niu.c 232 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/list.h>
  25. #include <linux/io.h>
  26. #ifdef CONFIG_SPARC64
  27. #include <linux/of_device.h>
  28. #endif
  29. #include "niu.h"
  30. #define DRV_MODULE_NAME "niu"
  31. #define PFX DRV_MODULE_NAME ": "
  32. #define DRV_MODULE_VERSION "1.0"
  33. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  34. static char version[] __devinitdata =
  35. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  36. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  37. MODULE_DESCRIPTION("NIU ethernet driver");
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_MODULE_VERSION);
  40. #ifndef readq
  41. static u64 readq(void __iomem *reg)
  42. {
  43. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  44. }
  45. static void writeq(u64 val, void __iomem *reg)
  46. {
  47. writel(val & 0xffffffff, reg);
  48. writel(val >> 32, reg + 0x4UL);
  49. }
  50. #endif
  51. static struct pci_device_id niu_pci_tbl[] = {
  52. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  53. {}
  54. };
  55. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  56. #define NIU_TX_TIMEOUT (5 * HZ)
  57. #define nr64(reg) readq(np->regs + (reg))
  58. #define nw64(reg, val) writeq((val), np->regs + (reg))
  59. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  60. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  61. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  62. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  63. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  64. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  65. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  66. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  67. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  68. static int niu_debug;
  69. static int debug = -1;
  70. module_param(debug, int, 0);
  71. MODULE_PARM_DESC(debug, "NIU debug level");
  72. #define niudbg(TYPE, f, a...) \
  73. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  74. printk(KERN_DEBUG PFX f, ## a); \
  75. } while (0)
  76. #define niuinfo(TYPE, f, a...) \
  77. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  78. printk(KERN_INFO PFX f, ## a); \
  79. } while (0)
  80. #define niuwarn(TYPE, f, a...) \
  81. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  82. printk(KERN_WARNING PFX f, ## a); \
  83. } while (0)
  84. #define niu_lock_parent(np, flags) \
  85. spin_lock_irqsave(&np->parent->lock, flags)
  86. #define niu_unlock_parent(np, flags) \
  87. spin_unlock_irqrestore(&np->parent->lock, flags)
  88. static int serdes_init_10g_serdes(struct niu *np);
  89. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  90. u64 bits, int limit, int delay)
  91. {
  92. while (--limit >= 0) {
  93. u64 val = nr64_mac(reg);
  94. if (!(val & bits))
  95. break;
  96. udelay(delay);
  97. }
  98. if (limit < 0)
  99. return -ENODEV;
  100. return 0;
  101. }
  102. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  103. u64 bits, int limit, int delay,
  104. const char *reg_name)
  105. {
  106. int err;
  107. nw64_mac(reg, bits);
  108. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  109. if (err)
  110. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  111. "would not clear, val[%llx]\n",
  112. np->dev->name, (unsigned long long) bits, reg_name,
  113. (unsigned long long) nr64_mac(reg));
  114. return err;
  115. }
  116. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  117. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  118. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  119. })
  120. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  121. u64 bits, int limit, int delay)
  122. {
  123. while (--limit >= 0) {
  124. u64 val = nr64_ipp(reg);
  125. if (!(val & bits))
  126. break;
  127. udelay(delay);
  128. }
  129. if (limit < 0)
  130. return -ENODEV;
  131. return 0;
  132. }
  133. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  134. u64 bits, int limit, int delay,
  135. const char *reg_name)
  136. {
  137. int err;
  138. u64 val;
  139. val = nr64_ipp(reg);
  140. val |= bits;
  141. nw64_ipp(reg, val);
  142. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  143. if (err)
  144. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  145. "would not clear, val[%llx]\n",
  146. np->dev->name, (unsigned long long) bits, reg_name,
  147. (unsigned long long) nr64_ipp(reg));
  148. return err;
  149. }
  150. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  151. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  152. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  153. })
  154. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  155. u64 bits, int limit, int delay)
  156. {
  157. while (--limit >= 0) {
  158. u64 val = nr64(reg);
  159. if (!(val & bits))
  160. break;
  161. udelay(delay);
  162. }
  163. if (limit < 0)
  164. return -ENODEV;
  165. return 0;
  166. }
  167. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  168. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  169. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  170. })
  171. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  172. u64 bits, int limit, int delay,
  173. const char *reg_name)
  174. {
  175. int err;
  176. nw64(reg, bits);
  177. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  178. if (err)
  179. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  180. "would not clear, val[%llx]\n",
  181. np->dev->name, (unsigned long long) bits, reg_name,
  182. (unsigned long long) nr64(reg));
  183. return err;
  184. }
  185. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  186. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  187. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  188. })
  189. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  190. {
  191. u64 val = (u64) lp->timer;
  192. if (on)
  193. val |= LDG_IMGMT_ARM;
  194. nw64(LDG_IMGMT(lp->ldg_num), val);
  195. }
  196. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  197. {
  198. unsigned long mask_reg, bits;
  199. u64 val;
  200. if (ldn < 0 || ldn > LDN_MAX)
  201. return -EINVAL;
  202. if (ldn < 64) {
  203. mask_reg = LD_IM0(ldn);
  204. bits = LD_IM0_MASK;
  205. } else {
  206. mask_reg = LD_IM1(ldn - 64);
  207. bits = LD_IM1_MASK;
  208. }
  209. val = nr64(mask_reg);
  210. if (on)
  211. val &= ~bits;
  212. else
  213. val |= bits;
  214. nw64(mask_reg, val);
  215. return 0;
  216. }
  217. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  218. {
  219. struct niu_parent *parent = np->parent;
  220. int i;
  221. for (i = 0; i <= LDN_MAX; i++) {
  222. int err;
  223. if (parent->ldg_map[i] != lp->ldg_num)
  224. continue;
  225. err = niu_ldn_irq_enable(np, i, on);
  226. if (err)
  227. return err;
  228. }
  229. return 0;
  230. }
  231. static int niu_enable_interrupts(struct niu *np, int on)
  232. {
  233. int i;
  234. for (i = 0; i < np->num_ldg; i++) {
  235. struct niu_ldg *lp = &np->ldg[i];
  236. int err;
  237. err = niu_enable_ldn_in_ldg(np, lp, on);
  238. if (err)
  239. return err;
  240. }
  241. for (i = 0; i < np->num_ldg; i++)
  242. niu_ldg_rearm(np, &np->ldg[i], on);
  243. return 0;
  244. }
  245. static u32 phy_encode(u32 type, int port)
  246. {
  247. return (type << (port * 2));
  248. }
  249. static u32 phy_decode(u32 val, int port)
  250. {
  251. return (val >> (port * 2)) & PORT_TYPE_MASK;
  252. }
  253. static int mdio_wait(struct niu *np)
  254. {
  255. int limit = 1000;
  256. u64 val;
  257. while (--limit > 0) {
  258. val = nr64(MIF_FRAME_OUTPUT);
  259. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  260. return val & MIF_FRAME_OUTPUT_DATA;
  261. udelay(10);
  262. }
  263. return -ENODEV;
  264. }
  265. static int mdio_read(struct niu *np, int port, int dev, int reg)
  266. {
  267. int err;
  268. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  269. err = mdio_wait(np);
  270. if (err < 0)
  271. return err;
  272. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  273. return mdio_wait(np);
  274. }
  275. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  276. {
  277. int err;
  278. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  279. err = mdio_wait(np);
  280. if (err < 0)
  281. return err;
  282. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  283. err = mdio_wait(np);
  284. if (err < 0)
  285. return err;
  286. return 0;
  287. }
  288. static int mii_read(struct niu *np, int port, int reg)
  289. {
  290. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  291. return mdio_wait(np);
  292. }
  293. static int mii_write(struct niu *np, int port, int reg, int data)
  294. {
  295. int err;
  296. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  297. err = mdio_wait(np);
  298. if (err < 0)
  299. return err;
  300. return 0;
  301. }
  302. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  303. {
  304. int err;
  305. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  306. ESR2_TI_PLL_TX_CFG_L(channel),
  307. val & 0xffff);
  308. if (!err)
  309. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  310. ESR2_TI_PLL_TX_CFG_H(channel),
  311. val >> 16);
  312. return err;
  313. }
  314. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  315. {
  316. int err;
  317. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  318. ESR2_TI_PLL_RX_CFG_L(channel),
  319. val & 0xffff);
  320. if (!err)
  321. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  322. ESR2_TI_PLL_RX_CFG_H(channel),
  323. val >> 16);
  324. return err;
  325. }
  326. /* Mode is always 10G fiber. */
  327. static int serdes_init_niu_10g_fiber(struct niu *np)
  328. {
  329. struct niu_link_config *lp = &np->link_config;
  330. u32 tx_cfg, rx_cfg;
  331. unsigned long i;
  332. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  333. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  334. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  335. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  336. if (lp->loopback_mode == LOOPBACK_PHY) {
  337. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  338. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  339. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  340. tx_cfg |= PLL_TX_CFG_ENTEST;
  341. rx_cfg |= PLL_RX_CFG_ENTEST;
  342. }
  343. /* Initialize all 4 lanes of the SERDES. */
  344. for (i = 0; i < 4; i++) {
  345. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  346. if (err)
  347. return err;
  348. }
  349. for (i = 0; i < 4; i++) {
  350. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  351. if (err)
  352. return err;
  353. }
  354. return 0;
  355. }
  356. static int serdes_init_niu_1g_serdes(struct niu *np)
  357. {
  358. struct niu_link_config *lp = &np->link_config;
  359. u16 pll_cfg, pll_sts;
  360. int max_retry = 100;
  361. u64 uninitialized_var(sig), mask, val;
  362. u32 tx_cfg, rx_cfg;
  363. unsigned long i;
  364. int err;
  365. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  366. PLL_TX_CFG_RATE_HALF);
  367. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  368. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  369. PLL_RX_CFG_RATE_HALF);
  370. if (np->port == 0)
  371. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  372. if (lp->loopback_mode == LOOPBACK_PHY) {
  373. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  374. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  375. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  376. tx_cfg |= PLL_TX_CFG_ENTEST;
  377. rx_cfg |= PLL_RX_CFG_ENTEST;
  378. }
  379. /* Initialize PLL for 1G */
  380. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  381. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  382. ESR2_TI_PLL_CFG_L, pll_cfg);
  383. if (err) {
  384. dev_err(np->device, PFX "NIU Port %d "
  385. "serdes_init_niu_1g_serdes: "
  386. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  387. return err;
  388. }
  389. pll_sts = PLL_CFG_ENPLL;
  390. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  391. ESR2_TI_PLL_STS_L, pll_sts);
  392. if (err) {
  393. dev_err(np->device, PFX "NIU Port %d "
  394. "serdes_init_niu_1g_serdes: "
  395. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  396. return err;
  397. }
  398. udelay(200);
  399. /* Initialize all 4 lanes of the SERDES. */
  400. for (i = 0; i < 4; i++) {
  401. err = esr2_set_tx_cfg(np, i, tx_cfg);
  402. if (err)
  403. return err;
  404. }
  405. for (i = 0; i < 4; i++) {
  406. err = esr2_set_rx_cfg(np, i, rx_cfg);
  407. if (err)
  408. return err;
  409. }
  410. switch (np->port) {
  411. case 0:
  412. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  413. mask = val;
  414. break;
  415. case 1:
  416. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  417. mask = val;
  418. break;
  419. default:
  420. return -EINVAL;
  421. }
  422. while (max_retry--) {
  423. sig = nr64(ESR_INT_SIGNALS);
  424. if ((sig & mask) == val)
  425. break;
  426. mdelay(500);
  427. }
  428. if ((sig & mask) != val) {
  429. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  430. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  431. return -ENODEV;
  432. }
  433. return 0;
  434. }
  435. static int serdes_init_niu_10g_serdes(struct niu *np)
  436. {
  437. struct niu_link_config *lp = &np->link_config;
  438. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  439. int max_retry = 100;
  440. u64 uninitialized_var(sig), mask, val;
  441. unsigned long i;
  442. int err;
  443. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  444. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  445. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  446. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  447. if (lp->loopback_mode == LOOPBACK_PHY) {
  448. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  449. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  450. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  451. tx_cfg |= PLL_TX_CFG_ENTEST;
  452. rx_cfg |= PLL_RX_CFG_ENTEST;
  453. }
  454. /* Initialize PLL for 10G */
  455. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  456. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  457. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  458. if (err) {
  459. dev_err(np->device, PFX "NIU Port %d "
  460. "serdes_init_niu_10g_serdes: "
  461. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  462. return err;
  463. }
  464. pll_sts = PLL_CFG_ENPLL;
  465. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  466. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  467. if (err) {
  468. dev_err(np->device, PFX "NIU Port %d "
  469. "serdes_init_niu_10g_serdes: "
  470. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  471. return err;
  472. }
  473. udelay(200);
  474. /* Initialize all 4 lanes of the SERDES. */
  475. for (i = 0; i < 4; i++) {
  476. err = esr2_set_tx_cfg(np, i, tx_cfg);
  477. if (err)
  478. return err;
  479. }
  480. for (i = 0; i < 4; i++) {
  481. err = esr2_set_rx_cfg(np, i, rx_cfg);
  482. if (err)
  483. return err;
  484. }
  485. /* check if serdes is ready */
  486. switch (np->port) {
  487. case 0:
  488. mask = ESR_INT_SIGNALS_P0_BITS;
  489. val = (ESR_INT_SRDY0_P0 |
  490. ESR_INT_DET0_P0 |
  491. ESR_INT_XSRDY_P0 |
  492. ESR_INT_XDP_P0_CH3 |
  493. ESR_INT_XDP_P0_CH2 |
  494. ESR_INT_XDP_P0_CH1 |
  495. ESR_INT_XDP_P0_CH0);
  496. break;
  497. case 1:
  498. mask = ESR_INT_SIGNALS_P1_BITS;
  499. val = (ESR_INT_SRDY0_P1 |
  500. ESR_INT_DET0_P1 |
  501. ESR_INT_XSRDY_P1 |
  502. ESR_INT_XDP_P1_CH3 |
  503. ESR_INT_XDP_P1_CH2 |
  504. ESR_INT_XDP_P1_CH1 |
  505. ESR_INT_XDP_P1_CH0);
  506. break;
  507. default:
  508. return -EINVAL;
  509. }
  510. while (max_retry--) {
  511. sig = nr64(ESR_INT_SIGNALS);
  512. if ((sig & mask) == val)
  513. break;
  514. mdelay(500);
  515. }
  516. if ((sig & mask) != val) {
  517. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  518. "[%08x] for 10G...trying 1G\n",
  519. np->port, (int) (sig & mask), (int) val);
  520. /* 10G failed, try initializing at 1G */
  521. err = serdes_init_niu_1g_serdes(np);
  522. if (!err) {
  523. np->flags &= ~NIU_FLAGS_10G;
  524. np->mac_xcvr = MAC_XCVR_PCS;
  525. } else {
  526. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  527. "Link Failed \n", np->port);
  528. return -ENODEV;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  534. {
  535. int err;
  536. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  537. if (err >= 0) {
  538. *val = (err & 0xffff);
  539. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  540. ESR_RXTX_CTRL_H(chan));
  541. if (err >= 0)
  542. *val |= ((err & 0xffff) << 16);
  543. err = 0;
  544. }
  545. return err;
  546. }
  547. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  548. {
  549. int err;
  550. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  551. ESR_GLUE_CTRL0_L(chan));
  552. if (err >= 0) {
  553. *val = (err & 0xffff);
  554. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  555. ESR_GLUE_CTRL0_H(chan));
  556. if (err >= 0) {
  557. *val |= ((err & 0xffff) << 16);
  558. err = 0;
  559. }
  560. }
  561. return err;
  562. }
  563. static int esr_read_reset(struct niu *np, u32 *val)
  564. {
  565. int err;
  566. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_RESET_CTRL_L);
  568. if (err >= 0) {
  569. *val = (err & 0xffff);
  570. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  571. ESR_RXTX_RESET_CTRL_H);
  572. if (err >= 0) {
  573. *val |= ((err & 0xffff) << 16);
  574. err = 0;
  575. }
  576. }
  577. return err;
  578. }
  579. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  580. {
  581. int err;
  582. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  583. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  584. if (!err)
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_CTRL_H(chan), (val >> 16));
  587. return err;
  588. }
  589. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  590. {
  591. int err;
  592. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  593. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  594. if (!err)
  595. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  596. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  597. return err;
  598. }
  599. static int esr_reset(struct niu *np)
  600. {
  601. u32 uninitialized_var(reset);
  602. int err;
  603. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  604. ESR_RXTX_RESET_CTRL_L, 0x0000);
  605. if (err)
  606. return err;
  607. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  608. ESR_RXTX_RESET_CTRL_H, 0xffff);
  609. if (err)
  610. return err;
  611. udelay(200);
  612. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  613. ESR_RXTX_RESET_CTRL_L, 0xffff);
  614. if (err)
  615. return err;
  616. udelay(200);
  617. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  618. ESR_RXTX_RESET_CTRL_H, 0x0000);
  619. if (err)
  620. return err;
  621. udelay(200);
  622. err = esr_read_reset(np, &reset);
  623. if (err)
  624. return err;
  625. if (reset != 0) {
  626. dev_err(np->device, PFX "Port %u ESR_RESET "
  627. "did not clear [%08x]\n",
  628. np->port, reset);
  629. return -ENODEV;
  630. }
  631. return 0;
  632. }
  633. static int serdes_init_10g(struct niu *np)
  634. {
  635. struct niu_link_config *lp = &np->link_config;
  636. unsigned long ctrl_reg, test_cfg_reg, i;
  637. u64 ctrl_val, test_cfg_val, sig, mask, val;
  638. int err;
  639. switch (np->port) {
  640. case 0:
  641. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  642. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  643. break;
  644. case 1:
  645. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  646. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  647. break;
  648. default:
  649. return -EINVAL;
  650. }
  651. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  652. ENET_SERDES_CTRL_SDET_1 |
  653. ENET_SERDES_CTRL_SDET_2 |
  654. ENET_SERDES_CTRL_SDET_3 |
  655. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  656. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  659. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  660. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  663. test_cfg_val = 0;
  664. if (lp->loopback_mode == LOOPBACK_PHY) {
  665. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  666. ENET_SERDES_TEST_MD_0_SHIFT) |
  667. (ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_1_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_2_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_3_SHIFT));
  673. }
  674. nw64(ctrl_reg, ctrl_val);
  675. nw64(test_cfg_reg, test_cfg_val);
  676. /* Initialize all 4 lanes of the SERDES. */
  677. for (i = 0; i < 4; i++) {
  678. u32 rxtx_ctrl, glue0;
  679. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  680. if (err)
  681. return err;
  682. err = esr_read_glue0(np, i, &glue0);
  683. if (err)
  684. return err;
  685. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  686. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  687. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  688. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  689. ESR_GLUE_CTRL0_THCNT |
  690. ESR_GLUE_CTRL0_BLTIME);
  691. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  692. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  693. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  694. (BLTIME_300_CYCLES <<
  695. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  696. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  697. if (err)
  698. return err;
  699. err = esr_write_glue0(np, i, glue0);
  700. if (err)
  701. return err;
  702. }
  703. err = esr_reset(np);
  704. if (err)
  705. return err;
  706. sig = nr64(ESR_INT_SIGNALS);
  707. switch (np->port) {
  708. case 0:
  709. mask = ESR_INT_SIGNALS_P0_BITS;
  710. val = (ESR_INT_SRDY0_P0 |
  711. ESR_INT_DET0_P0 |
  712. ESR_INT_XSRDY_P0 |
  713. ESR_INT_XDP_P0_CH3 |
  714. ESR_INT_XDP_P0_CH2 |
  715. ESR_INT_XDP_P0_CH1 |
  716. ESR_INT_XDP_P0_CH0);
  717. break;
  718. case 1:
  719. mask = ESR_INT_SIGNALS_P1_BITS;
  720. val = (ESR_INT_SRDY0_P1 |
  721. ESR_INT_DET0_P1 |
  722. ESR_INT_XSRDY_P1 |
  723. ESR_INT_XDP_P1_CH3 |
  724. ESR_INT_XDP_P1_CH2 |
  725. ESR_INT_XDP_P1_CH1 |
  726. ESR_INT_XDP_P1_CH0);
  727. break;
  728. default:
  729. return -EINVAL;
  730. }
  731. if ((sig & mask) != val) {
  732. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  733. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  734. return 0;
  735. }
  736. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  737. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  738. return -ENODEV;
  739. }
  740. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  741. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  742. return 0;
  743. }
  744. static int serdes_init_1g(struct niu *np)
  745. {
  746. u64 val;
  747. val = nr64(ENET_SERDES_1_PLL_CFG);
  748. val &= ~ENET_SERDES_PLL_FBDIV2;
  749. switch (np->port) {
  750. case 0:
  751. val |= ENET_SERDES_PLL_HRATE0;
  752. break;
  753. case 1:
  754. val |= ENET_SERDES_PLL_HRATE1;
  755. break;
  756. case 2:
  757. val |= ENET_SERDES_PLL_HRATE2;
  758. break;
  759. case 3:
  760. val |= ENET_SERDES_PLL_HRATE3;
  761. break;
  762. default:
  763. return -EINVAL;
  764. }
  765. nw64(ENET_SERDES_1_PLL_CFG, val);
  766. return 0;
  767. }
  768. static int serdes_init_1g_serdes(struct niu *np)
  769. {
  770. struct niu_link_config *lp = &np->link_config;
  771. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  772. u64 ctrl_val, test_cfg_val, sig, mask, val;
  773. int err;
  774. u64 reset_val, val_rd;
  775. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  776. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  777. ENET_SERDES_PLL_FBDIV0;
  778. switch (np->port) {
  779. case 0:
  780. reset_val = ENET_SERDES_RESET_0;
  781. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  782. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  783. pll_cfg = ENET_SERDES_0_PLL_CFG;
  784. break;
  785. case 1:
  786. reset_val = ENET_SERDES_RESET_1;
  787. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  788. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  789. pll_cfg = ENET_SERDES_1_PLL_CFG;
  790. break;
  791. default:
  792. return -EINVAL;
  793. }
  794. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  795. ENET_SERDES_CTRL_SDET_1 |
  796. ENET_SERDES_CTRL_SDET_2 |
  797. ENET_SERDES_CTRL_SDET_3 |
  798. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  799. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  802. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  803. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  806. test_cfg_val = 0;
  807. if (lp->loopback_mode == LOOPBACK_PHY) {
  808. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  809. ENET_SERDES_TEST_MD_0_SHIFT) |
  810. (ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_1_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_2_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_3_SHIFT));
  816. }
  817. nw64(ENET_SERDES_RESET, reset_val);
  818. mdelay(20);
  819. val_rd = nr64(ENET_SERDES_RESET);
  820. val_rd &= ~reset_val;
  821. nw64(pll_cfg, val);
  822. nw64(ctrl_reg, ctrl_val);
  823. nw64(test_cfg_reg, test_cfg_val);
  824. nw64(ENET_SERDES_RESET, val_rd);
  825. mdelay(2000);
  826. /* Initialize all 4 lanes of the SERDES. */
  827. for (i = 0; i < 4; i++) {
  828. u32 rxtx_ctrl, glue0;
  829. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  830. if (err)
  831. return err;
  832. err = esr_read_glue0(np, i, &glue0);
  833. if (err)
  834. return err;
  835. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  836. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  837. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  838. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  839. ESR_GLUE_CTRL0_THCNT |
  840. ESR_GLUE_CTRL0_BLTIME);
  841. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  842. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  843. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  844. (BLTIME_300_CYCLES <<
  845. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  846. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  847. if (err)
  848. return err;
  849. err = esr_write_glue0(np, i, glue0);
  850. if (err)
  851. return err;
  852. }
  853. sig = nr64(ESR_INT_SIGNALS);
  854. switch (np->port) {
  855. case 0:
  856. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  857. mask = val;
  858. break;
  859. case 1:
  860. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  861. mask = val;
  862. break;
  863. default:
  864. return -EINVAL;
  865. }
  866. if ((sig & mask) != val) {
  867. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  868. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  869. return -ENODEV;
  870. }
  871. return 0;
  872. }
  873. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  874. {
  875. struct niu_link_config *lp = &np->link_config;
  876. int link_up;
  877. u64 val;
  878. u16 current_speed;
  879. unsigned long flags;
  880. u8 current_duplex;
  881. link_up = 0;
  882. current_speed = SPEED_INVALID;
  883. current_duplex = DUPLEX_INVALID;
  884. spin_lock_irqsave(&np->lock, flags);
  885. val = nr64_pcs(PCS_MII_STAT);
  886. if (val & PCS_MII_STAT_LINK_STATUS) {
  887. link_up = 1;
  888. current_speed = SPEED_1000;
  889. current_duplex = DUPLEX_FULL;
  890. }
  891. lp->active_speed = current_speed;
  892. lp->active_duplex = current_duplex;
  893. spin_unlock_irqrestore(&np->lock, flags);
  894. *link_up_p = link_up;
  895. return 0;
  896. }
  897. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  898. {
  899. unsigned long flags;
  900. struct niu_link_config *lp = &np->link_config;
  901. int link_up = 0;
  902. int link_ok = 1;
  903. u64 val, val2;
  904. u16 current_speed;
  905. u8 current_duplex;
  906. if (!(np->flags & NIU_FLAGS_10G))
  907. return link_status_1g_serdes(np, link_up_p);
  908. current_speed = SPEED_INVALID;
  909. current_duplex = DUPLEX_INVALID;
  910. spin_lock_irqsave(&np->lock, flags);
  911. val = nr64_xpcs(XPCS_STATUS(0));
  912. val2 = nr64_mac(XMAC_INTER2);
  913. if (val2 & 0x01000000)
  914. link_ok = 0;
  915. if ((val & 0x1000ULL) && link_ok) {
  916. link_up = 1;
  917. current_speed = SPEED_10000;
  918. current_duplex = DUPLEX_FULL;
  919. }
  920. lp->active_speed = current_speed;
  921. lp->active_duplex = current_duplex;
  922. spin_unlock_irqrestore(&np->lock, flags);
  923. *link_up_p = link_up;
  924. return 0;
  925. }
  926. static int link_status_mii(struct niu *np, int *link_up_p)
  927. {
  928. struct niu_link_config *lp = &np->link_config;
  929. int err;
  930. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  931. int supported, advertising, active_speed, active_duplex;
  932. err = mii_read(np, np->phy_addr, MII_BMCR);
  933. if (unlikely(err < 0))
  934. return err;
  935. bmcr = err;
  936. err = mii_read(np, np->phy_addr, MII_BMSR);
  937. if (unlikely(err < 0))
  938. return err;
  939. bmsr = err;
  940. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  941. if (unlikely(err < 0))
  942. return err;
  943. advert = err;
  944. err = mii_read(np, np->phy_addr, MII_LPA);
  945. if (unlikely(err < 0))
  946. return err;
  947. lpa = err;
  948. if (likely(bmsr & BMSR_ESTATEN)) {
  949. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  950. if (unlikely(err < 0))
  951. return err;
  952. estatus = err;
  953. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  954. if (unlikely(err < 0))
  955. return err;
  956. ctrl1000 = err;
  957. err = mii_read(np, np->phy_addr, MII_STAT1000);
  958. if (unlikely(err < 0))
  959. return err;
  960. stat1000 = err;
  961. } else
  962. estatus = ctrl1000 = stat1000 = 0;
  963. supported = 0;
  964. if (bmsr & BMSR_ANEGCAPABLE)
  965. supported |= SUPPORTED_Autoneg;
  966. if (bmsr & BMSR_10HALF)
  967. supported |= SUPPORTED_10baseT_Half;
  968. if (bmsr & BMSR_10FULL)
  969. supported |= SUPPORTED_10baseT_Full;
  970. if (bmsr & BMSR_100HALF)
  971. supported |= SUPPORTED_100baseT_Half;
  972. if (bmsr & BMSR_100FULL)
  973. supported |= SUPPORTED_100baseT_Full;
  974. if (estatus & ESTATUS_1000_THALF)
  975. supported |= SUPPORTED_1000baseT_Half;
  976. if (estatus & ESTATUS_1000_TFULL)
  977. supported |= SUPPORTED_1000baseT_Full;
  978. lp->supported = supported;
  979. advertising = 0;
  980. if (advert & ADVERTISE_10HALF)
  981. advertising |= ADVERTISED_10baseT_Half;
  982. if (advert & ADVERTISE_10FULL)
  983. advertising |= ADVERTISED_10baseT_Full;
  984. if (advert & ADVERTISE_100HALF)
  985. advertising |= ADVERTISED_100baseT_Half;
  986. if (advert & ADVERTISE_100FULL)
  987. advertising |= ADVERTISED_100baseT_Full;
  988. if (ctrl1000 & ADVERTISE_1000HALF)
  989. advertising |= ADVERTISED_1000baseT_Half;
  990. if (ctrl1000 & ADVERTISE_1000FULL)
  991. advertising |= ADVERTISED_1000baseT_Full;
  992. if (bmcr & BMCR_ANENABLE) {
  993. int neg, neg1000;
  994. lp->active_autoneg = 1;
  995. advertising |= ADVERTISED_Autoneg;
  996. neg = advert & lpa;
  997. neg1000 = (ctrl1000 << 2) & stat1000;
  998. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  999. active_speed = SPEED_1000;
  1000. else if (neg & LPA_100)
  1001. active_speed = SPEED_100;
  1002. else if (neg & (LPA_10HALF | LPA_10FULL))
  1003. active_speed = SPEED_10;
  1004. else
  1005. active_speed = SPEED_INVALID;
  1006. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1007. active_duplex = DUPLEX_FULL;
  1008. else if (active_speed != SPEED_INVALID)
  1009. active_duplex = DUPLEX_HALF;
  1010. else
  1011. active_duplex = DUPLEX_INVALID;
  1012. } else {
  1013. lp->active_autoneg = 0;
  1014. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1015. active_speed = SPEED_1000;
  1016. else if (bmcr & BMCR_SPEED100)
  1017. active_speed = SPEED_100;
  1018. else
  1019. active_speed = SPEED_10;
  1020. if (bmcr & BMCR_FULLDPLX)
  1021. active_duplex = DUPLEX_FULL;
  1022. else
  1023. active_duplex = DUPLEX_HALF;
  1024. }
  1025. lp->active_advertising = advertising;
  1026. lp->active_speed = active_speed;
  1027. lp->active_duplex = active_duplex;
  1028. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1029. return 0;
  1030. }
  1031. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1032. {
  1033. struct niu_link_config *lp = &np->link_config;
  1034. u16 current_speed, bmsr;
  1035. unsigned long flags;
  1036. u8 current_duplex;
  1037. int err, link_up;
  1038. link_up = 0;
  1039. current_speed = SPEED_INVALID;
  1040. current_duplex = DUPLEX_INVALID;
  1041. spin_lock_irqsave(&np->lock, flags);
  1042. err = -EINVAL;
  1043. err = mii_read(np, np->phy_addr, MII_BMSR);
  1044. if (err < 0)
  1045. goto out;
  1046. bmsr = err;
  1047. if (bmsr & BMSR_LSTATUS) {
  1048. u16 adv, lpa, common, estat;
  1049. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1050. if (err < 0)
  1051. goto out;
  1052. adv = err;
  1053. err = mii_read(np, np->phy_addr, MII_LPA);
  1054. if (err < 0)
  1055. goto out;
  1056. lpa = err;
  1057. common = adv & lpa;
  1058. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1059. if (err < 0)
  1060. goto out;
  1061. estat = err;
  1062. link_up = 1;
  1063. current_speed = SPEED_1000;
  1064. current_duplex = DUPLEX_FULL;
  1065. }
  1066. lp->active_speed = current_speed;
  1067. lp->active_duplex = current_duplex;
  1068. err = 0;
  1069. out:
  1070. spin_unlock_irqrestore(&np->lock, flags);
  1071. *link_up_p = link_up;
  1072. return err;
  1073. }
  1074. static int link_status_1g(struct niu *np, int *link_up_p)
  1075. {
  1076. struct niu_link_config *lp = &np->link_config;
  1077. unsigned long flags;
  1078. int err;
  1079. spin_lock_irqsave(&np->lock, flags);
  1080. err = link_status_mii(np, link_up_p);
  1081. lp->supported |= SUPPORTED_TP;
  1082. lp->active_advertising |= ADVERTISED_TP;
  1083. spin_unlock_irqrestore(&np->lock, flags);
  1084. return err;
  1085. }
  1086. static int bcm8704_reset(struct niu *np)
  1087. {
  1088. int err, limit;
  1089. err = mdio_read(np, np->phy_addr,
  1090. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1091. if (err < 0 || err == 0xffff)
  1092. return err;
  1093. err |= BMCR_RESET;
  1094. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1095. MII_BMCR, err);
  1096. if (err)
  1097. return err;
  1098. limit = 1000;
  1099. while (--limit >= 0) {
  1100. err = mdio_read(np, np->phy_addr,
  1101. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1102. if (err < 0)
  1103. return err;
  1104. if (!(err & BMCR_RESET))
  1105. break;
  1106. }
  1107. if (limit < 0) {
  1108. dev_err(np->device, PFX "Port %u PHY will not reset "
  1109. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1110. return -ENODEV;
  1111. }
  1112. return 0;
  1113. }
  1114. /* When written, certain PHY registers need to be read back twice
  1115. * in order for the bits to settle properly.
  1116. */
  1117. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1118. {
  1119. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1120. if (err < 0)
  1121. return err;
  1122. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1123. if (err < 0)
  1124. return err;
  1125. return 0;
  1126. }
  1127. static int bcm8706_init_user_dev3(struct niu *np)
  1128. {
  1129. int err;
  1130. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1131. BCM8704_USER_OPT_DIGITAL_CTRL);
  1132. if (err < 0)
  1133. return err;
  1134. err &= ~USER_ODIG_CTRL_GPIOS;
  1135. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1136. err |= USER_ODIG_CTRL_RESV2;
  1137. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1138. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1139. if (err)
  1140. return err;
  1141. mdelay(1000);
  1142. return 0;
  1143. }
  1144. static int bcm8704_init_user_dev3(struct niu *np)
  1145. {
  1146. int err;
  1147. err = mdio_write(np, np->phy_addr,
  1148. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1149. (USER_CONTROL_OPTXRST_LVL |
  1150. USER_CONTROL_OPBIASFLT_LVL |
  1151. USER_CONTROL_OBTMPFLT_LVL |
  1152. USER_CONTROL_OPPRFLT_LVL |
  1153. USER_CONTROL_OPTXFLT_LVL |
  1154. USER_CONTROL_OPRXLOS_LVL |
  1155. USER_CONTROL_OPRXFLT_LVL |
  1156. USER_CONTROL_OPTXON_LVL |
  1157. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1158. if (err)
  1159. return err;
  1160. err = mdio_write(np, np->phy_addr,
  1161. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1162. (USER_PMD_TX_CTL_XFP_CLKEN |
  1163. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1164. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1165. USER_PMD_TX_CTL_TSCK_LPWREN));
  1166. if (err)
  1167. return err;
  1168. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1169. if (err)
  1170. return err;
  1171. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1172. if (err)
  1173. return err;
  1174. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1175. BCM8704_USER_OPT_DIGITAL_CTRL);
  1176. if (err < 0)
  1177. return err;
  1178. err &= ~USER_ODIG_CTRL_GPIOS;
  1179. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1180. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1181. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1182. if (err)
  1183. return err;
  1184. mdelay(1000);
  1185. return 0;
  1186. }
  1187. static int mrvl88x2011_act_led(struct niu *np, int val)
  1188. {
  1189. int err;
  1190. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1191. MRVL88X2011_LED_8_TO_11_CTL);
  1192. if (err < 0)
  1193. return err;
  1194. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1195. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1196. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1197. MRVL88X2011_LED_8_TO_11_CTL, err);
  1198. }
  1199. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1200. {
  1201. int err;
  1202. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1203. MRVL88X2011_LED_BLINK_CTL);
  1204. if (err >= 0) {
  1205. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1206. err |= (rate << 4);
  1207. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1208. MRVL88X2011_LED_BLINK_CTL, err);
  1209. }
  1210. return err;
  1211. }
  1212. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1213. {
  1214. int err;
  1215. /* Set LED functions */
  1216. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1217. if (err)
  1218. return err;
  1219. /* led activity */
  1220. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1221. if (err)
  1222. return err;
  1223. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1224. MRVL88X2011_GENERAL_CTL);
  1225. if (err < 0)
  1226. return err;
  1227. err |= MRVL88X2011_ENA_XFPREFCLK;
  1228. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1229. MRVL88X2011_GENERAL_CTL, err);
  1230. if (err < 0)
  1231. return err;
  1232. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1233. MRVL88X2011_PMA_PMD_CTL_1);
  1234. if (err < 0)
  1235. return err;
  1236. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1237. err |= MRVL88X2011_LOOPBACK;
  1238. else
  1239. err &= ~MRVL88X2011_LOOPBACK;
  1240. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1241. MRVL88X2011_PMA_PMD_CTL_1, err);
  1242. if (err < 0)
  1243. return err;
  1244. /* Enable PMD */
  1245. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1246. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1247. }
  1248. static int xcvr_diag_bcm870x(struct niu *np)
  1249. {
  1250. u16 analog_stat0, tx_alarm_status;
  1251. int err = 0;
  1252. #if 1
  1253. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1254. MII_STAT1000);
  1255. if (err < 0)
  1256. return err;
  1257. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1258. np->port, err);
  1259. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1260. if (err < 0)
  1261. return err;
  1262. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1263. np->port, err);
  1264. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1265. MII_NWAYTEST);
  1266. if (err < 0)
  1267. return err;
  1268. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1269. np->port, err);
  1270. #endif
  1271. /* XXX dig this out it might not be so useful XXX */
  1272. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1273. BCM8704_USER_ANALOG_STATUS0);
  1274. if (err < 0)
  1275. return err;
  1276. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1277. BCM8704_USER_ANALOG_STATUS0);
  1278. if (err < 0)
  1279. return err;
  1280. analog_stat0 = err;
  1281. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1282. BCM8704_USER_TX_ALARM_STATUS);
  1283. if (err < 0)
  1284. return err;
  1285. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1286. BCM8704_USER_TX_ALARM_STATUS);
  1287. if (err < 0)
  1288. return err;
  1289. tx_alarm_status = err;
  1290. if (analog_stat0 != 0x03fc) {
  1291. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1292. pr_info(PFX "Port %u cable not connected "
  1293. "or bad cable.\n", np->port);
  1294. } else if (analog_stat0 == 0x639c) {
  1295. pr_info(PFX "Port %u optical module is bad "
  1296. "or missing.\n", np->port);
  1297. }
  1298. }
  1299. return 0;
  1300. }
  1301. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1302. {
  1303. struct niu_link_config *lp = &np->link_config;
  1304. int err;
  1305. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1306. MII_BMCR);
  1307. if (err < 0)
  1308. return err;
  1309. err &= ~BMCR_LOOPBACK;
  1310. if (lp->loopback_mode == LOOPBACK_MAC)
  1311. err |= BMCR_LOOPBACK;
  1312. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1313. MII_BMCR, err);
  1314. if (err)
  1315. return err;
  1316. return 0;
  1317. }
  1318. static int xcvr_init_10g_bcm8706(struct niu *np)
  1319. {
  1320. int err = 0;
  1321. u64 val;
  1322. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1323. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1324. return err;
  1325. val = nr64_mac(XMAC_CONFIG);
  1326. val &= ~XMAC_CONFIG_LED_POLARITY;
  1327. val |= XMAC_CONFIG_FORCE_LED_ON;
  1328. nw64_mac(XMAC_CONFIG, val);
  1329. val = nr64(MIF_CONFIG);
  1330. val |= MIF_CONFIG_INDIRECT_MODE;
  1331. nw64(MIF_CONFIG, val);
  1332. err = bcm8704_reset(np);
  1333. if (err)
  1334. return err;
  1335. err = xcvr_10g_set_lb_bcm870x(np);
  1336. if (err)
  1337. return err;
  1338. err = bcm8706_init_user_dev3(np);
  1339. if (err)
  1340. return err;
  1341. err = xcvr_diag_bcm870x(np);
  1342. if (err)
  1343. return err;
  1344. return 0;
  1345. }
  1346. static int xcvr_init_10g_bcm8704(struct niu *np)
  1347. {
  1348. int err;
  1349. err = bcm8704_reset(np);
  1350. if (err)
  1351. return err;
  1352. err = bcm8704_init_user_dev3(np);
  1353. if (err)
  1354. return err;
  1355. err = xcvr_10g_set_lb_bcm870x(np);
  1356. if (err)
  1357. return err;
  1358. err = xcvr_diag_bcm870x(np);
  1359. if (err)
  1360. return err;
  1361. return 0;
  1362. }
  1363. static int xcvr_init_10g(struct niu *np)
  1364. {
  1365. int phy_id, err;
  1366. u64 val;
  1367. val = nr64_mac(XMAC_CONFIG);
  1368. val &= ~XMAC_CONFIG_LED_POLARITY;
  1369. val |= XMAC_CONFIG_FORCE_LED_ON;
  1370. nw64_mac(XMAC_CONFIG, val);
  1371. /* XXX shared resource, lock parent XXX */
  1372. val = nr64(MIF_CONFIG);
  1373. val |= MIF_CONFIG_INDIRECT_MODE;
  1374. nw64(MIF_CONFIG, val);
  1375. phy_id = phy_decode(np->parent->port_phy, np->port);
  1376. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1377. /* handle different phy types */
  1378. switch (phy_id & NIU_PHY_ID_MASK) {
  1379. case NIU_PHY_ID_MRVL88X2011:
  1380. err = xcvr_init_10g_mrvl88x2011(np);
  1381. break;
  1382. default: /* bcom 8704 */
  1383. err = xcvr_init_10g_bcm8704(np);
  1384. break;
  1385. }
  1386. return 0;
  1387. }
  1388. static int mii_reset(struct niu *np)
  1389. {
  1390. int limit, err;
  1391. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1392. if (err)
  1393. return err;
  1394. limit = 1000;
  1395. while (--limit >= 0) {
  1396. udelay(500);
  1397. err = mii_read(np, np->phy_addr, MII_BMCR);
  1398. if (err < 0)
  1399. return err;
  1400. if (!(err & BMCR_RESET))
  1401. break;
  1402. }
  1403. if (limit < 0) {
  1404. dev_err(np->device, PFX "Port %u MII would not reset, "
  1405. "bmcr[%04x]\n", np->port, err);
  1406. return -ENODEV;
  1407. }
  1408. return 0;
  1409. }
  1410. static int xcvr_init_1g_rgmii(struct niu *np)
  1411. {
  1412. int err;
  1413. u64 val;
  1414. u16 bmcr, bmsr, estat;
  1415. val = nr64(MIF_CONFIG);
  1416. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1417. nw64(MIF_CONFIG, val);
  1418. err = mii_reset(np);
  1419. if (err)
  1420. return err;
  1421. err = mii_read(np, np->phy_addr, MII_BMSR);
  1422. if (err < 0)
  1423. return err;
  1424. bmsr = err;
  1425. estat = 0;
  1426. if (bmsr & BMSR_ESTATEN) {
  1427. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1428. if (err < 0)
  1429. return err;
  1430. estat = err;
  1431. }
  1432. bmcr = 0;
  1433. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1434. if (err)
  1435. return err;
  1436. if (bmsr & BMSR_ESTATEN) {
  1437. u16 ctrl1000 = 0;
  1438. if (estat & ESTATUS_1000_TFULL)
  1439. ctrl1000 |= ADVERTISE_1000FULL;
  1440. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1441. if (err)
  1442. return err;
  1443. }
  1444. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1445. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1446. if (err)
  1447. return err;
  1448. err = mii_read(np, np->phy_addr, MII_BMCR);
  1449. if (err < 0)
  1450. return err;
  1451. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1452. err = mii_read(np, np->phy_addr, MII_BMSR);
  1453. if (err < 0)
  1454. return err;
  1455. return 0;
  1456. }
  1457. static int mii_init_common(struct niu *np)
  1458. {
  1459. struct niu_link_config *lp = &np->link_config;
  1460. u16 bmcr, bmsr, adv, estat;
  1461. int err;
  1462. err = mii_reset(np);
  1463. if (err)
  1464. return err;
  1465. err = mii_read(np, np->phy_addr, MII_BMSR);
  1466. if (err < 0)
  1467. return err;
  1468. bmsr = err;
  1469. estat = 0;
  1470. if (bmsr & BMSR_ESTATEN) {
  1471. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1472. if (err < 0)
  1473. return err;
  1474. estat = err;
  1475. }
  1476. bmcr = 0;
  1477. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1478. if (err)
  1479. return err;
  1480. if (lp->loopback_mode == LOOPBACK_MAC) {
  1481. bmcr |= BMCR_LOOPBACK;
  1482. if (lp->active_speed == SPEED_1000)
  1483. bmcr |= BMCR_SPEED1000;
  1484. if (lp->active_duplex == DUPLEX_FULL)
  1485. bmcr |= BMCR_FULLDPLX;
  1486. }
  1487. if (lp->loopback_mode == LOOPBACK_PHY) {
  1488. u16 aux;
  1489. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1490. BCM5464R_AUX_CTL_WRITE_1);
  1491. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1492. if (err)
  1493. return err;
  1494. }
  1495. if (lp->autoneg) {
  1496. u16 ctrl1000;
  1497. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1498. if ((bmsr & BMSR_10HALF) &&
  1499. (lp->advertising & ADVERTISED_10baseT_Half))
  1500. adv |= ADVERTISE_10HALF;
  1501. if ((bmsr & BMSR_10FULL) &&
  1502. (lp->advertising & ADVERTISED_10baseT_Full))
  1503. adv |= ADVERTISE_10FULL;
  1504. if ((bmsr & BMSR_100HALF) &&
  1505. (lp->advertising & ADVERTISED_100baseT_Half))
  1506. adv |= ADVERTISE_100HALF;
  1507. if ((bmsr & BMSR_100FULL) &&
  1508. (lp->advertising & ADVERTISED_100baseT_Full))
  1509. adv |= ADVERTISE_100FULL;
  1510. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1511. if (err)
  1512. return err;
  1513. if (likely(bmsr & BMSR_ESTATEN)) {
  1514. ctrl1000 = 0;
  1515. if ((estat & ESTATUS_1000_THALF) &&
  1516. (lp->advertising & ADVERTISED_1000baseT_Half))
  1517. ctrl1000 |= ADVERTISE_1000HALF;
  1518. if ((estat & ESTATUS_1000_TFULL) &&
  1519. (lp->advertising & ADVERTISED_1000baseT_Full))
  1520. ctrl1000 |= ADVERTISE_1000FULL;
  1521. err = mii_write(np, np->phy_addr,
  1522. MII_CTRL1000, ctrl1000);
  1523. if (err)
  1524. return err;
  1525. }
  1526. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1527. } else {
  1528. /* !lp->autoneg */
  1529. int fulldpx;
  1530. if (lp->duplex == DUPLEX_FULL) {
  1531. bmcr |= BMCR_FULLDPLX;
  1532. fulldpx = 1;
  1533. } else if (lp->duplex == DUPLEX_HALF)
  1534. fulldpx = 0;
  1535. else
  1536. return -EINVAL;
  1537. if (lp->speed == SPEED_1000) {
  1538. /* if X-full requested while not supported, or
  1539. X-half requested while not supported... */
  1540. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1541. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1542. return -EINVAL;
  1543. bmcr |= BMCR_SPEED1000;
  1544. } else if (lp->speed == SPEED_100) {
  1545. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1546. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1547. return -EINVAL;
  1548. bmcr |= BMCR_SPEED100;
  1549. } else if (lp->speed == SPEED_10) {
  1550. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1551. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1552. return -EINVAL;
  1553. } else
  1554. return -EINVAL;
  1555. }
  1556. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1557. if (err)
  1558. return err;
  1559. #if 0
  1560. err = mii_read(np, np->phy_addr, MII_BMCR);
  1561. if (err < 0)
  1562. return err;
  1563. bmcr = err;
  1564. err = mii_read(np, np->phy_addr, MII_BMSR);
  1565. if (err < 0)
  1566. return err;
  1567. bmsr = err;
  1568. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1569. np->port, bmcr, bmsr);
  1570. #endif
  1571. return 0;
  1572. }
  1573. static int xcvr_init_1g(struct niu *np)
  1574. {
  1575. u64 val;
  1576. /* XXX shared resource, lock parent XXX */
  1577. val = nr64(MIF_CONFIG);
  1578. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1579. nw64(MIF_CONFIG, val);
  1580. return mii_init_common(np);
  1581. }
  1582. static int niu_xcvr_init(struct niu *np)
  1583. {
  1584. const struct niu_phy_ops *ops = np->phy_ops;
  1585. int err;
  1586. err = 0;
  1587. if (ops->xcvr_init)
  1588. err = ops->xcvr_init(np);
  1589. return err;
  1590. }
  1591. static int niu_serdes_init(struct niu *np)
  1592. {
  1593. const struct niu_phy_ops *ops = np->phy_ops;
  1594. int err;
  1595. err = 0;
  1596. if (ops->serdes_init)
  1597. err = ops->serdes_init(np);
  1598. return err;
  1599. }
  1600. static void niu_init_xif(struct niu *);
  1601. static void niu_handle_led(struct niu *, int status);
  1602. static int niu_link_status_common(struct niu *np, int link_up)
  1603. {
  1604. struct niu_link_config *lp = &np->link_config;
  1605. struct net_device *dev = np->dev;
  1606. unsigned long flags;
  1607. if (!netif_carrier_ok(dev) && link_up) {
  1608. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1609. dev->name,
  1610. (lp->active_speed == SPEED_10000 ?
  1611. "10Gb/sec" :
  1612. (lp->active_speed == SPEED_1000 ?
  1613. "1Gb/sec" :
  1614. (lp->active_speed == SPEED_100 ?
  1615. "100Mbit/sec" : "10Mbit/sec"))),
  1616. (lp->active_duplex == DUPLEX_FULL ?
  1617. "full" : "half"));
  1618. spin_lock_irqsave(&np->lock, flags);
  1619. niu_init_xif(np);
  1620. niu_handle_led(np, 1);
  1621. spin_unlock_irqrestore(&np->lock, flags);
  1622. netif_carrier_on(dev);
  1623. } else if (netif_carrier_ok(dev) && !link_up) {
  1624. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1625. spin_lock_irqsave(&np->lock, flags);
  1626. niu_handle_led(np, 0);
  1627. spin_unlock_irqrestore(&np->lock, flags);
  1628. netif_carrier_off(dev);
  1629. }
  1630. return 0;
  1631. }
  1632. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1633. {
  1634. int err, link_up, pma_status, pcs_status;
  1635. link_up = 0;
  1636. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1637. MRVL88X2011_10G_PMD_STATUS_2);
  1638. if (err < 0)
  1639. goto out;
  1640. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1641. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1642. MRVL88X2011_PMA_PMD_STATUS_1);
  1643. if (err < 0)
  1644. goto out;
  1645. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1646. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1647. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1648. MRVL88X2011_PMA_PMD_STATUS_1);
  1649. if (err < 0)
  1650. goto out;
  1651. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1652. MRVL88X2011_PMA_PMD_STATUS_1);
  1653. if (err < 0)
  1654. goto out;
  1655. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1656. /* Check XGXS Register : 4.0018.[0-3,12] */
  1657. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1658. MRVL88X2011_10G_XGXS_LANE_STAT);
  1659. if (err < 0)
  1660. goto out;
  1661. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1662. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1663. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1664. 0x800))
  1665. link_up = (pma_status && pcs_status) ? 1 : 0;
  1666. np->link_config.active_speed = SPEED_10000;
  1667. np->link_config.active_duplex = DUPLEX_FULL;
  1668. err = 0;
  1669. out:
  1670. mrvl88x2011_act_led(np, (link_up ?
  1671. MRVL88X2011_LED_CTL_PCS_ACT :
  1672. MRVL88X2011_LED_CTL_OFF));
  1673. *link_up_p = link_up;
  1674. return err;
  1675. }
  1676. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1677. {
  1678. int err, link_up;
  1679. link_up = 0;
  1680. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1681. BCM8704_PMD_RCV_SIGDET);
  1682. if (err < 0 || err == 0xffff)
  1683. goto out;
  1684. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1685. err = 0;
  1686. goto out;
  1687. }
  1688. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1689. BCM8704_PCS_10G_R_STATUS);
  1690. if (err < 0)
  1691. goto out;
  1692. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1693. err = 0;
  1694. goto out;
  1695. }
  1696. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1697. BCM8704_PHYXS_XGXS_LANE_STAT);
  1698. if (err < 0)
  1699. goto out;
  1700. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1701. PHYXS_XGXS_LANE_STAT_MAGIC |
  1702. PHYXS_XGXS_LANE_STAT_PATTEST |
  1703. PHYXS_XGXS_LANE_STAT_LANE3 |
  1704. PHYXS_XGXS_LANE_STAT_LANE2 |
  1705. PHYXS_XGXS_LANE_STAT_LANE1 |
  1706. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1707. err = 0;
  1708. np->link_config.active_speed = SPEED_INVALID;
  1709. np->link_config.active_duplex = DUPLEX_INVALID;
  1710. goto out;
  1711. }
  1712. link_up = 1;
  1713. np->link_config.active_speed = SPEED_10000;
  1714. np->link_config.active_duplex = DUPLEX_FULL;
  1715. err = 0;
  1716. out:
  1717. *link_up_p = link_up;
  1718. return err;
  1719. }
  1720. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1721. {
  1722. int err, link_up;
  1723. link_up = 0;
  1724. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1725. BCM8704_PMD_RCV_SIGDET);
  1726. if (err < 0)
  1727. goto out;
  1728. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1729. err = 0;
  1730. goto out;
  1731. }
  1732. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1733. BCM8704_PCS_10G_R_STATUS);
  1734. if (err < 0)
  1735. goto out;
  1736. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1737. err = 0;
  1738. goto out;
  1739. }
  1740. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1741. BCM8704_PHYXS_XGXS_LANE_STAT);
  1742. if (err < 0)
  1743. goto out;
  1744. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1745. PHYXS_XGXS_LANE_STAT_MAGIC |
  1746. PHYXS_XGXS_LANE_STAT_LANE3 |
  1747. PHYXS_XGXS_LANE_STAT_LANE2 |
  1748. PHYXS_XGXS_LANE_STAT_LANE1 |
  1749. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1750. err = 0;
  1751. goto out;
  1752. }
  1753. link_up = 1;
  1754. np->link_config.active_speed = SPEED_10000;
  1755. np->link_config.active_duplex = DUPLEX_FULL;
  1756. err = 0;
  1757. out:
  1758. *link_up_p = link_up;
  1759. return err;
  1760. }
  1761. static int link_status_10g(struct niu *np, int *link_up_p)
  1762. {
  1763. unsigned long flags;
  1764. int err = -EINVAL;
  1765. spin_lock_irqsave(&np->lock, flags);
  1766. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1767. int phy_id;
  1768. phy_id = phy_decode(np->parent->port_phy, np->port);
  1769. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1770. /* handle different phy types */
  1771. switch (phy_id & NIU_PHY_ID_MASK) {
  1772. case NIU_PHY_ID_MRVL88X2011:
  1773. err = link_status_10g_mrvl(np, link_up_p);
  1774. break;
  1775. default: /* bcom 8704 */
  1776. err = link_status_10g_bcom(np, link_up_p);
  1777. break;
  1778. }
  1779. }
  1780. spin_unlock_irqrestore(&np->lock, flags);
  1781. return err;
  1782. }
  1783. static int niu_10g_phy_present(struct niu *np)
  1784. {
  1785. u64 sig, mask, val;
  1786. sig = nr64(ESR_INT_SIGNALS);
  1787. switch (np->port) {
  1788. case 0:
  1789. mask = ESR_INT_SIGNALS_P0_BITS;
  1790. val = (ESR_INT_SRDY0_P0 |
  1791. ESR_INT_DET0_P0 |
  1792. ESR_INT_XSRDY_P0 |
  1793. ESR_INT_XDP_P0_CH3 |
  1794. ESR_INT_XDP_P0_CH2 |
  1795. ESR_INT_XDP_P0_CH1 |
  1796. ESR_INT_XDP_P0_CH0);
  1797. break;
  1798. case 1:
  1799. mask = ESR_INT_SIGNALS_P1_BITS;
  1800. val = (ESR_INT_SRDY0_P1 |
  1801. ESR_INT_DET0_P1 |
  1802. ESR_INT_XSRDY_P1 |
  1803. ESR_INT_XDP_P1_CH3 |
  1804. ESR_INT_XDP_P1_CH2 |
  1805. ESR_INT_XDP_P1_CH1 |
  1806. ESR_INT_XDP_P1_CH0);
  1807. break;
  1808. default:
  1809. return 0;
  1810. }
  1811. if ((sig & mask) != val)
  1812. return 0;
  1813. return 1;
  1814. }
  1815. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1816. {
  1817. unsigned long flags;
  1818. int err = 0;
  1819. int phy_present;
  1820. int phy_present_prev;
  1821. spin_lock_irqsave(&np->lock, flags);
  1822. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1823. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1824. 1 : 0;
  1825. phy_present = niu_10g_phy_present(np);
  1826. if (phy_present != phy_present_prev) {
  1827. /* state change */
  1828. if (phy_present) {
  1829. /* A NEM was just plugged in */
  1830. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1831. if (np->phy_ops->xcvr_init)
  1832. err = np->phy_ops->xcvr_init(np);
  1833. if (err) {
  1834. err = mdio_read(np, np->phy_addr,
  1835. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1836. if (err == 0xffff) {
  1837. /* No mdio, back-to-back XAUI */
  1838. goto out;
  1839. }
  1840. /* debounce */
  1841. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1842. }
  1843. } else {
  1844. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1845. *link_up_p = 0;
  1846. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1847. np->dev->name);
  1848. }
  1849. }
  1850. out:
  1851. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1852. err = link_status_10g_bcm8706(np, link_up_p);
  1853. if (err == 0xffff) {
  1854. /* No mdio, back-to-back XAUI: it is C10NEM */
  1855. *link_up_p = 1;
  1856. np->link_config.active_speed = SPEED_10000;
  1857. np->link_config.active_duplex = DUPLEX_FULL;
  1858. }
  1859. }
  1860. }
  1861. spin_unlock_irqrestore(&np->lock, flags);
  1862. return 0;
  1863. }
  1864. static int niu_link_status(struct niu *np, int *link_up_p)
  1865. {
  1866. const struct niu_phy_ops *ops = np->phy_ops;
  1867. int err;
  1868. err = 0;
  1869. if (ops->link_status)
  1870. err = ops->link_status(np, link_up_p);
  1871. return err;
  1872. }
  1873. static void niu_timer(unsigned long __opaque)
  1874. {
  1875. struct niu *np = (struct niu *) __opaque;
  1876. unsigned long off;
  1877. int err, link_up;
  1878. err = niu_link_status(np, &link_up);
  1879. if (!err)
  1880. niu_link_status_common(np, link_up);
  1881. if (netif_carrier_ok(np->dev))
  1882. off = 5 * HZ;
  1883. else
  1884. off = 1 * HZ;
  1885. np->timer.expires = jiffies + off;
  1886. add_timer(&np->timer);
  1887. }
  1888. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1889. .serdes_init = serdes_init_10g_serdes,
  1890. .link_status = link_status_10g_serdes,
  1891. };
  1892. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1893. .serdes_init = serdes_init_niu_10g_serdes,
  1894. .link_status = link_status_10g_serdes,
  1895. };
  1896. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1897. .serdes_init = serdes_init_niu_1g_serdes,
  1898. .link_status = link_status_1g_serdes,
  1899. };
  1900. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1901. .xcvr_init = xcvr_init_1g_rgmii,
  1902. .link_status = link_status_1g_rgmii,
  1903. };
  1904. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1905. .serdes_init = serdes_init_niu_10g_fiber,
  1906. .xcvr_init = xcvr_init_10g,
  1907. .link_status = link_status_10g,
  1908. };
  1909. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1910. .serdes_init = serdes_init_10g,
  1911. .xcvr_init = xcvr_init_10g,
  1912. .link_status = link_status_10g,
  1913. };
  1914. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1915. .serdes_init = serdes_init_10g,
  1916. .xcvr_init = xcvr_init_10g_bcm8706,
  1917. .link_status = link_status_10g_hotplug,
  1918. };
  1919. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1920. .serdes_init = serdes_init_niu_10g_fiber,
  1921. .xcvr_init = xcvr_init_10g_bcm8706,
  1922. .link_status = link_status_10g_hotplug,
  1923. };
  1924. static const struct niu_phy_ops phy_ops_10g_copper = {
  1925. .serdes_init = serdes_init_10g,
  1926. .link_status = link_status_10g, /* XXX */
  1927. };
  1928. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1929. .serdes_init = serdes_init_1g,
  1930. .xcvr_init = xcvr_init_1g,
  1931. .link_status = link_status_1g,
  1932. };
  1933. static const struct niu_phy_ops phy_ops_1g_copper = {
  1934. .xcvr_init = xcvr_init_1g,
  1935. .link_status = link_status_1g,
  1936. };
  1937. struct niu_phy_template {
  1938. const struct niu_phy_ops *ops;
  1939. u32 phy_addr_base;
  1940. };
  1941. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1942. .ops = &phy_ops_10g_fiber_niu,
  1943. .phy_addr_base = 16,
  1944. };
  1945. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1946. .ops = &phy_ops_10g_serdes_niu,
  1947. .phy_addr_base = 0,
  1948. };
  1949. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1950. .ops = &phy_ops_1g_serdes_niu,
  1951. .phy_addr_base = 0,
  1952. };
  1953. static const struct niu_phy_template phy_template_10g_fiber = {
  1954. .ops = &phy_ops_10g_fiber,
  1955. .phy_addr_base = 8,
  1956. };
  1957. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1958. .ops = &phy_ops_10g_fiber_hotplug,
  1959. .phy_addr_base = 8,
  1960. };
  1961. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1962. .ops = &phy_ops_niu_10g_hotplug,
  1963. .phy_addr_base = 8,
  1964. };
  1965. static const struct niu_phy_template phy_template_10g_copper = {
  1966. .ops = &phy_ops_10g_copper,
  1967. .phy_addr_base = 10,
  1968. };
  1969. static const struct niu_phy_template phy_template_1g_fiber = {
  1970. .ops = &phy_ops_1g_fiber,
  1971. .phy_addr_base = 0,
  1972. };
  1973. static const struct niu_phy_template phy_template_1g_copper = {
  1974. .ops = &phy_ops_1g_copper,
  1975. .phy_addr_base = 0,
  1976. };
  1977. static const struct niu_phy_template phy_template_1g_rgmii = {
  1978. .ops = &phy_ops_1g_rgmii,
  1979. .phy_addr_base = 0,
  1980. };
  1981. static const struct niu_phy_template phy_template_10g_serdes = {
  1982. .ops = &phy_ops_10g_serdes,
  1983. .phy_addr_base = 0,
  1984. };
  1985. static int niu_atca_port_num[4] = {
  1986. 0, 0, 11, 10
  1987. };
  1988. static int serdes_init_10g_serdes(struct niu *np)
  1989. {
  1990. struct niu_link_config *lp = &np->link_config;
  1991. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1992. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1993. u64 reset_val;
  1994. switch (np->port) {
  1995. case 0:
  1996. reset_val = ENET_SERDES_RESET_0;
  1997. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1998. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1999. pll_cfg = ENET_SERDES_0_PLL_CFG;
  2000. break;
  2001. case 1:
  2002. reset_val = ENET_SERDES_RESET_1;
  2003. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  2004. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  2005. pll_cfg = ENET_SERDES_1_PLL_CFG;
  2006. break;
  2007. default:
  2008. return -EINVAL;
  2009. }
  2010. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  2011. ENET_SERDES_CTRL_SDET_1 |
  2012. ENET_SERDES_CTRL_SDET_2 |
  2013. ENET_SERDES_CTRL_SDET_3 |
  2014. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  2015. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  2016. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  2017. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  2018. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  2019. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2020. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2021. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2022. test_cfg_val = 0;
  2023. if (lp->loopback_mode == LOOPBACK_PHY) {
  2024. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2025. ENET_SERDES_TEST_MD_0_SHIFT) |
  2026. (ENET_TEST_MD_PAD_LOOPBACK <<
  2027. ENET_SERDES_TEST_MD_1_SHIFT) |
  2028. (ENET_TEST_MD_PAD_LOOPBACK <<
  2029. ENET_SERDES_TEST_MD_2_SHIFT) |
  2030. (ENET_TEST_MD_PAD_LOOPBACK <<
  2031. ENET_SERDES_TEST_MD_3_SHIFT));
  2032. }
  2033. esr_reset(np);
  2034. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2035. nw64(ctrl_reg, ctrl_val);
  2036. nw64(test_cfg_reg, test_cfg_val);
  2037. /* Initialize all 4 lanes of the SERDES. */
  2038. for (i = 0; i < 4; i++) {
  2039. u32 rxtx_ctrl, glue0;
  2040. int err;
  2041. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2042. if (err)
  2043. return err;
  2044. err = esr_read_glue0(np, i, &glue0);
  2045. if (err)
  2046. return err;
  2047. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2048. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2049. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2050. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2051. ESR_GLUE_CTRL0_THCNT |
  2052. ESR_GLUE_CTRL0_BLTIME);
  2053. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2054. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2055. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2056. (BLTIME_300_CYCLES <<
  2057. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2058. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2059. if (err)
  2060. return err;
  2061. err = esr_write_glue0(np, i, glue0);
  2062. if (err)
  2063. return err;
  2064. }
  2065. sig = nr64(ESR_INT_SIGNALS);
  2066. switch (np->port) {
  2067. case 0:
  2068. mask = ESR_INT_SIGNALS_P0_BITS;
  2069. val = (ESR_INT_SRDY0_P0 |
  2070. ESR_INT_DET0_P0 |
  2071. ESR_INT_XSRDY_P0 |
  2072. ESR_INT_XDP_P0_CH3 |
  2073. ESR_INT_XDP_P0_CH2 |
  2074. ESR_INT_XDP_P0_CH1 |
  2075. ESR_INT_XDP_P0_CH0);
  2076. break;
  2077. case 1:
  2078. mask = ESR_INT_SIGNALS_P1_BITS;
  2079. val = (ESR_INT_SRDY0_P1 |
  2080. ESR_INT_DET0_P1 |
  2081. ESR_INT_XSRDY_P1 |
  2082. ESR_INT_XDP_P1_CH3 |
  2083. ESR_INT_XDP_P1_CH2 |
  2084. ESR_INT_XDP_P1_CH1 |
  2085. ESR_INT_XDP_P1_CH0);
  2086. break;
  2087. default:
  2088. return -EINVAL;
  2089. }
  2090. if ((sig & mask) != val) {
  2091. int err;
  2092. err = serdes_init_1g_serdes(np);
  2093. if (!err) {
  2094. np->flags &= ~NIU_FLAGS_10G;
  2095. np->mac_xcvr = MAC_XCVR_PCS;
  2096. } else {
  2097. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2098. np->port);
  2099. return -ENODEV;
  2100. }
  2101. }
  2102. return 0;
  2103. }
  2104. static int niu_determine_phy_disposition(struct niu *np)
  2105. {
  2106. struct niu_parent *parent = np->parent;
  2107. u8 plat_type = parent->plat_type;
  2108. const struct niu_phy_template *tp;
  2109. u32 phy_addr_off = 0;
  2110. if (plat_type == PLAT_TYPE_NIU) {
  2111. switch (np->flags &
  2112. (NIU_FLAGS_10G |
  2113. NIU_FLAGS_FIBER |
  2114. NIU_FLAGS_XCVR_SERDES)) {
  2115. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2116. /* 10G Serdes */
  2117. tp = &phy_template_niu_10g_serdes;
  2118. break;
  2119. case NIU_FLAGS_XCVR_SERDES:
  2120. /* 1G Serdes */
  2121. tp = &phy_template_niu_1g_serdes;
  2122. break;
  2123. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2124. /* 10G Fiber */
  2125. default:
  2126. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2127. tp = &phy_template_niu_10g_hotplug;
  2128. if (np->port == 0)
  2129. phy_addr_off = 8;
  2130. if (np->port == 1)
  2131. phy_addr_off = 12;
  2132. } else {
  2133. tp = &phy_template_niu_10g_fiber;
  2134. phy_addr_off += np->port;
  2135. }
  2136. break;
  2137. }
  2138. } else {
  2139. switch (np->flags &
  2140. (NIU_FLAGS_10G |
  2141. NIU_FLAGS_FIBER |
  2142. NIU_FLAGS_XCVR_SERDES)) {
  2143. case 0:
  2144. /* 1G copper */
  2145. tp = &phy_template_1g_copper;
  2146. if (plat_type == PLAT_TYPE_VF_P0)
  2147. phy_addr_off = 10;
  2148. else if (plat_type == PLAT_TYPE_VF_P1)
  2149. phy_addr_off = 26;
  2150. phy_addr_off += (np->port ^ 0x3);
  2151. break;
  2152. case NIU_FLAGS_10G:
  2153. /* 10G copper */
  2154. tp = &phy_template_10g_copper;
  2155. break;
  2156. case NIU_FLAGS_FIBER:
  2157. /* 1G fiber */
  2158. tp = &phy_template_1g_fiber;
  2159. break;
  2160. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2161. /* 10G fiber */
  2162. tp = &phy_template_10g_fiber;
  2163. if (plat_type == PLAT_TYPE_VF_P0 ||
  2164. plat_type == PLAT_TYPE_VF_P1)
  2165. phy_addr_off = 8;
  2166. phy_addr_off += np->port;
  2167. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2168. tp = &phy_template_10g_fiber_hotplug;
  2169. if (np->port == 0)
  2170. phy_addr_off = 8;
  2171. if (np->port == 1)
  2172. phy_addr_off = 12;
  2173. }
  2174. break;
  2175. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2176. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2177. case NIU_FLAGS_XCVR_SERDES:
  2178. switch(np->port) {
  2179. case 0:
  2180. case 1:
  2181. tp = &phy_template_10g_serdes;
  2182. break;
  2183. case 2:
  2184. case 3:
  2185. tp = &phy_template_1g_rgmii;
  2186. break;
  2187. default:
  2188. return -EINVAL;
  2189. break;
  2190. }
  2191. phy_addr_off = niu_atca_port_num[np->port];
  2192. break;
  2193. default:
  2194. return -EINVAL;
  2195. }
  2196. }
  2197. np->phy_ops = tp->ops;
  2198. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2199. return 0;
  2200. }
  2201. static int niu_init_link(struct niu *np)
  2202. {
  2203. struct niu_parent *parent = np->parent;
  2204. int err, ignore;
  2205. if (parent->plat_type == PLAT_TYPE_NIU) {
  2206. err = niu_xcvr_init(np);
  2207. if (err)
  2208. return err;
  2209. msleep(200);
  2210. }
  2211. err = niu_serdes_init(np);
  2212. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2213. return err;
  2214. msleep(200);
  2215. err = niu_xcvr_init(np);
  2216. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2217. niu_link_status(np, &ignore);
  2218. return 0;
  2219. }
  2220. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2221. {
  2222. u16 reg0 = addr[4] << 8 | addr[5];
  2223. u16 reg1 = addr[2] << 8 | addr[3];
  2224. u16 reg2 = addr[0] << 8 | addr[1];
  2225. if (np->flags & NIU_FLAGS_XMAC) {
  2226. nw64_mac(XMAC_ADDR0, reg0);
  2227. nw64_mac(XMAC_ADDR1, reg1);
  2228. nw64_mac(XMAC_ADDR2, reg2);
  2229. } else {
  2230. nw64_mac(BMAC_ADDR0, reg0);
  2231. nw64_mac(BMAC_ADDR1, reg1);
  2232. nw64_mac(BMAC_ADDR2, reg2);
  2233. }
  2234. }
  2235. static int niu_num_alt_addr(struct niu *np)
  2236. {
  2237. if (np->flags & NIU_FLAGS_XMAC)
  2238. return XMAC_NUM_ALT_ADDR;
  2239. else
  2240. return BMAC_NUM_ALT_ADDR;
  2241. }
  2242. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2243. {
  2244. u16 reg0 = addr[4] << 8 | addr[5];
  2245. u16 reg1 = addr[2] << 8 | addr[3];
  2246. u16 reg2 = addr[0] << 8 | addr[1];
  2247. if (index >= niu_num_alt_addr(np))
  2248. return -EINVAL;
  2249. if (np->flags & NIU_FLAGS_XMAC) {
  2250. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2251. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2252. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2253. } else {
  2254. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2255. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2256. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2257. }
  2258. return 0;
  2259. }
  2260. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2261. {
  2262. unsigned long reg;
  2263. u64 val, mask;
  2264. if (index >= niu_num_alt_addr(np))
  2265. return -EINVAL;
  2266. if (np->flags & NIU_FLAGS_XMAC) {
  2267. reg = XMAC_ADDR_CMPEN;
  2268. mask = 1 << index;
  2269. } else {
  2270. reg = BMAC_ADDR_CMPEN;
  2271. mask = 1 << (index + 1);
  2272. }
  2273. val = nr64_mac(reg);
  2274. if (on)
  2275. val |= mask;
  2276. else
  2277. val &= ~mask;
  2278. nw64_mac(reg, val);
  2279. return 0;
  2280. }
  2281. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2282. int num, int mac_pref)
  2283. {
  2284. u64 val = nr64_mac(reg);
  2285. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2286. val |= num;
  2287. if (mac_pref)
  2288. val |= HOST_INFO_MPR;
  2289. nw64_mac(reg, val);
  2290. }
  2291. static int __set_rdc_table_num(struct niu *np,
  2292. int xmac_index, int bmac_index,
  2293. int rdc_table_num, int mac_pref)
  2294. {
  2295. unsigned long reg;
  2296. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2297. return -EINVAL;
  2298. if (np->flags & NIU_FLAGS_XMAC)
  2299. reg = XMAC_HOST_INFO(xmac_index);
  2300. else
  2301. reg = BMAC_HOST_INFO(bmac_index);
  2302. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2303. return 0;
  2304. }
  2305. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2306. int mac_pref)
  2307. {
  2308. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2309. }
  2310. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2311. int mac_pref)
  2312. {
  2313. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2314. }
  2315. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2316. int table_num, int mac_pref)
  2317. {
  2318. if (idx >= niu_num_alt_addr(np))
  2319. return -EINVAL;
  2320. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2321. }
  2322. static u64 vlan_entry_set_parity(u64 reg_val)
  2323. {
  2324. u64 port01_mask;
  2325. u64 port23_mask;
  2326. port01_mask = 0x00ff;
  2327. port23_mask = 0xff00;
  2328. if (hweight64(reg_val & port01_mask) & 1)
  2329. reg_val |= ENET_VLAN_TBL_PARITY0;
  2330. else
  2331. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2332. if (hweight64(reg_val & port23_mask) & 1)
  2333. reg_val |= ENET_VLAN_TBL_PARITY1;
  2334. else
  2335. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2336. return reg_val;
  2337. }
  2338. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2339. int port, int vpr, int rdc_table)
  2340. {
  2341. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2342. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2343. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2344. ENET_VLAN_TBL_SHIFT(port));
  2345. if (vpr)
  2346. reg_val |= (ENET_VLAN_TBL_VPR <<
  2347. ENET_VLAN_TBL_SHIFT(port));
  2348. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2349. reg_val = vlan_entry_set_parity(reg_val);
  2350. nw64(ENET_VLAN_TBL(index), reg_val);
  2351. }
  2352. static void vlan_tbl_clear(struct niu *np)
  2353. {
  2354. int i;
  2355. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2356. nw64(ENET_VLAN_TBL(i), 0);
  2357. }
  2358. static int tcam_wait_bit(struct niu *np, u64 bit)
  2359. {
  2360. int limit = 1000;
  2361. while (--limit > 0) {
  2362. if (nr64(TCAM_CTL) & bit)
  2363. break;
  2364. udelay(1);
  2365. }
  2366. if (limit <= 0)
  2367. return -ENODEV;
  2368. return 0;
  2369. }
  2370. static int tcam_flush(struct niu *np, int index)
  2371. {
  2372. nw64(TCAM_KEY_0, 0x00);
  2373. nw64(TCAM_KEY_MASK_0, 0xff);
  2374. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2375. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2376. }
  2377. #if 0
  2378. static int tcam_read(struct niu *np, int index,
  2379. u64 *key, u64 *mask)
  2380. {
  2381. int err;
  2382. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2383. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2384. if (!err) {
  2385. key[0] = nr64(TCAM_KEY_0);
  2386. key[1] = nr64(TCAM_KEY_1);
  2387. key[2] = nr64(TCAM_KEY_2);
  2388. key[3] = nr64(TCAM_KEY_3);
  2389. mask[0] = nr64(TCAM_KEY_MASK_0);
  2390. mask[1] = nr64(TCAM_KEY_MASK_1);
  2391. mask[2] = nr64(TCAM_KEY_MASK_2);
  2392. mask[3] = nr64(TCAM_KEY_MASK_3);
  2393. }
  2394. return err;
  2395. }
  2396. #endif
  2397. static int tcam_write(struct niu *np, int index,
  2398. u64 *key, u64 *mask)
  2399. {
  2400. nw64(TCAM_KEY_0, key[0]);
  2401. nw64(TCAM_KEY_1, key[1]);
  2402. nw64(TCAM_KEY_2, key[2]);
  2403. nw64(TCAM_KEY_3, key[3]);
  2404. nw64(TCAM_KEY_MASK_0, mask[0]);
  2405. nw64(TCAM_KEY_MASK_1, mask[1]);
  2406. nw64(TCAM_KEY_MASK_2, mask[2]);
  2407. nw64(TCAM_KEY_MASK_3, mask[3]);
  2408. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2409. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2410. }
  2411. #if 0
  2412. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2413. {
  2414. int err;
  2415. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2416. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2417. if (!err)
  2418. *data = nr64(TCAM_KEY_1);
  2419. return err;
  2420. }
  2421. #endif
  2422. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2423. {
  2424. nw64(TCAM_KEY_1, assoc_data);
  2425. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2426. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2427. }
  2428. static void tcam_enable(struct niu *np, int on)
  2429. {
  2430. u64 val = nr64(FFLP_CFG_1);
  2431. if (on)
  2432. val &= ~FFLP_CFG_1_TCAM_DIS;
  2433. else
  2434. val |= FFLP_CFG_1_TCAM_DIS;
  2435. nw64(FFLP_CFG_1, val);
  2436. }
  2437. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2438. {
  2439. u64 val = nr64(FFLP_CFG_1);
  2440. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2441. FFLP_CFG_1_CAMLAT |
  2442. FFLP_CFG_1_CAMRATIO);
  2443. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2444. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2445. nw64(FFLP_CFG_1, val);
  2446. val = nr64(FFLP_CFG_1);
  2447. val |= FFLP_CFG_1_FFLPINITDONE;
  2448. nw64(FFLP_CFG_1, val);
  2449. }
  2450. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2451. int on)
  2452. {
  2453. unsigned long reg;
  2454. u64 val;
  2455. if (class < CLASS_CODE_ETHERTYPE1 ||
  2456. class > CLASS_CODE_ETHERTYPE2)
  2457. return -EINVAL;
  2458. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2459. val = nr64(reg);
  2460. if (on)
  2461. val |= L2_CLS_VLD;
  2462. else
  2463. val &= ~L2_CLS_VLD;
  2464. nw64(reg, val);
  2465. return 0;
  2466. }
  2467. #if 0
  2468. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2469. u64 ether_type)
  2470. {
  2471. unsigned long reg;
  2472. u64 val;
  2473. if (class < CLASS_CODE_ETHERTYPE1 ||
  2474. class > CLASS_CODE_ETHERTYPE2 ||
  2475. (ether_type & ~(u64)0xffff) != 0)
  2476. return -EINVAL;
  2477. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2478. val = nr64(reg);
  2479. val &= ~L2_CLS_ETYPE;
  2480. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2481. nw64(reg, val);
  2482. return 0;
  2483. }
  2484. #endif
  2485. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2486. int on)
  2487. {
  2488. unsigned long reg;
  2489. u64 val;
  2490. if (class < CLASS_CODE_USER_PROG1 ||
  2491. class > CLASS_CODE_USER_PROG4)
  2492. return -EINVAL;
  2493. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2494. val = nr64(reg);
  2495. if (on)
  2496. val |= L3_CLS_VALID;
  2497. else
  2498. val &= ~L3_CLS_VALID;
  2499. nw64(reg, val);
  2500. return 0;
  2501. }
  2502. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2503. int ipv6, u64 protocol_id,
  2504. u64 tos_mask, u64 tos_val)
  2505. {
  2506. unsigned long reg;
  2507. u64 val;
  2508. if (class < CLASS_CODE_USER_PROG1 ||
  2509. class > CLASS_CODE_USER_PROG4 ||
  2510. (protocol_id & ~(u64)0xff) != 0 ||
  2511. (tos_mask & ~(u64)0xff) != 0 ||
  2512. (tos_val & ~(u64)0xff) != 0)
  2513. return -EINVAL;
  2514. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2515. val = nr64(reg);
  2516. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2517. L3_CLS_TOSMASK | L3_CLS_TOS);
  2518. if (ipv6)
  2519. val |= L3_CLS_IPVER;
  2520. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2521. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2522. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2523. nw64(reg, val);
  2524. return 0;
  2525. }
  2526. static int tcam_early_init(struct niu *np)
  2527. {
  2528. unsigned long i;
  2529. int err;
  2530. tcam_enable(np, 0);
  2531. tcam_set_lat_and_ratio(np,
  2532. DEFAULT_TCAM_LATENCY,
  2533. DEFAULT_TCAM_ACCESS_RATIO);
  2534. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2535. err = tcam_user_eth_class_enable(np, i, 0);
  2536. if (err)
  2537. return err;
  2538. }
  2539. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2540. err = tcam_user_ip_class_enable(np, i, 0);
  2541. if (err)
  2542. return err;
  2543. }
  2544. return 0;
  2545. }
  2546. static int tcam_flush_all(struct niu *np)
  2547. {
  2548. unsigned long i;
  2549. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2550. int err = tcam_flush(np, i);
  2551. if (err)
  2552. return err;
  2553. }
  2554. return 0;
  2555. }
  2556. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2557. {
  2558. return ((u64)index | (num_entries == 1 ?
  2559. HASH_TBL_ADDR_AUTOINC : 0));
  2560. }
  2561. #if 0
  2562. static int hash_read(struct niu *np, unsigned long partition,
  2563. unsigned long index, unsigned long num_entries,
  2564. u64 *data)
  2565. {
  2566. u64 val = hash_addr_regval(index, num_entries);
  2567. unsigned long i;
  2568. if (partition >= FCRAM_NUM_PARTITIONS ||
  2569. index + num_entries > FCRAM_SIZE)
  2570. return -EINVAL;
  2571. nw64(HASH_TBL_ADDR(partition), val);
  2572. for (i = 0; i < num_entries; i++)
  2573. data[i] = nr64(HASH_TBL_DATA(partition));
  2574. return 0;
  2575. }
  2576. #endif
  2577. static int hash_write(struct niu *np, unsigned long partition,
  2578. unsigned long index, unsigned long num_entries,
  2579. u64 *data)
  2580. {
  2581. u64 val = hash_addr_regval(index, num_entries);
  2582. unsigned long i;
  2583. if (partition >= FCRAM_NUM_PARTITIONS ||
  2584. index + (num_entries * 8) > FCRAM_SIZE)
  2585. return -EINVAL;
  2586. nw64(HASH_TBL_ADDR(partition), val);
  2587. for (i = 0; i < num_entries; i++)
  2588. nw64(HASH_TBL_DATA(partition), data[i]);
  2589. return 0;
  2590. }
  2591. static void fflp_reset(struct niu *np)
  2592. {
  2593. u64 val;
  2594. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2595. udelay(10);
  2596. nw64(FFLP_CFG_1, 0);
  2597. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2598. nw64(FFLP_CFG_1, val);
  2599. }
  2600. static void fflp_set_timings(struct niu *np)
  2601. {
  2602. u64 val = nr64(FFLP_CFG_1);
  2603. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2604. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2605. nw64(FFLP_CFG_1, val);
  2606. val = nr64(FFLP_CFG_1);
  2607. val |= FFLP_CFG_1_FFLPINITDONE;
  2608. nw64(FFLP_CFG_1, val);
  2609. val = nr64(FCRAM_REF_TMR);
  2610. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2611. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2612. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2613. nw64(FCRAM_REF_TMR, val);
  2614. }
  2615. static int fflp_set_partition(struct niu *np, u64 partition,
  2616. u64 mask, u64 base, int enable)
  2617. {
  2618. unsigned long reg;
  2619. u64 val;
  2620. if (partition >= FCRAM_NUM_PARTITIONS ||
  2621. (mask & ~(u64)0x1f) != 0 ||
  2622. (base & ~(u64)0x1f) != 0)
  2623. return -EINVAL;
  2624. reg = FLW_PRT_SEL(partition);
  2625. val = nr64(reg);
  2626. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2627. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2628. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2629. if (enable)
  2630. val |= FLW_PRT_SEL_EXT;
  2631. nw64(reg, val);
  2632. return 0;
  2633. }
  2634. static int fflp_disable_all_partitions(struct niu *np)
  2635. {
  2636. unsigned long i;
  2637. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2638. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2639. if (err)
  2640. return err;
  2641. }
  2642. return 0;
  2643. }
  2644. static void fflp_llcsnap_enable(struct niu *np, int on)
  2645. {
  2646. u64 val = nr64(FFLP_CFG_1);
  2647. if (on)
  2648. val |= FFLP_CFG_1_LLCSNAP;
  2649. else
  2650. val &= ~FFLP_CFG_1_LLCSNAP;
  2651. nw64(FFLP_CFG_1, val);
  2652. }
  2653. static void fflp_errors_enable(struct niu *np, int on)
  2654. {
  2655. u64 val = nr64(FFLP_CFG_1);
  2656. if (on)
  2657. val &= ~FFLP_CFG_1_ERRORDIS;
  2658. else
  2659. val |= FFLP_CFG_1_ERRORDIS;
  2660. nw64(FFLP_CFG_1, val);
  2661. }
  2662. static int fflp_hash_clear(struct niu *np)
  2663. {
  2664. struct fcram_hash_ipv4 ent;
  2665. unsigned long i;
  2666. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2667. memset(&ent, 0, sizeof(ent));
  2668. ent.header = HASH_HEADER_EXT;
  2669. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2670. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2671. if (err)
  2672. return err;
  2673. }
  2674. return 0;
  2675. }
  2676. static int fflp_early_init(struct niu *np)
  2677. {
  2678. struct niu_parent *parent;
  2679. unsigned long flags;
  2680. int err;
  2681. niu_lock_parent(np, flags);
  2682. parent = np->parent;
  2683. err = 0;
  2684. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2685. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2686. np->port);
  2687. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2688. fflp_reset(np);
  2689. fflp_set_timings(np);
  2690. err = fflp_disable_all_partitions(np);
  2691. if (err) {
  2692. niudbg(PROBE, "fflp_disable_all_partitions "
  2693. "failed, err=%d\n", err);
  2694. goto out;
  2695. }
  2696. }
  2697. err = tcam_early_init(np);
  2698. if (err) {
  2699. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2700. err);
  2701. goto out;
  2702. }
  2703. fflp_llcsnap_enable(np, 1);
  2704. fflp_errors_enable(np, 0);
  2705. nw64(H1POLY, 0);
  2706. nw64(H2POLY, 0);
  2707. err = tcam_flush_all(np);
  2708. if (err) {
  2709. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2710. err);
  2711. goto out;
  2712. }
  2713. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2714. err = fflp_hash_clear(np);
  2715. if (err) {
  2716. niudbg(PROBE, "fflp_hash_clear failed, "
  2717. "err=%d\n", err);
  2718. goto out;
  2719. }
  2720. }
  2721. vlan_tbl_clear(np);
  2722. niudbg(PROBE, "fflp_early_init: Success\n");
  2723. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2724. }
  2725. out:
  2726. niu_unlock_parent(np, flags);
  2727. return err;
  2728. }
  2729. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2730. {
  2731. if (class_code < CLASS_CODE_USER_PROG1 ||
  2732. class_code > CLASS_CODE_SCTP_IPV6)
  2733. return -EINVAL;
  2734. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2735. return 0;
  2736. }
  2737. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2738. {
  2739. if (class_code < CLASS_CODE_USER_PROG1 ||
  2740. class_code > CLASS_CODE_SCTP_IPV6)
  2741. return -EINVAL;
  2742. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2743. return 0;
  2744. }
  2745. /* Entries for the ports are interleaved in the TCAM */
  2746. static u16 tcam_get_index(struct niu *np, u16 idx)
  2747. {
  2748. /* One entry reserved for IP fragment rule */
  2749. if (idx >= (np->clas.tcam_sz - 1))
  2750. idx = 0;
  2751. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2752. }
  2753. static u16 tcam_get_size(struct niu *np)
  2754. {
  2755. /* One entry reserved for IP fragment rule */
  2756. return np->clas.tcam_sz - 1;
  2757. }
  2758. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2759. {
  2760. /* One entry reserved for IP fragment rule */
  2761. return np->clas.tcam_valid_entries - 1;
  2762. }
  2763. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2764. u32 offset, u32 size)
  2765. {
  2766. int i = skb_shinfo(skb)->nr_frags;
  2767. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2768. frag->page = page;
  2769. frag->page_offset = offset;
  2770. frag->size = size;
  2771. skb->len += size;
  2772. skb->data_len += size;
  2773. skb->truesize += size;
  2774. skb_shinfo(skb)->nr_frags = i + 1;
  2775. }
  2776. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2777. {
  2778. a >>= PAGE_SHIFT;
  2779. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2780. return (a & (MAX_RBR_RING_SIZE - 1));
  2781. }
  2782. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2783. struct page ***link)
  2784. {
  2785. unsigned int h = niu_hash_rxaddr(rp, addr);
  2786. struct page *p, **pp;
  2787. addr &= PAGE_MASK;
  2788. pp = &rp->rxhash[h];
  2789. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2790. if (p->index == addr) {
  2791. *link = pp;
  2792. break;
  2793. }
  2794. }
  2795. return p;
  2796. }
  2797. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2798. {
  2799. unsigned int h = niu_hash_rxaddr(rp, base);
  2800. page->index = base;
  2801. page->mapping = (struct address_space *) rp->rxhash[h];
  2802. rp->rxhash[h] = page;
  2803. }
  2804. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2805. gfp_t mask, int start_index)
  2806. {
  2807. struct page *page;
  2808. u64 addr;
  2809. int i;
  2810. page = alloc_page(mask);
  2811. if (!page)
  2812. return -ENOMEM;
  2813. addr = np->ops->map_page(np->device, page, 0,
  2814. PAGE_SIZE, DMA_FROM_DEVICE);
  2815. niu_hash_page(rp, page, addr);
  2816. if (rp->rbr_blocks_per_page > 1)
  2817. atomic_add(rp->rbr_blocks_per_page - 1,
  2818. &compound_head(page)->_count);
  2819. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2820. __le32 *rbr = &rp->rbr[start_index + i];
  2821. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2822. addr += rp->rbr_block_size;
  2823. }
  2824. return 0;
  2825. }
  2826. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2827. {
  2828. int index = rp->rbr_index;
  2829. rp->rbr_pending++;
  2830. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2831. int err = niu_rbr_add_page(np, rp, mask, index);
  2832. if (unlikely(err)) {
  2833. rp->rbr_pending--;
  2834. return;
  2835. }
  2836. rp->rbr_index += rp->rbr_blocks_per_page;
  2837. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2838. if (rp->rbr_index == rp->rbr_table_size)
  2839. rp->rbr_index = 0;
  2840. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2841. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2842. rp->rbr_pending = 0;
  2843. }
  2844. }
  2845. }
  2846. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2847. {
  2848. unsigned int index = rp->rcr_index;
  2849. int num_rcr = 0;
  2850. rp->rx_dropped++;
  2851. while (1) {
  2852. struct page *page, **link;
  2853. u64 addr, val;
  2854. u32 rcr_size;
  2855. num_rcr++;
  2856. val = le64_to_cpup(&rp->rcr[index]);
  2857. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2858. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2859. page = niu_find_rxpage(rp, addr, &link);
  2860. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2861. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2862. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2863. *link = (struct page *) page->mapping;
  2864. np->ops->unmap_page(np->device, page->index,
  2865. PAGE_SIZE, DMA_FROM_DEVICE);
  2866. page->index = 0;
  2867. page->mapping = NULL;
  2868. __free_page(page);
  2869. rp->rbr_refill_pending++;
  2870. }
  2871. index = NEXT_RCR(rp, index);
  2872. if (!(val & RCR_ENTRY_MULTI))
  2873. break;
  2874. }
  2875. rp->rcr_index = index;
  2876. return num_rcr;
  2877. }
  2878. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2879. struct rx_ring_info *rp)
  2880. {
  2881. unsigned int index = rp->rcr_index;
  2882. struct sk_buff *skb;
  2883. int len, num_rcr;
  2884. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2885. if (unlikely(!skb))
  2886. return niu_rx_pkt_ignore(np, rp);
  2887. num_rcr = 0;
  2888. while (1) {
  2889. struct page *page, **link;
  2890. u32 rcr_size, append_size;
  2891. u64 addr, val, off;
  2892. num_rcr++;
  2893. val = le64_to_cpup(&rp->rcr[index]);
  2894. len = (val & RCR_ENTRY_L2_LEN) >>
  2895. RCR_ENTRY_L2_LEN_SHIFT;
  2896. len -= ETH_FCS_LEN;
  2897. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2898. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2899. page = niu_find_rxpage(rp, addr, &link);
  2900. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2901. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2902. off = addr & ~PAGE_MASK;
  2903. append_size = rcr_size;
  2904. if (num_rcr == 1) {
  2905. int ptype;
  2906. off += 2;
  2907. append_size -= 2;
  2908. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2909. if ((ptype == RCR_PKT_TYPE_TCP ||
  2910. ptype == RCR_PKT_TYPE_UDP) &&
  2911. !(val & (RCR_ENTRY_NOPORT |
  2912. RCR_ENTRY_ERROR)))
  2913. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2914. else
  2915. skb->ip_summed = CHECKSUM_NONE;
  2916. }
  2917. if (!(val & RCR_ENTRY_MULTI))
  2918. append_size = len - skb->len;
  2919. niu_rx_skb_append(skb, page, off, append_size);
  2920. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2921. *link = (struct page *) page->mapping;
  2922. np->ops->unmap_page(np->device, page->index,
  2923. PAGE_SIZE, DMA_FROM_DEVICE);
  2924. page->index = 0;
  2925. page->mapping = NULL;
  2926. rp->rbr_refill_pending++;
  2927. } else
  2928. get_page(page);
  2929. index = NEXT_RCR(rp, index);
  2930. if (!(val & RCR_ENTRY_MULTI))
  2931. break;
  2932. }
  2933. rp->rcr_index = index;
  2934. skb_reserve(skb, NET_IP_ALIGN);
  2935. __pskb_pull_tail(skb, min(len, VLAN_ETH_HLEN));
  2936. rp->rx_packets++;
  2937. rp->rx_bytes += skb->len;
  2938. skb->protocol = eth_type_trans(skb, np->dev);
  2939. skb_record_rx_queue(skb, rp->rx_channel);
  2940. napi_gro_receive(napi, skb);
  2941. return num_rcr;
  2942. }
  2943. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2944. {
  2945. int blocks_per_page = rp->rbr_blocks_per_page;
  2946. int err, index = rp->rbr_index;
  2947. err = 0;
  2948. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2949. err = niu_rbr_add_page(np, rp, mask, index);
  2950. if (err)
  2951. break;
  2952. index += blocks_per_page;
  2953. }
  2954. rp->rbr_index = index;
  2955. return err;
  2956. }
  2957. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2958. {
  2959. int i;
  2960. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2961. struct page *page;
  2962. page = rp->rxhash[i];
  2963. while (page) {
  2964. struct page *next = (struct page *) page->mapping;
  2965. u64 base = page->index;
  2966. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2967. DMA_FROM_DEVICE);
  2968. page->index = 0;
  2969. page->mapping = NULL;
  2970. __free_page(page);
  2971. page = next;
  2972. }
  2973. }
  2974. for (i = 0; i < rp->rbr_table_size; i++)
  2975. rp->rbr[i] = cpu_to_le32(0);
  2976. rp->rbr_index = 0;
  2977. }
  2978. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2979. {
  2980. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2981. struct sk_buff *skb = tb->skb;
  2982. struct tx_pkt_hdr *tp;
  2983. u64 tx_flags;
  2984. int i, len;
  2985. tp = (struct tx_pkt_hdr *) skb->data;
  2986. tx_flags = le64_to_cpup(&tp->flags);
  2987. rp->tx_packets++;
  2988. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2989. ((tx_flags & TXHDR_PAD) / 2));
  2990. len = skb_headlen(skb);
  2991. np->ops->unmap_single(np->device, tb->mapping,
  2992. len, DMA_TO_DEVICE);
  2993. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2994. rp->mark_pending--;
  2995. tb->skb = NULL;
  2996. do {
  2997. idx = NEXT_TX(rp, idx);
  2998. len -= MAX_TX_DESC_LEN;
  2999. } while (len > 0);
  3000. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  3001. tb = &rp->tx_buffs[idx];
  3002. BUG_ON(tb->skb != NULL);
  3003. np->ops->unmap_page(np->device, tb->mapping,
  3004. skb_shinfo(skb)->frags[i].size,
  3005. DMA_TO_DEVICE);
  3006. idx = NEXT_TX(rp, idx);
  3007. }
  3008. dev_kfree_skb(skb);
  3009. return idx;
  3010. }
  3011. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  3012. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  3013. {
  3014. struct netdev_queue *txq;
  3015. u16 pkt_cnt, tmp;
  3016. int cons, index;
  3017. u64 cs;
  3018. index = (rp - np->tx_rings);
  3019. txq = netdev_get_tx_queue(np->dev, index);
  3020. cs = rp->tx_cs;
  3021. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  3022. goto out;
  3023. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3024. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3025. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3026. rp->last_pkt_cnt = tmp;
  3027. cons = rp->cons;
  3028. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3029. np->dev->name, pkt_cnt, cons);
  3030. while (pkt_cnt--)
  3031. cons = release_tx_packet(np, rp, cons);
  3032. rp->cons = cons;
  3033. smp_mb();
  3034. out:
  3035. if (unlikely(netif_tx_queue_stopped(txq) &&
  3036. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3037. __netif_tx_lock(txq, smp_processor_id());
  3038. if (netif_tx_queue_stopped(txq) &&
  3039. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3040. netif_tx_wake_queue(txq);
  3041. __netif_tx_unlock(txq);
  3042. }
  3043. }
  3044. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3045. struct rx_ring_info *rp,
  3046. const int limit)
  3047. {
  3048. /* This elaborate scheme is needed for reading the RX discard
  3049. * counters, as they are only 16-bit and can overflow quickly,
  3050. * and because the overflow indication bit is not usable as
  3051. * the counter value does not wrap, but remains at max value
  3052. * 0xFFFF.
  3053. *
  3054. * In theory and in practice counters can be lost in between
  3055. * reading nr64() and clearing the counter nw64(). For this
  3056. * reason, the number of counter clearings nw64() is
  3057. * limited/reduced though the limit parameter.
  3058. */
  3059. int rx_channel = rp->rx_channel;
  3060. u32 misc, wred;
  3061. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3062. * following discard events: IPP (Input Port Process),
  3063. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3064. * Block Ring) prefetch buffer is empty.
  3065. */
  3066. misc = nr64(RXMISC(rx_channel));
  3067. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3068. nw64(RXMISC(rx_channel), 0);
  3069. rp->rx_errors += misc & RXMISC_COUNT;
  3070. if (unlikely(misc & RXMISC_OFLOW))
  3071. dev_err(np->device, "rx-%d: Counter overflow "
  3072. "RXMISC discard\n", rx_channel);
  3073. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3074. np->dev->name, rx_channel, misc, misc-limit);
  3075. }
  3076. /* WRED (Weighted Random Early Discard) by hardware */
  3077. wred = nr64(RED_DIS_CNT(rx_channel));
  3078. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3079. nw64(RED_DIS_CNT(rx_channel), 0);
  3080. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3081. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3082. dev_err(np->device, "rx-%d: Counter overflow "
  3083. "WRED discard\n", rx_channel);
  3084. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3085. np->dev->name, rx_channel, wred, wred-limit);
  3086. }
  3087. }
  3088. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3089. struct rx_ring_info *rp, int budget)
  3090. {
  3091. int qlen, rcr_done = 0, work_done = 0;
  3092. struct rxdma_mailbox *mbox = rp->mbox;
  3093. u64 stat;
  3094. #if 1
  3095. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3096. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3097. #else
  3098. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3099. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3100. #endif
  3101. mbox->rx_dma_ctl_stat = 0;
  3102. mbox->rcrstat_a = 0;
  3103. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3104. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3105. rcr_done = work_done = 0;
  3106. qlen = min(qlen, budget);
  3107. while (work_done < qlen) {
  3108. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3109. work_done++;
  3110. }
  3111. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3112. unsigned int i;
  3113. for (i = 0; i < rp->rbr_refill_pending; i++)
  3114. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3115. rp->rbr_refill_pending = 0;
  3116. }
  3117. stat = (RX_DMA_CTL_STAT_MEX |
  3118. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3119. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3120. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3121. /* Only sync discards stats when qlen indicate potential for drops */
  3122. if (qlen > 10)
  3123. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3124. return work_done;
  3125. }
  3126. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3127. {
  3128. u64 v0 = lp->v0;
  3129. u32 tx_vec = (v0 >> 32);
  3130. u32 rx_vec = (v0 & 0xffffffff);
  3131. int i, work_done = 0;
  3132. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3133. np->dev->name, (unsigned long long) v0);
  3134. for (i = 0; i < np->num_tx_rings; i++) {
  3135. struct tx_ring_info *rp = &np->tx_rings[i];
  3136. if (tx_vec & (1 << rp->tx_channel))
  3137. niu_tx_work(np, rp);
  3138. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3139. }
  3140. for (i = 0; i < np->num_rx_rings; i++) {
  3141. struct rx_ring_info *rp = &np->rx_rings[i];
  3142. if (rx_vec & (1 << rp->rx_channel)) {
  3143. int this_work_done;
  3144. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3145. budget);
  3146. budget -= this_work_done;
  3147. work_done += this_work_done;
  3148. }
  3149. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3150. }
  3151. return work_done;
  3152. }
  3153. static int niu_poll(struct napi_struct *napi, int budget)
  3154. {
  3155. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3156. struct niu *np = lp->np;
  3157. int work_done;
  3158. work_done = niu_poll_core(np, lp, budget);
  3159. if (work_done < budget) {
  3160. napi_complete(napi);
  3161. niu_ldg_rearm(np, lp, 1);
  3162. }
  3163. return work_done;
  3164. }
  3165. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3166. u64 stat)
  3167. {
  3168. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3169. np->dev->name, rp->rx_channel);
  3170. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3171. printk("RBR_TMOUT ");
  3172. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3173. printk("RSP_CNT ");
  3174. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3175. printk("BYTE_EN_BUS ");
  3176. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3177. printk("RSP_DAT ");
  3178. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3179. printk("RCR_ACK ");
  3180. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3181. printk("RCR_SHA_PAR ");
  3182. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3183. printk("RBR_PRE_PAR ");
  3184. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3185. printk("CONFIG ");
  3186. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3187. printk("RCRINCON ");
  3188. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3189. printk("RCRFULL ");
  3190. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3191. printk("RBRFULL ");
  3192. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3193. printk("RBRLOGPAGE ");
  3194. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3195. printk("CFIGLOGPAGE ");
  3196. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3197. printk("DC_FIDO ");
  3198. printk(")\n");
  3199. }
  3200. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3201. {
  3202. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3203. int err = 0;
  3204. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3205. RX_DMA_CTL_STAT_PORT_FATAL))
  3206. err = -EINVAL;
  3207. if (err) {
  3208. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3209. np->dev->name, rp->rx_channel,
  3210. (unsigned long long) stat);
  3211. niu_log_rxchan_errors(np, rp, stat);
  3212. }
  3213. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3214. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3215. return err;
  3216. }
  3217. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3218. u64 cs)
  3219. {
  3220. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3221. np->dev->name, rp->tx_channel);
  3222. if (cs & TX_CS_MBOX_ERR)
  3223. printk("MBOX ");
  3224. if (cs & TX_CS_PKT_SIZE_ERR)
  3225. printk("PKT_SIZE ");
  3226. if (cs & TX_CS_TX_RING_OFLOW)
  3227. printk("TX_RING_OFLOW ");
  3228. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3229. printk("PREF_BUF_PAR ");
  3230. if (cs & TX_CS_NACK_PREF)
  3231. printk("NACK_PREF ");
  3232. if (cs & TX_CS_NACK_PKT_RD)
  3233. printk("NACK_PKT_RD ");
  3234. if (cs & TX_CS_CONF_PART_ERR)
  3235. printk("CONF_PART ");
  3236. if (cs & TX_CS_PKT_PRT_ERR)
  3237. printk("PKT_PTR ");
  3238. printk(")\n");
  3239. }
  3240. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3241. {
  3242. u64 cs, logh, logl;
  3243. cs = nr64(TX_CS(rp->tx_channel));
  3244. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3245. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3246. dev_err(np->device, PFX "%s: TX channel %u error, "
  3247. "cs[%llx] logh[%llx] logl[%llx]\n",
  3248. np->dev->name, rp->tx_channel,
  3249. (unsigned long long) cs,
  3250. (unsigned long long) logh,
  3251. (unsigned long long) logl);
  3252. niu_log_txchan_errors(np, rp, cs);
  3253. return -ENODEV;
  3254. }
  3255. static int niu_mif_interrupt(struct niu *np)
  3256. {
  3257. u64 mif_status = nr64(MIF_STATUS);
  3258. int phy_mdint = 0;
  3259. if (np->flags & NIU_FLAGS_XMAC) {
  3260. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3261. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3262. phy_mdint = 1;
  3263. }
  3264. dev_err(np->device, PFX "%s: MIF interrupt, "
  3265. "stat[%llx] phy_mdint(%d)\n",
  3266. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3267. return -ENODEV;
  3268. }
  3269. static void niu_xmac_interrupt(struct niu *np)
  3270. {
  3271. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3272. u64 val;
  3273. val = nr64_mac(XTXMAC_STATUS);
  3274. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3275. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3276. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3277. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3278. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3279. mp->tx_fifo_errors++;
  3280. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3281. mp->tx_overflow_errors++;
  3282. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3283. mp->tx_max_pkt_size_errors++;
  3284. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3285. mp->tx_underflow_errors++;
  3286. val = nr64_mac(XRXMAC_STATUS);
  3287. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3288. mp->rx_local_faults++;
  3289. if (val & XRXMAC_STATUS_RFLT_DET)
  3290. mp->rx_remote_faults++;
  3291. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3292. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3293. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3294. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3295. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3296. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3297. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3298. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3299. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3300. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3301. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3302. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3303. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3304. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3305. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3306. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3307. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3308. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3309. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3310. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3311. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3312. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3313. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3314. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3315. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3316. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3317. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3318. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3319. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3320. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3321. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3322. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3323. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3324. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3325. if (val & XRXMAC_STATUS_RXUFLOW)
  3326. mp->rx_underflows++;
  3327. if (val & XRXMAC_STATUS_RXOFLOW)
  3328. mp->rx_overflows++;
  3329. val = nr64_mac(XMAC_FC_STAT);
  3330. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3331. mp->pause_off_state++;
  3332. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3333. mp->pause_on_state++;
  3334. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3335. mp->pause_received++;
  3336. }
  3337. static void niu_bmac_interrupt(struct niu *np)
  3338. {
  3339. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3340. u64 val;
  3341. val = nr64_mac(BTXMAC_STATUS);
  3342. if (val & BTXMAC_STATUS_UNDERRUN)
  3343. mp->tx_underflow_errors++;
  3344. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3345. mp->tx_max_pkt_size_errors++;
  3346. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3347. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3348. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3349. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3350. val = nr64_mac(BRXMAC_STATUS);
  3351. if (val & BRXMAC_STATUS_OVERFLOW)
  3352. mp->rx_overflows++;
  3353. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3354. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3355. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3356. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3357. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3358. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3359. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3360. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3361. val = nr64_mac(BMAC_CTRL_STATUS);
  3362. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3363. mp->pause_off_state++;
  3364. if (val & BMAC_CTRL_STATUS_PAUSE)
  3365. mp->pause_on_state++;
  3366. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3367. mp->pause_received++;
  3368. }
  3369. static int niu_mac_interrupt(struct niu *np)
  3370. {
  3371. if (np->flags & NIU_FLAGS_XMAC)
  3372. niu_xmac_interrupt(np);
  3373. else
  3374. niu_bmac_interrupt(np);
  3375. return 0;
  3376. }
  3377. static void niu_log_device_error(struct niu *np, u64 stat)
  3378. {
  3379. dev_err(np->device, PFX "%s: Core device errors ( ",
  3380. np->dev->name);
  3381. if (stat & SYS_ERR_MASK_META2)
  3382. printk("META2 ");
  3383. if (stat & SYS_ERR_MASK_META1)
  3384. printk("META1 ");
  3385. if (stat & SYS_ERR_MASK_PEU)
  3386. printk("PEU ");
  3387. if (stat & SYS_ERR_MASK_TXC)
  3388. printk("TXC ");
  3389. if (stat & SYS_ERR_MASK_RDMC)
  3390. printk("RDMC ");
  3391. if (stat & SYS_ERR_MASK_TDMC)
  3392. printk("TDMC ");
  3393. if (stat & SYS_ERR_MASK_ZCP)
  3394. printk("ZCP ");
  3395. if (stat & SYS_ERR_MASK_FFLP)
  3396. printk("FFLP ");
  3397. if (stat & SYS_ERR_MASK_IPP)
  3398. printk("IPP ");
  3399. if (stat & SYS_ERR_MASK_MAC)
  3400. printk("MAC ");
  3401. if (stat & SYS_ERR_MASK_SMX)
  3402. printk("SMX ");
  3403. printk(")\n");
  3404. }
  3405. static int niu_device_error(struct niu *np)
  3406. {
  3407. u64 stat = nr64(SYS_ERR_STAT);
  3408. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3409. np->dev->name, (unsigned long long) stat);
  3410. niu_log_device_error(np, stat);
  3411. return -ENODEV;
  3412. }
  3413. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3414. u64 v0, u64 v1, u64 v2)
  3415. {
  3416. int i, err = 0;
  3417. lp->v0 = v0;
  3418. lp->v1 = v1;
  3419. lp->v2 = v2;
  3420. if (v1 & 0x00000000ffffffffULL) {
  3421. u32 rx_vec = (v1 & 0xffffffff);
  3422. for (i = 0; i < np->num_rx_rings; i++) {
  3423. struct rx_ring_info *rp = &np->rx_rings[i];
  3424. if (rx_vec & (1 << rp->rx_channel)) {
  3425. int r = niu_rx_error(np, rp);
  3426. if (r) {
  3427. err = r;
  3428. } else {
  3429. if (!v0)
  3430. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3431. RX_DMA_CTL_STAT_MEX);
  3432. }
  3433. }
  3434. }
  3435. }
  3436. if (v1 & 0x7fffffff00000000ULL) {
  3437. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3438. for (i = 0; i < np->num_tx_rings; i++) {
  3439. struct tx_ring_info *rp = &np->tx_rings[i];
  3440. if (tx_vec & (1 << rp->tx_channel)) {
  3441. int r = niu_tx_error(np, rp);
  3442. if (r)
  3443. err = r;
  3444. }
  3445. }
  3446. }
  3447. if ((v0 | v1) & 0x8000000000000000ULL) {
  3448. int r = niu_mif_interrupt(np);
  3449. if (r)
  3450. err = r;
  3451. }
  3452. if (v2) {
  3453. if (v2 & 0x01ef) {
  3454. int r = niu_mac_interrupt(np);
  3455. if (r)
  3456. err = r;
  3457. }
  3458. if (v2 & 0x0210) {
  3459. int r = niu_device_error(np);
  3460. if (r)
  3461. err = r;
  3462. }
  3463. }
  3464. if (err)
  3465. niu_enable_interrupts(np, 0);
  3466. return err;
  3467. }
  3468. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3469. int ldn)
  3470. {
  3471. struct rxdma_mailbox *mbox = rp->mbox;
  3472. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3473. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3474. RX_DMA_CTL_STAT_RCRTO);
  3475. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3476. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3477. np->dev->name, (unsigned long long) stat);
  3478. }
  3479. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3480. int ldn)
  3481. {
  3482. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3483. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3484. np->dev->name, (unsigned long long) rp->tx_cs);
  3485. }
  3486. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3487. {
  3488. struct niu_parent *parent = np->parent;
  3489. u32 rx_vec, tx_vec;
  3490. int i;
  3491. tx_vec = (v0 >> 32);
  3492. rx_vec = (v0 & 0xffffffff);
  3493. for (i = 0; i < np->num_rx_rings; i++) {
  3494. struct rx_ring_info *rp = &np->rx_rings[i];
  3495. int ldn = LDN_RXDMA(rp->rx_channel);
  3496. if (parent->ldg_map[ldn] != ldg)
  3497. continue;
  3498. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3499. if (rx_vec & (1 << rp->rx_channel))
  3500. niu_rxchan_intr(np, rp, ldn);
  3501. }
  3502. for (i = 0; i < np->num_tx_rings; i++) {
  3503. struct tx_ring_info *rp = &np->tx_rings[i];
  3504. int ldn = LDN_TXDMA(rp->tx_channel);
  3505. if (parent->ldg_map[ldn] != ldg)
  3506. continue;
  3507. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3508. if (tx_vec & (1 << rp->tx_channel))
  3509. niu_txchan_intr(np, rp, ldn);
  3510. }
  3511. }
  3512. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3513. u64 v0, u64 v1, u64 v2)
  3514. {
  3515. if (likely(napi_schedule_prep(&lp->napi))) {
  3516. lp->v0 = v0;
  3517. lp->v1 = v1;
  3518. lp->v2 = v2;
  3519. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3520. __napi_schedule(&lp->napi);
  3521. }
  3522. }
  3523. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3524. {
  3525. struct niu_ldg *lp = dev_id;
  3526. struct niu *np = lp->np;
  3527. int ldg = lp->ldg_num;
  3528. unsigned long flags;
  3529. u64 v0, v1, v2;
  3530. if (netif_msg_intr(np))
  3531. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3532. lp, ldg);
  3533. spin_lock_irqsave(&np->lock, flags);
  3534. v0 = nr64(LDSV0(ldg));
  3535. v1 = nr64(LDSV1(ldg));
  3536. v2 = nr64(LDSV2(ldg));
  3537. if (netif_msg_intr(np))
  3538. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3539. (unsigned long long) v0,
  3540. (unsigned long long) v1,
  3541. (unsigned long long) v2);
  3542. if (unlikely(!v0 && !v1 && !v2)) {
  3543. spin_unlock_irqrestore(&np->lock, flags);
  3544. return IRQ_NONE;
  3545. }
  3546. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3547. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3548. if (err)
  3549. goto out;
  3550. }
  3551. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3552. niu_schedule_napi(np, lp, v0, v1, v2);
  3553. else
  3554. niu_ldg_rearm(np, lp, 1);
  3555. out:
  3556. spin_unlock_irqrestore(&np->lock, flags);
  3557. return IRQ_HANDLED;
  3558. }
  3559. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3560. {
  3561. if (rp->mbox) {
  3562. np->ops->free_coherent(np->device,
  3563. sizeof(struct rxdma_mailbox),
  3564. rp->mbox, rp->mbox_dma);
  3565. rp->mbox = NULL;
  3566. }
  3567. if (rp->rcr) {
  3568. np->ops->free_coherent(np->device,
  3569. MAX_RCR_RING_SIZE * sizeof(__le64),
  3570. rp->rcr, rp->rcr_dma);
  3571. rp->rcr = NULL;
  3572. rp->rcr_table_size = 0;
  3573. rp->rcr_index = 0;
  3574. }
  3575. if (rp->rbr) {
  3576. niu_rbr_free(np, rp);
  3577. np->ops->free_coherent(np->device,
  3578. MAX_RBR_RING_SIZE * sizeof(__le32),
  3579. rp->rbr, rp->rbr_dma);
  3580. rp->rbr = NULL;
  3581. rp->rbr_table_size = 0;
  3582. rp->rbr_index = 0;
  3583. }
  3584. kfree(rp->rxhash);
  3585. rp->rxhash = NULL;
  3586. }
  3587. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3588. {
  3589. if (rp->mbox) {
  3590. np->ops->free_coherent(np->device,
  3591. sizeof(struct txdma_mailbox),
  3592. rp->mbox, rp->mbox_dma);
  3593. rp->mbox = NULL;
  3594. }
  3595. if (rp->descr) {
  3596. int i;
  3597. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3598. if (rp->tx_buffs[i].skb)
  3599. (void) release_tx_packet(np, rp, i);
  3600. }
  3601. np->ops->free_coherent(np->device,
  3602. MAX_TX_RING_SIZE * sizeof(__le64),
  3603. rp->descr, rp->descr_dma);
  3604. rp->descr = NULL;
  3605. rp->pending = 0;
  3606. rp->prod = 0;
  3607. rp->cons = 0;
  3608. rp->wrap_bit = 0;
  3609. }
  3610. }
  3611. static void niu_free_channels(struct niu *np)
  3612. {
  3613. int i;
  3614. if (np->rx_rings) {
  3615. for (i = 0; i < np->num_rx_rings; i++) {
  3616. struct rx_ring_info *rp = &np->rx_rings[i];
  3617. niu_free_rx_ring_info(np, rp);
  3618. }
  3619. kfree(np->rx_rings);
  3620. np->rx_rings = NULL;
  3621. np->num_rx_rings = 0;
  3622. }
  3623. if (np->tx_rings) {
  3624. for (i = 0; i < np->num_tx_rings; i++) {
  3625. struct tx_ring_info *rp = &np->tx_rings[i];
  3626. niu_free_tx_ring_info(np, rp);
  3627. }
  3628. kfree(np->tx_rings);
  3629. np->tx_rings = NULL;
  3630. np->num_tx_rings = 0;
  3631. }
  3632. }
  3633. static int niu_alloc_rx_ring_info(struct niu *np,
  3634. struct rx_ring_info *rp)
  3635. {
  3636. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3637. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3638. GFP_KERNEL);
  3639. if (!rp->rxhash)
  3640. return -ENOMEM;
  3641. rp->mbox = np->ops->alloc_coherent(np->device,
  3642. sizeof(struct rxdma_mailbox),
  3643. &rp->mbox_dma, GFP_KERNEL);
  3644. if (!rp->mbox)
  3645. return -ENOMEM;
  3646. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3647. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3648. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3649. return -EINVAL;
  3650. }
  3651. rp->rcr = np->ops->alloc_coherent(np->device,
  3652. MAX_RCR_RING_SIZE * sizeof(__le64),
  3653. &rp->rcr_dma, GFP_KERNEL);
  3654. if (!rp->rcr)
  3655. return -ENOMEM;
  3656. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3657. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3658. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3659. return -EINVAL;
  3660. }
  3661. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3662. rp->rcr_index = 0;
  3663. rp->rbr = np->ops->alloc_coherent(np->device,
  3664. MAX_RBR_RING_SIZE * sizeof(__le32),
  3665. &rp->rbr_dma, GFP_KERNEL);
  3666. if (!rp->rbr)
  3667. return -ENOMEM;
  3668. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3669. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3670. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3671. return -EINVAL;
  3672. }
  3673. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3674. rp->rbr_index = 0;
  3675. rp->rbr_pending = 0;
  3676. return 0;
  3677. }
  3678. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3679. {
  3680. int mtu = np->dev->mtu;
  3681. /* These values are recommended by the HW designers for fair
  3682. * utilization of DRR amongst the rings.
  3683. */
  3684. rp->max_burst = mtu + 32;
  3685. if (rp->max_burst > 4096)
  3686. rp->max_burst = 4096;
  3687. }
  3688. static int niu_alloc_tx_ring_info(struct niu *np,
  3689. struct tx_ring_info *rp)
  3690. {
  3691. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3692. rp->mbox = np->ops->alloc_coherent(np->device,
  3693. sizeof(struct txdma_mailbox),
  3694. &rp->mbox_dma, GFP_KERNEL);
  3695. if (!rp->mbox)
  3696. return -ENOMEM;
  3697. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3698. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3699. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3700. return -EINVAL;
  3701. }
  3702. rp->descr = np->ops->alloc_coherent(np->device,
  3703. MAX_TX_RING_SIZE * sizeof(__le64),
  3704. &rp->descr_dma, GFP_KERNEL);
  3705. if (!rp->descr)
  3706. return -ENOMEM;
  3707. if ((unsigned long)rp->descr & (64UL - 1)) {
  3708. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3709. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3710. return -EINVAL;
  3711. }
  3712. rp->pending = MAX_TX_RING_SIZE;
  3713. rp->prod = 0;
  3714. rp->cons = 0;
  3715. rp->wrap_bit = 0;
  3716. /* XXX make these configurable... XXX */
  3717. rp->mark_freq = rp->pending / 4;
  3718. niu_set_max_burst(np, rp);
  3719. return 0;
  3720. }
  3721. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3722. {
  3723. u16 bss;
  3724. bss = min(PAGE_SHIFT, 15);
  3725. rp->rbr_block_size = 1 << bss;
  3726. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3727. rp->rbr_sizes[0] = 256;
  3728. rp->rbr_sizes[1] = 1024;
  3729. if (np->dev->mtu > ETH_DATA_LEN) {
  3730. switch (PAGE_SIZE) {
  3731. case 4 * 1024:
  3732. rp->rbr_sizes[2] = 4096;
  3733. break;
  3734. default:
  3735. rp->rbr_sizes[2] = 8192;
  3736. break;
  3737. }
  3738. } else {
  3739. rp->rbr_sizes[2] = 2048;
  3740. }
  3741. rp->rbr_sizes[3] = rp->rbr_block_size;
  3742. }
  3743. static int niu_alloc_channels(struct niu *np)
  3744. {
  3745. struct niu_parent *parent = np->parent;
  3746. int first_rx_channel, first_tx_channel;
  3747. int i, port, err;
  3748. port = np->port;
  3749. first_rx_channel = first_tx_channel = 0;
  3750. for (i = 0; i < port; i++) {
  3751. first_rx_channel += parent->rxchan_per_port[i];
  3752. first_tx_channel += parent->txchan_per_port[i];
  3753. }
  3754. np->num_rx_rings = parent->rxchan_per_port[port];
  3755. np->num_tx_rings = parent->txchan_per_port[port];
  3756. np->dev->real_num_tx_queues = np->num_tx_rings;
  3757. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3758. GFP_KERNEL);
  3759. err = -ENOMEM;
  3760. if (!np->rx_rings)
  3761. goto out_err;
  3762. for (i = 0; i < np->num_rx_rings; i++) {
  3763. struct rx_ring_info *rp = &np->rx_rings[i];
  3764. rp->np = np;
  3765. rp->rx_channel = first_rx_channel + i;
  3766. err = niu_alloc_rx_ring_info(np, rp);
  3767. if (err)
  3768. goto out_err;
  3769. niu_size_rbr(np, rp);
  3770. /* XXX better defaults, configurable, etc... XXX */
  3771. rp->nonsyn_window = 64;
  3772. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3773. rp->syn_window = 64;
  3774. rp->syn_threshold = rp->rcr_table_size - 64;
  3775. rp->rcr_pkt_threshold = 16;
  3776. rp->rcr_timeout = 8;
  3777. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3778. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3779. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3780. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3781. if (err)
  3782. return err;
  3783. }
  3784. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3785. GFP_KERNEL);
  3786. err = -ENOMEM;
  3787. if (!np->tx_rings)
  3788. goto out_err;
  3789. for (i = 0; i < np->num_tx_rings; i++) {
  3790. struct tx_ring_info *rp = &np->tx_rings[i];
  3791. rp->np = np;
  3792. rp->tx_channel = first_tx_channel + i;
  3793. err = niu_alloc_tx_ring_info(np, rp);
  3794. if (err)
  3795. goto out_err;
  3796. }
  3797. return 0;
  3798. out_err:
  3799. niu_free_channels(np);
  3800. return err;
  3801. }
  3802. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3803. {
  3804. int limit = 1000;
  3805. while (--limit > 0) {
  3806. u64 val = nr64(TX_CS(channel));
  3807. if (val & TX_CS_SNG_STATE)
  3808. return 0;
  3809. }
  3810. return -ENODEV;
  3811. }
  3812. static int niu_tx_channel_stop(struct niu *np, int channel)
  3813. {
  3814. u64 val = nr64(TX_CS(channel));
  3815. val |= TX_CS_STOP_N_GO;
  3816. nw64(TX_CS(channel), val);
  3817. return niu_tx_cs_sng_poll(np, channel);
  3818. }
  3819. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3820. {
  3821. int limit = 1000;
  3822. while (--limit > 0) {
  3823. u64 val = nr64(TX_CS(channel));
  3824. if (!(val & TX_CS_RST))
  3825. return 0;
  3826. }
  3827. return -ENODEV;
  3828. }
  3829. static int niu_tx_channel_reset(struct niu *np, int channel)
  3830. {
  3831. u64 val = nr64(TX_CS(channel));
  3832. int err;
  3833. val |= TX_CS_RST;
  3834. nw64(TX_CS(channel), val);
  3835. err = niu_tx_cs_reset_poll(np, channel);
  3836. if (!err)
  3837. nw64(TX_RING_KICK(channel), 0);
  3838. return err;
  3839. }
  3840. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3841. {
  3842. u64 val;
  3843. nw64(TX_LOG_MASK1(channel), 0);
  3844. nw64(TX_LOG_VAL1(channel), 0);
  3845. nw64(TX_LOG_MASK2(channel), 0);
  3846. nw64(TX_LOG_VAL2(channel), 0);
  3847. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3848. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3849. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3850. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3851. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3852. nw64(TX_LOG_PAGE_VLD(channel), val);
  3853. /* XXX TXDMA 32bit mode? XXX */
  3854. return 0;
  3855. }
  3856. static void niu_txc_enable_port(struct niu *np, int on)
  3857. {
  3858. unsigned long flags;
  3859. u64 val, mask;
  3860. niu_lock_parent(np, flags);
  3861. val = nr64(TXC_CONTROL);
  3862. mask = (u64)1 << np->port;
  3863. if (on) {
  3864. val |= TXC_CONTROL_ENABLE | mask;
  3865. } else {
  3866. val &= ~mask;
  3867. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3868. val &= ~TXC_CONTROL_ENABLE;
  3869. }
  3870. nw64(TXC_CONTROL, val);
  3871. niu_unlock_parent(np, flags);
  3872. }
  3873. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3874. {
  3875. unsigned long flags;
  3876. u64 val;
  3877. niu_lock_parent(np, flags);
  3878. val = nr64(TXC_INT_MASK);
  3879. val &= ~TXC_INT_MASK_VAL(np->port);
  3880. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3881. niu_unlock_parent(np, flags);
  3882. }
  3883. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3884. {
  3885. u64 val = 0;
  3886. if (on) {
  3887. int i;
  3888. for (i = 0; i < np->num_tx_rings; i++)
  3889. val |= (1 << np->tx_rings[i].tx_channel);
  3890. }
  3891. nw64(TXC_PORT_DMA(np->port), val);
  3892. }
  3893. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3894. {
  3895. int err, channel = rp->tx_channel;
  3896. u64 val, ring_len;
  3897. err = niu_tx_channel_stop(np, channel);
  3898. if (err)
  3899. return err;
  3900. err = niu_tx_channel_reset(np, channel);
  3901. if (err)
  3902. return err;
  3903. err = niu_tx_channel_lpage_init(np, channel);
  3904. if (err)
  3905. return err;
  3906. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3907. nw64(TX_ENT_MSK(channel), 0);
  3908. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3909. TX_RNG_CFIG_STADDR)) {
  3910. dev_err(np->device, PFX "%s: TX ring channel %d "
  3911. "DMA addr (%llx) is not aligned.\n",
  3912. np->dev->name, channel,
  3913. (unsigned long long) rp->descr_dma);
  3914. return -EINVAL;
  3915. }
  3916. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3917. * blocks. rp->pending is the number of TX descriptors in
  3918. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3919. * to get the proper value the chip wants.
  3920. */
  3921. ring_len = (rp->pending / 8);
  3922. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3923. rp->descr_dma);
  3924. nw64(TX_RNG_CFIG(channel), val);
  3925. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3926. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3927. dev_err(np->device, PFX "%s: TX ring channel %d "
  3928. "MBOX addr (%llx) is has illegal bits.\n",
  3929. np->dev->name, channel,
  3930. (unsigned long long) rp->mbox_dma);
  3931. return -EINVAL;
  3932. }
  3933. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3934. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3935. nw64(TX_CS(channel), 0);
  3936. rp->last_pkt_cnt = 0;
  3937. return 0;
  3938. }
  3939. static void niu_init_rdc_groups(struct niu *np)
  3940. {
  3941. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3942. int i, first_table_num = tp->first_table_num;
  3943. for (i = 0; i < tp->num_tables; i++) {
  3944. struct rdc_table *tbl = &tp->tables[i];
  3945. int this_table = first_table_num + i;
  3946. int slot;
  3947. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3948. nw64(RDC_TBL(this_table, slot),
  3949. tbl->rxdma_channel[slot]);
  3950. }
  3951. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3952. }
  3953. static void niu_init_drr_weight(struct niu *np)
  3954. {
  3955. int type = phy_decode(np->parent->port_phy, np->port);
  3956. u64 val;
  3957. switch (type) {
  3958. case PORT_TYPE_10G:
  3959. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3960. break;
  3961. case PORT_TYPE_1G:
  3962. default:
  3963. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3964. break;
  3965. }
  3966. nw64(PT_DRR_WT(np->port), val);
  3967. }
  3968. static int niu_init_hostinfo(struct niu *np)
  3969. {
  3970. struct niu_parent *parent = np->parent;
  3971. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3972. int i, err, num_alt = niu_num_alt_addr(np);
  3973. int first_rdc_table = tp->first_table_num;
  3974. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3975. if (err)
  3976. return err;
  3977. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3978. if (err)
  3979. return err;
  3980. for (i = 0; i < num_alt; i++) {
  3981. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3982. if (err)
  3983. return err;
  3984. }
  3985. return 0;
  3986. }
  3987. static int niu_rx_channel_reset(struct niu *np, int channel)
  3988. {
  3989. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3990. RXDMA_CFIG1_RST, 1000, 10,
  3991. "RXDMA_CFIG1");
  3992. }
  3993. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3994. {
  3995. u64 val;
  3996. nw64(RX_LOG_MASK1(channel), 0);
  3997. nw64(RX_LOG_VAL1(channel), 0);
  3998. nw64(RX_LOG_MASK2(channel), 0);
  3999. nw64(RX_LOG_VAL2(channel), 0);
  4000. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  4001. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  4002. nw64(RX_LOG_PAGE_HDL(channel), 0);
  4003. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  4004. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  4005. nw64(RX_LOG_PAGE_VLD(channel), val);
  4006. return 0;
  4007. }
  4008. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  4009. {
  4010. u64 val;
  4011. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  4012. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  4013. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  4014. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  4015. nw64(RDC_RED_PARA(rp->rx_channel), val);
  4016. }
  4017. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  4018. {
  4019. u64 val = 0;
  4020. *ret = 0;
  4021. switch (rp->rbr_block_size) {
  4022. case 4 * 1024:
  4023. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4024. break;
  4025. case 8 * 1024:
  4026. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4027. break;
  4028. case 16 * 1024:
  4029. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4030. break;
  4031. case 32 * 1024:
  4032. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4033. break;
  4034. default:
  4035. return -EINVAL;
  4036. }
  4037. val |= RBR_CFIG_B_VLD2;
  4038. switch (rp->rbr_sizes[2]) {
  4039. case 2 * 1024:
  4040. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4041. break;
  4042. case 4 * 1024:
  4043. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4044. break;
  4045. case 8 * 1024:
  4046. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4047. break;
  4048. case 16 * 1024:
  4049. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4050. break;
  4051. default:
  4052. return -EINVAL;
  4053. }
  4054. val |= RBR_CFIG_B_VLD1;
  4055. switch (rp->rbr_sizes[1]) {
  4056. case 1 * 1024:
  4057. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4058. break;
  4059. case 2 * 1024:
  4060. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4061. break;
  4062. case 4 * 1024:
  4063. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4064. break;
  4065. case 8 * 1024:
  4066. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4067. break;
  4068. default:
  4069. return -EINVAL;
  4070. }
  4071. val |= RBR_CFIG_B_VLD0;
  4072. switch (rp->rbr_sizes[0]) {
  4073. case 256:
  4074. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4075. break;
  4076. case 512:
  4077. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4078. break;
  4079. case 1 * 1024:
  4080. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4081. break;
  4082. case 2 * 1024:
  4083. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4084. break;
  4085. default:
  4086. return -EINVAL;
  4087. }
  4088. *ret = val;
  4089. return 0;
  4090. }
  4091. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4092. {
  4093. u64 val = nr64(RXDMA_CFIG1(channel));
  4094. int limit;
  4095. if (on)
  4096. val |= RXDMA_CFIG1_EN;
  4097. else
  4098. val &= ~RXDMA_CFIG1_EN;
  4099. nw64(RXDMA_CFIG1(channel), val);
  4100. limit = 1000;
  4101. while (--limit > 0) {
  4102. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4103. break;
  4104. udelay(10);
  4105. }
  4106. if (limit <= 0)
  4107. return -ENODEV;
  4108. return 0;
  4109. }
  4110. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4111. {
  4112. int err, channel = rp->rx_channel;
  4113. u64 val;
  4114. err = niu_rx_channel_reset(np, channel);
  4115. if (err)
  4116. return err;
  4117. err = niu_rx_channel_lpage_init(np, channel);
  4118. if (err)
  4119. return err;
  4120. niu_rx_channel_wred_init(np, rp);
  4121. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4122. nw64(RX_DMA_CTL_STAT(channel),
  4123. (RX_DMA_CTL_STAT_MEX |
  4124. RX_DMA_CTL_STAT_RCRTHRES |
  4125. RX_DMA_CTL_STAT_RCRTO |
  4126. RX_DMA_CTL_STAT_RBR_EMPTY));
  4127. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4128. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4129. nw64(RBR_CFIG_A(channel),
  4130. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4131. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4132. err = niu_compute_rbr_cfig_b(rp, &val);
  4133. if (err)
  4134. return err;
  4135. nw64(RBR_CFIG_B(channel), val);
  4136. nw64(RCRCFIG_A(channel),
  4137. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4138. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4139. nw64(RCRCFIG_B(channel),
  4140. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4141. RCRCFIG_B_ENTOUT |
  4142. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4143. err = niu_enable_rx_channel(np, channel, 1);
  4144. if (err)
  4145. return err;
  4146. nw64(RBR_KICK(channel), rp->rbr_index);
  4147. val = nr64(RX_DMA_CTL_STAT(channel));
  4148. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4149. nw64(RX_DMA_CTL_STAT(channel), val);
  4150. return 0;
  4151. }
  4152. static int niu_init_rx_channels(struct niu *np)
  4153. {
  4154. unsigned long flags;
  4155. u64 seed = jiffies_64;
  4156. int err, i;
  4157. niu_lock_parent(np, flags);
  4158. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4159. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4160. niu_unlock_parent(np, flags);
  4161. /* XXX RXDMA 32bit mode? XXX */
  4162. niu_init_rdc_groups(np);
  4163. niu_init_drr_weight(np);
  4164. err = niu_init_hostinfo(np);
  4165. if (err)
  4166. return err;
  4167. for (i = 0; i < np->num_rx_rings; i++) {
  4168. struct rx_ring_info *rp = &np->rx_rings[i];
  4169. err = niu_init_one_rx_channel(np, rp);
  4170. if (err)
  4171. return err;
  4172. }
  4173. return 0;
  4174. }
  4175. static int niu_set_ip_frag_rule(struct niu *np)
  4176. {
  4177. struct niu_parent *parent = np->parent;
  4178. struct niu_classifier *cp = &np->clas;
  4179. struct niu_tcam_entry *tp;
  4180. int index, err;
  4181. index = cp->tcam_top;
  4182. tp = &parent->tcam[index];
  4183. /* Note that the noport bit is the same in both ipv4 and
  4184. * ipv6 format TCAM entries.
  4185. */
  4186. memset(tp, 0, sizeof(*tp));
  4187. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4188. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4189. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4190. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4191. err = tcam_write(np, index, tp->key, tp->key_mask);
  4192. if (err)
  4193. return err;
  4194. err = tcam_assoc_write(np, index, tp->assoc_data);
  4195. if (err)
  4196. return err;
  4197. tp->valid = 1;
  4198. cp->tcam_valid_entries++;
  4199. return 0;
  4200. }
  4201. static int niu_init_classifier_hw(struct niu *np)
  4202. {
  4203. struct niu_parent *parent = np->parent;
  4204. struct niu_classifier *cp = &np->clas;
  4205. int i, err;
  4206. nw64(H1POLY, cp->h1_init);
  4207. nw64(H2POLY, cp->h2_init);
  4208. err = niu_init_hostinfo(np);
  4209. if (err)
  4210. return err;
  4211. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4212. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4213. vlan_tbl_write(np, i, np->port,
  4214. vp->vlan_pref, vp->rdc_num);
  4215. }
  4216. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4217. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4218. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4219. ap->rdc_num, ap->mac_pref);
  4220. if (err)
  4221. return err;
  4222. }
  4223. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4224. int index = i - CLASS_CODE_USER_PROG1;
  4225. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4226. if (err)
  4227. return err;
  4228. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4229. if (err)
  4230. return err;
  4231. }
  4232. err = niu_set_ip_frag_rule(np);
  4233. if (err)
  4234. return err;
  4235. tcam_enable(np, 1);
  4236. return 0;
  4237. }
  4238. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4239. {
  4240. nw64(ZCP_RAM_DATA0, data[0]);
  4241. nw64(ZCP_RAM_DATA1, data[1]);
  4242. nw64(ZCP_RAM_DATA2, data[2]);
  4243. nw64(ZCP_RAM_DATA3, data[3]);
  4244. nw64(ZCP_RAM_DATA4, data[4]);
  4245. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4246. nw64(ZCP_RAM_ACC,
  4247. (ZCP_RAM_ACC_WRITE |
  4248. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4249. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4250. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4251. 1000, 100);
  4252. }
  4253. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4254. {
  4255. int err;
  4256. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4257. 1000, 100);
  4258. if (err) {
  4259. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4260. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4261. (unsigned long long) nr64(ZCP_RAM_ACC));
  4262. return err;
  4263. }
  4264. nw64(ZCP_RAM_ACC,
  4265. (ZCP_RAM_ACC_READ |
  4266. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4267. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4268. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4269. 1000, 100);
  4270. if (err) {
  4271. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4272. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4273. (unsigned long long) nr64(ZCP_RAM_ACC));
  4274. return err;
  4275. }
  4276. data[0] = nr64(ZCP_RAM_DATA0);
  4277. data[1] = nr64(ZCP_RAM_DATA1);
  4278. data[2] = nr64(ZCP_RAM_DATA2);
  4279. data[3] = nr64(ZCP_RAM_DATA3);
  4280. data[4] = nr64(ZCP_RAM_DATA4);
  4281. return 0;
  4282. }
  4283. static void niu_zcp_cfifo_reset(struct niu *np)
  4284. {
  4285. u64 val = nr64(RESET_CFIFO);
  4286. val |= RESET_CFIFO_RST(np->port);
  4287. nw64(RESET_CFIFO, val);
  4288. udelay(10);
  4289. val &= ~RESET_CFIFO_RST(np->port);
  4290. nw64(RESET_CFIFO, val);
  4291. }
  4292. static int niu_init_zcp(struct niu *np)
  4293. {
  4294. u64 data[5], rbuf[5];
  4295. int i, max, err;
  4296. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4297. if (np->port == 0 || np->port == 1)
  4298. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4299. else
  4300. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4301. } else
  4302. max = NIU_CFIFO_ENTRIES;
  4303. data[0] = 0;
  4304. data[1] = 0;
  4305. data[2] = 0;
  4306. data[3] = 0;
  4307. data[4] = 0;
  4308. for (i = 0; i < max; i++) {
  4309. err = niu_zcp_write(np, i, data);
  4310. if (err)
  4311. return err;
  4312. err = niu_zcp_read(np, i, rbuf);
  4313. if (err)
  4314. return err;
  4315. }
  4316. niu_zcp_cfifo_reset(np);
  4317. nw64(CFIFO_ECC(np->port), 0);
  4318. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4319. (void) nr64(ZCP_INT_STAT);
  4320. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4321. return 0;
  4322. }
  4323. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4324. {
  4325. u64 val = nr64_ipp(IPP_CFIG);
  4326. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4327. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4328. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4329. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4330. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4331. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4332. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4333. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4334. }
  4335. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4336. {
  4337. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4338. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4339. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4340. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4341. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4342. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4343. }
  4344. static int niu_ipp_reset(struct niu *np)
  4345. {
  4346. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4347. 1000, 100, "IPP_CFIG");
  4348. }
  4349. static int niu_init_ipp(struct niu *np)
  4350. {
  4351. u64 data[5], rbuf[5], val;
  4352. int i, max, err;
  4353. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4354. if (np->port == 0 || np->port == 1)
  4355. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4356. else
  4357. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4358. } else
  4359. max = NIU_DFIFO_ENTRIES;
  4360. data[0] = 0;
  4361. data[1] = 0;
  4362. data[2] = 0;
  4363. data[3] = 0;
  4364. data[4] = 0;
  4365. for (i = 0; i < max; i++) {
  4366. niu_ipp_write(np, i, data);
  4367. niu_ipp_read(np, i, rbuf);
  4368. }
  4369. (void) nr64_ipp(IPP_INT_STAT);
  4370. (void) nr64_ipp(IPP_INT_STAT);
  4371. err = niu_ipp_reset(np);
  4372. if (err)
  4373. return err;
  4374. (void) nr64_ipp(IPP_PKT_DIS);
  4375. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4376. (void) nr64_ipp(IPP_ECC);
  4377. (void) nr64_ipp(IPP_INT_STAT);
  4378. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4379. val = nr64_ipp(IPP_CFIG);
  4380. val &= ~IPP_CFIG_IP_MAX_PKT;
  4381. val |= (IPP_CFIG_IPP_ENABLE |
  4382. IPP_CFIG_DFIFO_ECC_EN |
  4383. IPP_CFIG_DROP_BAD_CRC |
  4384. IPP_CFIG_CKSUM_EN |
  4385. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4386. nw64_ipp(IPP_CFIG, val);
  4387. return 0;
  4388. }
  4389. static void niu_handle_led(struct niu *np, int status)
  4390. {
  4391. u64 val;
  4392. val = nr64_mac(XMAC_CONFIG);
  4393. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4394. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4395. if (status) {
  4396. val |= XMAC_CONFIG_LED_POLARITY;
  4397. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4398. } else {
  4399. val |= XMAC_CONFIG_FORCE_LED_ON;
  4400. val &= ~XMAC_CONFIG_LED_POLARITY;
  4401. }
  4402. }
  4403. nw64_mac(XMAC_CONFIG, val);
  4404. }
  4405. static void niu_init_xif_xmac(struct niu *np)
  4406. {
  4407. struct niu_link_config *lp = &np->link_config;
  4408. u64 val;
  4409. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4410. val = nr64(MIF_CONFIG);
  4411. val |= MIF_CONFIG_ATCA_GE;
  4412. nw64(MIF_CONFIG, val);
  4413. }
  4414. val = nr64_mac(XMAC_CONFIG);
  4415. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4416. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4417. if (lp->loopback_mode == LOOPBACK_MAC) {
  4418. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4419. val |= XMAC_CONFIG_LOOPBACK;
  4420. } else {
  4421. val &= ~XMAC_CONFIG_LOOPBACK;
  4422. }
  4423. if (np->flags & NIU_FLAGS_10G) {
  4424. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4425. } else {
  4426. val |= XMAC_CONFIG_LFS_DISABLE;
  4427. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4428. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4429. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4430. else
  4431. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4432. }
  4433. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4434. if (lp->active_speed == SPEED_100)
  4435. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4436. else
  4437. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4438. nw64_mac(XMAC_CONFIG, val);
  4439. val = nr64_mac(XMAC_CONFIG);
  4440. val &= ~XMAC_CONFIG_MODE_MASK;
  4441. if (np->flags & NIU_FLAGS_10G) {
  4442. val |= XMAC_CONFIG_MODE_XGMII;
  4443. } else {
  4444. if (lp->active_speed == SPEED_1000)
  4445. val |= XMAC_CONFIG_MODE_GMII;
  4446. else
  4447. val |= XMAC_CONFIG_MODE_MII;
  4448. }
  4449. nw64_mac(XMAC_CONFIG, val);
  4450. }
  4451. static void niu_init_xif_bmac(struct niu *np)
  4452. {
  4453. struct niu_link_config *lp = &np->link_config;
  4454. u64 val;
  4455. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4456. if (lp->loopback_mode == LOOPBACK_MAC)
  4457. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4458. else
  4459. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4460. if (lp->active_speed == SPEED_1000)
  4461. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4462. else
  4463. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4464. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4465. BMAC_XIF_CONFIG_LED_POLARITY);
  4466. if (!(np->flags & NIU_FLAGS_10G) &&
  4467. !(np->flags & NIU_FLAGS_FIBER) &&
  4468. lp->active_speed == SPEED_100)
  4469. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4470. else
  4471. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4472. nw64_mac(BMAC_XIF_CONFIG, val);
  4473. }
  4474. static void niu_init_xif(struct niu *np)
  4475. {
  4476. if (np->flags & NIU_FLAGS_XMAC)
  4477. niu_init_xif_xmac(np);
  4478. else
  4479. niu_init_xif_bmac(np);
  4480. }
  4481. static void niu_pcs_mii_reset(struct niu *np)
  4482. {
  4483. int limit = 1000;
  4484. u64 val = nr64_pcs(PCS_MII_CTL);
  4485. val |= PCS_MII_CTL_RST;
  4486. nw64_pcs(PCS_MII_CTL, val);
  4487. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4488. udelay(100);
  4489. val = nr64_pcs(PCS_MII_CTL);
  4490. }
  4491. }
  4492. static void niu_xpcs_reset(struct niu *np)
  4493. {
  4494. int limit = 1000;
  4495. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4496. val |= XPCS_CONTROL1_RESET;
  4497. nw64_xpcs(XPCS_CONTROL1, val);
  4498. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4499. udelay(100);
  4500. val = nr64_xpcs(XPCS_CONTROL1);
  4501. }
  4502. }
  4503. static int niu_init_pcs(struct niu *np)
  4504. {
  4505. struct niu_link_config *lp = &np->link_config;
  4506. u64 val;
  4507. switch (np->flags & (NIU_FLAGS_10G |
  4508. NIU_FLAGS_FIBER |
  4509. NIU_FLAGS_XCVR_SERDES)) {
  4510. case NIU_FLAGS_FIBER:
  4511. /* 1G fiber */
  4512. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4513. nw64_pcs(PCS_DPATH_MODE, 0);
  4514. niu_pcs_mii_reset(np);
  4515. break;
  4516. case NIU_FLAGS_10G:
  4517. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4518. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4519. /* 10G SERDES */
  4520. if (!(np->flags & NIU_FLAGS_XMAC))
  4521. return -EINVAL;
  4522. /* 10G copper or fiber */
  4523. val = nr64_mac(XMAC_CONFIG);
  4524. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4525. nw64_mac(XMAC_CONFIG, val);
  4526. niu_xpcs_reset(np);
  4527. val = nr64_xpcs(XPCS_CONTROL1);
  4528. if (lp->loopback_mode == LOOPBACK_PHY)
  4529. val |= XPCS_CONTROL1_LOOPBACK;
  4530. else
  4531. val &= ~XPCS_CONTROL1_LOOPBACK;
  4532. nw64_xpcs(XPCS_CONTROL1, val);
  4533. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4534. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4535. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4536. break;
  4537. case NIU_FLAGS_XCVR_SERDES:
  4538. /* 1G SERDES */
  4539. niu_pcs_mii_reset(np);
  4540. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4541. nw64_pcs(PCS_DPATH_MODE, 0);
  4542. break;
  4543. case 0:
  4544. /* 1G copper */
  4545. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4546. /* 1G RGMII FIBER */
  4547. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4548. niu_pcs_mii_reset(np);
  4549. break;
  4550. default:
  4551. return -EINVAL;
  4552. }
  4553. return 0;
  4554. }
  4555. static int niu_reset_tx_xmac(struct niu *np)
  4556. {
  4557. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4558. (XTXMAC_SW_RST_REG_RS |
  4559. XTXMAC_SW_RST_SOFT_RST),
  4560. 1000, 100, "XTXMAC_SW_RST");
  4561. }
  4562. static int niu_reset_tx_bmac(struct niu *np)
  4563. {
  4564. int limit;
  4565. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4566. limit = 1000;
  4567. while (--limit >= 0) {
  4568. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4569. break;
  4570. udelay(100);
  4571. }
  4572. if (limit < 0) {
  4573. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4574. "BTXMAC_SW_RST[%llx]\n",
  4575. np->port,
  4576. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4577. return -ENODEV;
  4578. }
  4579. return 0;
  4580. }
  4581. static int niu_reset_tx_mac(struct niu *np)
  4582. {
  4583. if (np->flags & NIU_FLAGS_XMAC)
  4584. return niu_reset_tx_xmac(np);
  4585. else
  4586. return niu_reset_tx_bmac(np);
  4587. }
  4588. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4589. {
  4590. u64 val;
  4591. val = nr64_mac(XMAC_MIN);
  4592. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4593. XMAC_MIN_RX_MIN_PKT_SIZE);
  4594. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4595. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4596. nw64_mac(XMAC_MIN, val);
  4597. nw64_mac(XMAC_MAX, max);
  4598. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4599. val = nr64_mac(XMAC_IPG);
  4600. if (np->flags & NIU_FLAGS_10G) {
  4601. val &= ~XMAC_IPG_IPG_XGMII;
  4602. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4603. } else {
  4604. val &= ~XMAC_IPG_IPG_MII_GMII;
  4605. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4606. }
  4607. nw64_mac(XMAC_IPG, val);
  4608. val = nr64_mac(XMAC_CONFIG);
  4609. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4610. XMAC_CONFIG_STRETCH_MODE |
  4611. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4612. XMAC_CONFIG_TX_ENABLE);
  4613. nw64_mac(XMAC_CONFIG, val);
  4614. nw64_mac(TXMAC_FRM_CNT, 0);
  4615. nw64_mac(TXMAC_BYTE_CNT, 0);
  4616. }
  4617. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4618. {
  4619. u64 val;
  4620. nw64_mac(BMAC_MIN_FRAME, min);
  4621. nw64_mac(BMAC_MAX_FRAME, max);
  4622. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4623. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4624. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4625. val = nr64_mac(BTXMAC_CONFIG);
  4626. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4627. BTXMAC_CONFIG_ENABLE);
  4628. nw64_mac(BTXMAC_CONFIG, val);
  4629. }
  4630. static void niu_init_tx_mac(struct niu *np)
  4631. {
  4632. u64 min, max;
  4633. min = 64;
  4634. if (np->dev->mtu > ETH_DATA_LEN)
  4635. max = 9216;
  4636. else
  4637. max = 1522;
  4638. /* The XMAC_MIN register only accepts values for TX min which
  4639. * have the low 3 bits cleared.
  4640. */
  4641. BUG_ON(min & 0x7);
  4642. if (np->flags & NIU_FLAGS_XMAC)
  4643. niu_init_tx_xmac(np, min, max);
  4644. else
  4645. niu_init_tx_bmac(np, min, max);
  4646. }
  4647. static int niu_reset_rx_xmac(struct niu *np)
  4648. {
  4649. int limit;
  4650. nw64_mac(XRXMAC_SW_RST,
  4651. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4652. limit = 1000;
  4653. while (--limit >= 0) {
  4654. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4655. XRXMAC_SW_RST_SOFT_RST)))
  4656. break;
  4657. udelay(100);
  4658. }
  4659. if (limit < 0) {
  4660. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4661. "XRXMAC_SW_RST[%llx]\n",
  4662. np->port,
  4663. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4664. return -ENODEV;
  4665. }
  4666. return 0;
  4667. }
  4668. static int niu_reset_rx_bmac(struct niu *np)
  4669. {
  4670. int limit;
  4671. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4672. limit = 1000;
  4673. while (--limit >= 0) {
  4674. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4675. break;
  4676. udelay(100);
  4677. }
  4678. if (limit < 0) {
  4679. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4680. "BRXMAC_SW_RST[%llx]\n",
  4681. np->port,
  4682. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4683. return -ENODEV;
  4684. }
  4685. return 0;
  4686. }
  4687. static int niu_reset_rx_mac(struct niu *np)
  4688. {
  4689. if (np->flags & NIU_FLAGS_XMAC)
  4690. return niu_reset_rx_xmac(np);
  4691. else
  4692. return niu_reset_rx_bmac(np);
  4693. }
  4694. static void niu_init_rx_xmac(struct niu *np)
  4695. {
  4696. struct niu_parent *parent = np->parent;
  4697. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4698. int first_rdc_table = tp->first_table_num;
  4699. unsigned long i;
  4700. u64 val;
  4701. nw64_mac(XMAC_ADD_FILT0, 0);
  4702. nw64_mac(XMAC_ADD_FILT1, 0);
  4703. nw64_mac(XMAC_ADD_FILT2, 0);
  4704. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4705. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4706. for (i = 0; i < MAC_NUM_HASH; i++)
  4707. nw64_mac(XMAC_HASH_TBL(i), 0);
  4708. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4709. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4710. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4711. val = nr64_mac(XMAC_CONFIG);
  4712. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4713. XMAC_CONFIG_PROMISCUOUS |
  4714. XMAC_CONFIG_PROMISC_GROUP |
  4715. XMAC_CONFIG_ERR_CHK_DIS |
  4716. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4717. XMAC_CONFIG_RESERVED_MULTICAST |
  4718. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4719. XMAC_CONFIG_ADDR_FILTER_EN |
  4720. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4721. XMAC_CONFIG_STRIP_CRC |
  4722. XMAC_CONFIG_PASS_FLOW_CTRL |
  4723. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4724. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4725. nw64_mac(XMAC_CONFIG, val);
  4726. nw64_mac(RXMAC_BT_CNT, 0);
  4727. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4728. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4729. nw64_mac(RXMAC_FRAG_CNT, 0);
  4730. nw64_mac(RXMAC_HIST_CNT1, 0);
  4731. nw64_mac(RXMAC_HIST_CNT2, 0);
  4732. nw64_mac(RXMAC_HIST_CNT3, 0);
  4733. nw64_mac(RXMAC_HIST_CNT4, 0);
  4734. nw64_mac(RXMAC_HIST_CNT5, 0);
  4735. nw64_mac(RXMAC_HIST_CNT6, 0);
  4736. nw64_mac(RXMAC_HIST_CNT7, 0);
  4737. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4738. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4739. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4740. nw64_mac(LINK_FAULT_CNT, 0);
  4741. }
  4742. static void niu_init_rx_bmac(struct niu *np)
  4743. {
  4744. struct niu_parent *parent = np->parent;
  4745. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4746. int first_rdc_table = tp->first_table_num;
  4747. unsigned long i;
  4748. u64 val;
  4749. nw64_mac(BMAC_ADD_FILT0, 0);
  4750. nw64_mac(BMAC_ADD_FILT1, 0);
  4751. nw64_mac(BMAC_ADD_FILT2, 0);
  4752. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4753. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4754. for (i = 0; i < MAC_NUM_HASH; i++)
  4755. nw64_mac(BMAC_HASH_TBL(i), 0);
  4756. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4757. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4758. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4759. val = nr64_mac(BRXMAC_CONFIG);
  4760. val &= ~(BRXMAC_CONFIG_ENABLE |
  4761. BRXMAC_CONFIG_STRIP_PAD |
  4762. BRXMAC_CONFIG_STRIP_FCS |
  4763. BRXMAC_CONFIG_PROMISC |
  4764. BRXMAC_CONFIG_PROMISC_GRP |
  4765. BRXMAC_CONFIG_ADDR_FILT_EN |
  4766. BRXMAC_CONFIG_DISCARD_DIS);
  4767. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4768. nw64_mac(BRXMAC_CONFIG, val);
  4769. val = nr64_mac(BMAC_ADDR_CMPEN);
  4770. val |= BMAC_ADDR_CMPEN_EN0;
  4771. nw64_mac(BMAC_ADDR_CMPEN, val);
  4772. }
  4773. static void niu_init_rx_mac(struct niu *np)
  4774. {
  4775. niu_set_primary_mac(np, np->dev->dev_addr);
  4776. if (np->flags & NIU_FLAGS_XMAC)
  4777. niu_init_rx_xmac(np);
  4778. else
  4779. niu_init_rx_bmac(np);
  4780. }
  4781. static void niu_enable_tx_xmac(struct niu *np, int on)
  4782. {
  4783. u64 val = nr64_mac(XMAC_CONFIG);
  4784. if (on)
  4785. val |= XMAC_CONFIG_TX_ENABLE;
  4786. else
  4787. val &= ~XMAC_CONFIG_TX_ENABLE;
  4788. nw64_mac(XMAC_CONFIG, val);
  4789. }
  4790. static void niu_enable_tx_bmac(struct niu *np, int on)
  4791. {
  4792. u64 val = nr64_mac(BTXMAC_CONFIG);
  4793. if (on)
  4794. val |= BTXMAC_CONFIG_ENABLE;
  4795. else
  4796. val &= ~BTXMAC_CONFIG_ENABLE;
  4797. nw64_mac(BTXMAC_CONFIG, val);
  4798. }
  4799. static void niu_enable_tx_mac(struct niu *np, int on)
  4800. {
  4801. if (np->flags & NIU_FLAGS_XMAC)
  4802. niu_enable_tx_xmac(np, on);
  4803. else
  4804. niu_enable_tx_bmac(np, on);
  4805. }
  4806. static void niu_enable_rx_xmac(struct niu *np, int on)
  4807. {
  4808. u64 val = nr64_mac(XMAC_CONFIG);
  4809. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4810. XMAC_CONFIG_PROMISCUOUS);
  4811. if (np->flags & NIU_FLAGS_MCAST)
  4812. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4813. if (np->flags & NIU_FLAGS_PROMISC)
  4814. val |= XMAC_CONFIG_PROMISCUOUS;
  4815. if (on)
  4816. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4817. else
  4818. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4819. nw64_mac(XMAC_CONFIG, val);
  4820. }
  4821. static void niu_enable_rx_bmac(struct niu *np, int on)
  4822. {
  4823. u64 val = nr64_mac(BRXMAC_CONFIG);
  4824. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4825. BRXMAC_CONFIG_PROMISC);
  4826. if (np->flags & NIU_FLAGS_MCAST)
  4827. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4828. if (np->flags & NIU_FLAGS_PROMISC)
  4829. val |= BRXMAC_CONFIG_PROMISC;
  4830. if (on)
  4831. val |= BRXMAC_CONFIG_ENABLE;
  4832. else
  4833. val &= ~BRXMAC_CONFIG_ENABLE;
  4834. nw64_mac(BRXMAC_CONFIG, val);
  4835. }
  4836. static void niu_enable_rx_mac(struct niu *np, int on)
  4837. {
  4838. if (np->flags & NIU_FLAGS_XMAC)
  4839. niu_enable_rx_xmac(np, on);
  4840. else
  4841. niu_enable_rx_bmac(np, on);
  4842. }
  4843. static int niu_init_mac(struct niu *np)
  4844. {
  4845. int err;
  4846. niu_init_xif(np);
  4847. err = niu_init_pcs(np);
  4848. if (err)
  4849. return err;
  4850. err = niu_reset_tx_mac(np);
  4851. if (err)
  4852. return err;
  4853. niu_init_tx_mac(np);
  4854. err = niu_reset_rx_mac(np);
  4855. if (err)
  4856. return err;
  4857. niu_init_rx_mac(np);
  4858. /* This looks hookey but the RX MAC reset we just did will
  4859. * undo some of the state we setup in niu_init_tx_mac() so we
  4860. * have to call it again. In particular, the RX MAC reset will
  4861. * set the XMAC_MAX register back to it's default value.
  4862. */
  4863. niu_init_tx_mac(np);
  4864. niu_enable_tx_mac(np, 1);
  4865. niu_enable_rx_mac(np, 1);
  4866. return 0;
  4867. }
  4868. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4869. {
  4870. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4871. }
  4872. static void niu_stop_tx_channels(struct niu *np)
  4873. {
  4874. int i;
  4875. for (i = 0; i < np->num_tx_rings; i++) {
  4876. struct tx_ring_info *rp = &np->tx_rings[i];
  4877. niu_stop_one_tx_channel(np, rp);
  4878. }
  4879. }
  4880. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4881. {
  4882. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4883. }
  4884. static void niu_reset_tx_channels(struct niu *np)
  4885. {
  4886. int i;
  4887. for (i = 0; i < np->num_tx_rings; i++) {
  4888. struct tx_ring_info *rp = &np->tx_rings[i];
  4889. niu_reset_one_tx_channel(np, rp);
  4890. }
  4891. }
  4892. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4893. {
  4894. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4895. }
  4896. static void niu_stop_rx_channels(struct niu *np)
  4897. {
  4898. int i;
  4899. for (i = 0; i < np->num_rx_rings; i++) {
  4900. struct rx_ring_info *rp = &np->rx_rings[i];
  4901. niu_stop_one_rx_channel(np, rp);
  4902. }
  4903. }
  4904. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4905. {
  4906. int channel = rp->rx_channel;
  4907. (void) niu_rx_channel_reset(np, channel);
  4908. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4909. nw64(RX_DMA_CTL_STAT(channel), 0);
  4910. (void) niu_enable_rx_channel(np, channel, 0);
  4911. }
  4912. static void niu_reset_rx_channels(struct niu *np)
  4913. {
  4914. int i;
  4915. for (i = 0; i < np->num_rx_rings; i++) {
  4916. struct rx_ring_info *rp = &np->rx_rings[i];
  4917. niu_reset_one_rx_channel(np, rp);
  4918. }
  4919. }
  4920. static void niu_disable_ipp(struct niu *np)
  4921. {
  4922. u64 rd, wr, val;
  4923. int limit;
  4924. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4925. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4926. limit = 100;
  4927. while (--limit >= 0 && (rd != wr)) {
  4928. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4929. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4930. }
  4931. if (limit < 0 &&
  4932. (rd != 0 && wr != 1)) {
  4933. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4934. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4935. np->dev->name,
  4936. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4937. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4938. }
  4939. val = nr64_ipp(IPP_CFIG);
  4940. val &= ~(IPP_CFIG_IPP_ENABLE |
  4941. IPP_CFIG_DFIFO_ECC_EN |
  4942. IPP_CFIG_DROP_BAD_CRC |
  4943. IPP_CFIG_CKSUM_EN);
  4944. nw64_ipp(IPP_CFIG, val);
  4945. (void) niu_ipp_reset(np);
  4946. }
  4947. static int niu_init_hw(struct niu *np)
  4948. {
  4949. int i, err;
  4950. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4951. niu_txc_enable_port(np, 1);
  4952. niu_txc_port_dma_enable(np, 1);
  4953. niu_txc_set_imask(np, 0);
  4954. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4955. for (i = 0; i < np->num_tx_rings; i++) {
  4956. struct tx_ring_info *rp = &np->tx_rings[i];
  4957. err = niu_init_one_tx_channel(np, rp);
  4958. if (err)
  4959. return err;
  4960. }
  4961. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4962. err = niu_init_rx_channels(np);
  4963. if (err)
  4964. goto out_uninit_tx_channels;
  4965. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4966. err = niu_init_classifier_hw(np);
  4967. if (err)
  4968. goto out_uninit_rx_channels;
  4969. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4970. err = niu_init_zcp(np);
  4971. if (err)
  4972. goto out_uninit_rx_channels;
  4973. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4974. err = niu_init_ipp(np);
  4975. if (err)
  4976. goto out_uninit_rx_channels;
  4977. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4978. err = niu_init_mac(np);
  4979. if (err)
  4980. goto out_uninit_ipp;
  4981. return 0;
  4982. out_uninit_ipp:
  4983. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4984. niu_disable_ipp(np);
  4985. out_uninit_rx_channels:
  4986. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4987. niu_stop_rx_channels(np);
  4988. niu_reset_rx_channels(np);
  4989. out_uninit_tx_channels:
  4990. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4991. niu_stop_tx_channels(np);
  4992. niu_reset_tx_channels(np);
  4993. return err;
  4994. }
  4995. static void niu_stop_hw(struct niu *np)
  4996. {
  4997. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4998. niu_enable_interrupts(np, 0);
  4999. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  5000. niu_enable_rx_mac(np, 0);
  5001. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  5002. niu_disable_ipp(np);
  5003. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  5004. niu_stop_tx_channels(np);
  5005. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  5006. niu_stop_rx_channels(np);
  5007. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  5008. niu_reset_tx_channels(np);
  5009. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  5010. niu_reset_rx_channels(np);
  5011. }
  5012. static void niu_set_irq_name(struct niu *np)
  5013. {
  5014. int port = np->port;
  5015. int i, j = 1;
  5016. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  5017. if (port == 0) {
  5018. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  5019. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  5020. j = 3;
  5021. }
  5022. for (i = 0; i < np->num_ldg - j; i++) {
  5023. if (i < np->num_rx_rings)
  5024. sprintf(np->irq_name[i+j], "%s-rx-%d",
  5025. np->dev->name, i);
  5026. else if (i < np->num_tx_rings + np->num_rx_rings)
  5027. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5028. i - np->num_rx_rings);
  5029. }
  5030. }
  5031. static int niu_request_irq(struct niu *np)
  5032. {
  5033. int i, j, err;
  5034. niu_set_irq_name(np);
  5035. err = 0;
  5036. for (i = 0; i < np->num_ldg; i++) {
  5037. struct niu_ldg *lp = &np->ldg[i];
  5038. err = request_irq(lp->irq, niu_interrupt,
  5039. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5040. np->irq_name[i], lp);
  5041. if (err)
  5042. goto out_free_irqs;
  5043. }
  5044. return 0;
  5045. out_free_irqs:
  5046. for (j = 0; j < i; j++) {
  5047. struct niu_ldg *lp = &np->ldg[j];
  5048. free_irq(lp->irq, lp);
  5049. }
  5050. return err;
  5051. }
  5052. static void niu_free_irq(struct niu *np)
  5053. {
  5054. int i;
  5055. for (i = 0; i < np->num_ldg; i++) {
  5056. struct niu_ldg *lp = &np->ldg[i];
  5057. free_irq(lp->irq, lp);
  5058. }
  5059. }
  5060. static void niu_enable_napi(struct niu *np)
  5061. {
  5062. int i;
  5063. for (i = 0; i < np->num_ldg; i++)
  5064. napi_enable(&np->ldg[i].napi);
  5065. }
  5066. static void niu_disable_napi(struct niu *np)
  5067. {
  5068. int i;
  5069. for (i = 0; i < np->num_ldg; i++)
  5070. napi_disable(&np->ldg[i].napi);
  5071. }
  5072. static int niu_open(struct net_device *dev)
  5073. {
  5074. struct niu *np = netdev_priv(dev);
  5075. int err;
  5076. netif_carrier_off(dev);
  5077. err = niu_alloc_channels(np);
  5078. if (err)
  5079. goto out_err;
  5080. err = niu_enable_interrupts(np, 0);
  5081. if (err)
  5082. goto out_free_channels;
  5083. err = niu_request_irq(np);
  5084. if (err)
  5085. goto out_free_channels;
  5086. niu_enable_napi(np);
  5087. spin_lock_irq(&np->lock);
  5088. err = niu_init_hw(np);
  5089. if (!err) {
  5090. init_timer(&np->timer);
  5091. np->timer.expires = jiffies + HZ;
  5092. np->timer.data = (unsigned long) np;
  5093. np->timer.function = niu_timer;
  5094. err = niu_enable_interrupts(np, 1);
  5095. if (err)
  5096. niu_stop_hw(np);
  5097. }
  5098. spin_unlock_irq(&np->lock);
  5099. if (err) {
  5100. niu_disable_napi(np);
  5101. goto out_free_irq;
  5102. }
  5103. netif_tx_start_all_queues(dev);
  5104. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5105. netif_carrier_on(dev);
  5106. add_timer(&np->timer);
  5107. return 0;
  5108. out_free_irq:
  5109. niu_free_irq(np);
  5110. out_free_channels:
  5111. niu_free_channels(np);
  5112. out_err:
  5113. return err;
  5114. }
  5115. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5116. {
  5117. cancel_work_sync(&np->reset_task);
  5118. niu_disable_napi(np);
  5119. netif_tx_stop_all_queues(dev);
  5120. del_timer_sync(&np->timer);
  5121. spin_lock_irq(&np->lock);
  5122. niu_stop_hw(np);
  5123. spin_unlock_irq(&np->lock);
  5124. }
  5125. static int niu_close(struct net_device *dev)
  5126. {
  5127. struct niu *np = netdev_priv(dev);
  5128. niu_full_shutdown(np, dev);
  5129. niu_free_irq(np);
  5130. niu_free_channels(np);
  5131. niu_handle_led(np, 0);
  5132. return 0;
  5133. }
  5134. static void niu_sync_xmac_stats(struct niu *np)
  5135. {
  5136. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5137. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5138. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5139. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5140. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5141. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5142. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5143. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5144. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5145. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5146. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5147. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5148. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5149. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5150. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5151. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5152. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5153. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5154. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5155. }
  5156. static void niu_sync_bmac_stats(struct niu *np)
  5157. {
  5158. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5159. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5160. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5161. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5162. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5163. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5164. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5165. }
  5166. static void niu_sync_mac_stats(struct niu *np)
  5167. {
  5168. if (np->flags & NIU_FLAGS_XMAC)
  5169. niu_sync_xmac_stats(np);
  5170. else
  5171. niu_sync_bmac_stats(np);
  5172. }
  5173. static void niu_get_rx_stats(struct niu *np)
  5174. {
  5175. unsigned long pkts, dropped, errors, bytes;
  5176. int i;
  5177. pkts = dropped = errors = bytes = 0;
  5178. for (i = 0; i < np->num_rx_rings; i++) {
  5179. struct rx_ring_info *rp = &np->rx_rings[i];
  5180. niu_sync_rx_discard_stats(np, rp, 0);
  5181. pkts += rp->rx_packets;
  5182. bytes += rp->rx_bytes;
  5183. dropped += rp->rx_dropped;
  5184. errors += rp->rx_errors;
  5185. }
  5186. np->dev->stats.rx_packets = pkts;
  5187. np->dev->stats.rx_bytes = bytes;
  5188. np->dev->stats.rx_dropped = dropped;
  5189. np->dev->stats.rx_errors = errors;
  5190. }
  5191. static void niu_get_tx_stats(struct niu *np)
  5192. {
  5193. unsigned long pkts, errors, bytes;
  5194. int i;
  5195. pkts = errors = bytes = 0;
  5196. for (i = 0; i < np->num_tx_rings; i++) {
  5197. struct tx_ring_info *rp = &np->tx_rings[i];
  5198. pkts += rp->tx_packets;
  5199. bytes += rp->tx_bytes;
  5200. errors += rp->tx_errors;
  5201. }
  5202. np->dev->stats.tx_packets = pkts;
  5203. np->dev->stats.tx_bytes = bytes;
  5204. np->dev->stats.tx_errors = errors;
  5205. }
  5206. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5207. {
  5208. struct niu *np = netdev_priv(dev);
  5209. niu_get_rx_stats(np);
  5210. niu_get_tx_stats(np);
  5211. return &dev->stats;
  5212. }
  5213. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5214. {
  5215. int i;
  5216. for (i = 0; i < 16; i++)
  5217. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5218. }
  5219. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5220. {
  5221. int i;
  5222. for (i = 0; i < 16; i++)
  5223. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5224. }
  5225. static void niu_load_hash(struct niu *np, u16 *hash)
  5226. {
  5227. if (np->flags & NIU_FLAGS_XMAC)
  5228. niu_load_hash_xmac(np, hash);
  5229. else
  5230. niu_load_hash_bmac(np, hash);
  5231. }
  5232. static void niu_set_rx_mode(struct net_device *dev)
  5233. {
  5234. struct niu *np = netdev_priv(dev);
  5235. int i, alt_cnt, err;
  5236. struct dev_addr_list *addr;
  5237. struct netdev_hw_addr *ha;
  5238. unsigned long flags;
  5239. u16 hash[16] = { 0, };
  5240. spin_lock_irqsave(&np->lock, flags);
  5241. niu_enable_rx_mac(np, 0);
  5242. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5243. if (dev->flags & IFF_PROMISC)
  5244. np->flags |= NIU_FLAGS_PROMISC;
  5245. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5246. np->flags |= NIU_FLAGS_MCAST;
  5247. alt_cnt = dev->uc.count;
  5248. if (alt_cnt > niu_num_alt_addr(np)) {
  5249. alt_cnt = 0;
  5250. np->flags |= NIU_FLAGS_PROMISC;
  5251. }
  5252. if (alt_cnt) {
  5253. int index = 0;
  5254. list_for_each_entry(ha, &dev->uc.list, list) {
  5255. err = niu_set_alt_mac(np, index, ha->addr);
  5256. if (err)
  5257. printk(KERN_WARNING PFX "%s: Error %d "
  5258. "adding alt mac %d\n",
  5259. dev->name, err, index);
  5260. err = niu_enable_alt_mac(np, index, 1);
  5261. if (err)
  5262. printk(KERN_WARNING PFX "%s: Error %d "
  5263. "enabling alt mac %d\n",
  5264. dev->name, err, index);
  5265. index++;
  5266. }
  5267. } else {
  5268. int alt_start;
  5269. if (np->flags & NIU_FLAGS_XMAC)
  5270. alt_start = 0;
  5271. else
  5272. alt_start = 1;
  5273. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5274. err = niu_enable_alt_mac(np, i, 0);
  5275. if (err)
  5276. printk(KERN_WARNING PFX "%s: Error %d "
  5277. "disabling alt mac %d\n",
  5278. dev->name, err, i);
  5279. }
  5280. }
  5281. if (dev->flags & IFF_ALLMULTI) {
  5282. for (i = 0; i < 16; i++)
  5283. hash[i] = 0xffff;
  5284. } else if (dev->mc_count > 0) {
  5285. for (addr = dev->mc_list; addr; addr = addr->next) {
  5286. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5287. crc >>= 24;
  5288. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5289. }
  5290. }
  5291. if (np->flags & NIU_FLAGS_MCAST)
  5292. niu_load_hash(np, hash);
  5293. niu_enable_rx_mac(np, 1);
  5294. spin_unlock_irqrestore(&np->lock, flags);
  5295. }
  5296. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5297. {
  5298. struct niu *np = netdev_priv(dev);
  5299. struct sockaddr *addr = p;
  5300. unsigned long flags;
  5301. if (!is_valid_ether_addr(addr->sa_data))
  5302. return -EINVAL;
  5303. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5304. if (!netif_running(dev))
  5305. return 0;
  5306. spin_lock_irqsave(&np->lock, flags);
  5307. niu_enable_rx_mac(np, 0);
  5308. niu_set_primary_mac(np, dev->dev_addr);
  5309. niu_enable_rx_mac(np, 1);
  5310. spin_unlock_irqrestore(&np->lock, flags);
  5311. return 0;
  5312. }
  5313. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5314. {
  5315. return -EOPNOTSUPP;
  5316. }
  5317. static void niu_netif_stop(struct niu *np)
  5318. {
  5319. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5320. niu_disable_napi(np);
  5321. netif_tx_disable(np->dev);
  5322. }
  5323. static void niu_netif_start(struct niu *np)
  5324. {
  5325. /* NOTE: unconditional netif_wake_queue is only appropriate
  5326. * so long as all callers are assured to have free tx slots
  5327. * (such as after niu_init_hw).
  5328. */
  5329. netif_tx_wake_all_queues(np->dev);
  5330. niu_enable_napi(np);
  5331. niu_enable_interrupts(np, 1);
  5332. }
  5333. static void niu_reset_buffers(struct niu *np)
  5334. {
  5335. int i, j, k, err;
  5336. if (np->rx_rings) {
  5337. for (i = 0; i < np->num_rx_rings; i++) {
  5338. struct rx_ring_info *rp = &np->rx_rings[i];
  5339. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5340. struct page *page;
  5341. page = rp->rxhash[j];
  5342. while (page) {
  5343. struct page *next =
  5344. (struct page *) page->mapping;
  5345. u64 base = page->index;
  5346. base = base >> RBR_DESCR_ADDR_SHIFT;
  5347. rp->rbr[k++] = cpu_to_le32(base);
  5348. page = next;
  5349. }
  5350. }
  5351. for (; k < MAX_RBR_RING_SIZE; k++) {
  5352. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5353. if (unlikely(err))
  5354. break;
  5355. }
  5356. rp->rbr_index = rp->rbr_table_size - 1;
  5357. rp->rcr_index = 0;
  5358. rp->rbr_pending = 0;
  5359. rp->rbr_refill_pending = 0;
  5360. }
  5361. }
  5362. if (np->tx_rings) {
  5363. for (i = 0; i < np->num_tx_rings; i++) {
  5364. struct tx_ring_info *rp = &np->tx_rings[i];
  5365. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5366. if (rp->tx_buffs[j].skb)
  5367. (void) release_tx_packet(np, rp, j);
  5368. }
  5369. rp->pending = MAX_TX_RING_SIZE;
  5370. rp->prod = 0;
  5371. rp->cons = 0;
  5372. rp->wrap_bit = 0;
  5373. }
  5374. }
  5375. }
  5376. static void niu_reset_task(struct work_struct *work)
  5377. {
  5378. struct niu *np = container_of(work, struct niu, reset_task);
  5379. unsigned long flags;
  5380. int err;
  5381. spin_lock_irqsave(&np->lock, flags);
  5382. if (!netif_running(np->dev)) {
  5383. spin_unlock_irqrestore(&np->lock, flags);
  5384. return;
  5385. }
  5386. spin_unlock_irqrestore(&np->lock, flags);
  5387. del_timer_sync(&np->timer);
  5388. niu_netif_stop(np);
  5389. spin_lock_irqsave(&np->lock, flags);
  5390. niu_stop_hw(np);
  5391. spin_unlock_irqrestore(&np->lock, flags);
  5392. niu_reset_buffers(np);
  5393. spin_lock_irqsave(&np->lock, flags);
  5394. err = niu_init_hw(np);
  5395. if (!err) {
  5396. np->timer.expires = jiffies + HZ;
  5397. add_timer(&np->timer);
  5398. niu_netif_start(np);
  5399. }
  5400. spin_unlock_irqrestore(&np->lock, flags);
  5401. }
  5402. static void niu_tx_timeout(struct net_device *dev)
  5403. {
  5404. struct niu *np = netdev_priv(dev);
  5405. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5406. dev->name);
  5407. schedule_work(&np->reset_task);
  5408. }
  5409. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5410. u64 mapping, u64 len, u64 mark,
  5411. u64 n_frags)
  5412. {
  5413. __le64 *desc = &rp->descr[index];
  5414. *desc = cpu_to_le64(mark |
  5415. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5416. (len << TX_DESC_TR_LEN_SHIFT) |
  5417. (mapping & TX_DESC_SAD));
  5418. }
  5419. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5420. u64 pad_bytes, u64 len)
  5421. {
  5422. u16 eth_proto, eth_proto_inner;
  5423. u64 csum_bits, l3off, ihl, ret;
  5424. u8 ip_proto;
  5425. int ipv6;
  5426. eth_proto = be16_to_cpu(ehdr->h_proto);
  5427. eth_proto_inner = eth_proto;
  5428. if (eth_proto == ETH_P_8021Q) {
  5429. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5430. __be16 val = vp->h_vlan_encapsulated_proto;
  5431. eth_proto_inner = be16_to_cpu(val);
  5432. }
  5433. ipv6 = ihl = 0;
  5434. switch (skb->protocol) {
  5435. case cpu_to_be16(ETH_P_IP):
  5436. ip_proto = ip_hdr(skb)->protocol;
  5437. ihl = ip_hdr(skb)->ihl;
  5438. break;
  5439. case cpu_to_be16(ETH_P_IPV6):
  5440. ip_proto = ipv6_hdr(skb)->nexthdr;
  5441. ihl = (40 >> 2);
  5442. ipv6 = 1;
  5443. break;
  5444. default:
  5445. ip_proto = ihl = 0;
  5446. break;
  5447. }
  5448. csum_bits = TXHDR_CSUM_NONE;
  5449. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5450. u64 start, stuff;
  5451. csum_bits = (ip_proto == IPPROTO_TCP ?
  5452. TXHDR_CSUM_TCP :
  5453. (ip_proto == IPPROTO_UDP ?
  5454. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5455. start = skb_transport_offset(skb) -
  5456. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5457. stuff = start + skb->csum_offset;
  5458. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5459. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5460. }
  5461. l3off = skb_network_offset(skb) -
  5462. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5463. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5464. (len << TXHDR_LEN_SHIFT) |
  5465. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5466. (ihl << TXHDR_IHL_SHIFT) |
  5467. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5468. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5469. (ipv6 ? TXHDR_IP_VER : 0) |
  5470. csum_bits);
  5471. return ret;
  5472. }
  5473. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5474. struct net_device *dev)
  5475. {
  5476. struct niu *np = netdev_priv(dev);
  5477. unsigned long align, headroom;
  5478. struct netdev_queue *txq;
  5479. struct tx_ring_info *rp;
  5480. struct tx_pkt_hdr *tp;
  5481. unsigned int len, nfg;
  5482. struct ethhdr *ehdr;
  5483. int prod, i, tlen;
  5484. u64 mapping, mrk;
  5485. i = skb_get_queue_mapping(skb);
  5486. rp = &np->tx_rings[i];
  5487. txq = netdev_get_tx_queue(dev, i);
  5488. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5489. netif_tx_stop_queue(txq);
  5490. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5491. "queue awake!\n", dev->name);
  5492. rp->tx_errors++;
  5493. return NETDEV_TX_BUSY;
  5494. }
  5495. if (skb->len < ETH_ZLEN) {
  5496. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5497. if (skb_pad(skb, pad_bytes))
  5498. goto out;
  5499. skb_put(skb, pad_bytes);
  5500. }
  5501. len = sizeof(struct tx_pkt_hdr) + 15;
  5502. if (skb_headroom(skb) < len) {
  5503. struct sk_buff *skb_new;
  5504. skb_new = skb_realloc_headroom(skb, len);
  5505. if (!skb_new) {
  5506. rp->tx_errors++;
  5507. goto out_drop;
  5508. }
  5509. kfree_skb(skb);
  5510. skb = skb_new;
  5511. } else
  5512. skb_orphan(skb);
  5513. align = ((unsigned long) skb->data & (16 - 1));
  5514. headroom = align + sizeof(struct tx_pkt_hdr);
  5515. ehdr = (struct ethhdr *) skb->data;
  5516. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5517. len = skb->len - sizeof(struct tx_pkt_hdr);
  5518. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5519. tp->resv = 0;
  5520. len = skb_headlen(skb);
  5521. mapping = np->ops->map_single(np->device, skb->data,
  5522. len, DMA_TO_DEVICE);
  5523. prod = rp->prod;
  5524. rp->tx_buffs[prod].skb = skb;
  5525. rp->tx_buffs[prod].mapping = mapping;
  5526. mrk = TX_DESC_SOP;
  5527. if (++rp->mark_counter == rp->mark_freq) {
  5528. rp->mark_counter = 0;
  5529. mrk |= TX_DESC_MARK;
  5530. rp->mark_pending++;
  5531. }
  5532. tlen = len;
  5533. nfg = skb_shinfo(skb)->nr_frags;
  5534. while (tlen > 0) {
  5535. tlen -= MAX_TX_DESC_LEN;
  5536. nfg++;
  5537. }
  5538. while (len > 0) {
  5539. unsigned int this_len = len;
  5540. if (this_len > MAX_TX_DESC_LEN)
  5541. this_len = MAX_TX_DESC_LEN;
  5542. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5543. mrk = nfg = 0;
  5544. prod = NEXT_TX(rp, prod);
  5545. mapping += this_len;
  5546. len -= this_len;
  5547. }
  5548. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5549. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5550. len = frag->size;
  5551. mapping = np->ops->map_page(np->device, frag->page,
  5552. frag->page_offset, len,
  5553. DMA_TO_DEVICE);
  5554. rp->tx_buffs[prod].skb = NULL;
  5555. rp->tx_buffs[prod].mapping = mapping;
  5556. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5557. prod = NEXT_TX(rp, prod);
  5558. }
  5559. if (prod < rp->prod)
  5560. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5561. rp->prod = prod;
  5562. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5563. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5564. netif_tx_stop_queue(txq);
  5565. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5566. netif_tx_wake_queue(txq);
  5567. }
  5568. out:
  5569. return NETDEV_TX_OK;
  5570. out_drop:
  5571. rp->tx_errors++;
  5572. kfree_skb(skb);
  5573. goto out;
  5574. }
  5575. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5576. {
  5577. struct niu *np = netdev_priv(dev);
  5578. int err, orig_jumbo, new_jumbo;
  5579. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5580. return -EINVAL;
  5581. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5582. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5583. dev->mtu = new_mtu;
  5584. if (!netif_running(dev) ||
  5585. (orig_jumbo == new_jumbo))
  5586. return 0;
  5587. niu_full_shutdown(np, dev);
  5588. niu_free_channels(np);
  5589. niu_enable_napi(np);
  5590. err = niu_alloc_channels(np);
  5591. if (err)
  5592. return err;
  5593. spin_lock_irq(&np->lock);
  5594. err = niu_init_hw(np);
  5595. if (!err) {
  5596. init_timer(&np->timer);
  5597. np->timer.expires = jiffies + HZ;
  5598. np->timer.data = (unsigned long) np;
  5599. np->timer.function = niu_timer;
  5600. err = niu_enable_interrupts(np, 1);
  5601. if (err)
  5602. niu_stop_hw(np);
  5603. }
  5604. spin_unlock_irq(&np->lock);
  5605. if (!err) {
  5606. netif_tx_start_all_queues(dev);
  5607. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5608. netif_carrier_on(dev);
  5609. add_timer(&np->timer);
  5610. }
  5611. return err;
  5612. }
  5613. static void niu_get_drvinfo(struct net_device *dev,
  5614. struct ethtool_drvinfo *info)
  5615. {
  5616. struct niu *np = netdev_priv(dev);
  5617. struct niu_vpd *vpd = &np->vpd;
  5618. strcpy(info->driver, DRV_MODULE_NAME);
  5619. strcpy(info->version, DRV_MODULE_VERSION);
  5620. sprintf(info->fw_version, "%d.%d",
  5621. vpd->fcode_major, vpd->fcode_minor);
  5622. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5623. strcpy(info->bus_info, pci_name(np->pdev));
  5624. }
  5625. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5626. {
  5627. struct niu *np = netdev_priv(dev);
  5628. struct niu_link_config *lp;
  5629. lp = &np->link_config;
  5630. memset(cmd, 0, sizeof(*cmd));
  5631. cmd->phy_address = np->phy_addr;
  5632. cmd->supported = lp->supported;
  5633. cmd->advertising = lp->active_advertising;
  5634. cmd->autoneg = lp->active_autoneg;
  5635. cmd->speed = lp->active_speed;
  5636. cmd->duplex = lp->active_duplex;
  5637. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5638. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5639. XCVR_EXTERNAL : XCVR_INTERNAL;
  5640. return 0;
  5641. }
  5642. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5643. {
  5644. struct niu *np = netdev_priv(dev);
  5645. struct niu_link_config *lp = &np->link_config;
  5646. lp->advertising = cmd->advertising;
  5647. lp->speed = cmd->speed;
  5648. lp->duplex = cmd->duplex;
  5649. lp->autoneg = cmd->autoneg;
  5650. return niu_init_link(np);
  5651. }
  5652. static u32 niu_get_msglevel(struct net_device *dev)
  5653. {
  5654. struct niu *np = netdev_priv(dev);
  5655. return np->msg_enable;
  5656. }
  5657. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5658. {
  5659. struct niu *np = netdev_priv(dev);
  5660. np->msg_enable = value;
  5661. }
  5662. static int niu_nway_reset(struct net_device *dev)
  5663. {
  5664. struct niu *np = netdev_priv(dev);
  5665. if (np->link_config.autoneg)
  5666. return niu_init_link(np);
  5667. return 0;
  5668. }
  5669. static int niu_get_eeprom_len(struct net_device *dev)
  5670. {
  5671. struct niu *np = netdev_priv(dev);
  5672. return np->eeprom_len;
  5673. }
  5674. static int niu_get_eeprom(struct net_device *dev,
  5675. struct ethtool_eeprom *eeprom, u8 *data)
  5676. {
  5677. struct niu *np = netdev_priv(dev);
  5678. u32 offset, len, val;
  5679. offset = eeprom->offset;
  5680. len = eeprom->len;
  5681. if (offset + len < offset)
  5682. return -EINVAL;
  5683. if (offset >= np->eeprom_len)
  5684. return -EINVAL;
  5685. if (offset + len > np->eeprom_len)
  5686. len = eeprom->len = np->eeprom_len - offset;
  5687. if (offset & 3) {
  5688. u32 b_offset, b_count;
  5689. b_offset = offset & 3;
  5690. b_count = 4 - b_offset;
  5691. if (b_count > len)
  5692. b_count = len;
  5693. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5694. memcpy(data, ((char *)&val) + b_offset, b_count);
  5695. data += b_count;
  5696. len -= b_count;
  5697. offset += b_count;
  5698. }
  5699. while (len >= 4) {
  5700. val = nr64(ESPC_NCR(offset / 4));
  5701. memcpy(data, &val, 4);
  5702. data += 4;
  5703. len -= 4;
  5704. offset += 4;
  5705. }
  5706. if (len) {
  5707. val = nr64(ESPC_NCR(offset / 4));
  5708. memcpy(data, &val, len);
  5709. }
  5710. return 0;
  5711. }
  5712. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5713. {
  5714. switch (flow_type) {
  5715. case TCP_V4_FLOW:
  5716. case TCP_V6_FLOW:
  5717. *pid = IPPROTO_TCP;
  5718. break;
  5719. case UDP_V4_FLOW:
  5720. case UDP_V6_FLOW:
  5721. *pid = IPPROTO_UDP;
  5722. break;
  5723. case SCTP_V4_FLOW:
  5724. case SCTP_V6_FLOW:
  5725. *pid = IPPROTO_SCTP;
  5726. break;
  5727. case AH_V4_FLOW:
  5728. case AH_V6_FLOW:
  5729. *pid = IPPROTO_AH;
  5730. break;
  5731. case ESP_V4_FLOW:
  5732. case ESP_V6_FLOW:
  5733. *pid = IPPROTO_ESP;
  5734. break;
  5735. default:
  5736. *pid = 0;
  5737. break;
  5738. }
  5739. }
  5740. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5741. {
  5742. switch (class) {
  5743. case CLASS_CODE_TCP_IPV4:
  5744. *flow_type = TCP_V4_FLOW;
  5745. break;
  5746. case CLASS_CODE_UDP_IPV4:
  5747. *flow_type = UDP_V4_FLOW;
  5748. break;
  5749. case CLASS_CODE_AH_ESP_IPV4:
  5750. *flow_type = AH_V4_FLOW;
  5751. break;
  5752. case CLASS_CODE_SCTP_IPV4:
  5753. *flow_type = SCTP_V4_FLOW;
  5754. break;
  5755. case CLASS_CODE_TCP_IPV6:
  5756. *flow_type = TCP_V6_FLOW;
  5757. break;
  5758. case CLASS_CODE_UDP_IPV6:
  5759. *flow_type = UDP_V6_FLOW;
  5760. break;
  5761. case CLASS_CODE_AH_ESP_IPV6:
  5762. *flow_type = AH_V6_FLOW;
  5763. break;
  5764. case CLASS_CODE_SCTP_IPV6:
  5765. *flow_type = SCTP_V6_FLOW;
  5766. break;
  5767. case CLASS_CODE_USER_PROG1:
  5768. case CLASS_CODE_USER_PROG2:
  5769. case CLASS_CODE_USER_PROG3:
  5770. case CLASS_CODE_USER_PROG4:
  5771. *flow_type = IP_USER_FLOW;
  5772. break;
  5773. default:
  5774. return 0;
  5775. }
  5776. return 1;
  5777. }
  5778. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5779. {
  5780. switch (flow_type) {
  5781. case TCP_V4_FLOW:
  5782. *class = CLASS_CODE_TCP_IPV4;
  5783. break;
  5784. case UDP_V4_FLOW:
  5785. *class = CLASS_CODE_UDP_IPV4;
  5786. break;
  5787. case AH_V4_FLOW:
  5788. case ESP_V4_FLOW:
  5789. *class = CLASS_CODE_AH_ESP_IPV4;
  5790. break;
  5791. case SCTP_V4_FLOW:
  5792. *class = CLASS_CODE_SCTP_IPV4;
  5793. break;
  5794. case TCP_V6_FLOW:
  5795. *class = CLASS_CODE_TCP_IPV6;
  5796. break;
  5797. case UDP_V6_FLOW:
  5798. *class = CLASS_CODE_UDP_IPV6;
  5799. break;
  5800. case AH_V6_FLOW:
  5801. case ESP_V6_FLOW:
  5802. *class = CLASS_CODE_AH_ESP_IPV6;
  5803. break;
  5804. case SCTP_V6_FLOW:
  5805. *class = CLASS_CODE_SCTP_IPV6;
  5806. break;
  5807. default:
  5808. return 0;
  5809. }
  5810. return 1;
  5811. }
  5812. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5813. {
  5814. u64 ethflow = 0;
  5815. if (flow_key & FLOW_KEY_L2DA)
  5816. ethflow |= RXH_L2DA;
  5817. if (flow_key & FLOW_KEY_VLAN)
  5818. ethflow |= RXH_VLAN;
  5819. if (flow_key & FLOW_KEY_IPSA)
  5820. ethflow |= RXH_IP_SRC;
  5821. if (flow_key & FLOW_KEY_IPDA)
  5822. ethflow |= RXH_IP_DST;
  5823. if (flow_key & FLOW_KEY_PROTO)
  5824. ethflow |= RXH_L3_PROTO;
  5825. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5826. ethflow |= RXH_L4_B_0_1;
  5827. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5828. ethflow |= RXH_L4_B_2_3;
  5829. return ethflow;
  5830. }
  5831. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5832. {
  5833. u64 key = 0;
  5834. if (ethflow & RXH_L2DA)
  5835. key |= FLOW_KEY_L2DA;
  5836. if (ethflow & RXH_VLAN)
  5837. key |= FLOW_KEY_VLAN;
  5838. if (ethflow & RXH_IP_SRC)
  5839. key |= FLOW_KEY_IPSA;
  5840. if (ethflow & RXH_IP_DST)
  5841. key |= FLOW_KEY_IPDA;
  5842. if (ethflow & RXH_L3_PROTO)
  5843. key |= FLOW_KEY_PROTO;
  5844. if (ethflow & RXH_L4_B_0_1)
  5845. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5846. if (ethflow & RXH_L4_B_2_3)
  5847. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5848. *flow_key = key;
  5849. return 1;
  5850. }
  5851. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5852. {
  5853. u64 class;
  5854. nfc->data = 0;
  5855. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5856. return -EINVAL;
  5857. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5858. TCAM_KEY_DISC)
  5859. nfc->data = RXH_DISCARD;
  5860. else
  5861. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5862. CLASS_CODE_USER_PROG1]);
  5863. return 0;
  5864. }
  5865. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5866. struct ethtool_rx_flow_spec *fsp)
  5867. {
  5868. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5869. TCAM_V4KEY3_SADDR_SHIFT;
  5870. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5871. TCAM_V4KEY3_DADDR_SHIFT;
  5872. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5873. TCAM_V4KEY3_SADDR_SHIFT;
  5874. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5875. TCAM_V4KEY3_DADDR_SHIFT;
  5876. fsp->h_u.tcp_ip4_spec.ip4src =
  5877. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5878. fsp->m_u.tcp_ip4_spec.ip4src =
  5879. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5880. fsp->h_u.tcp_ip4_spec.ip4dst =
  5881. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5882. fsp->m_u.tcp_ip4_spec.ip4dst =
  5883. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5884. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5885. TCAM_V4KEY2_TOS_SHIFT;
  5886. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5887. TCAM_V4KEY2_TOS_SHIFT;
  5888. switch (fsp->flow_type) {
  5889. case TCP_V4_FLOW:
  5890. case UDP_V4_FLOW:
  5891. case SCTP_V4_FLOW:
  5892. fsp->h_u.tcp_ip4_spec.psrc =
  5893. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5894. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5895. fsp->h_u.tcp_ip4_spec.pdst =
  5896. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5897. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5898. fsp->m_u.tcp_ip4_spec.psrc =
  5899. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5900. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5901. fsp->m_u.tcp_ip4_spec.pdst =
  5902. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5903. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5904. fsp->h_u.tcp_ip4_spec.psrc =
  5905. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5906. fsp->h_u.tcp_ip4_spec.pdst =
  5907. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5908. fsp->m_u.tcp_ip4_spec.psrc =
  5909. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5910. fsp->m_u.tcp_ip4_spec.pdst =
  5911. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5912. break;
  5913. case AH_V4_FLOW:
  5914. case ESP_V4_FLOW:
  5915. fsp->h_u.ah_ip4_spec.spi =
  5916. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5917. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5918. fsp->m_u.ah_ip4_spec.spi =
  5919. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5920. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5921. fsp->h_u.ah_ip4_spec.spi =
  5922. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5923. fsp->m_u.ah_ip4_spec.spi =
  5924. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5925. break;
  5926. case IP_USER_FLOW:
  5927. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5928. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5929. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5930. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5931. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5932. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5933. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5934. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5935. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5936. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5937. fsp->h_u.usr_ip4_spec.proto =
  5938. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5939. TCAM_V4KEY2_PROTO_SHIFT;
  5940. fsp->m_u.usr_ip4_spec.proto =
  5941. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5942. TCAM_V4KEY2_PROTO_SHIFT;
  5943. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5944. break;
  5945. default:
  5946. break;
  5947. }
  5948. }
  5949. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5950. struct ethtool_rxnfc *nfc)
  5951. {
  5952. struct niu_parent *parent = np->parent;
  5953. struct niu_tcam_entry *tp;
  5954. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5955. u16 idx;
  5956. u64 class;
  5957. int ret = 0;
  5958. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5959. tp = &parent->tcam[idx];
  5960. if (!tp->valid) {
  5961. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5962. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5963. return -EINVAL;
  5964. }
  5965. /* fill the flow spec entry */
  5966. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5967. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5968. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5969. if (ret < 0) {
  5970. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5971. parent->index, np->dev->name);
  5972. ret = -EINVAL;
  5973. goto out;
  5974. }
  5975. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5976. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5977. TCAM_V4KEY2_PROTO_SHIFT;
  5978. if (proto == IPPROTO_ESP) {
  5979. if (fsp->flow_type == AH_V4_FLOW)
  5980. fsp->flow_type = ESP_V4_FLOW;
  5981. else
  5982. fsp->flow_type = ESP_V6_FLOW;
  5983. }
  5984. }
  5985. switch (fsp->flow_type) {
  5986. case TCP_V4_FLOW:
  5987. case UDP_V4_FLOW:
  5988. case SCTP_V4_FLOW:
  5989. case AH_V4_FLOW:
  5990. case ESP_V4_FLOW:
  5991. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5992. break;
  5993. case TCP_V6_FLOW:
  5994. case UDP_V6_FLOW:
  5995. case SCTP_V6_FLOW:
  5996. case AH_V6_FLOW:
  5997. case ESP_V6_FLOW:
  5998. /* Not yet implemented */
  5999. ret = -EINVAL;
  6000. break;
  6001. case IP_USER_FLOW:
  6002. niu_get_ip4fs_from_tcam_key(tp, fsp);
  6003. break;
  6004. default:
  6005. ret = -EINVAL;
  6006. break;
  6007. }
  6008. if (ret < 0)
  6009. goto out;
  6010. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  6011. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  6012. else
  6013. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  6014. TCAM_ASSOCDATA_OFFSET_SHIFT;
  6015. /* put the tcam size here */
  6016. nfc->data = tcam_get_size(np);
  6017. out:
  6018. return ret;
  6019. }
  6020. static int niu_get_ethtool_tcam_all(struct niu *np,
  6021. struct ethtool_rxnfc *nfc,
  6022. u32 *rule_locs)
  6023. {
  6024. struct niu_parent *parent = np->parent;
  6025. struct niu_tcam_entry *tp;
  6026. int i, idx, cnt;
  6027. u16 n_entries;
  6028. unsigned long flags;
  6029. /* put the tcam size here */
  6030. nfc->data = tcam_get_size(np);
  6031. niu_lock_parent(np, flags);
  6032. n_entries = nfc->rule_cnt;
  6033. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6034. idx = tcam_get_index(np, i);
  6035. tp = &parent->tcam[idx];
  6036. if (!tp->valid)
  6037. continue;
  6038. rule_locs[cnt] = i;
  6039. cnt++;
  6040. }
  6041. niu_unlock_parent(np, flags);
  6042. if (n_entries != cnt) {
  6043. /* print warning, this should not happen */
  6044. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6045. "n_entries[%d] != cnt[%d]!!!\n\n",
  6046. np->parent->index, np->dev->name, n_entries, cnt);
  6047. }
  6048. return 0;
  6049. }
  6050. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6051. void *rule_locs)
  6052. {
  6053. struct niu *np = netdev_priv(dev);
  6054. int ret = 0;
  6055. switch (cmd->cmd) {
  6056. case ETHTOOL_GRXFH:
  6057. ret = niu_get_hash_opts(np, cmd);
  6058. break;
  6059. case ETHTOOL_GRXRINGS:
  6060. cmd->data = np->num_rx_rings;
  6061. break;
  6062. case ETHTOOL_GRXCLSRLCNT:
  6063. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6064. break;
  6065. case ETHTOOL_GRXCLSRULE:
  6066. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6067. break;
  6068. case ETHTOOL_GRXCLSRLALL:
  6069. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6070. break;
  6071. default:
  6072. ret = -EINVAL;
  6073. break;
  6074. }
  6075. return ret;
  6076. }
  6077. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6078. {
  6079. u64 class;
  6080. u64 flow_key = 0;
  6081. unsigned long flags;
  6082. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6083. return -EINVAL;
  6084. if (class < CLASS_CODE_USER_PROG1 ||
  6085. class > CLASS_CODE_SCTP_IPV6)
  6086. return -EINVAL;
  6087. if (nfc->data & RXH_DISCARD) {
  6088. niu_lock_parent(np, flags);
  6089. flow_key = np->parent->tcam_key[class -
  6090. CLASS_CODE_USER_PROG1];
  6091. flow_key |= TCAM_KEY_DISC;
  6092. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6093. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6094. niu_unlock_parent(np, flags);
  6095. return 0;
  6096. } else {
  6097. /* Discard was set before, but is not set now */
  6098. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6099. TCAM_KEY_DISC) {
  6100. niu_lock_parent(np, flags);
  6101. flow_key = np->parent->tcam_key[class -
  6102. CLASS_CODE_USER_PROG1];
  6103. flow_key &= ~TCAM_KEY_DISC;
  6104. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6105. flow_key);
  6106. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6107. flow_key;
  6108. niu_unlock_parent(np, flags);
  6109. }
  6110. }
  6111. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6112. return -EINVAL;
  6113. niu_lock_parent(np, flags);
  6114. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6115. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6116. niu_unlock_parent(np, flags);
  6117. return 0;
  6118. }
  6119. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6120. struct niu_tcam_entry *tp,
  6121. int l2_rdc_tab, u64 class)
  6122. {
  6123. u8 pid = 0;
  6124. u32 sip, dip, sipm, dipm, spi, spim;
  6125. u16 sport, dport, spm, dpm;
  6126. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6127. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6128. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6129. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6130. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6131. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6132. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6133. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6134. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6135. tp->key[3] |= dip;
  6136. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6137. tp->key_mask[3] |= dipm;
  6138. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6139. TCAM_V4KEY2_TOS_SHIFT);
  6140. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6141. TCAM_V4KEY2_TOS_SHIFT);
  6142. switch (fsp->flow_type) {
  6143. case TCP_V4_FLOW:
  6144. case UDP_V4_FLOW:
  6145. case SCTP_V4_FLOW:
  6146. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6147. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6148. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6149. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6150. tp->key[2] |= (((u64)sport << 16) | dport);
  6151. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6152. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6153. break;
  6154. case AH_V4_FLOW:
  6155. case ESP_V4_FLOW:
  6156. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6157. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6158. tp->key[2] |= spi;
  6159. tp->key_mask[2] |= spim;
  6160. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6161. break;
  6162. case IP_USER_FLOW:
  6163. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6164. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6165. tp->key[2] |= spi;
  6166. tp->key_mask[2] |= spim;
  6167. pid = fsp->h_u.usr_ip4_spec.proto;
  6168. break;
  6169. default:
  6170. break;
  6171. }
  6172. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6173. if (pid) {
  6174. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6175. }
  6176. }
  6177. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6178. struct ethtool_rxnfc *nfc)
  6179. {
  6180. struct niu_parent *parent = np->parent;
  6181. struct niu_tcam_entry *tp;
  6182. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6183. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6184. int l2_rdc_table = rdc_table->first_table_num;
  6185. u16 idx;
  6186. u64 class;
  6187. unsigned long flags;
  6188. int err, ret;
  6189. ret = 0;
  6190. idx = nfc->fs.location;
  6191. if (idx >= tcam_get_size(np))
  6192. return -EINVAL;
  6193. if (fsp->flow_type == IP_USER_FLOW) {
  6194. int i;
  6195. int add_usr_cls = 0;
  6196. int ipv6 = 0;
  6197. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6198. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6199. niu_lock_parent(np, flags);
  6200. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6201. if (parent->l3_cls[i]) {
  6202. if (uspec->proto == parent->l3_cls_pid[i]) {
  6203. class = parent->l3_cls[i];
  6204. parent->l3_cls_refcnt[i]++;
  6205. add_usr_cls = 1;
  6206. break;
  6207. }
  6208. } else {
  6209. /* Program new user IP class */
  6210. switch (i) {
  6211. case 0:
  6212. class = CLASS_CODE_USER_PROG1;
  6213. break;
  6214. case 1:
  6215. class = CLASS_CODE_USER_PROG2;
  6216. break;
  6217. case 2:
  6218. class = CLASS_CODE_USER_PROG3;
  6219. break;
  6220. case 3:
  6221. class = CLASS_CODE_USER_PROG4;
  6222. break;
  6223. default:
  6224. break;
  6225. }
  6226. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6227. ipv6 = 1;
  6228. ret = tcam_user_ip_class_set(np, class, ipv6,
  6229. uspec->proto,
  6230. uspec->tos,
  6231. umask->tos);
  6232. if (ret)
  6233. goto out;
  6234. ret = tcam_user_ip_class_enable(np, class, 1);
  6235. if (ret)
  6236. goto out;
  6237. parent->l3_cls[i] = class;
  6238. parent->l3_cls_pid[i] = uspec->proto;
  6239. parent->l3_cls_refcnt[i]++;
  6240. add_usr_cls = 1;
  6241. break;
  6242. }
  6243. }
  6244. if (!add_usr_cls) {
  6245. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6246. "Could not find/insert class for pid %d\n",
  6247. parent->index, np->dev->name, uspec->proto);
  6248. ret = -EINVAL;
  6249. goto out;
  6250. }
  6251. niu_unlock_parent(np, flags);
  6252. } else {
  6253. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6254. return -EINVAL;
  6255. }
  6256. }
  6257. niu_lock_parent(np, flags);
  6258. idx = tcam_get_index(np, idx);
  6259. tp = &parent->tcam[idx];
  6260. memset(tp, 0, sizeof(*tp));
  6261. /* fill in the tcam key and mask */
  6262. switch (fsp->flow_type) {
  6263. case TCP_V4_FLOW:
  6264. case UDP_V4_FLOW:
  6265. case SCTP_V4_FLOW:
  6266. case AH_V4_FLOW:
  6267. case ESP_V4_FLOW:
  6268. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6269. break;
  6270. case TCP_V6_FLOW:
  6271. case UDP_V6_FLOW:
  6272. case SCTP_V6_FLOW:
  6273. case AH_V6_FLOW:
  6274. case ESP_V6_FLOW:
  6275. /* Not yet implemented */
  6276. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6277. "flow %d for IPv6 not implemented\n\n",
  6278. parent->index, np->dev->name, fsp->flow_type);
  6279. ret = -EINVAL;
  6280. goto out;
  6281. case IP_USER_FLOW:
  6282. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6283. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6284. class);
  6285. } else {
  6286. /* Not yet implemented */
  6287. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6288. "usr flow for IPv6 not implemented\n\n",
  6289. parent->index, np->dev->name);
  6290. ret = -EINVAL;
  6291. goto out;
  6292. }
  6293. break;
  6294. default:
  6295. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6296. "Unknown flow type %d\n\n",
  6297. parent->index, np->dev->name, fsp->flow_type);
  6298. ret = -EINVAL;
  6299. goto out;
  6300. }
  6301. /* fill in the assoc data */
  6302. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6303. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6304. } else {
  6305. if (fsp->ring_cookie >= np->num_rx_rings) {
  6306. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6307. "Invalid RX ring %lld\n\n",
  6308. parent->index, np->dev->name,
  6309. (long long) fsp->ring_cookie);
  6310. ret = -EINVAL;
  6311. goto out;
  6312. }
  6313. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6314. (fsp->ring_cookie <<
  6315. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6316. }
  6317. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6318. if (err) {
  6319. ret = -EINVAL;
  6320. goto out;
  6321. }
  6322. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6323. if (err) {
  6324. ret = -EINVAL;
  6325. goto out;
  6326. }
  6327. /* validate the entry */
  6328. tp->valid = 1;
  6329. np->clas.tcam_valid_entries++;
  6330. out:
  6331. niu_unlock_parent(np, flags);
  6332. return ret;
  6333. }
  6334. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6335. {
  6336. struct niu_parent *parent = np->parent;
  6337. struct niu_tcam_entry *tp;
  6338. u16 idx;
  6339. unsigned long flags;
  6340. u64 class;
  6341. int ret = 0;
  6342. if (loc >= tcam_get_size(np))
  6343. return -EINVAL;
  6344. niu_lock_parent(np, flags);
  6345. idx = tcam_get_index(np, loc);
  6346. tp = &parent->tcam[idx];
  6347. /* if the entry is of a user defined class, then update*/
  6348. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6349. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6350. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6351. int i;
  6352. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6353. if (parent->l3_cls[i] == class) {
  6354. parent->l3_cls_refcnt[i]--;
  6355. if (!parent->l3_cls_refcnt[i]) {
  6356. /* disable class */
  6357. ret = tcam_user_ip_class_enable(np,
  6358. class,
  6359. 0);
  6360. if (ret)
  6361. goto out;
  6362. parent->l3_cls[i] = 0;
  6363. parent->l3_cls_pid[i] = 0;
  6364. }
  6365. break;
  6366. }
  6367. }
  6368. if (i == NIU_L3_PROG_CLS) {
  6369. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6370. "Usr class 0x%llx not found \n",
  6371. parent->index, np->dev->name,
  6372. (unsigned long long) class);
  6373. ret = -EINVAL;
  6374. goto out;
  6375. }
  6376. }
  6377. ret = tcam_flush(np, idx);
  6378. if (ret)
  6379. goto out;
  6380. /* invalidate the entry */
  6381. tp->valid = 0;
  6382. np->clas.tcam_valid_entries--;
  6383. out:
  6384. niu_unlock_parent(np, flags);
  6385. return ret;
  6386. }
  6387. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6388. {
  6389. struct niu *np = netdev_priv(dev);
  6390. int ret = 0;
  6391. switch (cmd->cmd) {
  6392. case ETHTOOL_SRXFH:
  6393. ret = niu_set_hash_opts(np, cmd);
  6394. break;
  6395. case ETHTOOL_SRXCLSRLINS:
  6396. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6397. break;
  6398. case ETHTOOL_SRXCLSRLDEL:
  6399. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6400. break;
  6401. default:
  6402. ret = -EINVAL;
  6403. break;
  6404. }
  6405. return ret;
  6406. }
  6407. static const struct {
  6408. const char string[ETH_GSTRING_LEN];
  6409. } niu_xmac_stat_keys[] = {
  6410. { "tx_frames" },
  6411. { "tx_bytes" },
  6412. { "tx_fifo_errors" },
  6413. { "tx_overflow_errors" },
  6414. { "tx_max_pkt_size_errors" },
  6415. { "tx_underflow_errors" },
  6416. { "rx_local_faults" },
  6417. { "rx_remote_faults" },
  6418. { "rx_link_faults" },
  6419. { "rx_align_errors" },
  6420. { "rx_frags" },
  6421. { "rx_mcasts" },
  6422. { "rx_bcasts" },
  6423. { "rx_hist_cnt1" },
  6424. { "rx_hist_cnt2" },
  6425. { "rx_hist_cnt3" },
  6426. { "rx_hist_cnt4" },
  6427. { "rx_hist_cnt5" },
  6428. { "rx_hist_cnt6" },
  6429. { "rx_hist_cnt7" },
  6430. { "rx_octets" },
  6431. { "rx_code_violations" },
  6432. { "rx_len_errors" },
  6433. { "rx_crc_errors" },
  6434. { "rx_underflows" },
  6435. { "rx_overflows" },
  6436. { "pause_off_state" },
  6437. { "pause_on_state" },
  6438. { "pause_received" },
  6439. };
  6440. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6441. static const struct {
  6442. const char string[ETH_GSTRING_LEN];
  6443. } niu_bmac_stat_keys[] = {
  6444. { "tx_underflow_errors" },
  6445. { "tx_max_pkt_size_errors" },
  6446. { "tx_bytes" },
  6447. { "tx_frames" },
  6448. { "rx_overflows" },
  6449. { "rx_frames" },
  6450. { "rx_align_errors" },
  6451. { "rx_crc_errors" },
  6452. { "rx_len_errors" },
  6453. { "pause_off_state" },
  6454. { "pause_on_state" },
  6455. { "pause_received" },
  6456. };
  6457. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6458. static const struct {
  6459. const char string[ETH_GSTRING_LEN];
  6460. } niu_rxchan_stat_keys[] = {
  6461. { "rx_channel" },
  6462. { "rx_packets" },
  6463. { "rx_bytes" },
  6464. { "rx_dropped" },
  6465. { "rx_errors" },
  6466. };
  6467. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6468. static const struct {
  6469. const char string[ETH_GSTRING_LEN];
  6470. } niu_txchan_stat_keys[] = {
  6471. { "tx_channel" },
  6472. { "tx_packets" },
  6473. { "tx_bytes" },
  6474. { "tx_errors" },
  6475. };
  6476. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6477. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6478. {
  6479. struct niu *np = netdev_priv(dev);
  6480. int i;
  6481. if (stringset != ETH_SS_STATS)
  6482. return;
  6483. if (np->flags & NIU_FLAGS_XMAC) {
  6484. memcpy(data, niu_xmac_stat_keys,
  6485. sizeof(niu_xmac_stat_keys));
  6486. data += sizeof(niu_xmac_stat_keys);
  6487. } else {
  6488. memcpy(data, niu_bmac_stat_keys,
  6489. sizeof(niu_bmac_stat_keys));
  6490. data += sizeof(niu_bmac_stat_keys);
  6491. }
  6492. for (i = 0; i < np->num_rx_rings; i++) {
  6493. memcpy(data, niu_rxchan_stat_keys,
  6494. sizeof(niu_rxchan_stat_keys));
  6495. data += sizeof(niu_rxchan_stat_keys);
  6496. }
  6497. for (i = 0; i < np->num_tx_rings; i++) {
  6498. memcpy(data, niu_txchan_stat_keys,
  6499. sizeof(niu_txchan_stat_keys));
  6500. data += sizeof(niu_txchan_stat_keys);
  6501. }
  6502. }
  6503. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6504. {
  6505. struct niu *np = netdev_priv(dev);
  6506. if (stringset != ETH_SS_STATS)
  6507. return -EINVAL;
  6508. return ((np->flags & NIU_FLAGS_XMAC ?
  6509. NUM_XMAC_STAT_KEYS :
  6510. NUM_BMAC_STAT_KEYS) +
  6511. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6512. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6513. }
  6514. static void niu_get_ethtool_stats(struct net_device *dev,
  6515. struct ethtool_stats *stats, u64 *data)
  6516. {
  6517. struct niu *np = netdev_priv(dev);
  6518. int i;
  6519. niu_sync_mac_stats(np);
  6520. if (np->flags & NIU_FLAGS_XMAC) {
  6521. memcpy(data, &np->mac_stats.xmac,
  6522. sizeof(struct niu_xmac_stats));
  6523. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6524. } else {
  6525. memcpy(data, &np->mac_stats.bmac,
  6526. sizeof(struct niu_bmac_stats));
  6527. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6528. }
  6529. for (i = 0; i < np->num_rx_rings; i++) {
  6530. struct rx_ring_info *rp = &np->rx_rings[i];
  6531. niu_sync_rx_discard_stats(np, rp, 0);
  6532. data[0] = rp->rx_channel;
  6533. data[1] = rp->rx_packets;
  6534. data[2] = rp->rx_bytes;
  6535. data[3] = rp->rx_dropped;
  6536. data[4] = rp->rx_errors;
  6537. data += 5;
  6538. }
  6539. for (i = 0; i < np->num_tx_rings; i++) {
  6540. struct tx_ring_info *rp = &np->tx_rings[i];
  6541. data[0] = rp->tx_channel;
  6542. data[1] = rp->tx_packets;
  6543. data[2] = rp->tx_bytes;
  6544. data[3] = rp->tx_errors;
  6545. data += 4;
  6546. }
  6547. }
  6548. static u64 niu_led_state_save(struct niu *np)
  6549. {
  6550. if (np->flags & NIU_FLAGS_XMAC)
  6551. return nr64_mac(XMAC_CONFIG);
  6552. else
  6553. return nr64_mac(BMAC_XIF_CONFIG);
  6554. }
  6555. static void niu_led_state_restore(struct niu *np, u64 val)
  6556. {
  6557. if (np->flags & NIU_FLAGS_XMAC)
  6558. nw64_mac(XMAC_CONFIG, val);
  6559. else
  6560. nw64_mac(BMAC_XIF_CONFIG, val);
  6561. }
  6562. static void niu_force_led(struct niu *np, int on)
  6563. {
  6564. u64 val, reg, bit;
  6565. if (np->flags & NIU_FLAGS_XMAC) {
  6566. reg = XMAC_CONFIG;
  6567. bit = XMAC_CONFIG_FORCE_LED_ON;
  6568. } else {
  6569. reg = BMAC_XIF_CONFIG;
  6570. bit = BMAC_XIF_CONFIG_LINK_LED;
  6571. }
  6572. val = nr64_mac(reg);
  6573. if (on)
  6574. val |= bit;
  6575. else
  6576. val &= ~bit;
  6577. nw64_mac(reg, val);
  6578. }
  6579. static int niu_phys_id(struct net_device *dev, u32 data)
  6580. {
  6581. struct niu *np = netdev_priv(dev);
  6582. u64 orig_led_state;
  6583. int i;
  6584. if (!netif_running(dev))
  6585. return -EAGAIN;
  6586. if (data == 0)
  6587. data = 2;
  6588. orig_led_state = niu_led_state_save(np);
  6589. for (i = 0; i < (data * 2); i++) {
  6590. int on = ((i % 2) == 0);
  6591. niu_force_led(np, on);
  6592. if (msleep_interruptible(500))
  6593. break;
  6594. }
  6595. niu_led_state_restore(np, orig_led_state);
  6596. return 0;
  6597. }
  6598. static const struct ethtool_ops niu_ethtool_ops = {
  6599. .get_drvinfo = niu_get_drvinfo,
  6600. .get_link = ethtool_op_get_link,
  6601. .get_msglevel = niu_get_msglevel,
  6602. .set_msglevel = niu_set_msglevel,
  6603. .nway_reset = niu_nway_reset,
  6604. .get_eeprom_len = niu_get_eeprom_len,
  6605. .get_eeprom = niu_get_eeprom,
  6606. .get_settings = niu_get_settings,
  6607. .set_settings = niu_set_settings,
  6608. .get_strings = niu_get_strings,
  6609. .get_sset_count = niu_get_sset_count,
  6610. .get_ethtool_stats = niu_get_ethtool_stats,
  6611. .phys_id = niu_phys_id,
  6612. .get_rxnfc = niu_get_nfc,
  6613. .set_rxnfc = niu_set_nfc,
  6614. };
  6615. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6616. int ldg, int ldn)
  6617. {
  6618. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6619. return -EINVAL;
  6620. if (ldn < 0 || ldn > LDN_MAX)
  6621. return -EINVAL;
  6622. parent->ldg_map[ldn] = ldg;
  6623. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6624. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6625. * the firmware, and we're not supposed to change them.
  6626. * Validate the mapping, because if it's wrong we probably
  6627. * won't get any interrupts and that's painful to debug.
  6628. */
  6629. if (nr64(LDG_NUM(ldn)) != ldg) {
  6630. dev_err(np->device, PFX "Port %u, mis-matched "
  6631. "LDG assignment "
  6632. "for ldn %d, should be %d is %llu\n",
  6633. np->port, ldn, ldg,
  6634. (unsigned long long) nr64(LDG_NUM(ldn)));
  6635. return -EINVAL;
  6636. }
  6637. } else
  6638. nw64(LDG_NUM(ldn), ldg);
  6639. return 0;
  6640. }
  6641. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6642. {
  6643. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6644. return -EINVAL;
  6645. nw64(LDG_TIMER_RES, res);
  6646. return 0;
  6647. }
  6648. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6649. {
  6650. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6651. (func < 0 || func > 3) ||
  6652. (vector < 0 || vector > 0x1f))
  6653. return -EINVAL;
  6654. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6655. return 0;
  6656. }
  6657. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6658. {
  6659. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6660. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6661. int limit;
  6662. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6663. return -EINVAL;
  6664. frame = frame_base;
  6665. nw64(ESPC_PIO_STAT, frame);
  6666. limit = 64;
  6667. do {
  6668. udelay(5);
  6669. frame = nr64(ESPC_PIO_STAT);
  6670. if (frame & ESPC_PIO_STAT_READ_END)
  6671. break;
  6672. } while (limit--);
  6673. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6674. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6675. (unsigned long long) frame);
  6676. return -ENODEV;
  6677. }
  6678. frame = frame_base;
  6679. nw64(ESPC_PIO_STAT, frame);
  6680. limit = 64;
  6681. do {
  6682. udelay(5);
  6683. frame = nr64(ESPC_PIO_STAT);
  6684. if (frame & ESPC_PIO_STAT_READ_END)
  6685. break;
  6686. } while (limit--);
  6687. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6688. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6689. (unsigned long long) frame);
  6690. return -ENODEV;
  6691. }
  6692. frame = nr64(ESPC_PIO_STAT);
  6693. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6694. }
  6695. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6696. {
  6697. int err = niu_pci_eeprom_read(np, off);
  6698. u16 val;
  6699. if (err < 0)
  6700. return err;
  6701. val = (err << 8);
  6702. err = niu_pci_eeprom_read(np, off + 1);
  6703. if (err < 0)
  6704. return err;
  6705. val |= (err & 0xff);
  6706. return val;
  6707. }
  6708. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6709. {
  6710. int err = niu_pci_eeprom_read(np, off);
  6711. u16 val;
  6712. if (err < 0)
  6713. return err;
  6714. val = (err & 0xff);
  6715. err = niu_pci_eeprom_read(np, off + 1);
  6716. if (err < 0)
  6717. return err;
  6718. val |= (err & 0xff) << 8;
  6719. return val;
  6720. }
  6721. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6722. u32 off,
  6723. char *namebuf,
  6724. int namebuf_len)
  6725. {
  6726. int i;
  6727. for (i = 0; i < namebuf_len; i++) {
  6728. int err = niu_pci_eeprom_read(np, off + i);
  6729. if (err < 0)
  6730. return err;
  6731. *namebuf++ = err;
  6732. if (!err)
  6733. break;
  6734. }
  6735. if (i >= namebuf_len)
  6736. return -EINVAL;
  6737. return i + 1;
  6738. }
  6739. static void __devinit niu_vpd_parse_version(struct niu *np)
  6740. {
  6741. struct niu_vpd *vpd = &np->vpd;
  6742. int len = strlen(vpd->version) + 1;
  6743. const char *s = vpd->version;
  6744. int i;
  6745. for (i = 0; i < len - 5; i++) {
  6746. if (!strncmp(s + i, "FCode ", 6))
  6747. break;
  6748. }
  6749. if (i >= len - 5)
  6750. return;
  6751. s += i + 5;
  6752. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6753. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6754. vpd->fcode_major, vpd->fcode_minor);
  6755. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6756. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6757. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6758. np->flags |= NIU_FLAGS_VPD_VALID;
  6759. }
  6760. /* ESPC_PIO_EN_ENABLE must be set */
  6761. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6762. u32 start, u32 end)
  6763. {
  6764. unsigned int found_mask = 0;
  6765. #define FOUND_MASK_MODEL 0x00000001
  6766. #define FOUND_MASK_BMODEL 0x00000002
  6767. #define FOUND_MASK_VERS 0x00000004
  6768. #define FOUND_MASK_MAC 0x00000008
  6769. #define FOUND_MASK_NMAC 0x00000010
  6770. #define FOUND_MASK_PHY 0x00000020
  6771. #define FOUND_MASK_ALL 0x0000003f
  6772. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6773. start, end);
  6774. while (start < end) {
  6775. int len, err, instance, type, prop_len;
  6776. char namebuf[64];
  6777. u8 *prop_buf;
  6778. int max_len;
  6779. if (found_mask == FOUND_MASK_ALL) {
  6780. niu_vpd_parse_version(np);
  6781. return 1;
  6782. }
  6783. err = niu_pci_eeprom_read(np, start + 2);
  6784. if (err < 0)
  6785. return err;
  6786. len = err;
  6787. start += 3;
  6788. instance = niu_pci_eeprom_read(np, start);
  6789. type = niu_pci_eeprom_read(np, start + 3);
  6790. prop_len = niu_pci_eeprom_read(np, start + 4);
  6791. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6792. if (err < 0)
  6793. return err;
  6794. prop_buf = NULL;
  6795. max_len = 0;
  6796. if (!strcmp(namebuf, "model")) {
  6797. prop_buf = np->vpd.model;
  6798. max_len = NIU_VPD_MODEL_MAX;
  6799. found_mask |= FOUND_MASK_MODEL;
  6800. } else if (!strcmp(namebuf, "board-model")) {
  6801. prop_buf = np->vpd.board_model;
  6802. max_len = NIU_VPD_BD_MODEL_MAX;
  6803. found_mask |= FOUND_MASK_BMODEL;
  6804. } else if (!strcmp(namebuf, "version")) {
  6805. prop_buf = np->vpd.version;
  6806. max_len = NIU_VPD_VERSION_MAX;
  6807. found_mask |= FOUND_MASK_VERS;
  6808. } else if (!strcmp(namebuf, "local-mac-address")) {
  6809. prop_buf = np->vpd.local_mac;
  6810. max_len = ETH_ALEN;
  6811. found_mask |= FOUND_MASK_MAC;
  6812. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6813. prop_buf = &np->vpd.mac_num;
  6814. max_len = 1;
  6815. found_mask |= FOUND_MASK_NMAC;
  6816. } else if (!strcmp(namebuf, "phy-type")) {
  6817. prop_buf = np->vpd.phy_type;
  6818. max_len = NIU_VPD_PHY_TYPE_MAX;
  6819. found_mask |= FOUND_MASK_PHY;
  6820. }
  6821. if (max_len && prop_len > max_len) {
  6822. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6823. "too long.\n", namebuf, prop_len);
  6824. return -EINVAL;
  6825. }
  6826. if (prop_buf) {
  6827. u32 off = start + 5 + err;
  6828. int i;
  6829. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6830. "len[%d]\n", namebuf, prop_len);
  6831. for (i = 0; i < prop_len; i++)
  6832. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6833. }
  6834. start += len;
  6835. }
  6836. return 0;
  6837. }
  6838. /* ESPC_PIO_EN_ENABLE must be set */
  6839. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6840. {
  6841. u32 offset;
  6842. int err;
  6843. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6844. if (err < 0)
  6845. return;
  6846. offset = err + 3;
  6847. while (start + offset < ESPC_EEPROM_SIZE) {
  6848. u32 here = start + offset;
  6849. u32 end;
  6850. err = niu_pci_eeprom_read(np, here);
  6851. if (err != 0x90)
  6852. return;
  6853. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6854. if (err < 0)
  6855. return;
  6856. here = start + offset + 3;
  6857. end = start + offset + err;
  6858. offset += err;
  6859. err = niu_pci_vpd_scan_props(np, here, end);
  6860. if (err < 0 || err == 1)
  6861. return;
  6862. }
  6863. }
  6864. /* ESPC_PIO_EN_ENABLE must be set */
  6865. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6866. {
  6867. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6868. int err;
  6869. while (start < end) {
  6870. ret = start;
  6871. /* ROM header signature? */
  6872. err = niu_pci_eeprom_read16(np, start + 0);
  6873. if (err != 0x55aa)
  6874. return 0;
  6875. /* Apply offset to PCI data structure. */
  6876. err = niu_pci_eeprom_read16(np, start + 23);
  6877. if (err < 0)
  6878. return 0;
  6879. start += err;
  6880. /* Check for "PCIR" signature. */
  6881. err = niu_pci_eeprom_read16(np, start + 0);
  6882. if (err != 0x5043)
  6883. return 0;
  6884. err = niu_pci_eeprom_read16(np, start + 2);
  6885. if (err != 0x4952)
  6886. return 0;
  6887. /* Check for OBP image type. */
  6888. err = niu_pci_eeprom_read(np, start + 20);
  6889. if (err < 0)
  6890. return 0;
  6891. if (err != 0x01) {
  6892. err = niu_pci_eeprom_read(np, ret + 2);
  6893. if (err < 0)
  6894. return 0;
  6895. start = ret + (err * 512);
  6896. continue;
  6897. }
  6898. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6899. if (err < 0)
  6900. return err;
  6901. ret += err;
  6902. err = niu_pci_eeprom_read(np, ret + 0);
  6903. if (err != 0x82)
  6904. return 0;
  6905. return ret;
  6906. }
  6907. return 0;
  6908. }
  6909. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6910. const char *phy_prop)
  6911. {
  6912. if (!strcmp(phy_prop, "mif")) {
  6913. /* 1G copper, MII */
  6914. np->flags &= ~(NIU_FLAGS_FIBER |
  6915. NIU_FLAGS_10G);
  6916. np->mac_xcvr = MAC_XCVR_MII;
  6917. } else if (!strcmp(phy_prop, "xgf")) {
  6918. /* 10G fiber, XPCS */
  6919. np->flags |= (NIU_FLAGS_10G |
  6920. NIU_FLAGS_FIBER);
  6921. np->mac_xcvr = MAC_XCVR_XPCS;
  6922. } else if (!strcmp(phy_prop, "pcs")) {
  6923. /* 1G fiber, PCS */
  6924. np->flags &= ~NIU_FLAGS_10G;
  6925. np->flags |= NIU_FLAGS_FIBER;
  6926. np->mac_xcvr = MAC_XCVR_PCS;
  6927. } else if (!strcmp(phy_prop, "xgc")) {
  6928. /* 10G copper, XPCS */
  6929. np->flags |= NIU_FLAGS_10G;
  6930. np->flags &= ~NIU_FLAGS_FIBER;
  6931. np->mac_xcvr = MAC_XCVR_XPCS;
  6932. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6933. /* 10G Serdes or 1G Serdes, default to 10G */
  6934. np->flags |= NIU_FLAGS_10G;
  6935. np->flags &= ~NIU_FLAGS_FIBER;
  6936. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6937. np->mac_xcvr = MAC_XCVR_XPCS;
  6938. } else {
  6939. return -EINVAL;
  6940. }
  6941. return 0;
  6942. }
  6943. static int niu_pci_vpd_get_nports(struct niu *np)
  6944. {
  6945. int ports = 0;
  6946. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6947. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6948. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6949. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6950. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6951. ports = 4;
  6952. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6953. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6954. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6955. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6956. ports = 2;
  6957. }
  6958. return ports;
  6959. }
  6960. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6961. {
  6962. struct net_device *dev = np->dev;
  6963. struct niu_vpd *vpd = &np->vpd;
  6964. u8 val8;
  6965. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6966. dev_err(np->device, PFX "VPD MAC invalid, "
  6967. "falling back to SPROM.\n");
  6968. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6969. return;
  6970. }
  6971. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6972. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6973. np->flags |= NIU_FLAGS_10G;
  6974. np->flags &= ~NIU_FLAGS_FIBER;
  6975. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6976. np->mac_xcvr = MAC_XCVR_PCS;
  6977. if (np->port > 1) {
  6978. np->flags |= NIU_FLAGS_FIBER;
  6979. np->flags &= ~NIU_FLAGS_10G;
  6980. }
  6981. if (np->flags & NIU_FLAGS_10G)
  6982. np->mac_xcvr = MAC_XCVR_XPCS;
  6983. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6984. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6985. NIU_FLAGS_HOTPLUG_PHY);
  6986. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6987. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6988. np->vpd.phy_type);
  6989. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6990. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6991. return;
  6992. }
  6993. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6994. val8 = dev->perm_addr[5];
  6995. dev->perm_addr[5] += np->port;
  6996. if (dev->perm_addr[5] < val8)
  6997. dev->perm_addr[4]++;
  6998. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6999. }
  7000. static int __devinit niu_pci_probe_sprom(struct niu *np)
  7001. {
  7002. struct net_device *dev = np->dev;
  7003. int len, i;
  7004. u64 val, sum;
  7005. u8 val8;
  7006. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  7007. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  7008. len = val / 4;
  7009. np->eeprom_len = len;
  7010. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  7011. sum = 0;
  7012. for (i = 0; i < len; i++) {
  7013. val = nr64(ESPC_NCR(i));
  7014. sum += (val >> 0) & 0xff;
  7015. sum += (val >> 8) & 0xff;
  7016. sum += (val >> 16) & 0xff;
  7017. sum += (val >> 24) & 0xff;
  7018. }
  7019. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  7020. if ((sum & 0xff) != 0xab) {
  7021. dev_err(np->device, PFX "Bad SPROM checksum "
  7022. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  7023. return -EINVAL;
  7024. }
  7025. val = nr64(ESPC_PHY_TYPE);
  7026. switch (np->port) {
  7027. case 0:
  7028. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  7029. ESPC_PHY_TYPE_PORT0_SHIFT;
  7030. break;
  7031. case 1:
  7032. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7033. ESPC_PHY_TYPE_PORT1_SHIFT;
  7034. break;
  7035. case 2:
  7036. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7037. ESPC_PHY_TYPE_PORT2_SHIFT;
  7038. break;
  7039. case 3:
  7040. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7041. ESPC_PHY_TYPE_PORT3_SHIFT;
  7042. break;
  7043. default:
  7044. dev_err(np->device, PFX "Bogus port number %u\n",
  7045. np->port);
  7046. return -EINVAL;
  7047. }
  7048. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7049. switch (val8) {
  7050. case ESPC_PHY_TYPE_1G_COPPER:
  7051. /* 1G copper, MII */
  7052. np->flags &= ~(NIU_FLAGS_FIBER |
  7053. NIU_FLAGS_10G);
  7054. np->mac_xcvr = MAC_XCVR_MII;
  7055. break;
  7056. case ESPC_PHY_TYPE_1G_FIBER:
  7057. /* 1G fiber, PCS */
  7058. np->flags &= ~NIU_FLAGS_10G;
  7059. np->flags |= NIU_FLAGS_FIBER;
  7060. np->mac_xcvr = MAC_XCVR_PCS;
  7061. break;
  7062. case ESPC_PHY_TYPE_10G_COPPER:
  7063. /* 10G copper, XPCS */
  7064. np->flags |= NIU_FLAGS_10G;
  7065. np->flags &= ~NIU_FLAGS_FIBER;
  7066. np->mac_xcvr = MAC_XCVR_XPCS;
  7067. break;
  7068. case ESPC_PHY_TYPE_10G_FIBER:
  7069. /* 10G fiber, XPCS */
  7070. np->flags |= (NIU_FLAGS_10G |
  7071. NIU_FLAGS_FIBER);
  7072. np->mac_xcvr = MAC_XCVR_XPCS;
  7073. break;
  7074. default:
  7075. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7076. return -EINVAL;
  7077. }
  7078. val = nr64(ESPC_MAC_ADDR0);
  7079. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7080. (unsigned long long) val);
  7081. dev->perm_addr[0] = (val >> 0) & 0xff;
  7082. dev->perm_addr[1] = (val >> 8) & 0xff;
  7083. dev->perm_addr[2] = (val >> 16) & 0xff;
  7084. dev->perm_addr[3] = (val >> 24) & 0xff;
  7085. val = nr64(ESPC_MAC_ADDR1);
  7086. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7087. (unsigned long long) val);
  7088. dev->perm_addr[4] = (val >> 0) & 0xff;
  7089. dev->perm_addr[5] = (val >> 8) & 0xff;
  7090. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7091. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7092. dev_err(np->device, PFX "[ \n");
  7093. for (i = 0; i < 6; i++)
  7094. printk("%02x ", dev->perm_addr[i]);
  7095. printk("]\n");
  7096. return -EINVAL;
  7097. }
  7098. val8 = dev->perm_addr[5];
  7099. dev->perm_addr[5] += np->port;
  7100. if (dev->perm_addr[5] < val8)
  7101. dev->perm_addr[4]++;
  7102. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7103. val = nr64(ESPC_MOD_STR_LEN);
  7104. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7105. (unsigned long long) val);
  7106. if (val >= 8 * 4)
  7107. return -EINVAL;
  7108. for (i = 0; i < val; i += 4) {
  7109. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7110. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7111. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7112. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7113. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7114. }
  7115. np->vpd.model[val] = '\0';
  7116. val = nr64(ESPC_BD_MOD_STR_LEN);
  7117. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7118. (unsigned long long) val);
  7119. if (val >= 4 * 4)
  7120. return -EINVAL;
  7121. for (i = 0; i < val; i += 4) {
  7122. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7123. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7124. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7125. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7126. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7127. }
  7128. np->vpd.board_model[val] = '\0';
  7129. np->vpd.mac_num =
  7130. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7131. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7132. np->vpd.mac_num);
  7133. return 0;
  7134. }
  7135. static int __devinit niu_get_and_validate_port(struct niu *np)
  7136. {
  7137. struct niu_parent *parent = np->parent;
  7138. if (np->port <= 1)
  7139. np->flags |= NIU_FLAGS_XMAC;
  7140. if (!parent->num_ports) {
  7141. if (parent->plat_type == PLAT_TYPE_NIU) {
  7142. parent->num_ports = 2;
  7143. } else {
  7144. parent->num_ports = niu_pci_vpd_get_nports(np);
  7145. if (!parent->num_ports) {
  7146. /* Fall back to SPROM as last resort.
  7147. * This will fail on most cards.
  7148. */
  7149. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7150. ESPC_NUM_PORTS_MACS_VAL;
  7151. /* All of the current probing methods fail on
  7152. * Maramba on-board parts.
  7153. */
  7154. if (!parent->num_ports)
  7155. parent->num_ports = 4;
  7156. }
  7157. }
  7158. }
  7159. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7160. np->port, parent->num_ports);
  7161. if (np->port >= parent->num_ports)
  7162. return -ENODEV;
  7163. return 0;
  7164. }
  7165. static int __devinit phy_record(struct niu_parent *parent,
  7166. struct phy_probe_info *p,
  7167. int dev_id_1, int dev_id_2, u8 phy_port,
  7168. int type)
  7169. {
  7170. u32 id = (dev_id_1 << 16) | dev_id_2;
  7171. u8 idx;
  7172. if (dev_id_1 < 0 || dev_id_2 < 0)
  7173. return 0;
  7174. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7175. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7176. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7177. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7178. return 0;
  7179. } else {
  7180. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7181. return 0;
  7182. }
  7183. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7184. parent->index, id,
  7185. (type == PHY_TYPE_PMA_PMD ?
  7186. "PMA/PMD" :
  7187. (type == PHY_TYPE_PCS ?
  7188. "PCS" : "MII")),
  7189. phy_port);
  7190. if (p->cur[type] >= NIU_MAX_PORTS) {
  7191. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7192. return -EINVAL;
  7193. }
  7194. idx = p->cur[type];
  7195. p->phy_id[type][idx] = id;
  7196. p->phy_port[type][idx] = phy_port;
  7197. p->cur[type] = idx + 1;
  7198. return 0;
  7199. }
  7200. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7201. {
  7202. int i;
  7203. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7204. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7205. return 1;
  7206. }
  7207. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7208. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7209. return 1;
  7210. }
  7211. return 0;
  7212. }
  7213. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7214. {
  7215. int port, cnt;
  7216. cnt = 0;
  7217. *lowest = 32;
  7218. for (port = 8; port < 32; port++) {
  7219. if (port_has_10g(p, port)) {
  7220. if (!cnt)
  7221. *lowest = port;
  7222. cnt++;
  7223. }
  7224. }
  7225. return cnt;
  7226. }
  7227. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7228. {
  7229. *lowest = 32;
  7230. if (p->cur[PHY_TYPE_MII])
  7231. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7232. return p->cur[PHY_TYPE_MII];
  7233. }
  7234. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7235. {
  7236. int num_ports = parent->num_ports;
  7237. int i;
  7238. for (i = 0; i < num_ports; i++) {
  7239. parent->rxchan_per_port[i] = (16 / num_ports);
  7240. parent->txchan_per_port[i] = (16 / num_ports);
  7241. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7242. "[%u TX chans]\n",
  7243. parent->index, i,
  7244. parent->rxchan_per_port[i],
  7245. parent->txchan_per_port[i]);
  7246. }
  7247. }
  7248. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7249. int num_10g, int num_1g)
  7250. {
  7251. int num_ports = parent->num_ports;
  7252. int rx_chans_per_10g, rx_chans_per_1g;
  7253. int tx_chans_per_10g, tx_chans_per_1g;
  7254. int i, tot_rx, tot_tx;
  7255. if (!num_10g || !num_1g) {
  7256. rx_chans_per_10g = rx_chans_per_1g =
  7257. (NIU_NUM_RXCHAN / num_ports);
  7258. tx_chans_per_10g = tx_chans_per_1g =
  7259. (NIU_NUM_TXCHAN / num_ports);
  7260. } else {
  7261. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7262. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7263. (rx_chans_per_1g * num_1g)) /
  7264. num_10g;
  7265. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7266. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7267. (tx_chans_per_1g * num_1g)) /
  7268. num_10g;
  7269. }
  7270. tot_rx = tot_tx = 0;
  7271. for (i = 0; i < num_ports; i++) {
  7272. int type = phy_decode(parent->port_phy, i);
  7273. if (type == PORT_TYPE_10G) {
  7274. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7275. parent->txchan_per_port[i] = tx_chans_per_10g;
  7276. } else {
  7277. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7278. parent->txchan_per_port[i] = tx_chans_per_1g;
  7279. }
  7280. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7281. "[%u TX chans]\n",
  7282. parent->index, i,
  7283. parent->rxchan_per_port[i],
  7284. parent->txchan_per_port[i]);
  7285. tot_rx += parent->rxchan_per_port[i];
  7286. tot_tx += parent->txchan_per_port[i];
  7287. }
  7288. if (tot_rx > NIU_NUM_RXCHAN) {
  7289. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7290. "resetting to one per port.\n",
  7291. parent->index, tot_rx);
  7292. for (i = 0; i < num_ports; i++)
  7293. parent->rxchan_per_port[i] = 1;
  7294. }
  7295. if (tot_tx > NIU_NUM_TXCHAN) {
  7296. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7297. "resetting to one per port.\n",
  7298. parent->index, tot_tx);
  7299. for (i = 0; i < num_ports; i++)
  7300. parent->txchan_per_port[i] = 1;
  7301. }
  7302. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7303. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7304. "RX[%d] TX[%d]\n",
  7305. parent->index, tot_rx, tot_tx);
  7306. }
  7307. }
  7308. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7309. int num_10g, int num_1g)
  7310. {
  7311. int i, num_ports = parent->num_ports;
  7312. int rdc_group, rdc_groups_per_port;
  7313. int rdc_channel_base;
  7314. rdc_group = 0;
  7315. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7316. rdc_channel_base = 0;
  7317. for (i = 0; i < num_ports; i++) {
  7318. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7319. int grp, num_channels = parent->rxchan_per_port[i];
  7320. int this_channel_offset;
  7321. tp->first_table_num = rdc_group;
  7322. tp->num_tables = rdc_groups_per_port;
  7323. this_channel_offset = 0;
  7324. for (grp = 0; grp < tp->num_tables; grp++) {
  7325. struct rdc_table *rt = &tp->tables[grp];
  7326. int slot;
  7327. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7328. parent->index, i, tp->first_table_num + grp);
  7329. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7330. rt->rxdma_channel[slot] =
  7331. rdc_channel_base + this_channel_offset;
  7332. printk("%d ", rt->rxdma_channel[slot]);
  7333. if (++this_channel_offset == num_channels)
  7334. this_channel_offset = 0;
  7335. }
  7336. printk("]\n");
  7337. }
  7338. parent->rdc_default[i] = rdc_channel_base;
  7339. rdc_channel_base += num_channels;
  7340. rdc_group += rdc_groups_per_port;
  7341. }
  7342. }
  7343. static int __devinit fill_phy_probe_info(struct niu *np,
  7344. struct niu_parent *parent,
  7345. struct phy_probe_info *info)
  7346. {
  7347. unsigned long flags;
  7348. int port, err;
  7349. memset(info, 0, sizeof(*info));
  7350. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7351. niu_lock_parent(np, flags);
  7352. err = 0;
  7353. for (port = 8; port < 32; port++) {
  7354. int dev_id_1, dev_id_2;
  7355. dev_id_1 = mdio_read(np, port,
  7356. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7357. dev_id_2 = mdio_read(np, port,
  7358. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7359. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7360. PHY_TYPE_PMA_PMD);
  7361. if (err)
  7362. break;
  7363. dev_id_1 = mdio_read(np, port,
  7364. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7365. dev_id_2 = mdio_read(np, port,
  7366. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7367. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7368. PHY_TYPE_PCS);
  7369. if (err)
  7370. break;
  7371. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7372. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7373. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7374. PHY_TYPE_MII);
  7375. if (err)
  7376. break;
  7377. }
  7378. niu_unlock_parent(np, flags);
  7379. return err;
  7380. }
  7381. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7382. {
  7383. struct phy_probe_info *info = &parent->phy_probe_info;
  7384. int lowest_10g, lowest_1g;
  7385. int num_10g, num_1g;
  7386. u32 val;
  7387. int err;
  7388. num_10g = num_1g = 0;
  7389. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7390. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7391. num_10g = 0;
  7392. num_1g = 2;
  7393. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7394. parent->num_ports = 4;
  7395. val = (phy_encode(PORT_TYPE_1G, 0) |
  7396. phy_encode(PORT_TYPE_1G, 1) |
  7397. phy_encode(PORT_TYPE_1G, 2) |
  7398. phy_encode(PORT_TYPE_1G, 3));
  7399. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7400. num_10g = 2;
  7401. num_1g = 0;
  7402. parent->num_ports = 2;
  7403. val = (phy_encode(PORT_TYPE_10G, 0) |
  7404. phy_encode(PORT_TYPE_10G, 1));
  7405. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7406. (parent->plat_type == PLAT_TYPE_NIU)) {
  7407. /* this is the Monza case */
  7408. if (np->flags & NIU_FLAGS_10G) {
  7409. val = (phy_encode(PORT_TYPE_10G, 0) |
  7410. phy_encode(PORT_TYPE_10G, 1));
  7411. } else {
  7412. val = (phy_encode(PORT_TYPE_1G, 0) |
  7413. phy_encode(PORT_TYPE_1G, 1));
  7414. }
  7415. } else {
  7416. err = fill_phy_probe_info(np, parent, info);
  7417. if (err)
  7418. return err;
  7419. num_10g = count_10g_ports(info, &lowest_10g);
  7420. num_1g = count_1g_ports(info, &lowest_1g);
  7421. switch ((num_10g << 4) | num_1g) {
  7422. case 0x24:
  7423. if (lowest_1g == 10)
  7424. parent->plat_type = PLAT_TYPE_VF_P0;
  7425. else if (lowest_1g == 26)
  7426. parent->plat_type = PLAT_TYPE_VF_P1;
  7427. else
  7428. goto unknown_vg_1g_port;
  7429. /* fallthru */
  7430. case 0x22:
  7431. val = (phy_encode(PORT_TYPE_10G, 0) |
  7432. phy_encode(PORT_TYPE_10G, 1) |
  7433. phy_encode(PORT_TYPE_1G, 2) |
  7434. phy_encode(PORT_TYPE_1G, 3));
  7435. break;
  7436. case 0x20:
  7437. val = (phy_encode(PORT_TYPE_10G, 0) |
  7438. phy_encode(PORT_TYPE_10G, 1));
  7439. break;
  7440. case 0x10:
  7441. val = phy_encode(PORT_TYPE_10G, np->port);
  7442. break;
  7443. case 0x14:
  7444. if (lowest_1g == 10)
  7445. parent->plat_type = PLAT_TYPE_VF_P0;
  7446. else if (lowest_1g == 26)
  7447. parent->plat_type = PLAT_TYPE_VF_P1;
  7448. else
  7449. goto unknown_vg_1g_port;
  7450. /* fallthru */
  7451. case 0x13:
  7452. if ((lowest_10g & 0x7) == 0)
  7453. val = (phy_encode(PORT_TYPE_10G, 0) |
  7454. phy_encode(PORT_TYPE_1G, 1) |
  7455. phy_encode(PORT_TYPE_1G, 2) |
  7456. phy_encode(PORT_TYPE_1G, 3));
  7457. else
  7458. val = (phy_encode(PORT_TYPE_1G, 0) |
  7459. phy_encode(PORT_TYPE_10G, 1) |
  7460. phy_encode(PORT_TYPE_1G, 2) |
  7461. phy_encode(PORT_TYPE_1G, 3));
  7462. break;
  7463. case 0x04:
  7464. if (lowest_1g == 10)
  7465. parent->plat_type = PLAT_TYPE_VF_P0;
  7466. else if (lowest_1g == 26)
  7467. parent->plat_type = PLAT_TYPE_VF_P1;
  7468. else
  7469. goto unknown_vg_1g_port;
  7470. val = (phy_encode(PORT_TYPE_1G, 0) |
  7471. phy_encode(PORT_TYPE_1G, 1) |
  7472. phy_encode(PORT_TYPE_1G, 2) |
  7473. phy_encode(PORT_TYPE_1G, 3));
  7474. break;
  7475. default:
  7476. printk(KERN_ERR PFX "Unsupported port config "
  7477. "10G[%d] 1G[%d]\n",
  7478. num_10g, num_1g);
  7479. return -EINVAL;
  7480. }
  7481. }
  7482. parent->port_phy = val;
  7483. if (parent->plat_type == PLAT_TYPE_NIU)
  7484. niu_n2_divide_channels(parent);
  7485. else
  7486. niu_divide_channels(parent, num_10g, num_1g);
  7487. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7488. return 0;
  7489. unknown_vg_1g_port:
  7490. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7491. lowest_1g);
  7492. return -EINVAL;
  7493. }
  7494. static int __devinit niu_probe_ports(struct niu *np)
  7495. {
  7496. struct niu_parent *parent = np->parent;
  7497. int err, i;
  7498. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7499. parent->port_phy);
  7500. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7501. err = walk_phys(np, parent);
  7502. if (err)
  7503. return err;
  7504. niu_set_ldg_timer_res(np, 2);
  7505. for (i = 0; i <= LDN_MAX; i++)
  7506. niu_ldn_irq_enable(np, i, 0);
  7507. }
  7508. if (parent->port_phy == PORT_PHY_INVALID)
  7509. return -EINVAL;
  7510. return 0;
  7511. }
  7512. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7513. {
  7514. struct niu_classifier *cp = &np->clas;
  7515. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7516. np->parent->tcam_num_entries);
  7517. cp->tcam_top = (u16) np->port;
  7518. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7519. cp->h1_init = 0xffffffff;
  7520. cp->h2_init = 0xffff;
  7521. return fflp_early_init(np);
  7522. }
  7523. static void __devinit niu_link_config_init(struct niu *np)
  7524. {
  7525. struct niu_link_config *lp = &np->link_config;
  7526. lp->advertising = (ADVERTISED_10baseT_Half |
  7527. ADVERTISED_10baseT_Full |
  7528. ADVERTISED_100baseT_Half |
  7529. ADVERTISED_100baseT_Full |
  7530. ADVERTISED_1000baseT_Half |
  7531. ADVERTISED_1000baseT_Full |
  7532. ADVERTISED_10000baseT_Full |
  7533. ADVERTISED_Autoneg);
  7534. lp->speed = lp->active_speed = SPEED_INVALID;
  7535. lp->duplex = DUPLEX_FULL;
  7536. lp->active_duplex = DUPLEX_INVALID;
  7537. lp->autoneg = 1;
  7538. #if 0
  7539. lp->loopback_mode = LOOPBACK_MAC;
  7540. lp->active_speed = SPEED_10000;
  7541. lp->active_duplex = DUPLEX_FULL;
  7542. #else
  7543. lp->loopback_mode = LOOPBACK_DISABLED;
  7544. #endif
  7545. }
  7546. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7547. {
  7548. switch (np->port) {
  7549. case 0:
  7550. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7551. np->ipp_off = 0x00000;
  7552. np->pcs_off = 0x04000;
  7553. np->xpcs_off = 0x02000;
  7554. break;
  7555. case 1:
  7556. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7557. np->ipp_off = 0x08000;
  7558. np->pcs_off = 0x0a000;
  7559. np->xpcs_off = 0x08000;
  7560. break;
  7561. case 2:
  7562. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7563. np->ipp_off = 0x04000;
  7564. np->pcs_off = 0x0e000;
  7565. np->xpcs_off = ~0UL;
  7566. break;
  7567. case 3:
  7568. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7569. np->ipp_off = 0x0c000;
  7570. np->pcs_off = 0x12000;
  7571. np->xpcs_off = ~0UL;
  7572. break;
  7573. default:
  7574. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7575. "compute MAC block offset.\n", np->port);
  7576. return -EINVAL;
  7577. }
  7578. return 0;
  7579. }
  7580. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7581. {
  7582. struct msix_entry msi_vec[NIU_NUM_LDG];
  7583. struct niu_parent *parent = np->parent;
  7584. struct pci_dev *pdev = np->pdev;
  7585. int i, num_irqs, err;
  7586. u8 first_ldg;
  7587. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7588. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7589. ldg_num_map[i] = first_ldg + i;
  7590. num_irqs = (parent->rxchan_per_port[np->port] +
  7591. parent->txchan_per_port[np->port] +
  7592. (np->port == 0 ? 3 : 1));
  7593. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7594. retry:
  7595. for (i = 0; i < num_irqs; i++) {
  7596. msi_vec[i].vector = 0;
  7597. msi_vec[i].entry = i;
  7598. }
  7599. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7600. if (err < 0) {
  7601. np->flags &= ~NIU_FLAGS_MSIX;
  7602. return;
  7603. }
  7604. if (err > 0) {
  7605. num_irqs = err;
  7606. goto retry;
  7607. }
  7608. np->flags |= NIU_FLAGS_MSIX;
  7609. for (i = 0; i < num_irqs; i++)
  7610. np->ldg[i].irq = msi_vec[i].vector;
  7611. np->num_ldg = num_irqs;
  7612. }
  7613. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7614. {
  7615. #ifdef CONFIG_SPARC64
  7616. struct of_device *op = np->op;
  7617. const u32 *int_prop;
  7618. int i;
  7619. int_prop = of_get_property(op->node, "interrupts", NULL);
  7620. if (!int_prop)
  7621. return -ENODEV;
  7622. for (i = 0; i < op->num_irqs; i++) {
  7623. ldg_num_map[i] = int_prop[i];
  7624. np->ldg[i].irq = op->irqs[i];
  7625. }
  7626. np->num_ldg = op->num_irqs;
  7627. return 0;
  7628. #else
  7629. return -EINVAL;
  7630. #endif
  7631. }
  7632. static int __devinit niu_ldg_init(struct niu *np)
  7633. {
  7634. struct niu_parent *parent = np->parent;
  7635. u8 ldg_num_map[NIU_NUM_LDG];
  7636. int first_chan, num_chan;
  7637. int i, err, ldg_rotor;
  7638. u8 port;
  7639. np->num_ldg = 1;
  7640. np->ldg[0].irq = np->dev->irq;
  7641. if (parent->plat_type == PLAT_TYPE_NIU) {
  7642. err = niu_n2_irq_init(np, ldg_num_map);
  7643. if (err)
  7644. return err;
  7645. } else
  7646. niu_try_msix(np, ldg_num_map);
  7647. port = np->port;
  7648. for (i = 0; i < np->num_ldg; i++) {
  7649. struct niu_ldg *lp = &np->ldg[i];
  7650. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7651. lp->np = np;
  7652. lp->ldg_num = ldg_num_map[i];
  7653. lp->timer = 2; /* XXX */
  7654. /* On N2 NIU the firmware has setup the SID mappings so they go
  7655. * to the correct values that will route the LDG to the proper
  7656. * interrupt in the NCU interrupt table.
  7657. */
  7658. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7659. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7660. if (err)
  7661. return err;
  7662. }
  7663. }
  7664. /* We adopt the LDG assignment ordering used by the N2 NIU
  7665. * 'interrupt' properties because that simplifies a lot of
  7666. * things. This ordering is:
  7667. *
  7668. * MAC
  7669. * MIF (if port zero)
  7670. * SYSERR (if port zero)
  7671. * RX channels
  7672. * TX channels
  7673. */
  7674. ldg_rotor = 0;
  7675. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7676. LDN_MAC(port));
  7677. if (err)
  7678. return err;
  7679. ldg_rotor++;
  7680. if (ldg_rotor == np->num_ldg)
  7681. ldg_rotor = 0;
  7682. if (port == 0) {
  7683. err = niu_ldg_assign_ldn(np, parent,
  7684. ldg_num_map[ldg_rotor],
  7685. LDN_MIF);
  7686. if (err)
  7687. return err;
  7688. ldg_rotor++;
  7689. if (ldg_rotor == np->num_ldg)
  7690. ldg_rotor = 0;
  7691. err = niu_ldg_assign_ldn(np, parent,
  7692. ldg_num_map[ldg_rotor],
  7693. LDN_DEVICE_ERROR);
  7694. if (err)
  7695. return err;
  7696. ldg_rotor++;
  7697. if (ldg_rotor == np->num_ldg)
  7698. ldg_rotor = 0;
  7699. }
  7700. first_chan = 0;
  7701. for (i = 0; i < port; i++)
  7702. first_chan += parent->rxchan_per_port[port];
  7703. num_chan = parent->rxchan_per_port[port];
  7704. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7705. err = niu_ldg_assign_ldn(np, parent,
  7706. ldg_num_map[ldg_rotor],
  7707. LDN_RXDMA(i));
  7708. if (err)
  7709. return err;
  7710. ldg_rotor++;
  7711. if (ldg_rotor == np->num_ldg)
  7712. ldg_rotor = 0;
  7713. }
  7714. first_chan = 0;
  7715. for (i = 0; i < port; i++)
  7716. first_chan += parent->txchan_per_port[port];
  7717. num_chan = parent->txchan_per_port[port];
  7718. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7719. err = niu_ldg_assign_ldn(np, parent,
  7720. ldg_num_map[ldg_rotor],
  7721. LDN_TXDMA(i));
  7722. if (err)
  7723. return err;
  7724. ldg_rotor++;
  7725. if (ldg_rotor == np->num_ldg)
  7726. ldg_rotor = 0;
  7727. }
  7728. return 0;
  7729. }
  7730. static void __devexit niu_ldg_free(struct niu *np)
  7731. {
  7732. if (np->flags & NIU_FLAGS_MSIX)
  7733. pci_disable_msix(np->pdev);
  7734. }
  7735. static int __devinit niu_get_of_props(struct niu *np)
  7736. {
  7737. #ifdef CONFIG_SPARC64
  7738. struct net_device *dev = np->dev;
  7739. struct device_node *dp;
  7740. const char *phy_type;
  7741. const u8 *mac_addr;
  7742. const char *model;
  7743. int prop_len;
  7744. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7745. dp = np->op->node;
  7746. else
  7747. dp = pci_device_to_OF_node(np->pdev);
  7748. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7749. if (!phy_type) {
  7750. dev_err(np->device, PFX "%s: OF node lacks "
  7751. "phy-type property\n",
  7752. dp->full_name);
  7753. return -EINVAL;
  7754. }
  7755. if (!strcmp(phy_type, "none"))
  7756. return -ENODEV;
  7757. strcpy(np->vpd.phy_type, phy_type);
  7758. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7759. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7760. dp->full_name, np->vpd.phy_type);
  7761. return -EINVAL;
  7762. }
  7763. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7764. if (!mac_addr) {
  7765. dev_err(np->device, PFX "%s: OF node lacks "
  7766. "local-mac-address property\n",
  7767. dp->full_name);
  7768. return -EINVAL;
  7769. }
  7770. if (prop_len != dev->addr_len) {
  7771. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7772. "is wrong.\n",
  7773. dp->full_name, prop_len);
  7774. }
  7775. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7776. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7777. int i;
  7778. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7779. dp->full_name);
  7780. dev_err(np->device, PFX "%s: [ \n",
  7781. dp->full_name);
  7782. for (i = 0; i < 6; i++)
  7783. printk("%02x ", dev->perm_addr[i]);
  7784. printk("]\n");
  7785. return -EINVAL;
  7786. }
  7787. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7788. model = of_get_property(dp, "model", &prop_len);
  7789. if (model)
  7790. strcpy(np->vpd.model, model);
  7791. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7792. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7793. NIU_FLAGS_HOTPLUG_PHY);
  7794. }
  7795. return 0;
  7796. #else
  7797. return -EINVAL;
  7798. #endif
  7799. }
  7800. static int __devinit niu_get_invariants(struct niu *np)
  7801. {
  7802. int err, have_props;
  7803. u32 offset;
  7804. err = niu_get_of_props(np);
  7805. if (err == -ENODEV)
  7806. return err;
  7807. have_props = !err;
  7808. err = niu_init_mac_ipp_pcs_base(np);
  7809. if (err)
  7810. return err;
  7811. if (have_props) {
  7812. err = niu_get_and_validate_port(np);
  7813. if (err)
  7814. return err;
  7815. } else {
  7816. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7817. return -EINVAL;
  7818. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7819. offset = niu_pci_vpd_offset(np);
  7820. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7821. offset);
  7822. if (offset)
  7823. niu_pci_vpd_fetch(np, offset);
  7824. nw64(ESPC_PIO_EN, 0);
  7825. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7826. niu_pci_vpd_validate(np);
  7827. err = niu_get_and_validate_port(np);
  7828. if (err)
  7829. return err;
  7830. }
  7831. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7832. err = niu_get_and_validate_port(np);
  7833. if (err)
  7834. return err;
  7835. err = niu_pci_probe_sprom(np);
  7836. if (err)
  7837. return err;
  7838. }
  7839. }
  7840. err = niu_probe_ports(np);
  7841. if (err)
  7842. return err;
  7843. niu_ldg_init(np);
  7844. niu_classifier_swstate_init(np);
  7845. niu_link_config_init(np);
  7846. err = niu_determine_phy_disposition(np);
  7847. if (!err)
  7848. err = niu_init_link(np);
  7849. return err;
  7850. }
  7851. static LIST_HEAD(niu_parent_list);
  7852. static DEFINE_MUTEX(niu_parent_lock);
  7853. static int niu_parent_index;
  7854. static ssize_t show_port_phy(struct device *dev,
  7855. struct device_attribute *attr, char *buf)
  7856. {
  7857. struct platform_device *plat_dev = to_platform_device(dev);
  7858. struct niu_parent *p = plat_dev->dev.platform_data;
  7859. u32 port_phy = p->port_phy;
  7860. char *orig_buf = buf;
  7861. int i;
  7862. if (port_phy == PORT_PHY_UNKNOWN ||
  7863. port_phy == PORT_PHY_INVALID)
  7864. return 0;
  7865. for (i = 0; i < p->num_ports; i++) {
  7866. const char *type_str;
  7867. int type;
  7868. type = phy_decode(port_phy, i);
  7869. if (type == PORT_TYPE_10G)
  7870. type_str = "10G";
  7871. else
  7872. type_str = "1G";
  7873. buf += sprintf(buf,
  7874. (i == 0) ? "%s" : " %s",
  7875. type_str);
  7876. }
  7877. buf += sprintf(buf, "\n");
  7878. return buf - orig_buf;
  7879. }
  7880. static ssize_t show_plat_type(struct device *dev,
  7881. struct device_attribute *attr, char *buf)
  7882. {
  7883. struct platform_device *plat_dev = to_platform_device(dev);
  7884. struct niu_parent *p = plat_dev->dev.platform_data;
  7885. const char *type_str;
  7886. switch (p->plat_type) {
  7887. case PLAT_TYPE_ATLAS:
  7888. type_str = "atlas";
  7889. break;
  7890. case PLAT_TYPE_NIU:
  7891. type_str = "niu";
  7892. break;
  7893. case PLAT_TYPE_VF_P0:
  7894. type_str = "vf_p0";
  7895. break;
  7896. case PLAT_TYPE_VF_P1:
  7897. type_str = "vf_p1";
  7898. break;
  7899. default:
  7900. type_str = "unknown";
  7901. break;
  7902. }
  7903. return sprintf(buf, "%s\n", type_str);
  7904. }
  7905. static ssize_t __show_chan_per_port(struct device *dev,
  7906. struct device_attribute *attr, char *buf,
  7907. int rx)
  7908. {
  7909. struct platform_device *plat_dev = to_platform_device(dev);
  7910. struct niu_parent *p = plat_dev->dev.platform_data;
  7911. char *orig_buf = buf;
  7912. u8 *arr;
  7913. int i;
  7914. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7915. for (i = 0; i < p->num_ports; i++) {
  7916. buf += sprintf(buf,
  7917. (i == 0) ? "%d" : " %d",
  7918. arr[i]);
  7919. }
  7920. buf += sprintf(buf, "\n");
  7921. return buf - orig_buf;
  7922. }
  7923. static ssize_t show_rxchan_per_port(struct device *dev,
  7924. struct device_attribute *attr, char *buf)
  7925. {
  7926. return __show_chan_per_port(dev, attr, buf, 1);
  7927. }
  7928. static ssize_t show_txchan_per_port(struct device *dev,
  7929. struct device_attribute *attr, char *buf)
  7930. {
  7931. return __show_chan_per_port(dev, attr, buf, 1);
  7932. }
  7933. static ssize_t show_num_ports(struct device *dev,
  7934. struct device_attribute *attr, char *buf)
  7935. {
  7936. struct platform_device *plat_dev = to_platform_device(dev);
  7937. struct niu_parent *p = plat_dev->dev.platform_data;
  7938. return sprintf(buf, "%d\n", p->num_ports);
  7939. }
  7940. static struct device_attribute niu_parent_attributes[] = {
  7941. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7942. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7943. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7944. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7945. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7946. {}
  7947. };
  7948. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7949. union niu_parent_id *id,
  7950. u8 ptype)
  7951. {
  7952. struct platform_device *plat_dev;
  7953. struct niu_parent *p;
  7954. int i;
  7955. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7956. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7957. NULL, 0);
  7958. if (IS_ERR(plat_dev))
  7959. return NULL;
  7960. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7961. int err = device_create_file(&plat_dev->dev,
  7962. &niu_parent_attributes[i]);
  7963. if (err)
  7964. goto fail_unregister;
  7965. }
  7966. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7967. if (!p)
  7968. goto fail_unregister;
  7969. p->index = niu_parent_index++;
  7970. plat_dev->dev.platform_data = p;
  7971. p->plat_dev = plat_dev;
  7972. memcpy(&p->id, id, sizeof(*id));
  7973. p->plat_type = ptype;
  7974. INIT_LIST_HEAD(&p->list);
  7975. atomic_set(&p->refcnt, 0);
  7976. list_add(&p->list, &niu_parent_list);
  7977. spin_lock_init(&p->lock);
  7978. p->rxdma_clock_divider = 7500;
  7979. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7980. if (p->plat_type == PLAT_TYPE_NIU)
  7981. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7982. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7983. int index = i - CLASS_CODE_USER_PROG1;
  7984. p->tcam_key[index] = TCAM_KEY_TSEL;
  7985. p->flow_key[index] = (FLOW_KEY_IPSA |
  7986. FLOW_KEY_IPDA |
  7987. FLOW_KEY_PROTO |
  7988. (FLOW_KEY_L4_BYTE12 <<
  7989. FLOW_KEY_L4_0_SHIFT) |
  7990. (FLOW_KEY_L4_BYTE12 <<
  7991. FLOW_KEY_L4_1_SHIFT));
  7992. }
  7993. for (i = 0; i < LDN_MAX + 1; i++)
  7994. p->ldg_map[i] = LDG_INVALID;
  7995. return p;
  7996. fail_unregister:
  7997. platform_device_unregister(plat_dev);
  7998. return NULL;
  7999. }
  8000. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  8001. union niu_parent_id *id,
  8002. u8 ptype)
  8003. {
  8004. struct niu_parent *p, *tmp;
  8005. int port = np->port;
  8006. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  8007. ptype, port);
  8008. mutex_lock(&niu_parent_lock);
  8009. p = NULL;
  8010. list_for_each_entry(tmp, &niu_parent_list, list) {
  8011. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  8012. p = tmp;
  8013. break;
  8014. }
  8015. }
  8016. if (!p)
  8017. p = niu_new_parent(np, id, ptype);
  8018. if (p) {
  8019. char port_name[6];
  8020. int err;
  8021. sprintf(port_name, "port%d", port);
  8022. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  8023. &np->device->kobj,
  8024. port_name);
  8025. if (!err) {
  8026. p->ports[port] = np;
  8027. atomic_inc(&p->refcnt);
  8028. }
  8029. }
  8030. mutex_unlock(&niu_parent_lock);
  8031. return p;
  8032. }
  8033. static void niu_put_parent(struct niu *np)
  8034. {
  8035. struct niu_parent *p = np->parent;
  8036. u8 port = np->port;
  8037. char port_name[6];
  8038. BUG_ON(!p || p->ports[port] != np);
  8039. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8040. sprintf(port_name, "port%d", port);
  8041. mutex_lock(&niu_parent_lock);
  8042. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8043. p->ports[port] = NULL;
  8044. np->parent = NULL;
  8045. if (atomic_dec_and_test(&p->refcnt)) {
  8046. list_del(&p->list);
  8047. platform_device_unregister(p->plat_dev);
  8048. }
  8049. mutex_unlock(&niu_parent_lock);
  8050. }
  8051. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8052. u64 *handle, gfp_t flag)
  8053. {
  8054. dma_addr_t dh;
  8055. void *ret;
  8056. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8057. if (ret)
  8058. *handle = dh;
  8059. return ret;
  8060. }
  8061. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8062. void *cpu_addr, u64 handle)
  8063. {
  8064. dma_free_coherent(dev, size, cpu_addr, handle);
  8065. }
  8066. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8067. unsigned long offset, size_t size,
  8068. enum dma_data_direction direction)
  8069. {
  8070. return dma_map_page(dev, page, offset, size, direction);
  8071. }
  8072. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8073. size_t size, enum dma_data_direction direction)
  8074. {
  8075. dma_unmap_page(dev, dma_address, size, direction);
  8076. }
  8077. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8078. size_t size,
  8079. enum dma_data_direction direction)
  8080. {
  8081. return dma_map_single(dev, cpu_addr, size, direction);
  8082. }
  8083. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8084. size_t size,
  8085. enum dma_data_direction direction)
  8086. {
  8087. dma_unmap_single(dev, dma_address, size, direction);
  8088. }
  8089. static const struct niu_ops niu_pci_ops = {
  8090. .alloc_coherent = niu_pci_alloc_coherent,
  8091. .free_coherent = niu_pci_free_coherent,
  8092. .map_page = niu_pci_map_page,
  8093. .unmap_page = niu_pci_unmap_page,
  8094. .map_single = niu_pci_map_single,
  8095. .unmap_single = niu_pci_unmap_single,
  8096. };
  8097. static void __devinit niu_driver_version(void)
  8098. {
  8099. static int niu_version_printed;
  8100. if (niu_version_printed++ == 0)
  8101. pr_info("%s", version);
  8102. }
  8103. static struct net_device * __devinit niu_alloc_and_init(
  8104. struct device *gen_dev, struct pci_dev *pdev,
  8105. struct of_device *op, const struct niu_ops *ops,
  8106. u8 port)
  8107. {
  8108. struct net_device *dev;
  8109. struct niu *np;
  8110. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8111. if (!dev) {
  8112. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8113. return NULL;
  8114. }
  8115. SET_NETDEV_DEV(dev, gen_dev);
  8116. np = netdev_priv(dev);
  8117. np->dev = dev;
  8118. np->pdev = pdev;
  8119. np->op = op;
  8120. np->device = gen_dev;
  8121. np->ops = ops;
  8122. np->msg_enable = niu_debug;
  8123. spin_lock_init(&np->lock);
  8124. INIT_WORK(&np->reset_task, niu_reset_task);
  8125. np->port = port;
  8126. return dev;
  8127. }
  8128. static const struct net_device_ops niu_netdev_ops = {
  8129. .ndo_open = niu_open,
  8130. .ndo_stop = niu_close,
  8131. .ndo_start_xmit = niu_start_xmit,
  8132. .ndo_get_stats = niu_get_stats,
  8133. .ndo_set_multicast_list = niu_set_rx_mode,
  8134. .ndo_validate_addr = eth_validate_addr,
  8135. .ndo_set_mac_address = niu_set_mac_addr,
  8136. .ndo_do_ioctl = niu_ioctl,
  8137. .ndo_tx_timeout = niu_tx_timeout,
  8138. .ndo_change_mtu = niu_change_mtu,
  8139. };
  8140. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8141. {
  8142. dev->netdev_ops = &niu_netdev_ops;
  8143. dev->ethtool_ops = &niu_ethtool_ops;
  8144. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8145. }
  8146. static void __devinit niu_device_announce(struct niu *np)
  8147. {
  8148. struct net_device *dev = np->dev;
  8149. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8150. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8151. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8152. dev->name,
  8153. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8154. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8155. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8156. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8157. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8158. np->vpd.phy_type);
  8159. } else {
  8160. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8161. dev->name,
  8162. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8163. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8164. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8165. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8166. "COPPER")),
  8167. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8168. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8169. np->vpd.phy_type);
  8170. }
  8171. }
  8172. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8173. const struct pci_device_id *ent)
  8174. {
  8175. union niu_parent_id parent_id;
  8176. struct net_device *dev;
  8177. struct niu *np;
  8178. int err, pos;
  8179. u64 dma_mask;
  8180. u16 val16;
  8181. niu_driver_version();
  8182. err = pci_enable_device(pdev);
  8183. if (err) {
  8184. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8185. "aborting.\n");
  8186. return err;
  8187. }
  8188. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8189. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8190. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8191. "base addresses, aborting.\n");
  8192. err = -ENODEV;
  8193. goto err_out_disable_pdev;
  8194. }
  8195. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8196. if (err) {
  8197. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8198. "aborting.\n");
  8199. goto err_out_disable_pdev;
  8200. }
  8201. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8202. if (pos <= 0) {
  8203. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8204. "aborting.\n");
  8205. goto err_out_free_res;
  8206. }
  8207. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8208. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8209. if (!dev) {
  8210. err = -ENOMEM;
  8211. goto err_out_free_res;
  8212. }
  8213. np = netdev_priv(dev);
  8214. memset(&parent_id, 0, sizeof(parent_id));
  8215. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8216. parent_id.pci.bus = pdev->bus->number;
  8217. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8218. np->parent = niu_get_parent(np, &parent_id,
  8219. PLAT_TYPE_ATLAS);
  8220. if (!np->parent) {
  8221. err = -ENOMEM;
  8222. goto err_out_free_dev;
  8223. }
  8224. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8225. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8226. val16 |= (PCI_EXP_DEVCTL_CERE |
  8227. PCI_EXP_DEVCTL_NFERE |
  8228. PCI_EXP_DEVCTL_FERE |
  8229. PCI_EXP_DEVCTL_URRE |
  8230. PCI_EXP_DEVCTL_RELAX_EN);
  8231. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8232. dma_mask = DMA_BIT_MASK(44);
  8233. err = pci_set_dma_mask(pdev, dma_mask);
  8234. if (!err) {
  8235. dev->features |= NETIF_F_HIGHDMA;
  8236. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8237. if (err) {
  8238. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8239. "DMA for consistent allocations, "
  8240. "aborting.\n");
  8241. goto err_out_release_parent;
  8242. }
  8243. }
  8244. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8245. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8246. if (err) {
  8247. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8248. "aborting.\n");
  8249. goto err_out_release_parent;
  8250. }
  8251. }
  8252. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8253. np->regs = pci_ioremap_bar(pdev, 0);
  8254. if (!np->regs) {
  8255. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8256. "aborting.\n");
  8257. err = -ENOMEM;
  8258. goto err_out_release_parent;
  8259. }
  8260. pci_set_master(pdev);
  8261. pci_save_state(pdev);
  8262. dev->irq = pdev->irq;
  8263. niu_assign_netdev_ops(dev);
  8264. err = niu_get_invariants(np);
  8265. if (err) {
  8266. if (err != -ENODEV)
  8267. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8268. "of chip, aborting.\n");
  8269. goto err_out_iounmap;
  8270. }
  8271. err = register_netdev(dev);
  8272. if (err) {
  8273. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8274. "aborting.\n");
  8275. goto err_out_iounmap;
  8276. }
  8277. pci_set_drvdata(pdev, dev);
  8278. niu_device_announce(np);
  8279. return 0;
  8280. err_out_iounmap:
  8281. if (np->regs) {
  8282. iounmap(np->regs);
  8283. np->regs = NULL;
  8284. }
  8285. err_out_release_parent:
  8286. niu_put_parent(np);
  8287. err_out_free_dev:
  8288. free_netdev(dev);
  8289. err_out_free_res:
  8290. pci_release_regions(pdev);
  8291. err_out_disable_pdev:
  8292. pci_disable_device(pdev);
  8293. pci_set_drvdata(pdev, NULL);
  8294. return err;
  8295. }
  8296. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8297. {
  8298. struct net_device *dev = pci_get_drvdata(pdev);
  8299. if (dev) {
  8300. struct niu *np = netdev_priv(dev);
  8301. unregister_netdev(dev);
  8302. if (np->regs) {
  8303. iounmap(np->regs);
  8304. np->regs = NULL;
  8305. }
  8306. niu_ldg_free(np);
  8307. niu_put_parent(np);
  8308. free_netdev(dev);
  8309. pci_release_regions(pdev);
  8310. pci_disable_device(pdev);
  8311. pci_set_drvdata(pdev, NULL);
  8312. }
  8313. }
  8314. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8315. {
  8316. struct net_device *dev = pci_get_drvdata(pdev);
  8317. struct niu *np = netdev_priv(dev);
  8318. unsigned long flags;
  8319. if (!netif_running(dev))
  8320. return 0;
  8321. flush_scheduled_work();
  8322. niu_netif_stop(np);
  8323. del_timer_sync(&np->timer);
  8324. spin_lock_irqsave(&np->lock, flags);
  8325. niu_enable_interrupts(np, 0);
  8326. spin_unlock_irqrestore(&np->lock, flags);
  8327. netif_device_detach(dev);
  8328. spin_lock_irqsave(&np->lock, flags);
  8329. niu_stop_hw(np);
  8330. spin_unlock_irqrestore(&np->lock, flags);
  8331. pci_save_state(pdev);
  8332. return 0;
  8333. }
  8334. static int niu_resume(struct pci_dev *pdev)
  8335. {
  8336. struct net_device *dev = pci_get_drvdata(pdev);
  8337. struct niu *np = netdev_priv(dev);
  8338. unsigned long flags;
  8339. int err;
  8340. if (!netif_running(dev))
  8341. return 0;
  8342. pci_restore_state(pdev);
  8343. netif_device_attach(dev);
  8344. spin_lock_irqsave(&np->lock, flags);
  8345. err = niu_init_hw(np);
  8346. if (!err) {
  8347. np->timer.expires = jiffies + HZ;
  8348. add_timer(&np->timer);
  8349. niu_netif_start(np);
  8350. }
  8351. spin_unlock_irqrestore(&np->lock, flags);
  8352. return err;
  8353. }
  8354. static struct pci_driver niu_pci_driver = {
  8355. .name = DRV_MODULE_NAME,
  8356. .id_table = niu_pci_tbl,
  8357. .probe = niu_pci_init_one,
  8358. .remove = __devexit_p(niu_pci_remove_one),
  8359. .suspend = niu_suspend,
  8360. .resume = niu_resume,
  8361. };
  8362. #ifdef CONFIG_SPARC64
  8363. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8364. u64 *dma_addr, gfp_t flag)
  8365. {
  8366. unsigned long order = get_order(size);
  8367. unsigned long page = __get_free_pages(flag, order);
  8368. if (page == 0UL)
  8369. return NULL;
  8370. memset((char *)page, 0, PAGE_SIZE << order);
  8371. *dma_addr = __pa(page);
  8372. return (void *) page;
  8373. }
  8374. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8375. void *cpu_addr, u64 handle)
  8376. {
  8377. unsigned long order = get_order(size);
  8378. free_pages((unsigned long) cpu_addr, order);
  8379. }
  8380. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8381. unsigned long offset, size_t size,
  8382. enum dma_data_direction direction)
  8383. {
  8384. return page_to_phys(page) + offset;
  8385. }
  8386. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8387. size_t size, enum dma_data_direction direction)
  8388. {
  8389. /* Nothing to do. */
  8390. }
  8391. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8392. size_t size,
  8393. enum dma_data_direction direction)
  8394. {
  8395. return __pa(cpu_addr);
  8396. }
  8397. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8398. size_t size,
  8399. enum dma_data_direction direction)
  8400. {
  8401. /* Nothing to do. */
  8402. }
  8403. static const struct niu_ops niu_phys_ops = {
  8404. .alloc_coherent = niu_phys_alloc_coherent,
  8405. .free_coherent = niu_phys_free_coherent,
  8406. .map_page = niu_phys_map_page,
  8407. .unmap_page = niu_phys_unmap_page,
  8408. .map_single = niu_phys_map_single,
  8409. .unmap_single = niu_phys_unmap_single,
  8410. };
  8411. static int __devinit niu_of_probe(struct of_device *op,
  8412. const struct of_device_id *match)
  8413. {
  8414. union niu_parent_id parent_id;
  8415. struct net_device *dev;
  8416. struct niu *np;
  8417. const u32 *reg;
  8418. int err;
  8419. niu_driver_version();
  8420. reg = of_get_property(op->node, "reg", NULL);
  8421. if (!reg) {
  8422. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8423. op->node->full_name);
  8424. return -ENODEV;
  8425. }
  8426. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8427. &niu_phys_ops, reg[0] & 0x1);
  8428. if (!dev) {
  8429. err = -ENOMEM;
  8430. goto err_out;
  8431. }
  8432. np = netdev_priv(dev);
  8433. memset(&parent_id, 0, sizeof(parent_id));
  8434. parent_id.of = of_get_parent(op->node);
  8435. np->parent = niu_get_parent(np, &parent_id,
  8436. PLAT_TYPE_NIU);
  8437. if (!np->parent) {
  8438. err = -ENOMEM;
  8439. goto err_out_free_dev;
  8440. }
  8441. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8442. np->regs = of_ioremap(&op->resource[1], 0,
  8443. resource_size(&op->resource[1]),
  8444. "niu regs");
  8445. if (!np->regs) {
  8446. dev_err(&op->dev, PFX "Cannot map device registers, "
  8447. "aborting.\n");
  8448. err = -ENOMEM;
  8449. goto err_out_release_parent;
  8450. }
  8451. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8452. resource_size(&op->resource[2]),
  8453. "niu vregs-1");
  8454. if (!np->vir_regs_1) {
  8455. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8456. "aborting.\n");
  8457. err = -ENOMEM;
  8458. goto err_out_iounmap;
  8459. }
  8460. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8461. resource_size(&op->resource[3]),
  8462. "niu vregs-2");
  8463. if (!np->vir_regs_2) {
  8464. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8465. "aborting.\n");
  8466. err = -ENOMEM;
  8467. goto err_out_iounmap;
  8468. }
  8469. niu_assign_netdev_ops(dev);
  8470. err = niu_get_invariants(np);
  8471. if (err) {
  8472. if (err != -ENODEV)
  8473. dev_err(&op->dev, PFX "Problem fetching invariants "
  8474. "of chip, aborting.\n");
  8475. goto err_out_iounmap;
  8476. }
  8477. err = register_netdev(dev);
  8478. if (err) {
  8479. dev_err(&op->dev, PFX "Cannot register net device, "
  8480. "aborting.\n");
  8481. goto err_out_iounmap;
  8482. }
  8483. dev_set_drvdata(&op->dev, dev);
  8484. niu_device_announce(np);
  8485. return 0;
  8486. err_out_iounmap:
  8487. if (np->vir_regs_1) {
  8488. of_iounmap(&op->resource[2], np->vir_regs_1,
  8489. resource_size(&op->resource[2]));
  8490. np->vir_regs_1 = NULL;
  8491. }
  8492. if (np->vir_regs_2) {
  8493. of_iounmap(&op->resource[3], np->vir_regs_2,
  8494. resource_size(&op->resource[3]));
  8495. np->vir_regs_2 = NULL;
  8496. }
  8497. if (np->regs) {
  8498. of_iounmap(&op->resource[1], np->regs,
  8499. resource_size(&op->resource[1]));
  8500. np->regs = NULL;
  8501. }
  8502. err_out_release_parent:
  8503. niu_put_parent(np);
  8504. err_out_free_dev:
  8505. free_netdev(dev);
  8506. err_out:
  8507. return err;
  8508. }
  8509. static int __devexit niu_of_remove(struct of_device *op)
  8510. {
  8511. struct net_device *dev = dev_get_drvdata(&op->dev);
  8512. if (dev) {
  8513. struct niu *np = netdev_priv(dev);
  8514. unregister_netdev(dev);
  8515. if (np->vir_regs_1) {
  8516. of_iounmap(&op->resource[2], np->vir_regs_1,
  8517. resource_size(&op->resource[2]));
  8518. np->vir_regs_1 = NULL;
  8519. }
  8520. if (np->vir_regs_2) {
  8521. of_iounmap(&op->resource[3], np->vir_regs_2,
  8522. resource_size(&op->resource[3]));
  8523. np->vir_regs_2 = NULL;
  8524. }
  8525. if (np->regs) {
  8526. of_iounmap(&op->resource[1], np->regs,
  8527. resource_size(&op->resource[1]));
  8528. np->regs = NULL;
  8529. }
  8530. niu_ldg_free(np);
  8531. niu_put_parent(np);
  8532. free_netdev(dev);
  8533. dev_set_drvdata(&op->dev, NULL);
  8534. }
  8535. return 0;
  8536. }
  8537. static const struct of_device_id niu_match[] = {
  8538. {
  8539. .name = "network",
  8540. .compatible = "SUNW,niusl",
  8541. },
  8542. {},
  8543. };
  8544. MODULE_DEVICE_TABLE(of, niu_match);
  8545. static struct of_platform_driver niu_of_driver = {
  8546. .name = "niu",
  8547. .match_table = niu_match,
  8548. .probe = niu_of_probe,
  8549. .remove = __devexit_p(niu_of_remove),
  8550. };
  8551. #endif /* CONFIG_SPARC64 */
  8552. static int __init niu_init(void)
  8553. {
  8554. int err = 0;
  8555. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8556. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8557. #ifdef CONFIG_SPARC64
  8558. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8559. #endif
  8560. if (!err) {
  8561. err = pci_register_driver(&niu_pci_driver);
  8562. #ifdef CONFIG_SPARC64
  8563. if (err)
  8564. of_unregister_driver(&niu_of_driver);
  8565. #endif
  8566. }
  8567. return err;
  8568. }
  8569. static void __exit niu_exit(void)
  8570. {
  8571. pci_unregister_driver(&niu_pci_driver);
  8572. #ifdef CONFIG_SPARC64
  8573. of_unregister_driver(&niu_of_driver);
  8574. #endif
  8575. }
  8576. module_init(niu_init);
  8577. module_exit(niu_exit);