siena.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include "net_driver.h"
  15. #include "bitfield.h"
  16. #include "efx.h"
  17. #include "nic.h"
  18. #include "mac.h"
  19. #include "spi.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  27. static void siena_init_wol(struct efx_nic *efx);
  28. static void siena_push_irq_moderation(struct efx_channel *channel)
  29. {
  30. efx_dword_t timer_cmd;
  31. if (channel->irq_moderation)
  32. EFX_POPULATE_DWORD_2(timer_cmd,
  33. FRF_CZ_TC_TIMER_MODE,
  34. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  35. FRF_CZ_TC_TIMER_VAL,
  36. channel->irq_moderation - 1);
  37. else
  38. EFX_POPULATE_DWORD_2(timer_cmd,
  39. FRF_CZ_TC_TIMER_MODE,
  40. FFE_CZ_TIMER_MODE_DIS,
  41. FRF_CZ_TC_TIMER_VAL, 0);
  42. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  43. channel->channel);
  44. }
  45. static void siena_push_multicast_hash(struct efx_nic *efx)
  46. {
  47. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  48. efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  49. efx->multicast_hash.byte, sizeof(efx->multicast_hash),
  50. NULL, 0, NULL);
  51. }
  52. static int siena_mdio_write(struct net_device *net_dev,
  53. int prtad, int devad, u16 addr, u16 value)
  54. {
  55. struct efx_nic *efx = netdev_priv(net_dev);
  56. uint32_t status;
  57. int rc;
  58. rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
  59. addr, value, &status);
  60. if (rc)
  61. return rc;
  62. if (status != MC_CMD_MDIO_STATUS_GOOD)
  63. return -EIO;
  64. return 0;
  65. }
  66. static int siena_mdio_read(struct net_device *net_dev,
  67. int prtad, int devad, u16 addr)
  68. {
  69. struct efx_nic *efx = netdev_priv(net_dev);
  70. uint16_t value;
  71. uint32_t status;
  72. int rc;
  73. rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
  74. addr, &value, &status);
  75. if (rc)
  76. return rc;
  77. if (status != MC_CMD_MDIO_STATUS_GOOD)
  78. return -EIO;
  79. return (int)value;
  80. }
  81. /* This call is responsible for hooking in the MAC and PHY operations */
  82. static int siena_probe_port(struct efx_nic *efx)
  83. {
  84. int rc;
  85. /* Hook in PHY operations table */
  86. efx->phy_op = &efx_mcdi_phy_ops;
  87. /* Set up MDIO structure for PHY */
  88. efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  89. efx->mdio.mdio_read = siena_mdio_read;
  90. efx->mdio.mdio_write = siena_mdio_write;
  91. /* Fill out MDIO structure and loopback modes */
  92. rc = efx->phy_op->probe(efx);
  93. if (rc != 0)
  94. return rc;
  95. /* Initial assumption */
  96. efx->link_state.speed = 10000;
  97. efx->link_state.fd = true;
  98. efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
  99. /* Allocate buffer for stats */
  100. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  101. MC_CMD_MAC_NSTATS * sizeof(u64));
  102. if (rc)
  103. return rc;
  104. EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
  105. (u64)efx->stats_buffer.dma_addr,
  106. efx->stats_buffer.addr,
  107. (u64)virt_to_phys(efx->stats_buffer.addr));
  108. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
  109. return 0;
  110. }
  111. void siena_remove_port(struct efx_nic *efx)
  112. {
  113. efx->phy_op->remove(efx);
  114. efx_nic_free_buffer(efx, &efx->stats_buffer);
  115. }
  116. static const struct efx_nic_register_test siena_register_tests[] = {
  117. { FR_AZ_ADR_REGION,
  118. EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
  119. { FR_CZ_USR_EV_CFG,
  120. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  121. { FR_AZ_RX_CFG,
  122. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  123. { FR_AZ_TX_CFG,
  124. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  125. { FR_AZ_TX_RESERVED,
  126. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  127. { FR_AZ_SRM_TX_DC_CFG,
  128. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  129. { FR_AZ_RX_DC_CFG,
  130. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  131. { FR_AZ_RX_DC_PF_WM,
  132. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  133. { FR_BZ_DP_CTRL,
  134. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  135. { FR_BZ_RX_RSS_TKEY,
  136. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  137. { FR_CZ_RX_RSS_IPV6_REG1,
  138. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  139. { FR_CZ_RX_RSS_IPV6_REG2,
  140. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  141. { FR_CZ_RX_RSS_IPV6_REG3,
  142. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  143. };
  144. static int siena_test_registers(struct efx_nic *efx)
  145. {
  146. return efx_nic_test_registers(efx, siena_register_tests,
  147. ARRAY_SIZE(siena_register_tests));
  148. }
  149. /**************************************************************************
  150. *
  151. * Device reset
  152. *
  153. **************************************************************************
  154. */
  155. static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
  156. {
  157. if (method == RESET_TYPE_WORLD)
  158. return efx_mcdi_reset_mc(efx);
  159. else
  160. return efx_mcdi_reset_port(efx);
  161. }
  162. static int siena_probe_nvconfig(struct efx_nic *efx)
  163. {
  164. int rc;
  165. rc = efx_mcdi_get_board_cfg(efx, efx->mac_address, NULL);
  166. if (rc)
  167. return rc;
  168. return 0;
  169. }
  170. static int siena_probe_nic(struct efx_nic *efx)
  171. {
  172. struct siena_nic_data *nic_data;
  173. bool already_attached = 0;
  174. int rc;
  175. /* Allocate storage for hardware specific data */
  176. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  177. if (!nic_data)
  178. return -ENOMEM;
  179. efx->nic_data = nic_data;
  180. if (efx_nic_fpga_ver(efx) != 0) {
  181. EFX_ERR(efx, "Siena FPGA not supported\n");
  182. rc = -ENODEV;
  183. goto fail1;
  184. }
  185. efx_mcdi_init(efx);
  186. /* Recover from a failed assertion before probing */
  187. rc = efx_mcdi_handle_assertion(efx);
  188. if (rc)
  189. goto fail1;
  190. rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
  191. if (rc) {
  192. EFX_ERR(efx, "Failed to read MCPU firmware version - "
  193. "rc %d\n", rc);
  194. goto fail1; /* MCPU absent? */
  195. }
  196. /* Let the BMC know that the driver is now in charge of link and
  197. * filter settings. We must do this before we reset the NIC */
  198. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  199. if (rc) {
  200. EFX_ERR(efx, "Unable to register driver with MCPU\n");
  201. goto fail2;
  202. }
  203. if (already_attached)
  204. /* Not a fatal error */
  205. EFX_ERR(efx, "Host already registered with MCPU\n");
  206. /* Now we can reset the NIC */
  207. rc = siena_reset_hw(efx, RESET_TYPE_ALL);
  208. if (rc) {
  209. EFX_ERR(efx, "failed to reset NIC\n");
  210. goto fail3;
  211. }
  212. siena_init_wol(efx);
  213. /* Allocate memory for INT_KER */
  214. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  215. if (rc)
  216. goto fail4;
  217. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  218. EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
  219. (unsigned long long)efx->irq_status.dma_addr,
  220. efx->irq_status.addr,
  221. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  222. /* Read in the non-volatile configuration */
  223. rc = siena_probe_nvconfig(efx);
  224. if (rc == -EINVAL) {
  225. EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
  226. efx->phy_type = PHY_TYPE_NONE;
  227. efx->mdio.prtad = MDIO_PRTAD_NONE;
  228. } else if (rc) {
  229. goto fail5;
  230. }
  231. return 0;
  232. fail5:
  233. efx_nic_free_buffer(efx, &efx->irq_status);
  234. fail4:
  235. fail3:
  236. efx_mcdi_drv_attach(efx, false, NULL);
  237. fail2:
  238. fail1:
  239. kfree(efx->nic_data);
  240. return rc;
  241. }
  242. /* This call performs hardware-specific global initialisation, such as
  243. * defining the descriptor cache sizes and number of RSS channels.
  244. * It does not set up any buffers, descriptor rings or event queues.
  245. */
  246. static int siena_init_nic(struct efx_nic *efx)
  247. {
  248. efx_oword_t temp;
  249. int rc;
  250. /* Recover from a failed assertion post-reset */
  251. rc = efx_mcdi_handle_assertion(efx);
  252. if (rc)
  253. return rc;
  254. /* Squash TX of packets of 16 bytes or less */
  255. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  256. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  257. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  258. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  259. * descriptors (which is bad).
  260. */
  261. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  262. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  263. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  264. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  265. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  266. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  267. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  268. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  269. if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
  270. /* No MCDI operation has been defined to set thresholds */
  271. EFX_ERR(efx, "ignoring RX flow control thresholds\n");
  272. /* Enable event logging */
  273. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  274. if (rc)
  275. return rc;
  276. /* Set destination of both TX and RX Flush events */
  277. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  278. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  279. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  280. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  281. efx_nic_init_common(efx);
  282. return 0;
  283. }
  284. static void siena_remove_nic(struct efx_nic *efx)
  285. {
  286. efx_nic_free_buffer(efx, &efx->irq_status);
  287. siena_reset_hw(efx, RESET_TYPE_ALL);
  288. /* Relinquish the device back to the BMC */
  289. if (efx_nic_has_mc(efx))
  290. efx_mcdi_drv_attach(efx, false, NULL);
  291. /* Tear down the private nic state */
  292. kfree(efx->nic_data);
  293. efx->nic_data = NULL;
  294. }
  295. #define STATS_GENERATION_INVALID ((u64)(-1))
  296. static int siena_try_update_nic_stats(struct efx_nic *efx)
  297. {
  298. u64 *dma_stats;
  299. struct efx_mac_stats *mac_stats;
  300. u64 generation_start;
  301. u64 generation_end;
  302. mac_stats = &efx->mac_stats;
  303. dma_stats = (u64 *)efx->stats_buffer.addr;
  304. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  305. if (generation_end == STATS_GENERATION_INVALID)
  306. return 0;
  307. rmb();
  308. #define MAC_STAT(M, D) \
  309. mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
  310. MAC_STAT(tx_bytes, TX_BYTES);
  311. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  312. mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
  313. mac_stats->tx_bad_bytes);
  314. MAC_STAT(tx_packets, TX_PKTS);
  315. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  316. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  317. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  318. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  319. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  320. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  321. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  322. MAC_STAT(tx_64, TX_64_PKTS);
  323. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  324. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  325. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  326. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  327. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  328. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  329. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  330. mac_stats->tx_collision = 0;
  331. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  332. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  333. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  334. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  335. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  336. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  337. mac_stats->tx_multiple_collision +
  338. mac_stats->tx_excessive_collision +
  339. mac_stats->tx_late_collision);
  340. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  341. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  342. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  343. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  344. MAC_STAT(rx_bytes, RX_BYTES);
  345. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  346. mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
  347. mac_stats->rx_bad_bytes);
  348. MAC_STAT(rx_packets, RX_PKTS);
  349. MAC_STAT(rx_good, RX_GOOD_PKTS);
  350. mac_stats->rx_bad = mac_stats->rx_packets - mac_stats->rx_good;
  351. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  352. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  353. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  354. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  355. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  356. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  357. MAC_STAT(rx_64, RX_64_PKTS);
  358. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  359. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  360. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  361. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  362. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  363. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  364. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  365. mac_stats->rx_bad_lt64 = 0;
  366. mac_stats->rx_bad_64_to_15xx = 0;
  367. mac_stats->rx_bad_15xx_to_jumbo = 0;
  368. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  369. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  370. mac_stats->rx_missed = 0;
  371. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  372. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  373. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  374. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  375. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  376. mac_stats->rx_good_lt64 = 0;
  377. efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
  378. #undef MAC_STAT
  379. rmb();
  380. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  381. if (generation_end != generation_start)
  382. return -EAGAIN;
  383. return 0;
  384. }
  385. static void siena_update_nic_stats(struct efx_nic *efx)
  386. {
  387. while (siena_try_update_nic_stats(efx) == -EAGAIN)
  388. cpu_relax();
  389. }
  390. static void siena_start_nic_stats(struct efx_nic *efx)
  391. {
  392. u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
  393. dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
  394. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
  395. MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
  396. }
  397. static void siena_stop_nic_stats(struct efx_nic *efx)
  398. {
  399. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
  400. }
  401. void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  402. {
  403. struct siena_nic_data *nic_data = efx->nic_data;
  404. snprintf(buf, len, "%u.%u.%u.%u",
  405. (unsigned int)(nic_data->fw_version >> 48),
  406. (unsigned int)(nic_data->fw_version >> 32 & 0xffff),
  407. (unsigned int)(nic_data->fw_version >> 16 & 0xffff),
  408. (unsigned int)(nic_data->fw_version & 0xffff));
  409. }
  410. /**************************************************************************
  411. *
  412. * Wake on LAN
  413. *
  414. **************************************************************************
  415. */
  416. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  417. {
  418. struct siena_nic_data *nic_data = efx->nic_data;
  419. wol->supported = WAKE_MAGIC;
  420. if (nic_data->wol_filter_id != -1)
  421. wol->wolopts = WAKE_MAGIC;
  422. else
  423. wol->wolopts = 0;
  424. memset(&wol->sopass, 0, sizeof(wol->sopass));
  425. }
  426. static int siena_set_wol(struct efx_nic *efx, u32 type)
  427. {
  428. struct siena_nic_data *nic_data = efx->nic_data;
  429. int rc;
  430. if (type & ~WAKE_MAGIC)
  431. return -EINVAL;
  432. if (type & WAKE_MAGIC) {
  433. if (nic_data->wol_filter_id != -1)
  434. efx_mcdi_wol_filter_remove(efx,
  435. nic_data->wol_filter_id);
  436. rc = efx_mcdi_wol_filter_set_magic(efx, efx->mac_address,
  437. &nic_data->wol_filter_id);
  438. if (rc)
  439. goto fail;
  440. pci_wake_from_d3(efx->pci_dev, true);
  441. } else {
  442. rc = efx_mcdi_wol_filter_reset(efx);
  443. nic_data->wol_filter_id = -1;
  444. pci_wake_from_d3(efx->pci_dev, false);
  445. if (rc)
  446. goto fail;
  447. }
  448. return 0;
  449. fail:
  450. EFX_ERR(efx, "%s failed: type=%d rc=%d\n", __func__, type, rc);
  451. return rc;
  452. }
  453. static void siena_init_wol(struct efx_nic *efx)
  454. {
  455. struct siena_nic_data *nic_data = efx->nic_data;
  456. int rc;
  457. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  458. if (rc != 0) {
  459. /* If it failed, attempt to get into a synchronised
  460. * state with MC by resetting any set WoL filters */
  461. efx_mcdi_wol_filter_reset(efx);
  462. nic_data->wol_filter_id = -1;
  463. } else if (nic_data->wol_filter_id != -1) {
  464. pci_wake_from_d3(efx->pci_dev, true);
  465. }
  466. }
  467. /**************************************************************************
  468. *
  469. * Revision-dependent attributes used by efx.c and nic.c
  470. *
  471. **************************************************************************
  472. */
  473. struct efx_nic_type siena_a0_nic_type = {
  474. .probe = siena_probe_nic,
  475. .remove = siena_remove_nic,
  476. .init = siena_init_nic,
  477. .fini = efx_port_dummy_op_void,
  478. .monitor = NULL,
  479. .reset = siena_reset_hw,
  480. .probe_port = siena_probe_port,
  481. .remove_port = siena_remove_port,
  482. .prepare_flush = efx_port_dummy_op_void,
  483. .update_stats = siena_update_nic_stats,
  484. .start_stats = siena_start_nic_stats,
  485. .stop_stats = siena_stop_nic_stats,
  486. .set_id_led = efx_mcdi_set_id_led,
  487. .push_irq_moderation = siena_push_irq_moderation,
  488. .push_multicast_hash = siena_push_multicast_hash,
  489. .reconfigure_port = efx_mcdi_phy_reconfigure,
  490. .get_wol = siena_get_wol,
  491. .set_wol = siena_set_wol,
  492. .resume_wol = siena_init_wol,
  493. .test_registers = siena_test_registers,
  494. .default_mac_ops = &efx_mcdi_mac_operations,
  495. .revision = EFX_REV_SIENA_A0,
  496. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  497. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  498. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  499. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  500. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  501. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  502. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  503. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  504. .rx_buffer_padding = 0,
  505. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  506. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  507. * interrupt handler only supports 32
  508. * channels */
  509. .tx_dc_base = 0x88000,
  510. .rx_dc_base = 0x68000,
  511. .offload_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM,
  512. .reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,
  513. };