tc35815.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221
  1. /*
  2. * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
  3. *
  4. * Based on skelton.c by Donald Becker.
  5. *
  6. * This driver is a replacement of older and less maintained version.
  7. * This is a header of the older version:
  8. * -----<snip>-----
  9. * Copyright 2001 MontaVista Software Inc.
  10. * Author: MontaVista Software, Inc.
  11. * ahennessy@mvista.com
  12. * Copyright (C) 2000-2001 Toshiba Corporation
  13. * static const char *version =
  14. * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15. * -----<snip>-----
  16. *
  17. * This file is subject to the terms and conditions of the GNU General Public
  18. * License. See the file "COPYING" in the main directory of this archive
  19. * for more details.
  20. *
  21. * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22. * All Rights Reserved.
  23. */
  24. #define DRV_VERSION "1.39"
  25. static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  26. #define MODNAME "tc35815"
  27. #include <linux/module.h>
  28. #include <linux/kernel.h>
  29. #include <linux/types.h>
  30. #include <linux/fcntl.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/ioport.h>
  33. #include <linux/in.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/slab.h>
  36. #include <linux/string.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/etherdevice.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/delay.h>
  44. #include <linux/pci.h>
  45. #include <linux/phy.h>
  46. #include <linux/workqueue.h>
  47. #include <linux/platform_device.h>
  48. #include <asm/io.h>
  49. #include <asm/byteorder.h>
  50. enum tc35815_chiptype {
  51. TC35815CF = 0,
  52. TC35815_NWU,
  53. TC35815_TX4939,
  54. };
  55. /* indexed by tc35815_chiptype, above */
  56. static const struct {
  57. const char *name;
  58. } chip_info[] __devinitdata = {
  59. { "TOSHIBA TC35815CF 10/100BaseTX" },
  60. { "TOSHIBA TC35815 with Wake on LAN" },
  61. { "TOSHIBA TC35815/TX4939" },
  62. };
  63. static const struct pci_device_id tc35815_pci_tbl[] = {
  64. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  65. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  66. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  67. {0,}
  68. };
  69. MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  70. /* see MODULE_PARM_DESC */
  71. static struct tc35815_options {
  72. int speed;
  73. int duplex;
  74. } options;
  75. /*
  76. * Registers
  77. */
  78. struct tc35815_regs {
  79. __u32 DMA_Ctl; /* 0x00 */
  80. __u32 TxFrmPtr;
  81. __u32 TxThrsh;
  82. __u32 TxPollCtr;
  83. __u32 BLFrmPtr;
  84. __u32 RxFragSize;
  85. __u32 Int_En;
  86. __u32 FDA_Bas;
  87. __u32 FDA_Lim; /* 0x20 */
  88. __u32 Int_Src;
  89. __u32 unused0[2];
  90. __u32 PauseCnt;
  91. __u32 RemPauCnt;
  92. __u32 TxCtlFrmStat;
  93. __u32 unused1;
  94. __u32 MAC_Ctl; /* 0x40 */
  95. __u32 CAM_Ctl;
  96. __u32 Tx_Ctl;
  97. __u32 Tx_Stat;
  98. __u32 Rx_Ctl;
  99. __u32 Rx_Stat;
  100. __u32 MD_Data;
  101. __u32 MD_CA;
  102. __u32 CAM_Adr; /* 0x60 */
  103. __u32 CAM_Data;
  104. __u32 CAM_Ena;
  105. __u32 PROM_Ctl;
  106. __u32 PROM_Data;
  107. __u32 Algn_Cnt;
  108. __u32 CRC_Cnt;
  109. __u32 Miss_Cnt;
  110. };
  111. /*
  112. * Bit assignments
  113. */
  114. /* DMA_Ctl bit asign ------------------------------------------------------- */
  115. #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
  116. #define DMA_RxAlign_1 0x00400000
  117. #define DMA_RxAlign_2 0x00800000
  118. #define DMA_RxAlign_3 0x00c00000
  119. #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
  120. #define DMA_IntMask 0x00040000 /* 1:Interupt mask */
  121. #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
  122. #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
  123. #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
  124. #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
  125. #define DMA_TestMode 0x00002000 /* 1:Test Mode */
  126. #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
  127. #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
  128. /* RxFragSize bit asign ---------------------------------------------------- */
  129. #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
  130. #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
  131. /* MAC_Ctl bit asign ------------------------------------------------------- */
  132. #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
  133. #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
  134. #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
  135. #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
  136. #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
  137. #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
  138. #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
  139. #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
  140. #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
  141. #define MAC_Reset 0x00000004 /* 1:Software Reset */
  142. #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
  143. #define MAC_HaltReq 0x00000001 /* 1:Halt request */
  144. /* PROM_Ctl bit asign ------------------------------------------------------ */
  145. #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
  146. #define PROM_Read 0x00004000 /*10:Read operation */
  147. #define PROM_Write 0x00002000 /*01:Write operation */
  148. #define PROM_Erase 0x00006000 /*11:Erase operation */
  149. /*00:Enable or Disable Writting, */
  150. /* as specified in PROM_Addr. */
  151. #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
  152. /*00xxxx: disable */
  153. /* CAM_Ctl bit asign ------------------------------------------------------- */
  154. #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
  155. #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
  156. /* accept other */
  157. #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
  158. #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
  159. #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
  160. /* CAM_Ena bit asign ------------------------------------------------------- */
  161. #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
  162. #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
  163. #define CAM_Ena_Bit(index) (1 << (index))
  164. #define CAM_ENTRY_DESTINATION 0
  165. #define CAM_ENTRY_SOURCE 1
  166. #define CAM_ENTRY_MACCTL 20
  167. /* Tx_Ctl bit asign -------------------------------------------------------- */
  168. #define Tx_En 0x00000001 /* 1:Transmit enable */
  169. #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
  170. #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
  171. #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
  172. #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
  173. #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
  174. #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
  175. #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
  176. #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
  177. #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
  178. #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
  179. #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
  180. /* Tx_Stat bit asign ------------------------------------------------------- */
  181. #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
  182. #define Tx_ExColl 0x00000010 /* Excessive Collision */
  183. #define Tx_TXDefer 0x00000020 /* Transmit Defered */
  184. #define Tx_Paused 0x00000040 /* Transmit Paused */
  185. #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
  186. #define Tx_Under 0x00000100 /* Underrun */
  187. #define Tx_Defer 0x00000200 /* Deferral */
  188. #define Tx_NCarr 0x00000400 /* No Carrier */
  189. #define Tx_10Stat 0x00000800 /* 10Mbps Status */
  190. #define Tx_LateColl 0x00001000 /* Late Collision */
  191. #define Tx_TxPar 0x00002000 /* Tx Parity Error */
  192. #define Tx_Comp 0x00004000 /* Completion */
  193. #define Tx_Halted 0x00008000 /* Tx Halted */
  194. #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
  195. /* Rx_Ctl bit asign -------------------------------------------------------- */
  196. #define Rx_EnGood 0x00004000 /* 1:Enable Good */
  197. #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
  198. #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
  199. #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
  200. #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
  201. #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
  202. #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
  203. #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
  204. #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
  205. #define Rx_LongEn 0x00000004 /* 1:Long Enable */
  206. #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
  207. #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
  208. /* Rx_Stat bit asign ------------------------------------------------------- */
  209. #define Rx_Halted 0x00008000 /* Rx Halted */
  210. #define Rx_Good 0x00004000 /* Rx Good */
  211. #define Rx_RxPar 0x00002000 /* Rx Parity Error */
  212. #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
  213. #define Rx_LongErr 0x00000800 /* Rx Long Error */
  214. #define Rx_Over 0x00000400 /* Rx Overflow */
  215. #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
  216. #define Rx_Align 0x00000100 /* Rx Alignment Error */
  217. #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
  218. #define Rx_IntRx 0x00000040 /* Rx Interrupt */
  219. #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
  220. #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
  221. #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
  222. /* Int_En bit asign -------------------------------------------------------- */
  223. #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
  224. #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
  225. #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
  226. #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
  227. #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
  228. #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
  229. #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
  230. #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
  231. #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
  232. #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
  233. #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
  234. #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
  235. /* Exhausted Enable */
  236. /* Int_Src bit asign ------------------------------------------------------- */
  237. #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
  238. #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
  239. #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
  240. #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
  241. #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
  242. #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
  243. #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
  244. #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
  245. #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
  246. #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
  247. #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
  248. #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
  249. #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
  250. #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
  251. #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
  252. /* MD_CA bit asign --------------------------------------------------------- */
  253. #define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
  254. #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
  255. #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
  256. /*
  257. * Descriptors
  258. */
  259. /* Frame descripter */
  260. struct FDesc {
  261. volatile __u32 FDNext;
  262. volatile __u32 FDSystem;
  263. volatile __u32 FDStat;
  264. volatile __u32 FDCtl;
  265. };
  266. /* Buffer descripter */
  267. struct BDesc {
  268. volatile __u32 BuffData;
  269. volatile __u32 BDCtl;
  270. };
  271. #define FD_ALIGN 16
  272. /* Frame Descripter bit asign ---------------------------------------------- */
  273. #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
  274. #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
  275. #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
  276. #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
  277. #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
  278. #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
  279. #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
  280. #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
  281. #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
  282. #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
  283. #define FD_BDCnt_SHIFT 16
  284. /* Buffer Descripter bit asign --------------------------------------------- */
  285. #define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
  286. #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
  287. #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
  288. #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
  289. #define BD_RxBDID_SHIFT 16
  290. #define BD_RxBDSeqN_SHIFT 24
  291. /* Some useful constants. */
  292. #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
  293. Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
  294. Tx_En) /* maybe 0x7b01 */
  295. /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
  296. #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
  297. | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
  298. #define INT_EN_CMD (Int_NRAbtEn | \
  299. Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
  300. Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
  301. Int_STargAbtEn | \
  302. Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
  303. #define DMA_CTL_CMD DMA_BURST_SIZE
  304. #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
  305. /* Tuning parameters */
  306. #define DMA_BURST_SIZE 32
  307. #define TX_THRESHOLD 1024
  308. /* used threshold with packet max byte for low pci transfer ability.*/
  309. #define TX_THRESHOLD_MAX 1536
  310. /* setting threshold max value when overrun error occured this count. */
  311. #define TX_THRESHOLD_KEEP_LIMIT 10
  312. /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
  313. #define FD_PAGE_NUM 4
  314. #define RX_BUF_NUM 128 /* < 256 */
  315. #define RX_FD_NUM 256 /* >= 32 */
  316. #define TX_FD_NUM 128
  317. #if RX_CTL_CMD & Rx_LongEn
  318. #define RX_BUF_SIZE PAGE_SIZE
  319. #elif RX_CTL_CMD & Rx_StripCRC
  320. #define RX_BUF_SIZE \
  321. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
  322. #else
  323. #define RX_BUF_SIZE \
  324. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
  325. #endif
  326. #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
  327. #define NAPI_WEIGHT 16
  328. struct TxFD {
  329. struct FDesc fd;
  330. struct BDesc bd;
  331. struct BDesc unused;
  332. };
  333. struct RxFD {
  334. struct FDesc fd;
  335. struct BDesc bd[0]; /* variable length */
  336. };
  337. struct FrFD {
  338. struct FDesc fd;
  339. struct BDesc bd[RX_BUF_NUM];
  340. };
  341. #define tc_readl(addr) ioread32(addr)
  342. #define tc_writel(d, addr) iowrite32(d, addr)
  343. #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
  344. /* Information that need to be kept for each controller. */
  345. struct tc35815_local {
  346. struct pci_dev *pci_dev;
  347. struct net_device *dev;
  348. struct napi_struct napi;
  349. /* statistics */
  350. struct {
  351. int max_tx_qlen;
  352. int tx_ints;
  353. int rx_ints;
  354. int tx_underrun;
  355. } lstats;
  356. /* Tx control lock. This protects the transmit buffer ring
  357. * state along with the "tx full" state of the driver. This
  358. * means all netif_queue flow control actions are protected
  359. * by this lock as well.
  360. */
  361. spinlock_t lock;
  362. struct mii_bus *mii_bus;
  363. struct phy_device *phy_dev;
  364. int duplex;
  365. int speed;
  366. int link;
  367. struct work_struct restart_work;
  368. /*
  369. * Transmitting: Batch Mode.
  370. * 1 BD in 1 TxFD.
  371. * Receiving: Non-Packing Mode.
  372. * 1 circular FD for Free Buffer List.
  373. * RX_BUF_NUM BD in Free Buffer FD.
  374. * One Free Buffer BD has ETH_FRAME_LEN data buffer.
  375. */
  376. void *fd_buf; /* for TxFD, RxFD, FrFD */
  377. dma_addr_t fd_buf_dma;
  378. struct TxFD *tfd_base;
  379. unsigned int tfd_start;
  380. unsigned int tfd_end;
  381. struct RxFD *rfd_base;
  382. struct RxFD *rfd_limit;
  383. struct RxFD *rfd_cur;
  384. struct FrFD *fbl_ptr;
  385. unsigned int fbl_count;
  386. struct {
  387. struct sk_buff *skb;
  388. dma_addr_t skb_dma;
  389. } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
  390. u32 msg_enable;
  391. enum tc35815_chiptype chiptype;
  392. };
  393. static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
  394. {
  395. return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
  396. }
  397. #ifdef DEBUG
  398. static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  399. {
  400. return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
  401. }
  402. #endif
  403. static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
  404. struct pci_dev *hwdev,
  405. dma_addr_t *dma_handle)
  406. {
  407. struct sk_buff *skb;
  408. skb = dev_alloc_skb(RX_BUF_SIZE);
  409. if (!skb)
  410. return NULL;
  411. *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
  412. PCI_DMA_FROMDEVICE);
  413. if (pci_dma_mapping_error(hwdev, *dma_handle)) {
  414. dev_kfree_skb_any(skb);
  415. return NULL;
  416. }
  417. skb_reserve(skb, 2); /* make IP header 4byte aligned */
  418. return skb;
  419. }
  420. static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
  421. {
  422. pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
  423. PCI_DMA_FROMDEVICE);
  424. dev_kfree_skb_any(skb);
  425. }
  426. /* Index to functions, as function prototypes. */
  427. static int tc35815_open(struct net_device *dev);
  428. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
  429. static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
  430. static int tc35815_rx(struct net_device *dev, int limit);
  431. static int tc35815_poll(struct napi_struct *napi, int budget);
  432. static void tc35815_txdone(struct net_device *dev);
  433. static int tc35815_close(struct net_device *dev);
  434. static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
  435. static void tc35815_set_multicast_list(struct net_device *dev);
  436. static void tc35815_tx_timeout(struct net_device *dev);
  437. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
  438. #ifdef CONFIG_NET_POLL_CONTROLLER
  439. static void tc35815_poll_controller(struct net_device *dev);
  440. #endif
  441. static const struct ethtool_ops tc35815_ethtool_ops;
  442. /* Example routines you must write ;->. */
  443. static void tc35815_chip_reset(struct net_device *dev);
  444. static void tc35815_chip_init(struct net_device *dev);
  445. #ifdef DEBUG
  446. static void panic_queues(struct net_device *dev);
  447. #endif
  448. static void tc35815_restart_work(struct work_struct *work);
  449. static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  450. {
  451. struct net_device *dev = bus->priv;
  452. struct tc35815_regs __iomem *tr =
  453. (struct tc35815_regs __iomem *)dev->base_addr;
  454. unsigned long timeout = jiffies + HZ;
  455. tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
  456. udelay(12); /* it takes 32 x 400ns at least */
  457. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  458. if (time_after(jiffies, timeout))
  459. return -EIO;
  460. cpu_relax();
  461. }
  462. return tc_readl(&tr->MD_Data) & 0xffff;
  463. }
  464. static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
  465. {
  466. struct net_device *dev = bus->priv;
  467. struct tc35815_regs __iomem *tr =
  468. (struct tc35815_regs __iomem *)dev->base_addr;
  469. unsigned long timeout = jiffies + HZ;
  470. tc_writel(val, &tr->MD_Data);
  471. tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
  472. &tr->MD_CA);
  473. udelay(12); /* it takes 32 x 400ns at least */
  474. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  475. if (time_after(jiffies, timeout))
  476. return -EIO;
  477. cpu_relax();
  478. }
  479. return 0;
  480. }
  481. static void tc_handle_link_change(struct net_device *dev)
  482. {
  483. struct tc35815_local *lp = netdev_priv(dev);
  484. struct phy_device *phydev = lp->phy_dev;
  485. unsigned long flags;
  486. int status_change = 0;
  487. spin_lock_irqsave(&lp->lock, flags);
  488. if (phydev->link &&
  489. (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
  490. struct tc35815_regs __iomem *tr =
  491. (struct tc35815_regs __iomem *)dev->base_addr;
  492. u32 reg;
  493. reg = tc_readl(&tr->MAC_Ctl);
  494. reg |= MAC_HaltReq;
  495. tc_writel(reg, &tr->MAC_Ctl);
  496. if (phydev->duplex == DUPLEX_FULL)
  497. reg |= MAC_FullDup;
  498. else
  499. reg &= ~MAC_FullDup;
  500. tc_writel(reg, &tr->MAC_Ctl);
  501. reg &= ~MAC_HaltReq;
  502. tc_writel(reg, &tr->MAC_Ctl);
  503. /*
  504. * TX4939 PCFG.SPEEDn bit will be changed on
  505. * NETDEV_CHANGE event.
  506. */
  507. /*
  508. * WORKAROUND: enable LostCrS only if half duplex
  509. * operation.
  510. * (TX4939 does not have EnLCarr)
  511. */
  512. if (phydev->duplex == DUPLEX_HALF &&
  513. lp->chiptype != TC35815_TX4939)
  514. tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
  515. &tr->Tx_Ctl);
  516. lp->speed = phydev->speed;
  517. lp->duplex = phydev->duplex;
  518. status_change = 1;
  519. }
  520. if (phydev->link != lp->link) {
  521. if (phydev->link) {
  522. /* delayed promiscuous enabling */
  523. if (dev->flags & IFF_PROMISC)
  524. tc35815_set_multicast_list(dev);
  525. } else {
  526. lp->speed = 0;
  527. lp->duplex = -1;
  528. }
  529. lp->link = phydev->link;
  530. status_change = 1;
  531. }
  532. spin_unlock_irqrestore(&lp->lock, flags);
  533. if (status_change && netif_msg_link(lp)) {
  534. phy_print_status(phydev);
  535. pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
  536. dev->name,
  537. phy_read(phydev, MII_BMCR),
  538. phy_read(phydev, MII_BMSR),
  539. phy_read(phydev, MII_LPA));
  540. }
  541. }
  542. static int tc_mii_probe(struct net_device *dev)
  543. {
  544. struct tc35815_local *lp = netdev_priv(dev);
  545. struct phy_device *phydev = NULL;
  546. int phy_addr;
  547. u32 dropmask;
  548. /* find the first phy */
  549. for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
  550. if (lp->mii_bus->phy_map[phy_addr]) {
  551. if (phydev) {
  552. printk(KERN_ERR "%s: multiple PHYs found\n",
  553. dev->name);
  554. return -EINVAL;
  555. }
  556. phydev = lp->mii_bus->phy_map[phy_addr];
  557. break;
  558. }
  559. }
  560. if (!phydev) {
  561. printk(KERN_ERR "%s: no PHY found\n", dev->name);
  562. return -ENODEV;
  563. }
  564. /* attach the mac to the phy */
  565. phydev = phy_connect(dev, dev_name(&phydev->dev),
  566. &tc_handle_link_change, 0,
  567. lp->chiptype == TC35815_TX4939 ?
  568. PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
  569. if (IS_ERR(phydev)) {
  570. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  571. return PTR_ERR(phydev);
  572. }
  573. printk(KERN_INFO "%s: attached PHY driver [%s] "
  574. "(mii_bus:phy_addr=%s, id=%x)\n",
  575. dev->name, phydev->drv->name, dev_name(&phydev->dev),
  576. phydev->phy_id);
  577. /* mask with MAC supported features */
  578. phydev->supported &= PHY_BASIC_FEATURES;
  579. dropmask = 0;
  580. if (options.speed == 10)
  581. dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
  582. else if (options.speed == 100)
  583. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
  584. if (options.duplex == 1)
  585. dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
  586. else if (options.duplex == 2)
  587. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
  588. phydev->supported &= ~dropmask;
  589. phydev->advertising = phydev->supported;
  590. lp->link = 0;
  591. lp->speed = 0;
  592. lp->duplex = -1;
  593. lp->phy_dev = phydev;
  594. return 0;
  595. }
  596. static int tc_mii_init(struct net_device *dev)
  597. {
  598. struct tc35815_local *lp = netdev_priv(dev);
  599. int err;
  600. int i;
  601. lp->mii_bus = mdiobus_alloc();
  602. if (lp->mii_bus == NULL) {
  603. err = -ENOMEM;
  604. goto err_out;
  605. }
  606. lp->mii_bus->name = "tc35815_mii_bus";
  607. lp->mii_bus->read = tc_mdio_read;
  608. lp->mii_bus->write = tc_mdio_write;
  609. snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  610. (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
  611. lp->mii_bus->priv = dev;
  612. lp->mii_bus->parent = &lp->pci_dev->dev;
  613. lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  614. if (!lp->mii_bus->irq) {
  615. err = -ENOMEM;
  616. goto err_out_free_mii_bus;
  617. }
  618. for (i = 0; i < PHY_MAX_ADDR; i++)
  619. lp->mii_bus->irq[i] = PHY_POLL;
  620. err = mdiobus_register(lp->mii_bus);
  621. if (err)
  622. goto err_out_free_mdio_irq;
  623. err = tc_mii_probe(dev);
  624. if (err)
  625. goto err_out_unregister_bus;
  626. return 0;
  627. err_out_unregister_bus:
  628. mdiobus_unregister(lp->mii_bus);
  629. err_out_free_mdio_irq:
  630. kfree(lp->mii_bus->irq);
  631. err_out_free_mii_bus:
  632. mdiobus_free(lp->mii_bus);
  633. err_out:
  634. return err;
  635. }
  636. #ifdef CONFIG_CPU_TX49XX
  637. /*
  638. * Find a platform_device providing a MAC address. The platform code
  639. * should provide a "tc35815-mac" device with a MAC address in its
  640. * platform_data.
  641. */
  642. static int __devinit tc35815_mac_match(struct device *dev, void *data)
  643. {
  644. struct platform_device *plat_dev = to_platform_device(dev);
  645. struct pci_dev *pci_dev = data;
  646. unsigned int id = pci_dev->irq;
  647. return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
  648. }
  649. static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
  650. {
  651. struct tc35815_local *lp = netdev_priv(dev);
  652. struct device *pd = bus_find_device(&platform_bus_type, NULL,
  653. lp->pci_dev, tc35815_mac_match);
  654. if (pd) {
  655. if (pd->platform_data)
  656. memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
  657. put_device(pd);
  658. return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
  659. }
  660. return -ENODEV;
  661. }
  662. #else
  663. static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
  664. {
  665. return -ENODEV;
  666. }
  667. #endif
  668. static int __devinit tc35815_init_dev_addr(struct net_device *dev)
  669. {
  670. struct tc35815_regs __iomem *tr =
  671. (struct tc35815_regs __iomem *)dev->base_addr;
  672. int i;
  673. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  674. ;
  675. for (i = 0; i < 6; i += 2) {
  676. unsigned short data;
  677. tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
  678. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  679. ;
  680. data = tc_readl(&tr->PROM_Data);
  681. dev->dev_addr[i] = data & 0xff;
  682. dev->dev_addr[i+1] = data >> 8;
  683. }
  684. if (!is_valid_ether_addr(dev->dev_addr))
  685. return tc35815_read_plat_dev_addr(dev);
  686. return 0;
  687. }
  688. static const struct net_device_ops tc35815_netdev_ops = {
  689. .ndo_open = tc35815_open,
  690. .ndo_stop = tc35815_close,
  691. .ndo_start_xmit = tc35815_send_packet,
  692. .ndo_get_stats = tc35815_get_stats,
  693. .ndo_set_multicast_list = tc35815_set_multicast_list,
  694. .ndo_tx_timeout = tc35815_tx_timeout,
  695. .ndo_do_ioctl = tc35815_ioctl,
  696. .ndo_validate_addr = eth_validate_addr,
  697. .ndo_change_mtu = eth_change_mtu,
  698. .ndo_set_mac_address = eth_mac_addr,
  699. #ifdef CONFIG_NET_POLL_CONTROLLER
  700. .ndo_poll_controller = tc35815_poll_controller,
  701. #endif
  702. };
  703. static int __devinit tc35815_init_one(struct pci_dev *pdev,
  704. const struct pci_device_id *ent)
  705. {
  706. void __iomem *ioaddr = NULL;
  707. struct net_device *dev;
  708. struct tc35815_local *lp;
  709. int rc;
  710. static int printed_version;
  711. if (!printed_version++) {
  712. printk(version);
  713. dev_printk(KERN_DEBUG, &pdev->dev,
  714. "speed:%d duplex:%d\n",
  715. options.speed, options.duplex);
  716. }
  717. if (!pdev->irq) {
  718. dev_warn(&pdev->dev, "no IRQ assigned.\n");
  719. return -ENODEV;
  720. }
  721. /* dev zeroed in alloc_etherdev */
  722. dev = alloc_etherdev(sizeof(*lp));
  723. if (dev == NULL) {
  724. dev_err(&pdev->dev, "unable to alloc new ethernet\n");
  725. return -ENOMEM;
  726. }
  727. SET_NETDEV_DEV(dev, &pdev->dev);
  728. lp = netdev_priv(dev);
  729. lp->dev = dev;
  730. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  731. rc = pcim_enable_device(pdev);
  732. if (rc)
  733. goto err_out;
  734. rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
  735. if (rc)
  736. goto err_out;
  737. pci_set_master(pdev);
  738. ioaddr = pcim_iomap_table(pdev)[1];
  739. /* Initialize the device structure. */
  740. dev->netdev_ops = &tc35815_netdev_ops;
  741. dev->ethtool_ops = &tc35815_ethtool_ops;
  742. dev->watchdog_timeo = TC35815_TX_TIMEOUT;
  743. netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
  744. dev->irq = pdev->irq;
  745. dev->base_addr = (unsigned long)ioaddr;
  746. INIT_WORK(&lp->restart_work, tc35815_restart_work);
  747. spin_lock_init(&lp->lock);
  748. lp->pci_dev = pdev;
  749. lp->chiptype = ent->driver_data;
  750. lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
  751. pci_set_drvdata(pdev, dev);
  752. /* Soft reset the chip. */
  753. tc35815_chip_reset(dev);
  754. /* Retrieve the ethernet address. */
  755. if (tc35815_init_dev_addr(dev)) {
  756. dev_warn(&pdev->dev, "not valid ether addr\n");
  757. random_ether_addr(dev->dev_addr);
  758. }
  759. rc = register_netdev(dev);
  760. if (rc)
  761. goto err_out;
  762. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  763. printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
  764. dev->name,
  765. chip_info[ent->driver_data].name,
  766. dev->base_addr,
  767. dev->dev_addr,
  768. dev->irq);
  769. rc = tc_mii_init(dev);
  770. if (rc)
  771. goto err_out_unregister;
  772. return 0;
  773. err_out_unregister:
  774. unregister_netdev(dev);
  775. err_out:
  776. free_netdev(dev);
  777. return rc;
  778. }
  779. static void __devexit tc35815_remove_one(struct pci_dev *pdev)
  780. {
  781. struct net_device *dev = pci_get_drvdata(pdev);
  782. struct tc35815_local *lp = netdev_priv(dev);
  783. phy_disconnect(lp->phy_dev);
  784. mdiobus_unregister(lp->mii_bus);
  785. kfree(lp->mii_bus->irq);
  786. mdiobus_free(lp->mii_bus);
  787. unregister_netdev(dev);
  788. free_netdev(dev);
  789. pci_set_drvdata(pdev, NULL);
  790. }
  791. static int
  792. tc35815_init_queues(struct net_device *dev)
  793. {
  794. struct tc35815_local *lp = netdev_priv(dev);
  795. int i;
  796. unsigned long fd_addr;
  797. if (!lp->fd_buf) {
  798. BUG_ON(sizeof(struct FDesc) +
  799. sizeof(struct BDesc) * RX_BUF_NUM +
  800. sizeof(struct FDesc) * RX_FD_NUM +
  801. sizeof(struct TxFD) * TX_FD_NUM >
  802. PAGE_SIZE * FD_PAGE_NUM);
  803. lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
  804. PAGE_SIZE * FD_PAGE_NUM,
  805. &lp->fd_buf_dma);
  806. if (!lp->fd_buf)
  807. return -ENOMEM;
  808. for (i = 0; i < RX_BUF_NUM; i++) {
  809. lp->rx_skbs[i].skb =
  810. alloc_rxbuf_skb(dev, lp->pci_dev,
  811. &lp->rx_skbs[i].skb_dma);
  812. if (!lp->rx_skbs[i].skb) {
  813. while (--i >= 0) {
  814. free_rxbuf_skb(lp->pci_dev,
  815. lp->rx_skbs[i].skb,
  816. lp->rx_skbs[i].skb_dma);
  817. lp->rx_skbs[i].skb = NULL;
  818. }
  819. pci_free_consistent(lp->pci_dev,
  820. PAGE_SIZE * FD_PAGE_NUM,
  821. lp->fd_buf,
  822. lp->fd_buf_dma);
  823. lp->fd_buf = NULL;
  824. return -ENOMEM;
  825. }
  826. }
  827. printk(KERN_DEBUG "%s: FD buf %p DataBuf",
  828. dev->name, lp->fd_buf);
  829. printk("\n");
  830. } else {
  831. for (i = 0; i < FD_PAGE_NUM; i++)
  832. clear_page((void *)((unsigned long)lp->fd_buf +
  833. i * PAGE_SIZE));
  834. }
  835. fd_addr = (unsigned long)lp->fd_buf;
  836. /* Free Descriptors (for Receive) */
  837. lp->rfd_base = (struct RxFD *)fd_addr;
  838. fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
  839. for (i = 0; i < RX_FD_NUM; i++)
  840. lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
  841. lp->rfd_cur = lp->rfd_base;
  842. lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
  843. /* Transmit Descriptors */
  844. lp->tfd_base = (struct TxFD *)fd_addr;
  845. fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
  846. for (i = 0; i < TX_FD_NUM; i++) {
  847. lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
  848. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  849. lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
  850. }
  851. lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
  852. lp->tfd_start = 0;
  853. lp->tfd_end = 0;
  854. /* Buffer List (for Receive) */
  855. lp->fbl_ptr = (struct FrFD *)fd_addr;
  856. lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
  857. lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
  858. /*
  859. * move all allocated skbs to head of rx_skbs[] array.
  860. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
  861. * tc35815_rx() had failed.
  862. */
  863. lp->fbl_count = 0;
  864. for (i = 0; i < RX_BUF_NUM; i++) {
  865. if (lp->rx_skbs[i].skb) {
  866. if (i != lp->fbl_count) {
  867. lp->rx_skbs[lp->fbl_count].skb =
  868. lp->rx_skbs[i].skb;
  869. lp->rx_skbs[lp->fbl_count].skb_dma =
  870. lp->rx_skbs[i].skb_dma;
  871. }
  872. lp->fbl_count++;
  873. }
  874. }
  875. for (i = 0; i < RX_BUF_NUM; i++) {
  876. if (i >= lp->fbl_count) {
  877. lp->fbl_ptr->bd[i].BuffData = 0;
  878. lp->fbl_ptr->bd[i].BDCtl = 0;
  879. continue;
  880. }
  881. lp->fbl_ptr->bd[i].BuffData =
  882. cpu_to_le32(lp->rx_skbs[i].skb_dma);
  883. /* BDID is index of FrFD.bd[] */
  884. lp->fbl_ptr->bd[i].BDCtl =
  885. cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
  886. RX_BUF_SIZE);
  887. }
  888. printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
  889. dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
  890. return 0;
  891. }
  892. static void
  893. tc35815_clear_queues(struct net_device *dev)
  894. {
  895. struct tc35815_local *lp = netdev_priv(dev);
  896. int i;
  897. for (i = 0; i < TX_FD_NUM; i++) {
  898. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  899. struct sk_buff *skb =
  900. fdsystem != 0xffffffff ?
  901. lp->tx_skbs[fdsystem].skb : NULL;
  902. #ifdef DEBUG
  903. if (lp->tx_skbs[i].skb != skb) {
  904. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  905. panic_queues(dev);
  906. }
  907. #else
  908. BUG_ON(lp->tx_skbs[i].skb != skb);
  909. #endif
  910. if (skb) {
  911. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  912. lp->tx_skbs[i].skb = NULL;
  913. lp->tx_skbs[i].skb_dma = 0;
  914. dev_kfree_skb_any(skb);
  915. }
  916. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  917. }
  918. tc35815_init_queues(dev);
  919. }
  920. static void
  921. tc35815_free_queues(struct net_device *dev)
  922. {
  923. struct tc35815_local *lp = netdev_priv(dev);
  924. int i;
  925. if (lp->tfd_base) {
  926. for (i = 0; i < TX_FD_NUM; i++) {
  927. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  928. struct sk_buff *skb =
  929. fdsystem != 0xffffffff ?
  930. lp->tx_skbs[fdsystem].skb : NULL;
  931. #ifdef DEBUG
  932. if (lp->tx_skbs[i].skb != skb) {
  933. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  934. panic_queues(dev);
  935. }
  936. #else
  937. BUG_ON(lp->tx_skbs[i].skb != skb);
  938. #endif
  939. if (skb) {
  940. dev_kfree_skb(skb);
  941. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  942. lp->tx_skbs[i].skb = NULL;
  943. lp->tx_skbs[i].skb_dma = 0;
  944. }
  945. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  946. }
  947. }
  948. lp->rfd_base = NULL;
  949. lp->rfd_limit = NULL;
  950. lp->rfd_cur = NULL;
  951. lp->fbl_ptr = NULL;
  952. for (i = 0; i < RX_BUF_NUM; i++) {
  953. if (lp->rx_skbs[i].skb) {
  954. free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
  955. lp->rx_skbs[i].skb_dma);
  956. lp->rx_skbs[i].skb = NULL;
  957. }
  958. }
  959. if (lp->fd_buf) {
  960. pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
  961. lp->fd_buf, lp->fd_buf_dma);
  962. lp->fd_buf = NULL;
  963. }
  964. }
  965. static void
  966. dump_txfd(struct TxFD *fd)
  967. {
  968. printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
  969. le32_to_cpu(fd->fd.FDNext),
  970. le32_to_cpu(fd->fd.FDSystem),
  971. le32_to_cpu(fd->fd.FDStat),
  972. le32_to_cpu(fd->fd.FDCtl));
  973. printk("BD: ");
  974. printk(" %08x %08x",
  975. le32_to_cpu(fd->bd.BuffData),
  976. le32_to_cpu(fd->bd.BDCtl));
  977. printk("\n");
  978. }
  979. static int
  980. dump_rxfd(struct RxFD *fd)
  981. {
  982. int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  983. if (bd_count > 8)
  984. bd_count = 8;
  985. printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
  986. le32_to_cpu(fd->fd.FDNext),
  987. le32_to_cpu(fd->fd.FDSystem),
  988. le32_to_cpu(fd->fd.FDStat),
  989. le32_to_cpu(fd->fd.FDCtl));
  990. if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
  991. return 0;
  992. printk("BD: ");
  993. for (i = 0; i < bd_count; i++)
  994. printk(" %08x %08x",
  995. le32_to_cpu(fd->bd[i].BuffData),
  996. le32_to_cpu(fd->bd[i].BDCtl));
  997. printk("\n");
  998. return bd_count;
  999. }
  1000. #ifdef DEBUG
  1001. static void
  1002. dump_frfd(struct FrFD *fd)
  1003. {
  1004. int i;
  1005. printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
  1006. le32_to_cpu(fd->fd.FDNext),
  1007. le32_to_cpu(fd->fd.FDSystem),
  1008. le32_to_cpu(fd->fd.FDStat),
  1009. le32_to_cpu(fd->fd.FDCtl));
  1010. printk("BD: ");
  1011. for (i = 0; i < RX_BUF_NUM; i++)
  1012. printk(" %08x %08x",
  1013. le32_to_cpu(fd->bd[i].BuffData),
  1014. le32_to_cpu(fd->bd[i].BDCtl));
  1015. printk("\n");
  1016. }
  1017. static void
  1018. panic_queues(struct net_device *dev)
  1019. {
  1020. struct tc35815_local *lp = netdev_priv(dev);
  1021. int i;
  1022. printk("TxFD base %p, start %u, end %u\n",
  1023. lp->tfd_base, lp->tfd_start, lp->tfd_end);
  1024. printk("RxFD base %p limit %p cur %p\n",
  1025. lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
  1026. printk("FrFD %p\n", lp->fbl_ptr);
  1027. for (i = 0; i < TX_FD_NUM; i++)
  1028. dump_txfd(&lp->tfd_base[i]);
  1029. for (i = 0; i < RX_FD_NUM; i++) {
  1030. int bd_count = dump_rxfd(&lp->rfd_base[i]);
  1031. i += (bd_count + 1) / 2; /* skip BDs */
  1032. }
  1033. dump_frfd(lp->fbl_ptr);
  1034. panic("%s: Illegal queue state.", dev->name);
  1035. }
  1036. #endif
  1037. static void print_eth(const u8 *add)
  1038. {
  1039. printk(KERN_DEBUG "print_eth(%p)\n", add);
  1040. printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
  1041. add + 6, add, add[12], add[13]);
  1042. }
  1043. static int tc35815_tx_full(struct net_device *dev)
  1044. {
  1045. struct tc35815_local *lp = netdev_priv(dev);
  1046. return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
  1047. }
  1048. static void tc35815_restart(struct net_device *dev)
  1049. {
  1050. struct tc35815_local *lp = netdev_priv(dev);
  1051. if (lp->phy_dev) {
  1052. int timeout;
  1053. phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
  1054. timeout = 100;
  1055. while (--timeout) {
  1056. if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
  1057. break;
  1058. udelay(1);
  1059. }
  1060. if (!timeout)
  1061. printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
  1062. }
  1063. spin_lock_irq(&lp->lock);
  1064. tc35815_chip_reset(dev);
  1065. tc35815_clear_queues(dev);
  1066. tc35815_chip_init(dev);
  1067. /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
  1068. tc35815_set_multicast_list(dev);
  1069. spin_unlock_irq(&lp->lock);
  1070. netif_wake_queue(dev);
  1071. }
  1072. static void tc35815_restart_work(struct work_struct *work)
  1073. {
  1074. struct tc35815_local *lp =
  1075. container_of(work, struct tc35815_local, restart_work);
  1076. struct net_device *dev = lp->dev;
  1077. tc35815_restart(dev);
  1078. }
  1079. static void tc35815_schedule_restart(struct net_device *dev)
  1080. {
  1081. struct tc35815_local *lp = netdev_priv(dev);
  1082. struct tc35815_regs __iomem *tr =
  1083. (struct tc35815_regs __iomem *)dev->base_addr;
  1084. /* disable interrupts */
  1085. tc_writel(0, &tr->Int_En);
  1086. tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
  1087. schedule_work(&lp->restart_work);
  1088. }
  1089. static void tc35815_tx_timeout(struct net_device *dev)
  1090. {
  1091. struct tc35815_regs __iomem *tr =
  1092. (struct tc35815_regs __iomem *)dev->base_addr;
  1093. printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
  1094. dev->name, tc_readl(&tr->Tx_Stat));
  1095. /* Try to restart the adaptor. */
  1096. tc35815_schedule_restart(dev);
  1097. dev->stats.tx_errors++;
  1098. }
  1099. /*
  1100. * Open/initialize the controller. This is called (in the current kernel)
  1101. * sometime after booting when the 'ifconfig' program is run.
  1102. *
  1103. * This routine should set everything up anew at each open, even
  1104. * registers that "should" only need to be set once at boot, so that
  1105. * there is non-reboot way to recover if something goes wrong.
  1106. */
  1107. static int
  1108. tc35815_open(struct net_device *dev)
  1109. {
  1110. struct tc35815_local *lp = netdev_priv(dev);
  1111. /*
  1112. * This is used if the interrupt line can turned off (shared).
  1113. * See 3c503.c for an example of selecting the IRQ at config-time.
  1114. */
  1115. if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
  1116. dev->name, dev))
  1117. return -EAGAIN;
  1118. tc35815_chip_reset(dev);
  1119. if (tc35815_init_queues(dev) != 0) {
  1120. free_irq(dev->irq, dev);
  1121. return -EAGAIN;
  1122. }
  1123. napi_enable(&lp->napi);
  1124. /* Reset the hardware here. Don't forget to set the station address. */
  1125. spin_lock_irq(&lp->lock);
  1126. tc35815_chip_init(dev);
  1127. spin_unlock_irq(&lp->lock);
  1128. netif_carrier_off(dev);
  1129. /* schedule a link state check */
  1130. phy_start(lp->phy_dev);
  1131. /* We are now ready to accept transmit requeusts from
  1132. * the queueing layer of the networking.
  1133. */
  1134. netif_start_queue(dev);
  1135. return 0;
  1136. }
  1137. /* This will only be invoked if your driver is _not_ in XOFF state.
  1138. * What this means is that you need not check it, and that this
  1139. * invariant will hold if you make sure that the netif_*_queue()
  1140. * calls are done at the proper times.
  1141. */
  1142. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
  1143. {
  1144. struct tc35815_local *lp = netdev_priv(dev);
  1145. struct TxFD *txfd;
  1146. unsigned long flags;
  1147. /* If some error occurs while trying to transmit this
  1148. * packet, you should return '1' from this function.
  1149. * In such a case you _may not_ do anything to the
  1150. * SKB, it is still owned by the network queueing
  1151. * layer when an error is returned. This means you
  1152. * may not modify any SKB fields, you may not free
  1153. * the SKB, etc.
  1154. */
  1155. /* This is the most common case for modern hardware.
  1156. * The spinlock protects this code from the TX complete
  1157. * hardware interrupt handler. Queue flow control is
  1158. * thus managed under this lock as well.
  1159. */
  1160. spin_lock_irqsave(&lp->lock, flags);
  1161. /* failsafe... (handle txdone now if half of FDs are used) */
  1162. if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
  1163. TX_FD_NUM / 2)
  1164. tc35815_txdone(dev);
  1165. if (netif_msg_pktdata(lp))
  1166. print_eth(skb->data);
  1167. #ifdef DEBUG
  1168. if (lp->tx_skbs[lp->tfd_start].skb) {
  1169. printk("%s: tx_skbs conflict.\n", dev->name);
  1170. panic_queues(dev);
  1171. }
  1172. #else
  1173. BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
  1174. #endif
  1175. lp->tx_skbs[lp->tfd_start].skb = skb;
  1176. lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
  1177. /*add to ring */
  1178. txfd = &lp->tfd_base[lp->tfd_start];
  1179. txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
  1180. txfd->bd.BDCtl = cpu_to_le32(skb->len);
  1181. txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
  1182. txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
  1183. if (lp->tfd_start == lp->tfd_end) {
  1184. struct tc35815_regs __iomem *tr =
  1185. (struct tc35815_regs __iomem *)dev->base_addr;
  1186. /* Start DMA Transmitter. */
  1187. txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1188. txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1189. if (netif_msg_tx_queued(lp)) {
  1190. printk("%s: starting TxFD.\n", dev->name);
  1191. dump_txfd(txfd);
  1192. }
  1193. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1194. } else {
  1195. txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
  1196. if (netif_msg_tx_queued(lp)) {
  1197. printk("%s: queueing TxFD.\n", dev->name);
  1198. dump_txfd(txfd);
  1199. }
  1200. }
  1201. lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
  1202. dev->trans_start = jiffies;
  1203. /* If we just used up the very last entry in the
  1204. * TX ring on this device, tell the queueing
  1205. * layer to send no more.
  1206. */
  1207. if (tc35815_tx_full(dev)) {
  1208. if (netif_msg_tx_queued(lp))
  1209. printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
  1210. netif_stop_queue(dev);
  1211. }
  1212. /* When the TX completion hw interrupt arrives, this
  1213. * is when the transmit statistics are updated.
  1214. */
  1215. spin_unlock_irqrestore(&lp->lock, flags);
  1216. return NETDEV_TX_OK;
  1217. }
  1218. #define FATAL_ERROR_INT \
  1219. (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
  1220. static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
  1221. {
  1222. static int count;
  1223. printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
  1224. dev->name, status);
  1225. if (status & Int_IntPCI)
  1226. printk(" IntPCI");
  1227. if (status & Int_DmParErr)
  1228. printk(" DmParErr");
  1229. if (status & Int_IntNRAbt)
  1230. printk(" IntNRAbt");
  1231. printk("\n");
  1232. if (count++ > 100)
  1233. panic("%s: Too many fatal errors.", dev->name);
  1234. printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
  1235. /* Try to restart the adaptor. */
  1236. tc35815_schedule_restart(dev);
  1237. }
  1238. static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
  1239. {
  1240. struct tc35815_local *lp = netdev_priv(dev);
  1241. int ret = -1;
  1242. /* Fatal errors... */
  1243. if (status & FATAL_ERROR_INT) {
  1244. tc35815_fatal_error_interrupt(dev, status);
  1245. return 0;
  1246. }
  1247. /* recoverable errors */
  1248. if (status & Int_IntFDAEx) {
  1249. if (netif_msg_rx_err(lp))
  1250. dev_warn(&dev->dev,
  1251. "Free Descriptor Area Exhausted (%#x).\n",
  1252. status);
  1253. dev->stats.rx_dropped++;
  1254. ret = 0;
  1255. }
  1256. if (status & Int_IntBLEx) {
  1257. if (netif_msg_rx_err(lp))
  1258. dev_warn(&dev->dev,
  1259. "Buffer List Exhausted (%#x).\n",
  1260. status);
  1261. dev->stats.rx_dropped++;
  1262. ret = 0;
  1263. }
  1264. if (status & Int_IntExBD) {
  1265. if (netif_msg_rx_err(lp))
  1266. dev_warn(&dev->dev,
  1267. "Excessive Buffer Descriptiors (%#x).\n",
  1268. status);
  1269. dev->stats.rx_length_errors++;
  1270. ret = 0;
  1271. }
  1272. /* normal notification */
  1273. if (status & Int_IntMacRx) {
  1274. /* Got a packet(s). */
  1275. ret = tc35815_rx(dev, limit);
  1276. lp->lstats.rx_ints++;
  1277. }
  1278. if (status & Int_IntMacTx) {
  1279. /* Transmit complete. */
  1280. lp->lstats.tx_ints++;
  1281. tc35815_txdone(dev);
  1282. netif_wake_queue(dev);
  1283. if (ret < 0)
  1284. ret = 0;
  1285. }
  1286. return ret;
  1287. }
  1288. /*
  1289. * The typical workload of the driver:
  1290. * Handle the network interface interrupts.
  1291. */
  1292. static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
  1293. {
  1294. struct net_device *dev = dev_id;
  1295. struct tc35815_local *lp = netdev_priv(dev);
  1296. struct tc35815_regs __iomem *tr =
  1297. (struct tc35815_regs __iomem *)dev->base_addr;
  1298. u32 dmactl = tc_readl(&tr->DMA_Ctl);
  1299. if (!(dmactl & DMA_IntMask)) {
  1300. /* disable interrupts */
  1301. tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
  1302. if (napi_schedule_prep(&lp->napi))
  1303. __napi_schedule(&lp->napi);
  1304. else {
  1305. printk(KERN_ERR "%s: interrupt taken in poll\n",
  1306. dev->name);
  1307. BUG();
  1308. }
  1309. (void)tc_readl(&tr->Int_Src); /* flush */
  1310. return IRQ_HANDLED;
  1311. }
  1312. return IRQ_NONE;
  1313. }
  1314. #ifdef CONFIG_NET_POLL_CONTROLLER
  1315. static void tc35815_poll_controller(struct net_device *dev)
  1316. {
  1317. disable_irq(dev->irq);
  1318. tc35815_interrupt(dev->irq, dev);
  1319. enable_irq(dev->irq);
  1320. }
  1321. #endif
  1322. /* We have a good packet(s), get it/them out of the buffers. */
  1323. static int
  1324. tc35815_rx(struct net_device *dev, int limit)
  1325. {
  1326. struct tc35815_local *lp = netdev_priv(dev);
  1327. unsigned int fdctl;
  1328. int i;
  1329. int received = 0;
  1330. while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
  1331. int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
  1332. int pkt_len = fdctl & FD_FDLength_MASK;
  1333. int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1334. #ifdef DEBUG
  1335. struct RxFD *next_rfd;
  1336. #endif
  1337. #if (RX_CTL_CMD & Rx_StripCRC) == 0
  1338. pkt_len -= ETH_FCS_LEN;
  1339. #endif
  1340. if (netif_msg_rx_status(lp))
  1341. dump_rxfd(lp->rfd_cur);
  1342. if (status & Rx_Good) {
  1343. struct sk_buff *skb;
  1344. unsigned char *data;
  1345. int cur_bd;
  1346. if (--limit < 0)
  1347. break;
  1348. BUG_ON(bd_count > 1);
  1349. cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
  1350. & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1351. #ifdef DEBUG
  1352. if (cur_bd >= RX_BUF_NUM) {
  1353. printk("%s: invalid BDID.\n", dev->name);
  1354. panic_queues(dev);
  1355. }
  1356. BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
  1357. (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
  1358. if (!lp->rx_skbs[cur_bd].skb) {
  1359. printk("%s: NULL skb.\n", dev->name);
  1360. panic_queues(dev);
  1361. }
  1362. #else
  1363. BUG_ON(cur_bd >= RX_BUF_NUM);
  1364. #endif
  1365. skb = lp->rx_skbs[cur_bd].skb;
  1366. prefetch(skb->data);
  1367. lp->rx_skbs[cur_bd].skb = NULL;
  1368. pci_unmap_single(lp->pci_dev,
  1369. lp->rx_skbs[cur_bd].skb_dma,
  1370. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  1371. if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
  1372. memmove(skb->data, skb->data - NET_IP_ALIGN,
  1373. pkt_len);
  1374. data = skb_put(skb, pkt_len);
  1375. if (netif_msg_pktdata(lp))
  1376. print_eth(data);
  1377. skb->protocol = eth_type_trans(skb, dev);
  1378. netif_receive_skb(skb);
  1379. received++;
  1380. dev->stats.rx_packets++;
  1381. dev->stats.rx_bytes += pkt_len;
  1382. } else {
  1383. dev->stats.rx_errors++;
  1384. if (netif_msg_rx_err(lp))
  1385. dev_info(&dev->dev, "Rx error (status %x)\n",
  1386. status & Rx_Stat_Mask);
  1387. /* WORKAROUND: LongErr and CRCErr means Overflow. */
  1388. if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
  1389. status &= ~(Rx_LongErr|Rx_CRCErr);
  1390. status |= Rx_Over;
  1391. }
  1392. if (status & Rx_LongErr)
  1393. dev->stats.rx_length_errors++;
  1394. if (status & Rx_Over)
  1395. dev->stats.rx_fifo_errors++;
  1396. if (status & Rx_CRCErr)
  1397. dev->stats.rx_crc_errors++;
  1398. if (status & Rx_Align)
  1399. dev->stats.rx_frame_errors++;
  1400. }
  1401. if (bd_count > 0) {
  1402. /* put Free Buffer back to controller */
  1403. int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
  1404. unsigned char id =
  1405. (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1406. #ifdef DEBUG
  1407. if (id >= RX_BUF_NUM) {
  1408. printk("%s: invalid BDID.\n", dev->name);
  1409. panic_queues(dev);
  1410. }
  1411. #else
  1412. BUG_ON(id >= RX_BUF_NUM);
  1413. #endif
  1414. /* free old buffers */
  1415. lp->fbl_count--;
  1416. while (lp->fbl_count < RX_BUF_NUM)
  1417. {
  1418. unsigned char curid =
  1419. (id + 1 + lp->fbl_count) % RX_BUF_NUM;
  1420. struct BDesc *bd = &lp->fbl_ptr->bd[curid];
  1421. #ifdef DEBUG
  1422. bdctl = le32_to_cpu(bd->BDCtl);
  1423. if (bdctl & BD_CownsBD) {
  1424. printk("%s: Freeing invalid BD.\n",
  1425. dev->name);
  1426. panic_queues(dev);
  1427. }
  1428. #endif
  1429. /* pass BD to controller */
  1430. if (!lp->rx_skbs[curid].skb) {
  1431. lp->rx_skbs[curid].skb =
  1432. alloc_rxbuf_skb(dev,
  1433. lp->pci_dev,
  1434. &lp->rx_skbs[curid].skb_dma);
  1435. if (!lp->rx_skbs[curid].skb)
  1436. break; /* try on next reception */
  1437. bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
  1438. }
  1439. /* Note: BDLength was modified by chip. */
  1440. bd->BDCtl = cpu_to_le32(BD_CownsBD |
  1441. (curid << BD_RxBDID_SHIFT) |
  1442. RX_BUF_SIZE);
  1443. lp->fbl_count++;
  1444. }
  1445. }
  1446. /* put RxFD back to controller */
  1447. #ifdef DEBUG
  1448. next_rfd = fd_bus_to_virt(lp,
  1449. le32_to_cpu(lp->rfd_cur->fd.FDNext));
  1450. if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
  1451. printk("%s: RxFD FDNext invalid.\n", dev->name);
  1452. panic_queues(dev);
  1453. }
  1454. #endif
  1455. for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
  1456. /* pass FD to controller */
  1457. #ifdef DEBUG
  1458. lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
  1459. #else
  1460. lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
  1461. #endif
  1462. lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
  1463. lp->rfd_cur++;
  1464. }
  1465. if (lp->rfd_cur > lp->rfd_limit)
  1466. lp->rfd_cur = lp->rfd_base;
  1467. #ifdef DEBUG
  1468. if (lp->rfd_cur != next_rfd)
  1469. printk("rfd_cur = %p, next_rfd %p\n",
  1470. lp->rfd_cur, next_rfd);
  1471. #endif
  1472. }
  1473. return received;
  1474. }
  1475. static int tc35815_poll(struct napi_struct *napi, int budget)
  1476. {
  1477. struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
  1478. struct net_device *dev = lp->dev;
  1479. struct tc35815_regs __iomem *tr =
  1480. (struct tc35815_regs __iomem *)dev->base_addr;
  1481. int received = 0, handled;
  1482. u32 status;
  1483. spin_lock(&lp->lock);
  1484. status = tc_readl(&tr->Int_Src);
  1485. do {
  1486. /* BLEx, FDAEx will be cleared later */
  1487. tc_writel(status & ~(Int_BLEx | Int_FDAEx),
  1488. &tr->Int_Src); /* write to clear */
  1489. handled = tc35815_do_interrupt(dev, status, budget - received);
  1490. if (status & (Int_BLEx | Int_FDAEx))
  1491. tc_writel(status & (Int_BLEx | Int_FDAEx),
  1492. &tr->Int_Src);
  1493. if (handled >= 0) {
  1494. received += handled;
  1495. if (received >= budget)
  1496. break;
  1497. }
  1498. status = tc_readl(&tr->Int_Src);
  1499. } while (status);
  1500. spin_unlock(&lp->lock);
  1501. if (received < budget) {
  1502. napi_complete(napi);
  1503. /* enable interrupts */
  1504. tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
  1505. }
  1506. return received;
  1507. }
  1508. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1509. static void
  1510. tc35815_check_tx_stat(struct net_device *dev, int status)
  1511. {
  1512. struct tc35815_local *lp = netdev_priv(dev);
  1513. const char *msg = NULL;
  1514. /* count collisions */
  1515. if (status & Tx_ExColl)
  1516. dev->stats.collisions += 16;
  1517. if (status & Tx_TxColl_MASK)
  1518. dev->stats.collisions += status & Tx_TxColl_MASK;
  1519. /* TX4939 does not have NCarr */
  1520. if (lp->chiptype == TC35815_TX4939)
  1521. status &= ~Tx_NCarr;
  1522. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1523. if (!lp->link || lp->duplex == DUPLEX_FULL)
  1524. status &= ~Tx_NCarr;
  1525. if (!(status & TX_STA_ERR)) {
  1526. /* no error. */
  1527. dev->stats.tx_packets++;
  1528. return;
  1529. }
  1530. dev->stats.tx_errors++;
  1531. if (status & Tx_ExColl) {
  1532. dev->stats.tx_aborted_errors++;
  1533. msg = "Excessive Collision.";
  1534. }
  1535. if (status & Tx_Under) {
  1536. dev->stats.tx_fifo_errors++;
  1537. msg = "Tx FIFO Underrun.";
  1538. if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
  1539. lp->lstats.tx_underrun++;
  1540. if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
  1541. struct tc35815_regs __iomem *tr =
  1542. (struct tc35815_regs __iomem *)dev->base_addr;
  1543. tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
  1544. msg = "Tx FIFO Underrun.Change Tx threshold to max.";
  1545. }
  1546. }
  1547. }
  1548. if (status & Tx_Defer) {
  1549. dev->stats.tx_fifo_errors++;
  1550. msg = "Excessive Deferral.";
  1551. }
  1552. if (status & Tx_NCarr) {
  1553. dev->stats.tx_carrier_errors++;
  1554. msg = "Lost Carrier Sense.";
  1555. }
  1556. if (status & Tx_LateColl) {
  1557. dev->stats.tx_aborted_errors++;
  1558. msg = "Late Collision.";
  1559. }
  1560. if (status & Tx_TxPar) {
  1561. dev->stats.tx_fifo_errors++;
  1562. msg = "Transmit Parity Error.";
  1563. }
  1564. if (status & Tx_SQErr) {
  1565. dev->stats.tx_heartbeat_errors++;
  1566. msg = "Signal Quality Error.";
  1567. }
  1568. if (msg && netif_msg_tx_err(lp))
  1569. printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
  1570. }
  1571. /* This handles TX complete events posted by the device
  1572. * via interrupts.
  1573. */
  1574. static void
  1575. tc35815_txdone(struct net_device *dev)
  1576. {
  1577. struct tc35815_local *lp = netdev_priv(dev);
  1578. struct TxFD *txfd;
  1579. unsigned int fdctl;
  1580. txfd = &lp->tfd_base[lp->tfd_end];
  1581. while (lp->tfd_start != lp->tfd_end &&
  1582. !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
  1583. int status = le32_to_cpu(txfd->fd.FDStat);
  1584. struct sk_buff *skb;
  1585. unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
  1586. u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
  1587. if (netif_msg_tx_done(lp)) {
  1588. printk("%s: complete TxFD.\n", dev->name);
  1589. dump_txfd(txfd);
  1590. }
  1591. tc35815_check_tx_stat(dev, status);
  1592. skb = fdsystem != 0xffffffff ?
  1593. lp->tx_skbs[fdsystem].skb : NULL;
  1594. #ifdef DEBUG
  1595. if (lp->tx_skbs[lp->tfd_end].skb != skb) {
  1596. printk("%s: tx_skbs mismatch.\n", dev->name);
  1597. panic_queues(dev);
  1598. }
  1599. #else
  1600. BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
  1601. #endif
  1602. if (skb) {
  1603. dev->stats.tx_bytes += skb->len;
  1604. pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1605. lp->tx_skbs[lp->tfd_end].skb = NULL;
  1606. lp->tx_skbs[lp->tfd_end].skb_dma = 0;
  1607. dev_kfree_skb_any(skb);
  1608. }
  1609. txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
  1610. lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
  1611. txfd = &lp->tfd_base[lp->tfd_end];
  1612. #ifdef DEBUG
  1613. if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
  1614. printk("%s: TxFD FDNext invalid.\n", dev->name);
  1615. panic_queues(dev);
  1616. }
  1617. #endif
  1618. if (fdnext & FD_Next_EOL) {
  1619. /* DMA Transmitter has been stopping... */
  1620. if (lp->tfd_end != lp->tfd_start) {
  1621. struct tc35815_regs __iomem *tr =
  1622. (struct tc35815_regs __iomem *)dev->base_addr;
  1623. int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
  1624. struct TxFD *txhead = &lp->tfd_base[head];
  1625. int qlen = (lp->tfd_start + TX_FD_NUM
  1626. - lp->tfd_end) % TX_FD_NUM;
  1627. #ifdef DEBUG
  1628. if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
  1629. printk("%s: TxFD FDCtl invalid.\n", dev->name);
  1630. panic_queues(dev);
  1631. }
  1632. #endif
  1633. /* log max queue length */
  1634. if (lp->lstats.max_tx_qlen < qlen)
  1635. lp->lstats.max_tx_qlen = qlen;
  1636. /* start DMA Transmitter again */
  1637. txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1638. txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1639. if (netif_msg_tx_queued(lp)) {
  1640. printk("%s: start TxFD on queue.\n",
  1641. dev->name);
  1642. dump_txfd(txfd);
  1643. }
  1644. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1645. }
  1646. break;
  1647. }
  1648. }
  1649. /* If we had stopped the queue due to a "tx full"
  1650. * condition, and space has now been made available,
  1651. * wake up the queue.
  1652. */
  1653. if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
  1654. netif_wake_queue(dev);
  1655. }
  1656. /* The inverse routine to tc35815_open(). */
  1657. static int
  1658. tc35815_close(struct net_device *dev)
  1659. {
  1660. struct tc35815_local *lp = netdev_priv(dev);
  1661. netif_stop_queue(dev);
  1662. napi_disable(&lp->napi);
  1663. if (lp->phy_dev)
  1664. phy_stop(lp->phy_dev);
  1665. cancel_work_sync(&lp->restart_work);
  1666. /* Flush the Tx and disable Rx here. */
  1667. tc35815_chip_reset(dev);
  1668. free_irq(dev->irq, dev);
  1669. tc35815_free_queues(dev);
  1670. return 0;
  1671. }
  1672. /*
  1673. * Get the current statistics.
  1674. * This may be called with the card open or closed.
  1675. */
  1676. static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
  1677. {
  1678. struct tc35815_regs __iomem *tr =
  1679. (struct tc35815_regs __iomem *)dev->base_addr;
  1680. if (netif_running(dev))
  1681. /* Update the statistics from the device registers. */
  1682. dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
  1683. return &dev->stats;
  1684. }
  1685. static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
  1686. {
  1687. struct tc35815_local *lp = netdev_priv(dev);
  1688. struct tc35815_regs __iomem *tr =
  1689. (struct tc35815_regs __iomem *)dev->base_addr;
  1690. int cam_index = index * 6;
  1691. u32 cam_data;
  1692. u32 saved_addr;
  1693. saved_addr = tc_readl(&tr->CAM_Adr);
  1694. if (netif_msg_hw(lp))
  1695. printk(KERN_DEBUG "%s: CAM %d: %pM\n",
  1696. dev->name, index, addr);
  1697. if (index & 1) {
  1698. /* read modify write */
  1699. tc_writel(cam_index - 2, &tr->CAM_Adr);
  1700. cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
  1701. cam_data |= addr[0] << 8 | addr[1];
  1702. tc_writel(cam_data, &tr->CAM_Data);
  1703. /* write whole word */
  1704. tc_writel(cam_index + 2, &tr->CAM_Adr);
  1705. cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
  1706. tc_writel(cam_data, &tr->CAM_Data);
  1707. } else {
  1708. /* write whole word */
  1709. tc_writel(cam_index, &tr->CAM_Adr);
  1710. cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
  1711. tc_writel(cam_data, &tr->CAM_Data);
  1712. /* read modify write */
  1713. tc_writel(cam_index + 4, &tr->CAM_Adr);
  1714. cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
  1715. cam_data |= addr[4] << 24 | (addr[5] << 16);
  1716. tc_writel(cam_data, &tr->CAM_Data);
  1717. }
  1718. tc_writel(saved_addr, &tr->CAM_Adr);
  1719. }
  1720. /*
  1721. * Set or clear the multicast filter for this adaptor.
  1722. * num_addrs == -1 Promiscuous mode, receive all packets
  1723. * num_addrs == 0 Normal mode, clear multicast list
  1724. * num_addrs > 0 Multicast mode, receive normal and MC packets,
  1725. * and do best-effort filtering.
  1726. */
  1727. static void
  1728. tc35815_set_multicast_list(struct net_device *dev)
  1729. {
  1730. struct tc35815_regs __iomem *tr =
  1731. (struct tc35815_regs __iomem *)dev->base_addr;
  1732. if (dev->flags & IFF_PROMISC) {
  1733. /* With some (all?) 100MHalf HUB, controller will hang
  1734. * if we enabled promiscuous mode before linkup... */
  1735. struct tc35815_local *lp = netdev_priv(dev);
  1736. if (!lp->link)
  1737. return;
  1738. /* Enable promiscuous mode */
  1739. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
  1740. } else if ((dev->flags & IFF_ALLMULTI) ||
  1741. dev->mc_count > CAM_ENTRY_MAX - 3) {
  1742. /* CAM 0, 1, 20 are reserved. */
  1743. /* Disable promiscuous mode, use normal mode. */
  1744. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
  1745. } else if (dev->mc_count) {
  1746. struct dev_mc_list *cur_addr = dev->mc_list;
  1747. int i;
  1748. int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
  1749. tc_writel(0, &tr->CAM_Ctl);
  1750. /* Walk the address list, and load the filter */
  1751. for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
  1752. if (!cur_addr)
  1753. break;
  1754. /* entry 0,1 is reserved. */
  1755. tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
  1756. ena_bits |= CAM_Ena_Bit(i + 2);
  1757. }
  1758. tc_writel(ena_bits, &tr->CAM_Ena);
  1759. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1760. } else {
  1761. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1762. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1763. }
  1764. }
  1765. static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1766. {
  1767. struct tc35815_local *lp = netdev_priv(dev);
  1768. strcpy(info->driver, MODNAME);
  1769. strcpy(info->version, DRV_VERSION);
  1770. strcpy(info->bus_info, pci_name(lp->pci_dev));
  1771. }
  1772. static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1773. {
  1774. struct tc35815_local *lp = netdev_priv(dev);
  1775. if (!lp->phy_dev)
  1776. return -ENODEV;
  1777. return phy_ethtool_gset(lp->phy_dev, cmd);
  1778. }
  1779. static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1780. {
  1781. struct tc35815_local *lp = netdev_priv(dev);
  1782. if (!lp->phy_dev)
  1783. return -ENODEV;
  1784. return phy_ethtool_sset(lp->phy_dev, cmd);
  1785. }
  1786. static u32 tc35815_get_msglevel(struct net_device *dev)
  1787. {
  1788. struct tc35815_local *lp = netdev_priv(dev);
  1789. return lp->msg_enable;
  1790. }
  1791. static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
  1792. {
  1793. struct tc35815_local *lp = netdev_priv(dev);
  1794. lp->msg_enable = datum;
  1795. }
  1796. static int tc35815_get_sset_count(struct net_device *dev, int sset)
  1797. {
  1798. struct tc35815_local *lp = netdev_priv(dev);
  1799. switch (sset) {
  1800. case ETH_SS_STATS:
  1801. return sizeof(lp->lstats) / sizeof(int);
  1802. default:
  1803. return -EOPNOTSUPP;
  1804. }
  1805. }
  1806. static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
  1807. {
  1808. struct tc35815_local *lp = netdev_priv(dev);
  1809. data[0] = lp->lstats.max_tx_qlen;
  1810. data[1] = lp->lstats.tx_ints;
  1811. data[2] = lp->lstats.rx_ints;
  1812. data[3] = lp->lstats.tx_underrun;
  1813. }
  1814. static struct {
  1815. const char str[ETH_GSTRING_LEN];
  1816. } ethtool_stats_keys[] = {
  1817. { "max_tx_qlen" },
  1818. { "tx_ints" },
  1819. { "rx_ints" },
  1820. { "tx_underrun" },
  1821. };
  1822. static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  1823. {
  1824. memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
  1825. }
  1826. static const struct ethtool_ops tc35815_ethtool_ops = {
  1827. .get_drvinfo = tc35815_get_drvinfo,
  1828. .get_settings = tc35815_get_settings,
  1829. .set_settings = tc35815_set_settings,
  1830. .get_link = ethtool_op_get_link,
  1831. .get_msglevel = tc35815_get_msglevel,
  1832. .set_msglevel = tc35815_set_msglevel,
  1833. .get_strings = tc35815_get_strings,
  1834. .get_sset_count = tc35815_get_sset_count,
  1835. .get_ethtool_stats = tc35815_get_ethtool_stats,
  1836. };
  1837. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1838. {
  1839. struct tc35815_local *lp = netdev_priv(dev);
  1840. if (!netif_running(dev))
  1841. return -EINVAL;
  1842. if (!lp->phy_dev)
  1843. return -ENODEV;
  1844. return phy_mii_ioctl(lp->phy_dev, if_mii(rq), cmd);
  1845. }
  1846. static void tc35815_chip_reset(struct net_device *dev)
  1847. {
  1848. struct tc35815_regs __iomem *tr =
  1849. (struct tc35815_regs __iomem *)dev->base_addr;
  1850. int i;
  1851. /* reset the controller */
  1852. tc_writel(MAC_Reset, &tr->MAC_Ctl);
  1853. udelay(4); /* 3200ns */
  1854. i = 0;
  1855. while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
  1856. if (i++ > 100) {
  1857. printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
  1858. break;
  1859. }
  1860. mdelay(1);
  1861. }
  1862. tc_writel(0, &tr->MAC_Ctl);
  1863. /* initialize registers to default value */
  1864. tc_writel(0, &tr->DMA_Ctl);
  1865. tc_writel(0, &tr->TxThrsh);
  1866. tc_writel(0, &tr->TxPollCtr);
  1867. tc_writel(0, &tr->RxFragSize);
  1868. tc_writel(0, &tr->Int_En);
  1869. tc_writel(0, &tr->FDA_Bas);
  1870. tc_writel(0, &tr->FDA_Lim);
  1871. tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
  1872. tc_writel(0, &tr->CAM_Ctl);
  1873. tc_writel(0, &tr->Tx_Ctl);
  1874. tc_writel(0, &tr->Rx_Ctl);
  1875. tc_writel(0, &tr->CAM_Ena);
  1876. (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
  1877. /* initialize internal SRAM */
  1878. tc_writel(DMA_TestMode, &tr->DMA_Ctl);
  1879. for (i = 0; i < 0x1000; i += 4) {
  1880. tc_writel(i, &tr->CAM_Adr);
  1881. tc_writel(0, &tr->CAM_Data);
  1882. }
  1883. tc_writel(0, &tr->DMA_Ctl);
  1884. }
  1885. static void tc35815_chip_init(struct net_device *dev)
  1886. {
  1887. struct tc35815_local *lp = netdev_priv(dev);
  1888. struct tc35815_regs __iomem *tr =
  1889. (struct tc35815_regs __iomem *)dev->base_addr;
  1890. unsigned long txctl = TX_CTL_CMD;
  1891. /* load station address to CAM */
  1892. tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
  1893. /* Enable CAM (broadcast and unicast) */
  1894. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1895. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1896. /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
  1897. if (HAVE_DMA_RXALIGN(lp))
  1898. tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
  1899. else
  1900. tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
  1901. tc_writel(0, &tr->TxPollCtr); /* Batch mode */
  1902. tc_writel(TX_THRESHOLD, &tr->TxThrsh);
  1903. tc_writel(INT_EN_CMD, &tr->Int_En);
  1904. /* set queues */
  1905. tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
  1906. tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
  1907. &tr->FDA_Lim);
  1908. /*
  1909. * Activation method:
  1910. * First, enable the MAC Transmitter and the DMA Receive circuits.
  1911. * Then enable the DMA Transmitter and the MAC Receive circuits.
  1912. */
  1913. tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
  1914. tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
  1915. /* start MAC transmitter */
  1916. /* TX4939 does not have EnLCarr */
  1917. if (lp->chiptype == TC35815_TX4939)
  1918. txctl &= ~Tx_EnLCarr;
  1919. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1920. if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
  1921. txctl &= ~Tx_EnLCarr;
  1922. tc_writel(txctl, &tr->Tx_Ctl);
  1923. }
  1924. #ifdef CONFIG_PM
  1925. static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
  1926. {
  1927. struct net_device *dev = pci_get_drvdata(pdev);
  1928. struct tc35815_local *lp = netdev_priv(dev);
  1929. unsigned long flags;
  1930. pci_save_state(pdev);
  1931. if (!netif_running(dev))
  1932. return 0;
  1933. netif_device_detach(dev);
  1934. if (lp->phy_dev)
  1935. phy_stop(lp->phy_dev);
  1936. spin_lock_irqsave(&lp->lock, flags);
  1937. tc35815_chip_reset(dev);
  1938. spin_unlock_irqrestore(&lp->lock, flags);
  1939. pci_set_power_state(pdev, PCI_D3hot);
  1940. return 0;
  1941. }
  1942. static int tc35815_resume(struct pci_dev *pdev)
  1943. {
  1944. struct net_device *dev = pci_get_drvdata(pdev);
  1945. struct tc35815_local *lp = netdev_priv(dev);
  1946. pci_restore_state(pdev);
  1947. if (!netif_running(dev))
  1948. return 0;
  1949. pci_set_power_state(pdev, PCI_D0);
  1950. tc35815_restart(dev);
  1951. netif_carrier_off(dev);
  1952. if (lp->phy_dev)
  1953. phy_start(lp->phy_dev);
  1954. netif_device_attach(dev);
  1955. return 0;
  1956. }
  1957. #endif /* CONFIG_PM */
  1958. static struct pci_driver tc35815_pci_driver = {
  1959. .name = MODNAME,
  1960. .id_table = tc35815_pci_tbl,
  1961. .probe = tc35815_init_one,
  1962. .remove = __devexit_p(tc35815_remove_one),
  1963. #ifdef CONFIG_PM
  1964. .suspend = tc35815_suspend,
  1965. .resume = tc35815_resume,
  1966. #endif
  1967. };
  1968. module_param_named(speed, options.speed, int, 0);
  1969. MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
  1970. module_param_named(duplex, options.duplex, int, 0);
  1971. MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
  1972. static int __init tc35815_init_module(void)
  1973. {
  1974. return pci_register_driver(&tc35815_pci_driver);
  1975. }
  1976. static void __exit tc35815_cleanup_module(void)
  1977. {
  1978. pci_unregister_driver(&tc35815_pci_driver);
  1979. }
  1980. module_init(tc35815_init_module);
  1981. module_exit(tc35815_cleanup_module);
  1982. MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
  1983. MODULE_LICENSE("GPL");