return VXGE_HW_OK;
  1634. }
  1635. /*
  1636. * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
  1637. * Set the swapper bits appropriately for the vpath.
  1638. */
  1639. enum vxge_hw_status
  1640. __vxge_hw_kdfc_swapper_set(
  1641. struct vxge_hw_legacy_reg __iomem *legacy_reg,
  1642. struct vxge_hw_vpath_reg __iomem *vpath_reg)
  1643. {
  1644. u64 val64;
  1645. val64 = readq(&legacy_reg->pifm_wr_swap_en);
  1646. if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
  1647. val64 = readq(&vpath_reg->kdfcctl_cfg0);
  1648. wmb();
  1649. val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
  1650. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
  1651. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
  1652. writeq(val64, &vpath_reg->kdfcctl_cfg0);
  1653. wmb();
  1654. }
  1655. return VXGE_HW_OK;
  1656. }
  1657. /*
  1658. * vxge_hw_mgmt_device_config - Retrieve device configuration.
  1659. * Get device configuration. Permits to retrieve at run-time configuration
  1660. * values that were used to initialize and configure the device.
  1661. */
  1662. enum vxge_hw_status
  1663. vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
  1664. struct vxge_hw_device_config *dev_config, int size)
  1665. {
  1666. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
  1667. return VXGE_HW_ERR_INVALID_DEVICE;
  1668. if (size != sizeof(struct vxge_hw_device_config))
  1669. return VXGE_HW_ERR_VERSION_CONFLICT;
  1670. memcpy(dev_config, &hldev->config,
  1671. sizeof(struct vxge_hw_device_config));
  1672. return VXGE_HW_OK;
  1673. }
  1674. /*
  1675. * vxge_hw_mgmt_reg_read - Read Titan register.
  1676. */
  1677. enum vxge_hw_status
  1678. vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
  1679. enum vxge_hw_mgmt_reg_type type,
  1680. u32 index, u32 offset, u64 *value)
  1681. {
  1682. enum vxge_hw_status status = VXGE_HW_OK;
  1683. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1684. status = VXGE_HW_ERR_INVALID_DEVICE;
  1685. goto exit;
  1686. }
  1687. switch (type) {
  1688. case vxge_hw_mgmt_reg_type_legacy:
  1689. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  1690. status = VXGE_HW_ERR_INVALID_OFFSET;
  1691. break;
  1692. }
  1693. *value = readq((void __iomem *)hldev->legacy_reg + offset);
  1694. break;
  1695. case vxge_hw_mgmt_reg_type_toc:
  1696. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  1697. status = VXGE_HW_ERR_INVALID_OFFSET;
  1698. break;
  1699. }
  1700. *value = readq((void __iomem *)hldev->toc_reg + offset);
  1701. break;
  1702. case vxge_hw_mgmt_reg_type_common:
  1703. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  1704. status = VXGE_HW_ERR_INVALID_OFFSET;
  1705. break;
  1706. }
  1707. *value = readq((void __iomem *)hldev->common_reg + offset);
  1708. break;
  1709. case vxge_hw_mgmt_reg_type_mrpcim:
  1710. if (!(hldev->access_rights &
  1711. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  1712. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1713. break;
  1714. }
  1715. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  1716. status = VXGE_HW_ERR_INVALID_OFFSET;
  1717. break;
  1718. }
  1719. *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
  1720. break;
  1721. case vxge_hw_mgmt_reg_type_srpcim:
  1722. if (!(hldev->access_rights &
  1723. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  1724. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1725. break;
  1726. }
  1727. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  1728. status = VXGE_HW_ERR_INVALID_INDEX;
  1729. break;
  1730. }
  1731. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  1732. status = VXGE_HW_ERR_INVALID_OFFSET;
  1733. break;
  1734. }
  1735. *value = readq((void __iomem *)hldev->srpcim_reg[index] +
  1736. offset);
  1737. break;
  1738. case vxge_hw_mgmt_reg_type_vpmgmt:
  1739. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  1740. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  1741. status = VXGE_HW_ERR_INVALID_INDEX;
  1742. break;
  1743. }
  1744. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  1745. status = VXGE_HW_ERR_INVALID_OFFSET;
  1746. break;
  1747. }
  1748. *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
  1749. offset);
  1750. break;
  1751. case vxge_hw_mgmt_reg_type_vpath:
  1752. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
  1753. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  1754. status = VXGE_HW_ERR_INVALID_INDEX;
  1755. break;
  1756. }
  1757. if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
  1758. status = VXGE_HW_ERR_INVALID_INDEX;
  1759. break;
  1760. }
  1761. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  1762. status = VXGE_HW_ERR_INVALID_OFFSET;
  1763. break;
  1764. }
  1765. *value = readq((void __iomem *)hldev->vpath_reg[index] +
  1766. offset);
  1767. break;
  1768. default:
  1769. status = VXGE_HW_ERR_INVALID_TYPE;
  1770. break;
  1771. }
  1772. exit:
  1773. return status;
  1774. }
  1775. /*
  1776. * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
  1777. */
  1778. enum vxge_hw_status
  1779. vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
  1780. {
  1781. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  1782. enum vxge_hw_status status = VXGE_HW_OK;
  1783. int i = 0, j = 0;
  1784. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1785. if (!((vpath_mask) & vxge_mBIT(i)))
  1786. continue;
  1787. vpmgmt_reg = hldev->vpmgmt_reg[i];
  1788. for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
  1789. if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
  1790. & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
  1791. return VXGE_HW_FAIL;
  1792. }
  1793. }
  1794. return status;
  1795. }
  1796. /*
  1797. * vxge_hw_mgmt_reg_Write - Write Titan register.
  1798. */
  1799. enum vxge_hw_status
  1800. vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
  1801. enum vxge_hw_mgmt_reg_type type,
  1802. u32 index, u32 offset, u64 value)
  1803. {
  1804. enum vxge_hw_status status = VXGE_HW_OK;
  1805. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1806. status = VXGE_HW_ERR_INVALID_DEVICE;
  1807. goto exit;
  1808. }
  1809. switch (type) {
  1810. case vxge_hw_mgmt_reg_type_legacy:
  1811. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  1812. status = VXGE_HW_ERR_INVALID_OFFSET;
  1813. break;
  1814. }
  1815. writeq(value, (void __iomem *)hldev->legacy_reg + offset);
  1816. break;
  1817. case vxge_hw_mgmt_reg_type_toc:
  1818. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  1819. status = VXGE_HW_ERR_INVALID_OFFSET;
  1820. break;
  1821. }
  1822. writeq(value, (void __iomem *)hldev->toc_reg + offset);
  1823. break;
  1824. case vxge_hw_mgmt_reg_type_common:
  1825. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  1826. status = VXGE_HW_ERR_INVALID_OFFSET;
  1827. break;
  1828. }
  1829. writeq(value, (void __iomem *)hldev->common_reg + offset);
  1830. break;
  1831. case vxge_hw_mgmt_reg_type_mrpcim:
  1832. if (!(hldev->access_rights &
  1833. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  1834. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1835. break;
  1836. }
  1837. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  1838. status = VXGE_HW_ERR_INVALID_OFFSET;
  1839. break;
  1840. }
  1841. writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
  1842. break;
  1843. case vxge_hw_mgmt_reg_type_srpcim:
  1844. if (!(hldev->access_rights &
  1845. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  1846. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1847. break;
  1848. }
  1849. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  1850. status = VXGE_HW_ERR_INVALID_INDEX;
  1851. break;
  1852. }
  1853. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  1854. status = VXGE_HW_ERR_INVALID_OFFSET;
  1855. break;
  1856. }
  1857. writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
  1858. offset);
  1859. break;
  1860. case vxge_hw_mgmt_reg_type_vpmgmt:
  1861. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  1862. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  1863. status = VXGE_HW_ERR_INVALID_INDEX;
  1864. break;
  1865. }
  1866. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  1867. status = VXGE_HW_ERR_INVALID_OFFSET;
  1868. break;
  1869. }
  1870. writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
  1871. offset);
  1872. break;
  1873. case vxge_hw_mgmt_reg_type_vpath:
  1874. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
  1875. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  1876. status = VXGE_HW_ERR_INVALID_INDEX;
  1877. break;
  1878. }
  1879. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  1880. status = VXGE_HW_ERR_INVALID_OFFSET;
  1881. break;
  1882. }
  1883. writeq(value, (void __iomem *)hldev->vpath_reg[index] +
  1884. offset);
  1885. break;
  1886. default:
  1887. status = VXGE_HW_ERR_INVALID_TYPE;
  1888. break;
  1889. }
  1890. exit:
  1891. return status;
  1892. }
  1893. /*
  1894. * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
  1895. * list callback
  1896. * This function is callback passed to __vxge_hw_mempool_create to create memory
  1897. * pool for TxD list
  1898. */
  1899. static void
  1900. __vxge_hw_fifo_mempool_item_alloc(
  1901. struct vxge_hw_mempool *mempoolh,
  1902. u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
  1903. u32 index, u32 is_last)
  1904. {
  1905. u32 memblock_item_idx;
  1906. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  1907. struct vxge_hw_fifo_txd *txdp =
  1908. (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
  1909. struct __vxge_hw_fifo *fifo =
  1910. (struct __vxge_hw_fifo *)mempoolh->userdata;
  1911. void *memblock = mempoolh->memblocks_arr[memblock_index];
  1912. vxge_assert(txdp);
  1913. txdp->host_control = (u64) (size_t)
  1914. __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
  1915. &memblock_item_idx);
  1916. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
  1917. vxge_assert(txdl_priv);
  1918. fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
  1919. /* pre-format HW's TxDL's private */
  1920. txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
  1921. txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
  1922. txdl_priv->dma_handle = dma_object->handle;
  1923. txdl_priv->memblock = memblock;
  1924. txdl_priv->first_txdp = txdp;
  1925. txdl_priv->next_txdl_priv = NULL;
  1926. txdl_priv->alloc_frags = 0;
  1927. return;
  1928. }
  1929. /*
  1930. * __vxge_hw_fifo_create - Create a FIFO
  1931. * This function creates FIFO and initializes it.
  1932. */
  1933. enum vxge_hw_status
  1934. __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
  1935. struct vxge_hw_fifo_attr *attr)
  1936. {
  1937. enum vxge_hw_status status = VXGE_HW_OK;
  1938. struct __vxge_hw_fifo *fifo;
  1939. struct vxge_hw_fifo_config *config;
  1940. u32 txdl_size, txdl_per_memblock;
  1941. struct vxge_hw_mempool_cbs fifo_mp_callback;
  1942. struct __vxge_hw_virtualpath *vpath;
  1943. if ((vp == NULL) || (attr == NULL)) {
  1944. status = VXGE_HW_ERR_INVALID_HANDLE;
  1945. goto exit;
  1946. }
  1947. vpath = vp->vpath;
  1948. config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
  1949. txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
  1950. txdl_per_memblock = config->memblock_size / txdl_size;
  1951. fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
  1952. VXGE_HW_CHANNEL_TYPE_FIFO,
  1953. config->fifo_blocks * txdl_per_memblock,
  1954. attr->per_txdl_space, attr->userdata);
  1955. if (fifo == NULL) {
  1956. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1957. goto exit;
  1958. }
  1959. vpath->fifoh = fifo;
  1960. fifo->nofl_db = vpath->nofl_db;
  1961. fifo->vp_id = vpath->vp_id;
  1962. fifo->vp_reg = vpath->vp_reg;
  1963. fifo->stats = &vpath->sw_stats->fifo_stats;
  1964. fifo->config = config;
  1965. /* apply "interrupts per txdl" attribute */
  1966. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
  1967. if (fifo->config->intr)
  1968. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
  1969. fifo->no_snoop_bits = config->no_snoop_bits;
  1970. /*
  1971. * FIFO memory management strategy:
  1972. *
  1973. * TxDL split into three independent parts:
  1974. * - set of TxD's
  1975. * - TxD HW private part
  1976. * - driver private part
  1977. *
  1978. * Adaptative memory allocation used. i.e. Memory allocated on
  1979. * demand with the size which will fit into one memory block.
  1980. * One memory block may contain more than one TxDL.
  1981. *
  1982. * During "reserve" operations more memory can be allocated on demand
  1983. * for example due to FIFO full condition.
  1984. *
  1985. * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
  1986. * routine which will essentially stop the channel and free resources.
  1987. */
  1988. /* TxDL common private size == TxDL private + driver private */
  1989. fifo->priv_size =
  1990. sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
  1991. fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  1992. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  1993. fifo->per_txdl_space = attr->per_txdl_space;
  1994. /* recompute txdl size to be cacheline aligned */
  1995. fifo->txdl_size = txdl_size;
  1996. fifo->txdl_per_memblock = txdl_per_memblock;
  1997. fifo->txdl_term = attr->txdl_term;
  1998. fifo->callback = attr->callback;
  1999. if (fifo->txdl_per_memblock == 0) {
  2000. __vxge_hw_fifo_delete(vp);
  2001. status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
  2002. goto exit;
  2003. }
  2004. fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
  2005. fifo->mempool =
  2006. __vxge_hw_mempool_create(vpath->hldev,
  2007. fifo->config->memblock_size,
  2008. fifo->txdl_size,
  2009. fifo->priv_size,
  2010. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2011. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2012. &fifo_mp_callback,
  2013. fifo);
  2014. if (fifo->mempool == NULL) {
  2015. __vxge_hw_fifo_delete(vp);
  2016. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2017. goto exit;
  2018. }
  2019. status = __vxge_hw_channel_initialize(&fifo->channel);
  2020. if (status != VXGE_HW_OK) {
  2021. __vxge_hw_fifo_delete(vp);
  2022. goto exit;
  2023. }
  2024. vxge_assert(fifo->channel.reserve_ptr);
  2025. exit:
  2026. return status;
  2027. }
  2028. /*
  2029. * __vxge_hw_fifo_abort - Returns the TxD
  2030. * This function terminates the TxDs of fifo
  2031. */
  2032. enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
  2033. {
  2034. void *txdlh;
  2035. for (;;) {
  2036. vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
  2037. if (txdlh == NULL)
  2038. break;
  2039. vxge_hw_channel_dtr_complete(&fifo->channel);
  2040. if (fifo->txdl_term) {
  2041. fifo->txdl_term(txdlh,
  2042. VXGE_HW_TXDL_STATE_POSTED,
  2043. fifo->channel.userdata);
  2044. }
  2045. vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
  2046. }
  2047. return VXGE_HW_OK;
  2048. }
  2049. /*
  2050. * __vxge_hw_fifo_reset - Resets the fifo
  2051. * This function resets the fifo during vpath reset operation
  2052. */
  2053. enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
  2054. {
  2055. enum vxge_hw_status status = VXGE_HW_OK;
  2056. __vxge_hw_fifo_abort(fifo);
  2057. status = __vxge_hw_channel_reset(&fifo->channel);
  2058. return status;
  2059. }
  2060. /*
  2061. * __vxge_hw_fifo_delete - Removes the FIFO
  2062. * This function freeup the memory pool and removes the FIFO
  2063. */
  2064. enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
  2065. {
  2066. struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
  2067. __vxge_hw_fifo_abort(fifo);
  2068. if (fifo->mempool)
  2069. __vxge_hw_mempool_destroy(fifo->mempool);
  2070. vp->vpath->fifoh = NULL;
  2071. __vxge_hw_channel_free(&fifo->channel);
  2072. return VXGE_HW_OK;
  2073. }
  2074. /*
  2075. * __vxge_hw_vpath_pci_read - Read the content of given address
  2076. * in pci config space.
  2077. * Read from the vpath pci config space.
  2078. */
  2079. enum vxge_hw_status
  2080. __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
  2081. u32 phy_func_0, u32 offset, u32 *val)
  2082. {
  2083. u64 val64;
  2084. enum vxge_hw_status status = VXGE_HW_OK;
  2085. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  2086. val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
  2087. if (phy_func_0)
  2088. val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
  2089. writeq(val64, &vp_reg->pci_config_access_cfg1);
  2090. wmb();
  2091. writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
  2092. &vp_reg->pci_config_access_cfg2);
  2093. wmb();
  2094. status = __vxge_hw_device_register_poll(
  2095. &vp_reg->pci_config_access_cfg2,
  2096. VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2097. if (status != VXGE_HW_OK)
  2098. goto exit;
  2099. val64 = readq(&vp_reg->pci_config_access_status);
  2100. if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
  2101. status = VXGE_HW_FAIL;
  2102. *val = 0;
  2103. } else
  2104. *val = (u32)vxge_bVALn(val64, 32, 32);
  2105. exit:
  2106. return status;
  2107. }
  2108. /*
  2109. * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
  2110. * Returns the function number of the vpath.
  2111. */
  2112. u32
  2113. __vxge_hw_vpath_func_id_get(u32 vp_id,
  2114. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
  2115. {
  2116. u64 val64;
  2117. val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
  2118. return
  2119. (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
  2120. }
  2121. /*
  2122. * __vxge_hw_read_rts_ds - Program RTS steering critieria
  2123. */
  2124. static inline void
  2125. __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
  2126. u64 dta_struct_sel)
  2127. {
  2128. writeq(0, &vpath_reg->rts_access_steer_ctrl);
  2129. wmb();
  2130. writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
  2131. writeq(0, &vpath_reg->rts_access_steer_data1);
  2132. wmb();
  2133. return;
  2134. }
  2135. /*
  2136. * __vxge_hw_vpath_card_info_get - Get the serial numbers,
  2137. * part number and product description.
  2138. */
  2139. enum vxge_hw_status
  2140. __vxge_hw_vpath_card_info_get(
  2141. u32 vp_id,
  2142. struct vxge_hw_vpath_reg __iomem *vpath_reg,
  2143. struct vxge_hw_device_hw_info *hw_info)
  2144. {
  2145. u32 i, j;
  2146. u64 val64;
  2147. u64 data1 = 0ULL;
  2148. u64 data2 = 0ULL;
  2149. enum vxge_hw_status status = VXGE_HW_OK;
  2150. u8 *serial_number = hw_info->serial_number;
  2151. u8 *part_number = hw_info->part_number;
  2152. u8 *product_desc = hw_info->product_desc;
  2153. __vxge_hw_read_rts_ds(vpath_reg,
  2154. VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
  2155. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2156. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
  2157. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2158. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2159. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2160. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2161. status = __vxge_hw_pio_mem_write64(val64,
  2162. &vpath_reg->rts_access_steer_ctrl,
  2163. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2164. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2165. if (status != VXGE_HW_OK)
  2166. return status;
  2167. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2168. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2169. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2170. ((u64 *)serial_number)[0] = be64_to_cpu(data1);
  2171. data2 = readq(&vpath_reg->rts_access_steer_data1);
  2172. ((u64 *)serial_number)[1] = be64_to_cpu(data2);
  2173. status = VXGE_HW_OK;
  2174. } else
  2175. *serial_number = 0;
  2176. __vxge_hw_read_rts_ds(vpath_reg,
  2177. VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
  2178. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2179. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
  2180. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2181. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2182. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2183. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2184. status = __vxge_hw_pio_mem_write64(val64,
  2185. &vpath_reg->rts_access_steer_ctrl,
  2186. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2187. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2188. if (status != VXGE_HW_OK)
  2189. return status;
  2190. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2191. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2192. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2193. ((u64 *)part_number)[0] = be64_to_cpu(data1);
  2194. data2 = readq(&vpath_reg->rts_access_steer_data1);
  2195. ((u64 *)part_number)[1] = be64_to_cpu(data2);
  2196. status = VXGE_HW_OK;
  2197. } else
  2198. *part_number = 0;
  2199. j = 0;
  2200. for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
  2201. i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
  2202. __vxge_hw_read_rts_ds(vpath_reg, i);
  2203. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2204. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
  2205. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2206. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2207. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2208. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2209. status = __vxge_hw_pio_mem_write64(val64,
  2210. &vpath_reg->rts_access_steer_ctrl,
  2211. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2212. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2213. if (status != VXGE_HW_OK)
  2214. return status;
  2215. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2216. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2217. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2218. ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
  2219. data2 = readq(&vpath_reg->rts_access_steer_data1);
  2220. ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
  2221. status = VXGE_HW_OK;
  2222. } else
  2223. *product_desc = 0;
  2224. }
  2225. return status;
  2226. }
  2227. /*
  2228. * __vxge_hw_vpath_fw_ver_get - Get the fw version
  2229. * Returns FW Version
  2230. */
  2231. enum vxge_hw_status
  2232. __vxge_hw_vpath_fw_ver_get(
  2233. u32 vp_id,
  2234. struct vxge_hw_vpath_reg __iomem *vpath_reg,
  2235. struct vxge_hw_device_hw_info *hw_info)
  2236. {
  2237. u64 val64;
  2238. u64 data1 = 0ULL;
  2239. u64 data2 = 0ULL;
  2240. struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
  2241. struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
  2242. struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
  2243. struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
  2244. enum vxge_hw_status status = VXGE_HW_OK;
  2245. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2246. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
  2247. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2248. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2249. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2250. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2251. status = __vxge_hw_pio_mem_write64(val64,
  2252. &vpath_reg->rts_access_steer_ctrl,
  2253. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2254. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2255. if (status != VXGE_HW_OK)
  2256. goto exit;
  2257. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2258. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2259. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2260. data2 = readq(&vpath_reg->rts_access_steer_data1);
  2261. fw_date->day =
  2262. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
  2263. data1);
  2264. fw_date->month =
  2265. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
  2266. data1);
  2267. fw_date->year =
  2268. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
  2269. data1);
  2270. snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
  2271. fw_date->month, fw_date->day, fw_date->year);
  2272. fw_version->major =
  2273. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
  2274. fw_version->minor =
  2275. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
  2276. fw_version->build =
  2277. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
  2278. snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  2279. fw_version->major, fw_version->minor, fw_version->build);
  2280. flash_date->day =
  2281. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
  2282. flash_date->month =
  2283. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
  2284. flash_date->year =
  2285. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
  2286. snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
  2287. "%2.2d/%2.2d/%4.4d",
  2288. flash_date->month, flash_date->day, flash_date->year);
  2289. flash_version->major =
  2290. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
  2291. flash_version->minor =
  2292. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
  2293. flash_version->build =
  2294. (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
  2295. snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  2296. flash_version->major, flash_version->minor,
  2297. flash_version->build);
  2298. status = VXGE_HW_OK;
  2299. } else
  2300. status = VXGE_HW_FAIL;
  2301. exit:
  2302. return status;
  2303. }
  2304. /*
  2305. * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
  2306. * Returns pci function mode
  2307. */
  2308. u64
  2309. __vxge_hw_vpath_pci_func_mode_get(
  2310. u32 vp_id,
  2311. struct vxge_hw_vpath_reg __iomem *vpath_reg)
  2312. {
  2313. u64 val64;
  2314. u64 data1 = 0ULL;
  2315. enum vxge_hw_status status = VXGE_HW_OK;
  2316. __vxge_hw_read_rts_ds(vpath_reg,
  2317. VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
  2318. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2319. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
  2320. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2321. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2322. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2323. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2324. status = __vxge_hw_pio_mem_write64(val64,
  2325. &vpath_reg->rts_access_steer_ctrl,
  2326. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2327. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2328. if (status != VXGE_HW_OK)
  2329. goto exit;
  2330. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2331. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2332. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2333. status = VXGE_HW_OK;
  2334. } else {
  2335. data1 = 0;
  2336. status = VXGE_HW_FAIL;
  2337. }
  2338. exit:
  2339. return data1;
  2340. }
  2341. /**
  2342. * vxge_hw_device_flick_link_led - Flick (blink) link LED.
  2343. * @hldev: HW device.
  2344. * @on_off: TRUE if flickering to be on, FALSE to be off
  2345. *
  2346. * Flicker the link LED.
  2347. */
  2348. enum vxge_hw_status
  2349. vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
  2350. u64 on_off)
  2351. {
  2352. u64 val64;
  2353. enum vxge_hw_status status = VXGE_HW_OK;
  2354. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2355. if (hldev == NULL) {
  2356. status = VXGE_HW_ERR_INVALID_DEVICE;
  2357. goto exit;
  2358. }
  2359. vp_reg = hldev->vpath_reg[hldev->first_vp_id];
  2360. writeq(0, &vp_reg->rts_access_steer_ctrl);
  2361. wmb();
  2362. writeq(on_off, &vp_reg->rts_access_steer_data0);
  2363. writeq(0, &vp_reg->rts_access_steer_data1);
  2364. wmb();
  2365. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2366. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
  2367. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2368. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
  2369. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2370. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2371. status = __vxge_hw_pio_mem_write64(val64,
  2372. &vp_reg->rts_access_steer_ctrl,
  2373. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2374. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2375. exit:
  2376. return status;
  2377. }
  2378. /*
  2379. * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
  2380. */
  2381. enum vxge_hw_status
  2382. __vxge_hw_vpath_rts_table_get(
  2383. struct __vxge_hw_vpath_handle *vp,
  2384. u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
  2385. {
  2386. u64 val64;
  2387. struct __vxge_hw_virtualpath *vpath;
  2388. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2389. enum vxge_hw_status status = VXGE_HW_OK;
  2390. if (vp == NULL) {
  2391. status = VXGE_HW_ERR_INVALID_HANDLE;
  2392. goto exit;
  2393. }
  2394. vpath = vp->vpath;
  2395. vp_reg = vpath->vp_reg;
  2396. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
  2397. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
  2398. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2399. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
  2400. if ((rts_table ==
  2401. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
  2402. (rts_table ==
  2403. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
  2404. (rts_table ==
  2405. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
  2406. (rts_table ==
  2407. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
  2408. val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
  2409. }
  2410. status = __vxge_hw_pio_mem_write64(val64,
  2411. &vp_reg->rts_access_steer_ctrl,
  2412. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2413. vpath->hldev->config.device_poll_millis);
  2414. if (status != VXGE_HW_OK)
  2415. goto exit;
  2416. val64 = readq(&vp_reg->rts_access_steer_ctrl);
  2417. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2418. *data1 = readq(&vp_reg->rts_access_steer_data0);
  2419. if ((rts_table ==
  2420. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
  2421. (rts_table ==
  2422. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
  2423. *data2 = readq(&vp_reg->rts_access_steer_data1);
  2424. }
  2425. status = VXGE_HW_OK;
  2426. } else
  2427. status = VXGE_HW_FAIL;
  2428. exit:
  2429. return status;
  2430. }
  2431. /*
  2432. * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
  2433. */
  2434. enum vxge_hw_status
  2435. __vxge_hw_vpath_rts_table_set(
  2436. struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
  2437. u32 offset, u64 data1, u64 data2)
  2438. {
  2439. u64 val64;
  2440. struct __vxge_hw_virtualpath *vpath;
  2441. enum vxge_hw_status status = VXGE_HW_OK;
  2442. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2443. if (vp == NULL) {
  2444. status = VXGE_HW_ERR_INVALID_HANDLE;
  2445. goto exit;
  2446. }
  2447. vpath = vp->vpath;
  2448. vp_reg = vpath->vp_reg;
  2449. writeq(data1, &vp_reg->rts_access_steer_data0);
  2450. wmb();
  2451. if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
  2452. (rts_table ==
  2453. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
  2454. writeq(data2, &vp_reg->rts_access_steer_data1);
  2455. wmb();
  2456. }
  2457. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
  2458. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
  2459. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2460. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
  2461. status = __vxge_hw_pio_mem_write64(val64,
  2462. &vp_reg->rts_access_steer_ctrl,
  2463. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2464. vpath->hldev->config.device_poll_millis);
  2465. if (status != VXGE_HW_OK)
  2466. goto exit;
  2467. val64 = readq(&vp_reg->rts_access_steer_ctrl);
  2468. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
  2469. status = VXGE_HW_OK;
  2470. else
  2471. status = VXGE_HW_FAIL;
  2472. exit:
  2473. return status;
  2474. }
  2475. /*
  2476. * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
  2477. * from MAC address table.
  2478. */
  2479. enum vxge_hw_status
  2480. __vxge_hw_vpath_addr_get(
  2481. u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
  2482. u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
  2483. {
  2484. u32 i;
  2485. u64 val64;
  2486. u64 data1 = 0ULL;
  2487. u64 data2 = 0ULL;
  2488. enum vxge_hw_status status = VXGE_HW_OK;
  2489. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
  2490. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
  2491. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
  2492. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
  2493. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  2494. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
  2495. status = __vxge_hw_pio_mem_write64(val64,
  2496. &vpath_reg->rts_access_steer_ctrl,
  2497. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  2498. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  2499. if (status != VXGE_HW_OK)
  2500. goto exit;
  2501. val64 = readq(&vpath_reg->rts_access_steer_ctrl);
  2502. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  2503. data1 = readq(&vpath_reg->rts_access_steer_data0);
  2504. data2 = readq(&vpath_reg->rts_access_steer_data1);
  2505. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
  2506. data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
  2507. data2);
  2508. for (i = ETH_ALEN; i > 0; i--) {
  2509. macaddr[i-1] = (u8)(data1 & 0xFF);
  2510. data1 >>= 8;
  2511. macaddr_mask[i-1] = (u8)(data2 & 0xFF);
  2512. data2 >>= 8;
  2513. }
  2514. status = VXGE_HW_OK;
  2515. } else
  2516. status = VXGE_HW_FAIL;
  2517. exit:
  2518. return status;
  2519. }
  2520. /*
  2521. * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
  2522. */
  2523. enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
  2524. struct __vxge_hw_vpath_handle *vp,
  2525. enum vxge_hw_rth_algoritms algorithm,
  2526. struct vxge_hw_rth_hash_types *hash_type,
  2527. u16 bucket_size)
  2528. {
  2529. u64 data0, data1;
  2530. enum vxge_hw_status status = VXGE_HW_OK;
  2531. if (vp == NULL) {
  2532. status = VXGE_HW_ERR_INVALID_HANDLE;
  2533. goto exit;
  2534. }
  2535. status = __vxge_hw_vpath_rts_table_get(vp,
  2536. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
  2537. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  2538. 0, &data0, &data1);
  2539. data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
  2540. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
  2541. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
  2542. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
  2543. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
  2544. if (hash_type->hash_type_tcpipv4_en)
  2545. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
  2546. if (hash_type->hash_type_ipv4_en)
  2547. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
  2548. if (hash_type->hash_type_tcpipv6_en)
  2549. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
  2550. if (hash_type->hash_type_ipv6_en)
  2551. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
  2552. if (hash_type->hash_type_tcpipv6ex_en)
  2553. data0 |=
  2554. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
  2555. if (hash_type->hash_type_ipv6ex_en)
  2556. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
  2557. if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
  2558. data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  2559. else
  2560. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  2561. status = __vxge_hw_vpath_rts_table_set(vp,
  2562. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
  2563. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  2564. 0, data0, 0);
  2565. exit:
  2566. return status;
  2567. }
  2568. static void
  2569. vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
  2570. u16 flag, u8 *itable)
  2571. {
  2572. switch (flag) {
  2573. case 1:
  2574. *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
  2575. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
  2576. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
  2577. itable[j]);
  2578. case 2:
  2579. *data0 |=
  2580. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
  2581. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
  2582. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
  2583. itable[j]);
  2584. case 3:
  2585. *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
  2586. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
  2587. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
  2588. itable[j]);
  2589. case 4:
  2590. *data1 |=
  2591. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
  2592. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
  2593. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
  2594. itable[j]);
  2595. default:
  2596. return;
  2597. }
  2598. }
  2599. /*
  2600. * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
  2601. */
  2602. enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
  2603. struct __vxge_hw_vpath_handle **vpath_handles,
  2604. u32 vpath_count,
  2605. u8 *mtable,
  2606. u8 *itable,
  2607. u32 itable_size)
  2608. {
  2609. u32 i, j, action, rts_table;
  2610. u64 data0;
  2611. u64 data1;
  2612. u32 max_entries;
  2613. enum vxge_hw_status status = VXGE_HW_OK;
  2614. struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
  2615. if (vp == NULL) {
  2616. status = VXGE_HW_ERR_INVALID_HANDLE;
  2617. goto exit;
  2618. }
  2619. max_entries = (((u32)1) << itable_size);
  2620. if (vp->vpath->hldev->config.rth_it_type
  2621. == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
  2622. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  2623. rts_table =
  2624. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
  2625. for (j = 0; j < max_entries; j++) {
  2626. data1 = 0;
  2627. data0 =
  2628. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  2629. itable[j]);
  2630. status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
  2631. action, rts_table, j, data0, data1);
  2632. if (status != VXGE_HW_OK)
  2633. goto exit;
  2634. }
  2635. for (j = 0; j < max_entries; j++) {
  2636. data1 = 0;
  2637. data0 =
  2638. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
  2639. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  2640. itable[j]);
  2641. status = __vxge_hw_vpath_rts_table_set(
  2642. vpath_handles[mtable[itable[j]]], action,
  2643. rts_table, j, data0, data1);
  2644. if (status != VXGE_HW_OK)
  2645. goto exit;
  2646. }
  2647. } else {
  2648. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  2649. rts_table =
  2650. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
  2651. for (i = 0; i < vpath_count; i++) {
  2652. for (j = 0; j < max_entries;) {
  2653. data0 = 0;
  2654. data1 = 0;
  2655. while (j < max_entries) {
  2656. if (mtable[itable[j]] != i) {
  2657. j++;
  2658. continue;
  2659. }
  2660. vxge_hw_rts_rth_data0_data1_get(j,
  2661. &data0, &data1, 1, itable);
  2662. j++;
  2663. break;
  2664. }
  2665. while (j < max_entries) {
  2666. if (mtable[itable[j]] != i) {
  2667. j++;
  2668. continue;
  2669. }
  2670. vxge_hw_rts_rth_data0_data1_get(j,
  2671. &data0, &data1, 2, itable);
  2672. j++;
  2673. break;
  2674. }
  2675. while (j < max_entries) {
  2676. if (mtable[itable[j]] != i) {
  2677. j++;
  2678. continue;
  2679. }
  2680. vxge_hw_rts_rth_data0_data1_get(j,
  2681. &data0, &data1, 3, itable);
  2682. j++;
  2683. break;
  2684. }
  2685. while (j < max_entries) {
  2686. if (mtable[itable[j]] != i) {
  2687. j++;
  2688. continue;
  2689. }
  2690. vxge_hw_rts_rth_data0_data1_get(j,
  2691. &data0, &data1, 4, itable);
  2692. j++;
  2693. break;
  2694. }
  2695. if (data0 != 0) {
  2696. status = __vxge_hw_vpath_rts_table_set(
  2697. vpath_handles[i],
  2698. action, rts_table,
  2699. 0, data0, data1);
  2700. if (status != VXGE_HW_OK)
  2701. goto exit;
  2702. }
  2703. }
  2704. }
  2705. }
  2706. exit:
  2707. return status;
  2708. }
  2709. /**
  2710. * vxge_hw_vpath_check_leak - Check for memory leak
  2711. * @ringh: Handle to the ring object used for receive
  2712. *
  2713. * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
  2714. * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
  2715. * Returns: VXGE_HW_FAIL, if leak has occurred.
  2716. *
  2717. */
  2718. enum vxge_hw_status
  2719. vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
  2720. {
  2721. enum vxge_hw_status status = VXGE_HW_OK;
  2722. u64 rxd_new_count, rxd_spat;
  2723. if (ring == NULL)
  2724. return status;
  2725. rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
  2726. rxd_spat = readq(&ring->vp_reg->prc_cfg6);
  2727. rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
  2728. if (rxd_new_count >= rxd_spat)
  2729. status = VXGE_HW_FAIL;
  2730. return status;
  2731. }
  2732. /*
  2733. * __vxge_hw_vpath_mgmt_read
  2734. * This routine reads the vpath_mgmt registers
  2735. */
  2736. static enum vxge_hw_status
  2737. __vxge_hw_vpath_mgmt_read(
  2738. struct __vxge_hw_device *hldev,
  2739. struct __vxge_hw_virtualpath *vpath)
  2740. {
  2741. u32 i, mtu = 0, max_pyld = 0;
  2742. u64 val64;
  2743. enum vxge_hw_status status = VXGE_HW_OK;
  2744. for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  2745. val64 = readq(&vpath->vpmgmt_reg->
  2746. rxmac_cfg0_port_vpmgmt_clone[i]);
  2747. max_pyld =
  2748. (u32)
  2749. VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
  2750. (val64);
  2751. if (mtu < max_pyld)
  2752. mtu = max_pyld;
  2753. }
  2754. vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
  2755. val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
  2756. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  2757. if (val64 & vxge_mBIT(i))
  2758. vpath->vsport_number = i;
  2759. }
  2760. val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
  2761. if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
  2762. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
  2763. else
  2764. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
  2765. return status;
  2766. }
  2767. /*
  2768. * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
  2769. * This routine checks the vpath_rst_in_prog register to see if
  2770. * adapter completed the reset process for the vpath
  2771. */
  2772. enum vxge_hw_status
  2773. __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
  2774. {
  2775. enum vxge_hw_status status;
  2776. status = __vxge_hw_device_register_poll(
  2777. &vpath->hldev->common_reg->vpath_rst_in_prog,
  2778. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
  2779. 1 << (16 - vpath->vp_id)),
  2780. vpath->hldev->config.device_poll_millis);
  2781. return status;
  2782. }
  2783. /*
  2784. * __vxge_hw_vpath_reset
  2785. * This routine resets the vpath on the device
  2786. */
  2787. enum vxge_hw_status
  2788. __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  2789. {
  2790. u64 val64;
  2791. enum vxge_hw_status status = VXGE_HW_OK;
  2792. val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
  2793. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  2794. &hldev->common_reg->cmn_rsthdlr_cfg0);
  2795. return status;
  2796. }
  2797. /*
  2798. * __vxge_hw_vpath_sw_reset
  2799. * This routine resets the vpath structures
  2800. */
  2801. enum vxge_hw_status
  2802. __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  2803. {
  2804. enum vxge_hw_status status = VXGE_HW_OK;
  2805. struct __vxge_hw_virtualpath *vpath;
  2806. vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
  2807. if (vpath->ringh) {
  2808. status = __vxge_hw_ring_reset(vpath->ringh);
  2809. if (status != VXGE_HW_OK)
  2810. goto exit;
  2811. }
  2812. if (vpath->fifoh)
  2813. status = __vxge_hw_fifo_reset(vpath->fifoh);
  2814. exit:
  2815. return status;
  2816. }
  2817. /*
  2818. * __vxge_hw_vpath_prc_configure
  2819. * This routine configures the prc registers of virtual path using the config
  2820. * passed
  2821. */
  2822. void
  2823. __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  2824. {
  2825. u64 val64;
  2826. struct __vxge_hw_virtualpath *vpath;
  2827. struct vxge_hw_vp_config *vp_config;
  2828. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2829. vpath = &hldev->virtual_paths[vp_id];
  2830. vp_reg = vpath->vp_reg;
  2831. vp_config = vpath->vp_config;
  2832. if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
  2833. return;
  2834. val64 = readq(&vp_reg->prc_cfg1);
  2835. val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
  2836. writeq(val64, &vp_reg->prc_cfg1);
  2837. val64 = readq(&vpath->vp_reg->prc_cfg6);
  2838. val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
  2839. writeq(val64, &vpath->vp_reg->prc_cfg6);
  2840. val64 = readq(&vp_reg->prc_cfg7);
  2841. if (vpath->vp_config->ring.scatter_mode !=
  2842. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
  2843. val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
  2844. switch (vpath->vp_config->ring.scatter_mode) {
  2845. case VXGE_HW_RING_SCATTER_MODE_A:
  2846. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  2847. VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
  2848. break;
  2849. case VXGE_HW_RING_SCATTER_MODE_B:
  2850. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  2851. VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
  2852. break;
  2853. case VXGE_HW_RING_SCATTER_MODE_C:
  2854. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  2855. VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
  2856. break;
  2857. }
  2858. }
  2859. writeq(val64, &vp_reg->prc_cfg7);
  2860. writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
  2861. __vxge_hw_ring_first_block_address_get(
  2862. vpath->ringh) >> 3), &vp_reg->prc_cfg5);
  2863. val64 = readq(&vp_reg->prc_cfg4);
  2864. val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
  2865. val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
  2866. val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
  2867. VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
  2868. if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
  2869. val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
  2870. else
  2871. val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
  2872. writeq(val64, &vp_reg->prc_cfg4);
  2873. return;
  2874. }
  2875. /*
  2876. * __vxge_hw_vpath_kdfc_configure
  2877. * This routine configures the kdfc registers of virtual path using the
  2878. * config passed
  2879. */
  2880. enum vxge_hw_status
  2881. __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  2882. {
  2883. u64 val64;
  2884. u64 vpath_stride;
  2885. enum vxge_hw_status status = VXGE_HW_OK;
  2886. struct __vxge_hw_virtualpath *vpath;
  2887. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2888. vpath = &hldev->virtual_paths[vp_id];
  2889. vp_reg = vpath->vp_reg;
  2890. status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
  2891. if (status != VXGE_HW_OK)
  2892. goto exit;
  2893. val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
  2894. vpath->max_kdfc_db =
  2895. (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
  2896. val64+1)/2;
  2897. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  2898. vpath->max_nofl_db = vpath->max_kdfc_db;
  2899. if (vpath->max_nofl_db <
  2900. ((vpath->vp_config->fifo.memblock_size /
  2901. (vpath->vp_config->fifo.max_frags *
  2902. sizeof(struct vxge_hw_fifo_txd))) *
  2903. vpath->vp_config->fifo.fifo_blocks)) {
  2904. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  2905. }
  2906. val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
  2907. (vpath->max_nofl_db*2)-1);
  2908. }
  2909. writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
  2910. writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
  2911. &vp_reg->kdfc_fifo_trpl_ctrl);
  2912. val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
  2913. val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
  2914. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
  2915. val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
  2916. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
  2917. #ifndef __BIG_ENDIAN
  2918. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
  2919. #endif
  2920. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
  2921. writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
  2922. writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
  2923. wmb();
  2924. vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
  2925. vpath->nofl_db =
  2926. (struct __vxge_hw_non_offload_db_wrapper __iomem *)
  2927. (hldev->kdfc + (vp_id *
  2928. VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
  2929. vpath_stride)));
  2930. exit:
  2931. return status;
  2932. }
  2933. /*
  2934. * __vxge_hw_vpath_mac_configure
  2935. * This routine configures the mac of virtual path using the config passed
  2936. */
  2937. enum vxge_hw_status
  2938. __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  2939. {
  2940. u64 val64;
  2941. enum vxge_hw_status status = VXGE_HW_OK;
  2942. struct __vxge_hw_virtualpath *vpath;
  2943. struct vxge_hw_vp_config *vp_config;
  2944. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2945. vpath = &hldev->virtual_paths[vp_id];
  2946. vp_reg = vpath->vp_reg;
  2947. vp_config = vpath->vp_config;
  2948. writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
  2949. vpath->vsport_number), &vp_reg->xmac_vsport_choice);
  2950. if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  2951. val64 = readq(&vp_reg->xmac_rpa_vcfg);
  2952. if (vp_config->rpa_strip_vlan_tag !=
  2953. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
  2954. if (vp_config->rpa_strip_vlan_tag)
  2955. val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  2956. else
  2957. val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  2958. }
  2959. writeq(val64, &vp_reg->xmac_rpa_vcfg);
  2960. val64 = readq(&vp_reg->rxmac_vcfg0);
  2961. if (vp_config->mtu !=
  2962. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
  2963. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  2964. if ((vp_config->mtu +
  2965. VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
  2966. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  2967. vp_config->mtu +
  2968. VXGE_HW_MAC_HEADER_MAX_SIZE);
  2969. else
  2970. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  2971. vpath->max_mtu);
  2972. }
  2973. writeq(val64, &vp_reg->rxmac_vcfg0);
  2974. val64 = readq(&vp_reg->rxmac_vcfg1);
  2975. val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
  2976. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
  2977. if (hldev->config.rth_it_type ==
  2978. VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
  2979. val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
  2980. 0x2) |
  2981. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
  2982. }
  2983. writeq(val64, &vp_reg->rxmac_vcfg1);
  2984. }
  2985. return status;
  2986. }
  2987. /*
  2988. * __vxge_hw_vpath_tim_configure
  2989. * This routine configures the tim registers of virtual path using the config
  2990. * passed
  2991. */
  2992. enum vxge_hw_status
  2993. __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  2994. {
  2995. u64 val64;
  2996. enum vxge_hw_status status = VXGE_HW_OK;
  2997. struct __vxge_hw_virtualpath *vpath;
  2998. struct vxge_hw_vpath_reg __iomem *vp_reg;
  2999. struct vxge_hw_vp_config *config;
  3000. vpath = &hldev->virtual_paths[vp_id];
  3001. vp_reg = vpath->vp_reg;
  3002. config = vpath->vp_config;
  3003. writeq((u64)0, &vp_reg->tim_dest_addr);
  3004. writeq((u64)0, &vp_reg->tim_vpath_map);
  3005. writeq((u64)0, &vp_reg->tim_bitmap);
  3006. writeq((u64)0, &vp_reg->tim_remap);
  3007. if (config->ring.enable == VXGE_HW_RING_ENABLE)
  3008. writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
  3009. (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  3010. VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
  3011. val64 = readq(&vp_reg->tim_pci_cfg);
  3012. val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
  3013. writeq(val64, &vp_reg->tim_pci_cfg);
  3014. if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3015. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3016. if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3017. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3018. 0x3ffffff);
  3019. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3020. config->tti.btimer_val);
  3021. }
  3022. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3023. if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3024. if (config->tti.timer_ac_en)
  3025. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3026. else
  3027. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3028. }
  3029. if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3030. if (config->tti.timer_ci_en)
  3031. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3032. else
  3033. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3034. }
  3035. if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3036. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3037. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3038. config->tti.urange_a);
  3039. }
  3040. if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3041. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3042. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3043. config->tti.urange_b);
  3044. }
  3045. if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3046. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3047. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3048. config->tti.urange_c);
  3049. }
  3050. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3051. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3052. if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3053. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3054. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3055. config->tti.uec_a);
  3056. }
  3057. if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3058. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3059. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3060. config->tti.uec_b);
  3061. }
  3062. if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3063. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3064. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3065. config->tti.uec_c);
  3066. }
  3067. if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3068. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3069. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3070. config->tti.uec_d);
  3071. }
  3072. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3073. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3074. if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3075. if (config->tti.timer_ri_en)
  3076. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3077. else
  3078. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3079. }
  3080. if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3081. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3082. 0x3ffffff);
  3083. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3084. config->tti.rtimer_val);
  3085. }
  3086. if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3087. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3088. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
  3089. config->tti.util_sel);
  3090. }
  3091. if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3092. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3093. 0x3ffffff);
  3094. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3095. config->tti.ltimer_val);
  3096. }
  3097. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3098. }
  3099. if (config->ring.enable == VXGE_HW_RING_ENABLE) {
  3100. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3101. if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3102. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3103. 0x3ffffff);
  3104. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3105. config->rti.btimer_val);
  3106. }
  3107. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3108. if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3109. if (config->rti.timer_ac_en)
  3110. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3111. else
  3112. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3113. }
  3114. if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3115. if (config->rti.timer_ci_en)
  3116. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3117. else
  3118. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3119. }
  3120. if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3121. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3122. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3123. config->rti.urange_a);
  3124. }
  3125. if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3126. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3127. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3128. config->rti.urange_b);
  3129. }
  3130. if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3131. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3132. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3133. config->rti.urange_c);
  3134. }
  3135. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3136. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3137. if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3138. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3139. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3140. config->rti.uec_a);
  3141. }
  3142. if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3143. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3144. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3145. config->rti.uec_b);
  3146. }
  3147. if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3148. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3149. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3150. config->rti.uec_c);
  3151. }
  3152. if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3153. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3154. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3155. config->rti.uec_d);
  3156. }
  3157. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3158. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3159. if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3160. if (config->rti.timer_ri_en)
  3161. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3162. else
  3163. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3164. }
  3165. if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3166. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3167. 0x3ffffff);
  3168. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3169. config->rti.rtimer_val);
  3170. }
  3171. if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3172. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3173. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
  3174. config->rti.util_sel);
  3175. }
  3176. if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3177. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3178. 0x3ffffff);
  3179. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3180. config->rti.ltimer_val);
  3181. }
  3182. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3183. }
  3184. val64 = 0;
  3185. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3186. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3187. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3188. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3189. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3190. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3191. return status;
  3192. }
  3193. void
  3194. vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
  3195. {
  3196. struct __vxge_hw_virtualpath *vpath;
  3197. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3198. struct vxge_hw_vp_config *config;
  3199. u64 val64;
  3200. vpath = &hldev->virtual_paths[vp_id];
  3201. vp_reg = vpath->vp_reg;
  3202. config = vpath->vp_config;
  3203. if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3204. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3205. if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
  3206. config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
  3207. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3208. writeq(val64,
  3209. &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3210. }
  3211. }
  3212. return;
  3213. }
  3214. /*
  3215. * __vxge_hw_vpath_initialize
  3216. * This routine is the final phase of init which initializes the
  3217. * registers of the vpath using the configuration passed.
  3218. */
  3219. enum vxge_hw_status
  3220. __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
  3221. {
  3222. u64 val64;
  3223. u32 val32;
  3224. enum vxge_hw_status status = VXGE_HW_OK;
  3225. struct __vxge_hw_virtualpath *vpath;
  3226. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3227. vpath = &hldev->virtual_paths[vp_id];
  3228. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3229. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3230. goto exit;
  3231. }
  3232. vp_reg = vpath->vp_reg;
  3233. status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
  3234. if (status != VXGE_HW_OK)
  3235. goto exit;
  3236. status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
  3237. if (status != VXGE_HW_OK)
  3238. goto exit;
  3239. status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
  3240. if (status != VXGE_HW_OK)
  3241. goto exit;
  3242. status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
  3243. if (status != VXGE_HW_OK)
  3244. goto exit;
  3245. val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
  3246. /* Get MRRS value from device control */
  3247. status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
  3248. if (status == VXGE_HW_OK) {
  3249. val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
  3250. val64 &=
  3251. ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
  3252. val64 |=
  3253. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
  3254. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
  3255. }
  3256. val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
  3257. val64 |=
  3258. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
  3259. VXGE_HW_MAX_PAYLOAD_SIZE_512);
  3260. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
  3261. writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
  3262. exit:
  3263. return status;
  3264. }
  3265. /*
  3266. * __vxge_hw_vp_initialize - Initialize Virtual Path structure
  3267. * This routine is the initial phase of init which resets the vpath and
  3268. * initializes the software support structures.
  3269. */
  3270. enum vxge_hw_status
  3271. __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
  3272. struct vxge_hw_vp_config *config)
  3273. {
  3274. struct __vxge_hw_virtualpath *vpath;
  3275. enum vxge_hw_status status = VXGE_HW_OK;
  3276. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3277. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3278. goto exit;
  3279. }
  3280. vpath = &hldev->virtual_paths[vp_id];
  3281. vpath->vp_id = vp_id;
  3282. vpath->vp_open = VXGE_HW_VP_OPEN;
  3283. vpath->hldev = hldev;
  3284. vpath->vp_config = config;
  3285. vpath->vp_reg = hldev->vpath_reg[vp_id];
  3286. vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
  3287. __vxge_hw_vpath_reset(hldev, vp_id);
  3288. status = __vxge_hw_vpath_reset_check(vpath);
  3289. if (status != VXGE_HW_OK) {
  3290. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3291. goto exit;
  3292. }
  3293. status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
  3294. if (status != VXGE_HW_OK) {
  3295. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3296. goto exit;
  3297. }
  3298. INIT_LIST_HEAD(&vpath->vpath_handles);
  3299. vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
  3300. VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
  3301. hldev->tim_int_mask1, vp_id);
  3302. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  3303. if (status != VXGE_HW_OK)
  3304. __vxge_hw_vp_terminate(hldev, vp_id);
  3305. exit:
  3306. return status;
  3307. }
  3308. /*
  3309. * __vxge_hw_vp_terminate - Terminate Virtual Path structure
  3310. * This routine closes all channels it opened and freeup memory
  3311. */
  3312. void
  3313. __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
  3314. {
  3315. struct __vxge_hw_virtualpath *vpath;
  3316. vpath = &hldev->virtual_paths[vp_id];
  3317. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
  3318. goto exit;
  3319. VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
  3320. vpath->hldev->tim_int_mask1, vpath->vp_id);
  3321. hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
  3322. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3323. exit:
  3324. return;
  3325. }
  3326. /*
  3327. * vxge_hw_vpath_mtu_set - Set MTU.
  3328. * Set new MTU value. Example, to use jumbo frames:
  3329. * vxge_hw_vpath_mtu_set(my_device, 9600);
  3330. */
  3331. enum vxge_hw_status
  3332. vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
  3333. {
  3334. u64 val64;
  3335. enum vxge_hw_status status = VXGE_HW_OK;
  3336. struct __vxge_hw_virtualpath *vpath;
  3337. if (vp == NULL) {
  3338. status = VXGE_HW_ERR_INVALID_HANDLE;
  3339. goto exit;
  3340. }
  3341. vpath = vp->vpath;
  3342. new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
  3343. if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
  3344. status = VXGE_HW_ERR_INVALID_MTU_SIZE;
  3345. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  3346. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  3347. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
  3348. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  3349. vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
  3350. exit:
  3351. return status;
  3352. }
  3353. /*
  3354. * vxge_hw_vpath_open - Open a virtual path on a given adapter
  3355. * This function is used to open access to virtual path of an
  3356. * adapter for offload, GRO operations. This function returns
  3357. * synchronously.
  3358. */
  3359. enum vxge_hw_status
  3360. vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
  3361. struct vxge_hw_vpath_attr *attr,
  3362. struct __vxge_hw_vpath_handle **vpath_handle)
  3363. {
  3364. struct __vxge_hw_virtualpath *vpath;
  3365. struct __vxge_hw_vpath_handle *vp;
  3366. enum vxge_hw_status status;
  3367. vpath = &hldev->virtual_paths[attr->vp_id];
  3368. if (vpath->vp_open == VXGE_HW_VP_OPEN) {
  3369. status = VXGE_HW_ERR_INVALID_STATE;
  3370. goto vpath_open_exit1;
  3371. }
  3372. status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
  3373. &hldev->config.vp_config[attr->vp_id]);
  3374. if (status != VXGE_HW_OK)
  3375. goto vpath_open_exit1;
  3376. vp = (struct __vxge_hw_vpath_handle *)
  3377. vmalloc(sizeof(struct __vxge_hw_vpath_handle));
  3378. if (vp == NULL) {
  3379. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3380. goto vpath_open_exit2;
  3381. }
  3382. memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
  3383. vp->vpath = vpath;
  3384. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3385. status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
  3386. if (status != VXGE_HW_OK)
  3387. goto vpath_open_exit6;
  3388. }
  3389. if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  3390. status = __vxge_hw_ring_create(vp, &attr->ring_attr);
  3391. if (status != VXGE_HW_OK)
  3392. goto vpath_open_exit7;
  3393. __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
  3394. }
  3395. vpath->fifoh->tx_intr_num =
  3396. (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  3397. VXGE_HW_VPATH_INTR_TX;
  3398. vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
  3399. VXGE_HW_BLOCK_SIZE);
  3400. if (vpath->stats_block == NULL) {
  3401. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3402. goto vpath_open_exit8;
  3403. }
  3404. vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
  3405. stats_block->memblock;
  3406. memset(vpath->hw_stats, 0,
  3407. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3408. hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
  3409. vpath->hw_stats;
  3410. vpath->hw_stats_sav =
  3411. &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
  3412. memset(vpath->hw_stats_sav, 0,
  3413. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3414. writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
  3415. status = vxge_hw_vpath_stats_enable(vp);
  3416. if (status != VXGE_HW_OK)
  3417. goto vpath_open_exit8;
  3418. list_add(&vp->item, &vpath->vpath_handles);
  3419. hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
  3420. *vpath_handle = vp;
  3421. attr->fifo_attr.userdata = vpath->fifoh;
  3422. attr->ring_attr.userdata = vpath->ringh;
  3423. return VXGE_HW_OK;
  3424. vpath_open_exit8:
  3425. if (vpath->ringh != NULL)
  3426. __vxge_hw_ring_delete(vp);
  3427. vpath_open_exit7:
  3428. if (vpath->fifoh != NULL)
  3429. __vxge_hw_fifo_delete(vp);
  3430. vpath_open_exit6:
  3431. vfree(vp);
  3432. vpath_open_exit2:
  3433. __vxge_hw_vp_terminate(hldev, attr->vp_id);
  3434. vpath_open_exit1:
  3435. return status;
  3436. }
  3437. /**
  3438. * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
  3439. * (vpath) open
  3440. * @vp: Handle got from previous vpath open
  3441. *
  3442. * This function is used to close access to virtual path opened
  3443. * earlier.
  3444. */
  3445. void
  3446. vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
  3447. {
  3448. struct __vxge_hw_virtualpath *vpath = NULL;
  3449. u64 new_count, val64, val164;
  3450. struct __vxge_hw_ring *ring;
  3451. vpath = vp->vpath;
  3452. ring = vpath->ringh;
  3453. new_count = readq(&vpath->vp_reg->rxdmem_size);
  3454. new_count &= 0x1fff;
  3455. val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
  3456. writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
  3457. &vpath->vp_reg->prc_rxd_doorbell);
  3458. readl(&vpath->vp_reg->prc_rxd_doorbell);
  3459. val164 /= 2;
  3460. val64 = readq(&vpath->vp_reg->prc_cfg6);
  3461. val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
  3462. val64 &= 0x1ff;
  3463. /*
  3464. * Each RxD is of 4 qwords
  3465. */
  3466. new_count -= (val64 + 1);
  3467. val64 = min(val164, new_count) / 4;
  3468. ring->rxds_limit = min(ring->rxds_limit, val64);
  3469. if (ring->rxds_limit < 4)
  3470. ring->rxds_limit = 4;
  3471. }
  3472. /*
  3473. * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
  3474. * This function is used to close access to virtual path opened
  3475. * earlier.
  3476. */
  3477. enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
  3478. {
  3479. struct __vxge_hw_virtualpath *vpath = NULL;
  3480. struct __vxge_hw_device *devh = NULL;
  3481. u32 vp_id = vp->vpath->vp_id;
  3482. u32 is_empty = TRUE;
  3483. enum vxge_hw_status status = VXGE_HW_OK;
  3484. vpath = vp->vpath;
  3485. devh = vpath->hldev;
  3486. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3487. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3488. goto vpath_close_exit;
  3489. }
  3490. list_del(&vp->item);
  3491. if (!list_empty(&vpath->vpath_handles)) {
  3492. list_add(&vp->item, &vpath->vpath_handles);
  3493. is_empty = FALSE;
  3494. }
  3495. if (!is_empty) {
  3496. status = VXGE_HW_FAIL;
  3497. goto vpath_close_exit;
  3498. }
  3499. devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
  3500. if (vpath->ringh != NULL)
  3501. __vxge_hw_ring_delete(vp);
  3502. if (vpath->fifoh != NULL)
  3503. __vxge_hw_fifo_delete(vp);
  3504. if (vpath->stats_block != NULL)
  3505. __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
  3506. vfree(vp);
  3507. __vxge_hw_vp_terminate(devh, vp_id);
  3508. vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
  3509. vpath_close_exit:
  3510. return status;
  3511. }
  3512. /*
  3513. * vxge_hw_vpath_reset - Resets vpath
  3514. * This function is used to request a reset of vpath
  3515. */
  3516. enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
  3517. {
  3518. enum vxge_hw_status status;
  3519. u32 vp_id;
  3520. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  3521. vp_id = vpath->vp_id;
  3522. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3523. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3524. goto exit;
  3525. }
  3526. status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
  3527. if (status == VXGE_HW_OK)
  3528. vpath->sw_stats->soft_reset_cnt++;
  3529. exit:
  3530. return status;
  3531. }
  3532. /*
  3533. * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
  3534. * This function poll's for the vpath reset completion and re initializes
  3535. * the vpath.
  3536. */
  3537. enum vxge_hw_status
  3538. vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
  3539. {
  3540. struct __vxge_hw_virtualpath *vpath = NULL;
  3541. enum vxge_hw_status status;
  3542. struct __vxge_hw_device *hldev;
  3543. u32 vp_id;
  3544. vp_id = vp->vpath->vp_id;
  3545. vpath = vp->vpath;
  3546. hldev = vpath->hldev;
  3547. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3548. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3549. goto exit;
  3550. }
  3551. status = __vxge_hw_vpath_reset_check(vpath);
  3552. if (status != VXGE_HW_OK)
  3553. goto exit;
  3554. status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
  3555. if (status != VXGE_HW_OK)
  3556. goto exit;
  3557. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  3558. if (status != VXGE_HW_OK)
  3559. goto exit;
  3560. if (vpath->ringh != NULL)
  3561. __vxge_hw_vpath_prc_configure(hldev, vp_id);
  3562. memset(vpath->hw_stats, 0,
  3563. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3564. memset(vpath->hw_stats_sav, 0,
  3565. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3566. writeq(vpath->stats_block->dma_addr,
  3567. &vpath->vp_reg->stats_cfg);
  3568. status = vxge_hw_vpath_stats_enable(vp);
  3569. exit:
  3570. return status;
  3571. }
  3572. /*
  3573. * vxge_hw_vpath_enable - Enable vpath.
  3574. * This routine clears the vpath reset thereby enabling a vpath
  3575. * to start forwarding frames and generating interrupts.
  3576. */
  3577. void
  3578. vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
  3579. {
  3580. struct __vxge_hw_device *hldev;
  3581. u64 val64;
  3582. hldev = vp->vpath->hldev;
  3583. val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
  3584. 1 << (16 - vp->vpath->vp_id));
  3585. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  3586. &hldev->common_reg->cmn_rsthdlr_cfg1);
  3587. }
  3588. /*
  3589. * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
  3590. * Enable the DMA vpath statistics. The function is to be called to re-enable
  3591. * the adapter to update stats into the host memory
  3592. */
  3593. enum vxge_hw_status
  3594. vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
  3595. {
  3596. enum vxge_hw_status status = VXGE_HW_OK;
  3597. struct __vxge_hw_virtualpath *vpath;
  3598. vpath = vp->vpath;
  3599. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3600. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3601. goto exit;
  3602. }
  3603. memcpy(vpath->hw_stats_sav, vpath->hw_stats,
  3604. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3605. status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
  3606. exit:
  3607. return status;
  3608. }
  3609. /*
  3610. * __vxge_hw_vpath_stats_access - Get the statistics from the given location
  3611. * and offset and perform an operation
  3612. */
  3613. enum vxge_hw_status
  3614. __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
  3615. u32 operation, u32 offset, u64 *stat)
  3616. {
  3617. u64 val64;
  3618. enum vxge_hw_status status = VXGE_HW_OK;
  3619. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3620. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3621. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3622. goto vpath_stats_access_exit;
  3623. }
  3624. vp_reg = vpath->vp_reg;
  3625. val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
  3626. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
  3627. VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
  3628. status = __vxge_hw_pio_mem_write64(val64,
  3629. &vp_reg->xmac_stats_access_cmd,
  3630. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
  3631. vpath->hldev->config.device_poll_millis);
  3632. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  3633. *stat = readq(&vp_reg->xmac_stats_access_data);
  3634. else
  3635. *stat = 0;
  3636. vpath_stats_access_exit:
  3637. return status;
  3638. }
  3639. /*
  3640. * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
  3641. */
  3642. enum vxge_hw_status
  3643. __vxge_hw_vpath_xmac_tx_stats_get(
  3644. struct __vxge_hw_virtualpath *vpath,
  3645. struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
  3646. {
  3647. u64 *val64;
  3648. int i;
  3649. u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
  3650. enum vxge_hw_status status = VXGE_HW_OK;
  3651. val64 = (u64 *) vpath_tx_stats;
  3652. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3653. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3654. goto exit;
  3655. }
  3656. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
  3657. status = __vxge_hw_vpath_stats_access(vpath,
  3658. VXGE_HW_STATS_OP_READ,
  3659. offset, val64);
  3660. if (status != VXGE_HW_OK)
  3661. goto exit;
  3662. offset++;
  3663. val64++;
  3664. }
  3665. exit:
  3666. return status;
  3667. }
  3668. /*
  3669. * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
  3670. */
  3671. enum vxge_hw_status
  3672. __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
  3673. struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
  3674. {
  3675. u64 *val64;
  3676. enum vxge_hw_status status = VXGE_HW_OK;
  3677. int i;
  3678. u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
  3679. val64 = (u64 *) vpath_rx_stats;
  3680. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3681. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3682. goto exit;
  3683. }
  3684. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
  3685. status = __vxge_hw_vpath_stats_access(vpath,
  3686. VXGE_HW_STATS_OP_READ,
  3687. offset >> 3, val64);
  3688. if (status != VXGE_HW_OK)
  3689. goto exit;
  3690. offset += 8;
  3691. val64++;
  3692. }
  3693. exit:
  3694. return status;
  3695. }
  3696. /*
  3697. * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
  3698. */
  3699. enum vxge_hw_status __vxge_hw_vpath_stats_get(
  3700. struct __vxge_hw_virtualpath *vpath,
  3701. struct vxge_hw_vpath_stats_hw_info *hw_stats)
  3702. {
  3703. u64 val64;
  3704. enum vxge_hw_status status = VXGE_HW_OK;
  3705. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3706. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3707. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3708. goto exit;
  3709. }
  3710. vp_reg = vpath->vp_reg;
  3711. val64 = readq(&vp_reg->vpath_debug_stats0);
  3712. hw_stats->ini_num_mwr_sent =
  3713. (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
  3714. val64 = readq(&vp_reg->vpath_debug_stats1);
  3715. hw_stats->ini_num_mrd_sent =
  3716. (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
  3717. val64 = readq(&vp_reg->vpath_debug_stats2);
  3718. hw_stats->ini_num_cpl_rcvd =
  3719. (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
  3720. val64 = readq(&vp_reg->vpath_debug_stats3);
  3721. hw_stats->ini_num_mwr_byte_sent =
  3722. VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
  3723. val64 = readq(&vp_reg->vpath_debug_stats4);
  3724. hw_stats->ini_num_cpl_byte_rcvd =
  3725. VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
  3726. val64 = readq(&vp_reg->vpath_debug_stats5);
  3727. hw_stats->wrcrdtarb_xoff =
  3728. (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
  3729. val64 = readq(&vp_reg->vpath_debug_stats6);
  3730. hw_stats->rdcrdtarb_xoff =
  3731. (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
  3732. val64 = readq(&vp_reg->vpath_genstats_count01);
  3733. hw_stats->vpath_genstats_count0 =
  3734. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
  3735. val64);
  3736. val64 = readq(&vp_reg->vpath_genstats_count01);
  3737. hw_stats->vpath_genstats_count1 =
  3738. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
  3739. val64);
  3740. val64 = readq(&vp_reg->vpath_genstats_count23);
  3741. hw_stats->vpath_genstats_count2 =
  3742. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
  3743. val64);
  3744. val64 = readq(&vp_reg->vpath_genstats_count01);
  3745. hw_stats->vpath_genstats_count3 =
  3746. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
  3747. val64);
  3748. val64 = readq(&vp_reg->vpath_genstats_count4);
  3749. hw_stats->vpath_genstats_count4 =
  3750. (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
  3751. val64);
  3752. val64 = readq(&vp_reg->vpath_genstats_count5);
  3753. hw_stats->vpath_genstats_count5 =
  3754. (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
  3755. val64);
  3756. status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
  3757. if (status != VXGE_HW_OK)
  3758. goto exit;
  3759. status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
  3760. if (status != VXGE_HW_OK)
  3761. goto exit;
  3762. VXGE_HW_VPATH_STATS_PIO_READ(
  3763. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
  3764. hw_stats->prog_event_vnum0 =
  3765. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
  3766. hw_stats->prog_event_vnum1 =
  3767. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
  3768. VXGE_HW_VPATH_STATS_PIO_READ(
  3769. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
  3770. hw_stats->prog_event_vnum2 =
  3771. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
  3772. hw_stats->prog_event_vnum3 =
  3773. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
  3774. val64 = readq(&vp_reg->rx_multi_cast_stats);
  3775. hw_stats->rx_multi_cast_frame_discard =
  3776. (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
  3777. val64 = readq(&vp_reg->rx_frm_transferred);
  3778. hw_stats->rx_frm_transferred =
  3779. (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
  3780. val64 = readq(&vp_reg->rxd_returned);
  3781. hw_stats->rxd_returned =
  3782. (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
  3783. val64 = readq(&vp_reg->dbg_stats_rx_mpa);
  3784. hw_stats->rx_mpa_len_fail_frms =
  3785. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
  3786. hw_stats->rx_mpa_mrk_fail_frms =
  3787. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
  3788. hw_stats->rx_mpa_crc_fail_frms =
  3789. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
  3790. val64 = readq(&vp_reg->dbg_stats_rx_fau);
  3791. hw_stats->rx_permitted_frms =
  3792. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
  3793. hw_stats->rx_vp_reset_discarded_frms =
  3794. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
  3795. hw_stats->rx_wol_frms =
  3796. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
  3797. val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
  3798. hw_stats->tx_vp_reset_discarded_frms =
  3799. (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
  3800. val64);
  3801. exit:
  3802. return status;
  3803. }
  3804. /*
  3805. * __vxge_hw_blockpool_create - Create block pool
  3806. */
  3807. enum vxge_hw_status
  3808. __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
  3809. struct __vxge_hw_blockpool *blockpool,
  3810. u32 pool_size,
  3811. u32 pool_max)
  3812. {
  3813. u32 i;
  3814. struct __vxge_hw_blockpool_entry *entry = NULL;
  3815. void *memblock;
  3816. dma_addr_t dma_addr;
  3817. struct pci_dev *dma_handle;
  3818. struct pci_dev *acc_handle;
  3819. enum vxge_hw_status status = VXGE_HW_OK;
  3820. if (blockpool == NULL) {
  3821. status = VXGE_HW_FAIL;
  3822. goto blockpool_create_exit;
  3823. }
  3824. blockpool->hldev = hldev;
  3825. blockpool->block_size = VXGE_HW_BLOCK_SIZE;
  3826. blockpool->pool_size = 0;
  3827. blockpool->pool_max = pool_max;
  3828. blockpool->req_out = 0;
  3829. INIT_LIST_HEAD(&blockpool->free_block_list);
  3830. INIT_LIST_HEAD(&blockpool->free_entry_list);
  3831. for (i = 0; i < pool_size + pool_max; i++) {
  3832. entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  3833. GFP_KERNEL);
  3834. if (entry == NULL) {
  3835. __vxge_hw_blockpool_destroy(blockpool);
  3836. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3837. goto blockpool_create_exit;
  3838. }
  3839. list_add(&entry->item, &blockpool->free_entry_list);
  3840. }
  3841. for (i = 0; i < pool_size; i++) {
  3842. memblock = vxge_os_dma_malloc(
  3843. hldev->pdev,
  3844. VXGE_HW_BLOCK_SIZE,
  3845. &dma_handle,
  3846. &acc_handle);
  3847. if (memblock == NULL) {
  3848. __vxge_hw_blockpool_destroy(blockpool);
  3849. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3850. goto blockpool_create_exit;
  3851. }
  3852. dma_addr = pci_map_single(hldev->pdev, memblock,
  3853. VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
  3854. if (unlikely(pci_dma_mapping_error(hldev->pdev,
  3855. dma_addr))) {
  3856. vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
  3857. __vxge_hw_blockpool_destroy(blockpool);
  3858. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3859. goto blockpool_create_exit;
  3860. }
  3861. if (!list_empty(&blockpool->free_entry_list))
  3862. entry = (struct __vxge_hw_blockpool_entry *)
  3863. list_first_entry(&blockpool->free_entry_list,
  3864. struct __vxge_hw_blockpool_entry,
  3865. item);
  3866. if (entry == NULL)
  3867. entry =
  3868. kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  3869. GFP_KERNEL);
  3870. if (entry != NULL) {
  3871. list_del(&entry->item);
  3872. entry->length = VXGE_HW_BLOCK_SIZE;
  3873. entry->memblock = memblock;
  3874. entry->dma_addr = dma_addr;
  3875. entry->acc_handle = acc_handle;
  3876. entry->dma_handle = dma_handle;
  3877. list_add(&entry->item,
  3878. &blockpool->free_block_list);
  3879. blockpool->pool_size++;
  3880. } else {
  3881. __vxge_hw_blockpool_destroy(blockpool);
  3882. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  3883. goto blockpool_create_exit;
  3884. }
  3885. }
  3886. blockpool_create_exit:
  3887. return status;
  3888. }
  3889. /*
  3890. * __vxge_hw_blockpool_destroy - Deallocates the block pool
  3891. */
  3892. void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
  3893. {
  3894. struct __vxge_hw_device *hldev;
  3895. struct list_head *p, *n;
  3896. u16 ret;
  3897. if (blockpool == NULL) {
  3898. ret = 1;
  3899. goto exit;
  3900. }
  3901. hldev = blockpool->hldev;
  3902. list_for_each_safe(p, n, &blockpool->free_block_list) {
  3903. pci_unmap_single(hldev->pdev,
  3904. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  3905. ((struct __vxge_hw_blockpool_entry *)p)->length,
  3906. PCI_DMA_BIDIRECTIONAL);
  3907. vxge_os_dma_free(hldev->pdev,
  3908. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  3909. &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
  3910. list_del(
  3911. &((struct __vxge_hw_blockpool_entry *)p)->item);
  3912. kfree(p);
  3913. blockpool->pool_size--;
  3914. }
  3915. list_for_each_safe(p, n, &blockpool->free_entry_list) {
  3916. list_del(
  3917. &((struct __vxge_hw_blockpool_entry *)p)->item);
  3918. kfree((void *)p);
  3919. }
  3920. ret = 0;
  3921. exit:
  3922. return;
  3923. }
  3924. /*
  3925. * __vxge_hw_blockpool_blocks_add - Request additional blocks
  3926. */
  3927. static
  3928. void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
  3929. {
  3930. u32 nreq = 0, i;
  3931. if ((blockpool->pool_size + blockpool->req_out) <
  3932. VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
  3933. nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
  3934. blockpool->req_out += nreq;
  3935. }
  3936. for (i = 0; i < nreq; i++)
  3937. vxge_os_dma_malloc_async(
  3938. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  3939. blockpool->hldev, VXGE_HW_BLOCK_SIZE);
  3940. }
  3941. /*
  3942. * __vxge_hw_blockpool_blocks_remove - Free additional blocks
  3943. */
  3944. static
  3945. void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
  3946. {
  3947. struct list_head *p, *n;
  3948. list_for_each_safe(p, n, &blockpool->free_block_list) {
  3949. if (blockpool->pool_size < blockpool->pool_max)
  3950. break;
  3951. pci_unmap_single(
  3952. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  3953. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  3954. ((struct __vxge_hw_blockpool_entry *)p)->length,
  3955. PCI_DMA_BIDIRECTIONAL);
  3956. vxge_os_dma_free(
  3957. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  3958. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  3959. &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
  3960. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  3961. list_add(p, &blockpool->free_entry_list);
  3962. blockpool->pool_size--;
  3963. }
  3964. }
  3965. /*
  3966. * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
  3967. * Adds a block to block pool
  3968. */
  3969. void vxge_hw_blockpool_block_add(
  3970. struct __vxge_hw_device *devh,
  3971. void *block_addr,
  3972. u32 length,
  3973. struct pci_dev *dma_h,
  3974. struct pci_dev *acc_handle)
  3975. {
  3976. struct __vxge_hw_blockpool *blockpool;
  3977. struct __vxge_hw_blockpool_entry *entry = NULL;
  3978. dma_addr_t dma_addr;
  3979. enum vxge_hw_status status = VXGE_HW_OK;
  3980. u32 req_out;
  3981. blockpool = &devh->block_pool;
  3982. if (block_addr == NULL) {
  3983. blockpool->req_out--;
  3984. status = VXGE_HW_FAIL;
  3985. goto exit;
  3986. }
  3987. dma_addr = pci_map_single(devh->pdev, block_addr, length,
  3988. PCI_DMA_BIDIRECTIONAL);
  3989. if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
  3990. vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
  3991. blockpool->req_out--;
  3992. status = VXGE_HW_FAIL;
  3993. goto exit;
  3994. }
  3995. if (!list_empty(&blockpool->free_entry_list))
  3996. entry = (struct __vxge_hw_blockpool_entry *)
  3997. list_first_entry(&blockpool->free_entry_list,
  3998. struct __vxge_hw_blockpool_entry,
  3999. item);
  4000. if (entry == NULL)
  4001. entry = (struct __vxge_hw_blockpool_entry *)
  4002. vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
  4003. else
  4004. list_del(&entry->item);
  4005. if (entry != NULL) {
  4006. entry->length = length;
  4007. entry->memblock = block_addr;
  4008. entry->dma_addr = dma_addr;
  4009. entry->acc_handle = acc_handle;
  4010. entry->dma_handle = dma_h;
  4011. list_add(&entry->item, &blockpool->free_block_list);
  4012. blockpool->pool_size++;
  4013. status = VXGE_HW_OK;
  4014. } else
  4015. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4016. blockpool->req_out--;
  4017. req_out = blockpool->req_out;
  4018. exit:
  4019. return;
  4020. }
  4021. /*
  4022. * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
  4023. * Allocates a block of memory of given size, either from block pool
  4024. * or by calling vxge_os_dma_malloc()
  4025. */
  4026. void *
  4027. __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
  4028. struct vxge_hw_mempool_dma *dma_object)
  4029. {
  4030. struct __vxge_hw_blockpool_entry *entry = NULL;
  4031. struct __vxge_hw_blockpool *blockpool;
  4032. void *memblock = NULL;
  4033. enum vxge_hw_status status = VXGE_HW_OK;
  4034. blockpool = &devh->block_pool;
  4035. if (size != blockpool->block_size) {
  4036. memblock = vxge_os_dma_malloc(devh->pdev, size,
  4037. &dma_object->handle,
  4038. &dma_object->acc_handle);
  4039. if (memblock == NULL) {
  4040. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4041. goto exit;
  4042. }
  4043. dma_object->addr = pci_map_single(devh->pdev, memblock, size,
  4044. PCI_DMA_BIDIRECTIONAL);
  4045. if (unlikely(pci_dma_mapping_error(devh->pdev,
  4046. dma_object->addr))) {
  4047. vxge_os_dma_free(devh->pdev, memblock,
  4048. &dma_object->acc_handle);
  4049. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4050. goto exit;
  4051. }
  4052. } else {
  4053. if (!list_empty(&blockpool->free_block_list))
  4054. entry = (struct __vxge_hw_blockpool_entry *)
  4055. list_first_entry(&blockpool->free_block_list,
  4056. struct __vxge_hw_blockpool_entry,
  4057. item);
  4058. if (entry != NULL) {
  4059. list_del(&entry->item);
  4060. dma_object->addr = entry->dma_addr;
  4061. dma_object->handle = entry->dma_handle;
  4062. dma_object->acc_handle = entry->acc_handle;
  4063. memblock = entry->memblock;
  4064. list_add(&entry->item,
  4065. &blockpool->free_entry_list);
  4066. blockpool->pool_size--;
  4067. }
  4068. if (memblock != NULL)
  4069. __vxge_hw_blockpool_blocks_add(blockpool);
  4070. }
  4071. exit:
  4072. return memblock;
  4073. }
  4074. /*
  4075. * __vxge_hw_blockpool_free - Frees the memory allcoated with
  4076. __vxge_hw_blockpool_malloc
  4077. */
  4078. void
  4079. __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
  4080. void *memblock, u32 size,
  4081. struct vxge_hw_mempool_dma *dma_object)
  4082. {
  4083. struct __vxge_hw_blockpool_entry *entry = NULL;
  4084. struct __vxge_hw_blockpool *blockpool;
  4085. enum vxge_hw_status status = VXGE_HW_OK;
  4086. blockpool = &devh->block_pool;
  4087. if (size != blockpool->block_size) {
  4088. pci_unmap_single(devh->pdev, dma_object->addr, size,
  4089. PCI_DMA_BIDIRECTIONAL);
  4090. vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
  4091. } else {
  4092. if (!list_empty(&blockpool->free_entry_list))
  4093. entry = (struct __vxge_hw_blockpool_entry *)
  4094. list_first_entry(&blockpool->free_entry_list,
  4095. struct __vxge_hw_blockpool_entry,
  4096. item);
  4097. if (entry == NULL)
  4098. entry = (struct __vxge_hw_blockpool_entry *)
  4099. vmalloc(sizeof(
  4100. struct __vxge_hw_blockpool_entry));
  4101. else
  4102. list_del(&entry->item);
  4103. if (entry != NULL) {
  4104. entry->length = size;
  4105. entry->memblock = memblock;
  4106. entry->dma_addr = dma_object->addr;
  4107. entry->acc_handle = dma_object->acc_handle;
  4108. entry->dma_handle = dma_object->handle;
  4109. list_add(&entry->item,
  4110. &blockpool->free_block_list);
  4111. blockpool->pool_size++;
  4112. status = VXGE_HW_OK;
  4113. } else
  4114. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4115. if (status == VXGE_HW_OK)
  4116. __vxge_hw_blockpool_blocks_remove(blockpool);
  4117. }
  4118. return;
  4119. }
  4120. /*
  4121. * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
  4122. * This function allocates a block from block pool or from the system
  4123. */
  4124. struct __vxge_hw_blockpool_entry *
  4125. __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
  4126. {
  4127. struct __vxge_hw_blockpool_entry *entry = NULL;
  4128. struct __vxge_hw_blockpool *blockpool;
  4129. blockpool = &devh->block_pool;
  4130. if (size == blockpool->block_size) {
  4131. if (!list_empty(&blockpool->free_block_list))
  4132. entry = (struct __vxge_hw_blockpool_entry *)
  4133. list_first_entry(&blockpool->free_block_list,
  4134. struct __vxge_hw_blockpool_entry,
  4135. item);
  4136. if (entry != NULL) {
  4137. list_del(&entry->item);
  4138. blockpool->pool_size--;
  4139. }
  4140. }
  4141. if (entry != NULL)
  4142. __vxge_hw_blockpool_blocks_add(blockpool);
  4143. return entry;
  4144. }
  4145. /*
  4146. * __vxge_hw_blockpool_block_free - Frees a block from block pool
  4147. * @devh: Hal device
  4148. * @entry: Entry of block to be freed
  4149. *
  4150. * This function frees a block from block pool
  4151. */
  4152. void
  4153. __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
  4154. struct __vxge_hw_blockpool_entry *entry)
  4155. {
  4156. struct __vxge_hw_blockpool *blockpool;
  4157. blockpool = &devh->block_pool;
  4158. if (entry->length == blockpool->block_size) {
  4159. list_add(&entry->item, &blockpool->free_block_list);
  4160. blockpool->pool_size++;
  4161. }
  4162. __vxge_hw_blockpool_blocks_remove(blockpool);
  4163. return;
  4164. }