korina.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. /* KORINA_RBSIZE is the hardware's default maximum receive
  80. * frame size in bytes. Having this hardcoded means that there
  81. * is no support for MTU sizes greater than 1500. */
  82. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  83. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  84. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  85. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  86. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  87. #define TX_TIMEOUT (6000 * HZ / 1000)
  88. enum chain_status { desc_filled, desc_empty };
  89. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  90. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  91. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  92. /* Information that need to be kept for each board. */
  93. struct korina_private {
  94. struct eth_regs *eth_regs;
  95. struct dma_reg *rx_dma_regs;
  96. struct dma_reg *tx_dma_regs;
  97. struct dma_desc *td_ring; /* transmit descriptor ring */
  98. struct dma_desc *rd_ring; /* receive descriptor ring */
  99. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  100. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  101. int rx_next_done;
  102. int rx_chain_head;
  103. int rx_chain_tail;
  104. enum chain_status rx_chain_status;
  105. int tx_next_done;
  106. int tx_chain_head;
  107. int tx_chain_tail;
  108. enum chain_status tx_chain_status;
  109. int tx_count;
  110. int tx_full;
  111. int rx_irq;
  112. int tx_irq;
  113. int ovr_irq;
  114. int und_irq;
  115. spinlock_t lock; /* NIC xmit lock */
  116. int dma_halt_cnt;
  117. int dma_run_cnt;
  118. struct napi_struct napi;
  119. struct timer_list media_check_timer;
  120. struct mii_if_info mii_if;
  121. struct net_device *dev;
  122. int phy_addr;
  123. };
  124. extern unsigned int idt_cpu_freq;
  125. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  126. {
  127. writel(0, &ch->dmandptr);
  128. writel(dma_addr, &ch->dmadptr);
  129. }
  130. static inline void korina_abort_dma(struct net_device *dev,
  131. struct dma_reg *ch)
  132. {
  133. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  134. writel(0x10, &ch->dmac);
  135. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  136. dev->trans_start = jiffies;
  137. writel(0, &ch->dmas);
  138. }
  139. writel(0, &ch->dmadptr);
  140. writel(0, &ch->dmandptr);
  141. }
  142. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  143. {
  144. writel(dma_addr, &ch->dmandptr);
  145. }
  146. static void korina_abort_tx(struct net_device *dev)
  147. {
  148. struct korina_private *lp = netdev_priv(dev);
  149. korina_abort_dma(dev, lp->tx_dma_regs);
  150. }
  151. static void korina_abort_rx(struct net_device *dev)
  152. {
  153. struct korina_private *lp = netdev_priv(dev);
  154. korina_abort_dma(dev, lp->rx_dma_regs);
  155. }
  156. static void korina_start_rx(struct korina_private *lp,
  157. struct dma_desc *rd)
  158. {
  159. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  160. }
  161. static void korina_chain_rx(struct korina_private *lp,
  162. struct dma_desc *rd)
  163. {
  164. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  165. }
  166. /* transmit packet */
  167. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  168. {
  169. struct korina_private *lp = netdev_priv(dev);
  170. unsigned long flags;
  171. u32 length;
  172. u32 chain_prev, chain_next;
  173. struct dma_desc *td;
  174. spin_lock_irqsave(&lp->lock, flags);
  175. td = &lp->td_ring[lp->tx_chain_tail];
  176. /* stop queue when full, drop pkts if queue already full */
  177. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  178. lp->tx_full = 1;
  179. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  180. netif_stop_queue(dev);
  181. else {
  182. dev->stats.tx_dropped++;
  183. dev_kfree_skb_any(skb);
  184. spin_unlock_irqrestore(&lp->lock, flags);
  185. return NETDEV_TX_BUSY;
  186. }
  187. }
  188. lp->tx_count++;
  189. lp->tx_skb[lp->tx_chain_tail] = skb;
  190. length = skb->len;
  191. dma_cache_wback((u32)skb->data, skb->len);
  192. /* Setup the transmit descriptor. */
  193. dma_cache_inv((u32) td, sizeof(*td));
  194. td->ca = CPHYSADDR(skb->data);
  195. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  196. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  197. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  198. if (lp->tx_chain_status == desc_empty) {
  199. /* Update tail */
  200. td->control = DMA_COUNT(length) |
  201. DMA_DESC_COF | DMA_DESC_IOF;
  202. /* Move tail */
  203. lp->tx_chain_tail = chain_next;
  204. /* Write to NDPTR */
  205. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  206. &lp->tx_dma_regs->dmandptr);
  207. /* Move head to tail */
  208. lp->tx_chain_head = lp->tx_chain_tail;
  209. } else {
  210. /* Update tail */
  211. td->control = DMA_COUNT(length) |
  212. DMA_DESC_COF | DMA_DESC_IOF;
  213. /* Link to prev */
  214. lp->td_ring[chain_prev].control &=
  215. ~DMA_DESC_COF;
  216. /* Link to prev */
  217. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  218. /* Move tail */
  219. lp->tx_chain_tail = chain_next;
  220. /* Write to NDPTR */
  221. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  222. &(lp->tx_dma_regs->dmandptr));
  223. /* Move head to tail */
  224. lp->tx_chain_head = lp->tx_chain_tail;
  225. lp->tx_chain_status = desc_empty;
  226. }
  227. } else {
  228. if (lp->tx_chain_status == desc_empty) {
  229. /* Update tail */
  230. td->control = DMA_COUNT(length) |
  231. DMA_DESC_COF | DMA_DESC_IOF;
  232. /* Move tail */
  233. lp->tx_chain_tail = chain_next;
  234. lp->tx_chain_status = desc_filled;
  235. } else {
  236. /* Update tail */
  237. td->control = DMA_COUNT(length) |
  238. DMA_DESC_COF | DMA_DESC_IOF;
  239. lp->td_ring[chain_prev].control &=
  240. ~DMA_DESC_COF;
  241. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  242. lp->tx_chain_tail = chain_next;
  243. }
  244. }
  245. dma_cache_wback((u32) td, sizeof(*td));
  246. dev->trans_start = jiffies;
  247. spin_unlock_irqrestore(&lp->lock, flags);
  248. return NETDEV_TX_OK;
  249. }
  250. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  251. {
  252. struct korina_private *lp = netdev_priv(dev);
  253. int ret;
  254. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  255. writel(0, &lp->eth_regs->miimcfg);
  256. writel(0, &lp->eth_regs->miimcmd);
  257. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  258. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  259. ret = (int)(readl(&lp->eth_regs->miimrdd));
  260. return ret;
  261. }
  262. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  263. {
  264. struct korina_private *lp = netdev_priv(dev);
  265. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  266. writel(0, &lp->eth_regs->miimcfg);
  267. writel(1, &lp->eth_regs->miimcmd);
  268. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  269. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  270. writel(val, &lp->eth_regs->miimwtd);
  271. }
  272. /* Ethernet Rx DMA interrupt */
  273. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  274. {
  275. struct net_device *dev = dev_id;
  276. struct korina_private *lp = netdev_priv(dev);
  277. u32 dmas, dmasm;
  278. irqreturn_t retval;
  279. dmas = readl(&lp->rx_dma_regs->dmas);
  280. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  281. dmasm = readl(&lp->rx_dma_regs->dmasm);
  282. writel(dmasm | (DMA_STAT_DONE |
  283. DMA_STAT_HALT | DMA_STAT_ERR),
  284. &lp->rx_dma_regs->dmasm);
  285. napi_schedule(&lp->napi);
  286. if (dmas & DMA_STAT_ERR)
  287. printk(KERN_ERR "%s: DMA error\n", dev->name);
  288. retval = IRQ_HANDLED;
  289. } else
  290. retval = IRQ_NONE;
  291. return retval;
  292. }
  293. static int korina_rx(struct net_device *dev, int limit)
  294. {
  295. struct korina_private *lp = netdev_priv(dev);
  296. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  297. struct sk_buff *skb, *skb_new;
  298. u8 *pkt_buf;
  299. u32 devcs, pkt_len, dmas;
  300. int count;
  301. dma_cache_inv((u32)rd, sizeof(*rd));
  302. for (count = 0; count < limit; count++) {
  303. skb = lp->rx_skb[lp->rx_next_done];
  304. skb_new = NULL;
  305. devcs = rd->devcs;
  306. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  307. break;
  308. /* Update statistics counters */
  309. if (devcs & ETH_RX_CRC)
  310. dev->stats.rx_crc_errors++;
  311. if (devcs & ETH_RX_LOR)
  312. dev->stats.rx_length_errors++;
  313. if (devcs & ETH_RX_LE)
  314. dev->stats.rx_length_errors++;
  315. if (devcs & ETH_RX_OVR)
  316. dev->stats.rx_over_errors++;
  317. if (devcs & ETH_RX_CV)
  318. dev->stats.rx_frame_errors++;
  319. if (devcs & ETH_RX_CES)
  320. dev->stats.rx_length_errors++;
  321. if (devcs & ETH_RX_MP)
  322. dev->stats.multicast++;
  323. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  324. /* check that this is a whole packet
  325. * WARNING: DMA_FD bit incorrectly set
  326. * in Rc32434 (errata ref #077) */
  327. dev->stats.rx_errors++;
  328. dev->stats.rx_dropped++;
  329. } else if ((devcs & ETH_RX_ROK)) {
  330. pkt_len = RCVPKT_LENGTH(devcs);
  331. /* must be the (first and) last
  332. * descriptor then */
  333. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  334. /* invalidate the cache */
  335. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  336. /* Malloc up new buffer. */
  337. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  338. if (!skb_new)
  339. break;
  340. /* Do not count the CRC */
  341. skb_put(skb, pkt_len - 4);
  342. skb->protocol = eth_type_trans(skb, dev);
  343. /* Pass the packet to upper layers */
  344. netif_receive_skb(skb);
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. lp->rx_skb[lp->rx_next_done] = skb_new;
  351. }
  352. rd->devcs = 0;
  353. /* Restore descriptor's curr_addr */
  354. if (skb_new)
  355. rd->ca = CPHYSADDR(skb_new->data);
  356. else
  357. rd->ca = CPHYSADDR(skb->data);
  358. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  359. DMA_DESC_COD | DMA_DESC_IOD;
  360. lp->rd_ring[(lp->rx_next_done - 1) &
  361. KORINA_RDS_MASK].control &=
  362. ~DMA_DESC_COD;
  363. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  364. dma_cache_wback((u32)rd, sizeof(*rd));
  365. rd = &lp->rd_ring[lp->rx_next_done];
  366. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  367. }
  368. dmas = readl(&lp->rx_dma_regs->dmas);
  369. if (dmas & DMA_STAT_HALT) {
  370. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  371. &lp->rx_dma_regs->dmas);
  372. lp->dma_halt_cnt++;
  373. rd->devcs = 0;
  374. skb = lp->rx_skb[lp->rx_next_done];
  375. rd->ca = CPHYSADDR(skb->data);
  376. dma_cache_wback((u32)rd, sizeof(*rd));
  377. korina_chain_rx(lp, rd);
  378. }
  379. return count;
  380. }
  381. static int korina_poll(struct napi_struct *napi, int budget)
  382. {
  383. struct korina_private *lp =
  384. container_of(napi, struct korina_private, napi);
  385. struct net_device *dev = lp->dev;
  386. int work_done;
  387. work_done = korina_rx(dev, budget);
  388. if (work_done < budget) {
  389. napi_complete(napi);
  390. writel(readl(&lp->rx_dma_regs->dmasm) &
  391. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  392. &lp->rx_dma_regs->dmasm);
  393. }
  394. return work_done;
  395. }
  396. /*
  397. * Set or clear the multicast filter for this adaptor.
  398. */
  399. static void korina_multicast_list(struct net_device *dev)
  400. {
  401. struct korina_private *lp = netdev_priv(dev);
  402. unsigned long flags;
  403. struct dev_mc_list *dmi = dev->mc_list;
  404. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  405. int i;
  406. /* Set promiscuous mode */
  407. if (dev->flags & IFF_PROMISC)
  408. recognise |= ETH_ARC_PRO;
  409. else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
  410. /* All multicast and broadcast */
  411. recognise |= ETH_ARC_AM;
  412. /* Build the hash table */
  413. if (dev->mc_count > 4) {
  414. u16 hash_table[4];
  415. u32 crc;
  416. for (i = 0; i < 4; i++)
  417. hash_table[i] = 0;
  418. for (i = 0; i < dev->mc_count; i++) {
  419. char *addrs = dmi->dmi_addr;
  420. dmi = dmi->next;
  421. if (!(*addrs & 1))
  422. continue;
  423. crc = ether_crc_le(6, addrs);
  424. crc >>= 26;
  425. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  426. }
  427. /* Accept filtered multicast */
  428. recognise |= ETH_ARC_AFM;
  429. /* Fill the MAC hash tables with their values */
  430. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  431. &lp->eth_regs->ethhash0);
  432. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  433. &lp->eth_regs->ethhash1);
  434. }
  435. spin_lock_irqsave(&lp->lock, flags);
  436. writel(recognise, &lp->eth_regs->etharc);
  437. spin_unlock_irqrestore(&lp->lock, flags);
  438. }
  439. static void korina_tx(struct net_device *dev)
  440. {
  441. struct korina_private *lp = netdev_priv(dev);
  442. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  443. u32 devcs;
  444. u32 dmas;
  445. spin_lock(&lp->lock);
  446. /* Process all desc that are done */
  447. while (IS_DMA_FINISHED(td->control)) {
  448. if (lp->tx_full == 1) {
  449. netif_wake_queue(dev);
  450. lp->tx_full = 0;
  451. }
  452. devcs = lp->td_ring[lp->tx_next_done].devcs;
  453. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  454. (ETH_TX_FD | ETH_TX_LD)) {
  455. dev->stats.tx_errors++;
  456. dev->stats.tx_dropped++;
  457. /* Should never happen */
  458. printk(KERN_ERR "%s: split tx ignored\n",
  459. dev->name);
  460. } else if (devcs & ETH_TX_TOK) {
  461. dev->stats.tx_packets++;
  462. dev->stats.tx_bytes +=
  463. lp->tx_skb[lp->tx_next_done]->len;
  464. } else {
  465. dev->stats.tx_errors++;
  466. dev->stats.tx_dropped++;
  467. /* Underflow */
  468. if (devcs & ETH_TX_UND)
  469. dev->stats.tx_fifo_errors++;
  470. /* Oversized frame */
  471. if (devcs & ETH_TX_OF)
  472. dev->stats.tx_aborted_errors++;
  473. /* Excessive deferrals */
  474. if (devcs & ETH_TX_ED)
  475. dev->stats.tx_carrier_errors++;
  476. /* Collisions: medium busy */
  477. if (devcs & ETH_TX_EC)
  478. dev->stats.collisions++;
  479. /* Late collision */
  480. if (devcs & ETH_TX_LC)
  481. dev->stats.tx_window_errors++;
  482. }
  483. /* We must always free the original skb */
  484. if (lp->tx_skb[lp->tx_next_done]) {
  485. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  486. lp->tx_skb[lp->tx_next_done] = NULL;
  487. }
  488. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  489. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  490. lp->td_ring[lp->tx_next_done].link = 0;
  491. lp->td_ring[lp->tx_next_done].ca = 0;
  492. lp->tx_count--;
  493. /* Go on to next transmission */
  494. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  495. td = &lp->td_ring[lp->tx_next_done];
  496. }
  497. /* Clear the DMA status register */
  498. dmas = readl(&lp->tx_dma_regs->dmas);
  499. writel(~dmas, &lp->tx_dma_regs->dmas);
  500. writel(readl(&lp->tx_dma_regs->dmasm) &
  501. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  502. &lp->tx_dma_regs->dmasm);
  503. spin_unlock(&lp->lock);
  504. }
  505. static irqreturn_t
  506. korina_tx_dma_interrupt(int irq, void *dev_id)
  507. {
  508. struct net_device *dev = dev_id;
  509. struct korina_private *lp = netdev_priv(dev);
  510. u32 dmas, dmasm;
  511. irqreturn_t retval;
  512. dmas = readl(&lp->tx_dma_regs->dmas);
  513. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  514. dmasm = readl(&lp->tx_dma_regs->dmasm);
  515. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  516. &lp->tx_dma_regs->dmasm);
  517. korina_tx(dev);
  518. if (lp->tx_chain_status == desc_filled &&
  519. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  520. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  521. &(lp->tx_dma_regs->dmandptr));
  522. lp->tx_chain_status = desc_empty;
  523. lp->tx_chain_head = lp->tx_chain_tail;
  524. dev->trans_start = jiffies;
  525. }
  526. if (dmas & DMA_STAT_ERR)
  527. printk(KERN_ERR "%s: DMA error\n", dev->name);
  528. retval = IRQ_HANDLED;
  529. } else
  530. retval = IRQ_NONE;
  531. return retval;
  532. }
  533. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  534. {
  535. struct korina_private *lp = netdev_priv(dev);
  536. mii_check_media(&lp->mii_if, 0, init_media);
  537. if (lp->mii_if.full_duplex)
  538. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  539. &lp->eth_regs->ethmac2);
  540. else
  541. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  542. &lp->eth_regs->ethmac2);
  543. }
  544. static void korina_poll_media(unsigned long data)
  545. {
  546. struct net_device *dev = (struct net_device *) data;
  547. struct korina_private *lp = netdev_priv(dev);
  548. korina_check_media(dev, 0);
  549. mod_timer(&lp->media_check_timer, jiffies + HZ);
  550. }
  551. static void korina_set_carrier(struct mii_if_info *mii)
  552. {
  553. if (mii->force_media) {
  554. /* autoneg is off: Link is always assumed to be up */
  555. if (!netif_carrier_ok(mii->dev))
  556. netif_carrier_on(mii->dev);
  557. } else /* Let MMI library update carrier status */
  558. korina_check_media(mii->dev, 0);
  559. }
  560. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  561. {
  562. struct korina_private *lp = netdev_priv(dev);
  563. struct mii_ioctl_data *data = if_mii(rq);
  564. int rc;
  565. if (!netif_running(dev))
  566. return -EINVAL;
  567. spin_lock_irq(&lp->lock);
  568. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  569. spin_unlock_irq(&lp->lock);
  570. korina_set_carrier(&lp->mii_if);
  571. return rc;
  572. }
  573. /* ethtool helpers */
  574. static void netdev_get_drvinfo(struct net_device *dev,
  575. struct ethtool_drvinfo *info)
  576. {
  577. struct korina_private *lp = netdev_priv(dev);
  578. strcpy(info->driver, DRV_NAME);
  579. strcpy(info->version, DRV_VERSION);
  580. strcpy(info->bus_info, lp->dev->name);
  581. }
  582. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  583. {
  584. struct korina_private *lp = netdev_priv(dev);
  585. int rc;
  586. spin_lock_irq(&lp->lock);
  587. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  588. spin_unlock_irq(&lp->lock);
  589. return rc;
  590. }
  591. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  592. {
  593. struct korina_private *lp = netdev_priv(dev);
  594. int rc;
  595. spin_lock_irq(&lp->lock);
  596. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  597. spin_unlock_irq(&lp->lock);
  598. korina_set_carrier(&lp->mii_if);
  599. return rc;
  600. }
  601. static u32 netdev_get_link(struct net_device *dev)
  602. {
  603. struct korina_private *lp = netdev_priv(dev);
  604. return mii_link_ok(&lp->mii_if);
  605. }
  606. static const struct ethtool_ops netdev_ethtool_ops = {
  607. .get_drvinfo = netdev_get_drvinfo,
  608. .get_settings = netdev_get_settings,
  609. .set_settings = netdev_set_settings,
  610. .get_link = netdev_get_link,
  611. };
  612. static int korina_alloc_ring(struct net_device *dev)
  613. {
  614. struct korina_private *lp = netdev_priv(dev);
  615. struct sk_buff *skb;
  616. int i;
  617. /* Initialize the transmit descriptors */
  618. for (i = 0; i < KORINA_NUM_TDS; i++) {
  619. lp->td_ring[i].control = DMA_DESC_IOF;
  620. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  621. lp->td_ring[i].ca = 0;
  622. lp->td_ring[i].link = 0;
  623. }
  624. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  625. lp->tx_full = lp->tx_count = 0;
  626. lp->tx_chain_status = desc_empty;
  627. /* Initialize the receive descriptors */
  628. for (i = 0; i < KORINA_NUM_RDS; i++) {
  629. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  630. if (!skb)
  631. return -ENOMEM;
  632. skb_reserve(skb, 2);
  633. lp->rx_skb[i] = skb;
  634. lp->rd_ring[i].control = DMA_DESC_IOD |
  635. DMA_COUNT(KORINA_RBSIZE);
  636. lp->rd_ring[i].devcs = 0;
  637. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  638. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  639. }
  640. /* loop back receive descriptors, so the last
  641. * descriptor points to the first one */
  642. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  643. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  644. lp->rx_next_done = 0;
  645. lp->rx_chain_head = 0;
  646. lp->rx_chain_tail = 0;
  647. lp->rx_chain_status = desc_empty;
  648. return 0;
  649. }
  650. static void korina_free_ring(struct net_device *dev)
  651. {
  652. struct korina_private *lp = netdev_priv(dev);
  653. int i;
  654. for (i = 0; i < KORINA_NUM_RDS; i++) {
  655. lp->rd_ring[i].control = 0;
  656. if (lp->rx_skb[i])
  657. dev_kfree_skb_any(lp->rx_skb[i]);
  658. lp->rx_skb[i] = NULL;
  659. }
  660. for (i = 0; i < KORINA_NUM_TDS; i++) {
  661. lp->td_ring[i].control = 0;
  662. if (lp->tx_skb[i])
  663. dev_kfree_skb_any(lp->tx_skb[i]);
  664. lp->tx_skb[i] = NULL;
  665. }
  666. }
  667. /*
  668. * Initialize the RC32434 ethernet controller.
  669. */
  670. static int korina_init(struct net_device *dev)
  671. {
  672. struct korina_private *lp = netdev_priv(dev);
  673. /* Disable DMA */
  674. korina_abort_tx(dev);
  675. korina_abort_rx(dev);
  676. /* reset ethernet logic */
  677. writel(0, &lp->eth_regs->ethintfc);
  678. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  679. dev->trans_start = jiffies;
  680. /* Enable Ethernet Interface */
  681. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  682. /* Allocate rings */
  683. if (korina_alloc_ring(dev)) {
  684. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  685. korina_free_ring(dev);
  686. return -ENOMEM;
  687. }
  688. writel(0, &lp->rx_dma_regs->dmas);
  689. /* Start Rx DMA */
  690. korina_start_rx(lp, &lp->rd_ring[0]);
  691. writel(readl(&lp->tx_dma_regs->dmasm) &
  692. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  693. &lp->tx_dma_regs->dmasm);
  694. writel(readl(&lp->rx_dma_regs->dmasm) &
  695. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  696. &lp->rx_dma_regs->dmasm);
  697. /* Accept only packets destined for this Ethernet device address */
  698. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  699. /* Set all Ether station address registers to their initial values */
  700. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  701. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  702. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  703. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  704. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  705. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  706. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  707. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  708. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  709. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  710. &lp->eth_regs->ethmac2);
  711. /* Back to back inter-packet-gap */
  712. writel(0x15, &lp->eth_regs->ethipgt);
  713. /* Non - Back to back inter-packet-gap */
  714. writel(0x12, &lp->eth_regs->ethipgr);
  715. /* Management Clock Prescaler Divisor
  716. * Clock independent setting */
  717. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  718. &lp->eth_regs->ethmcp);
  719. /* don't transmit until fifo contains 48b */
  720. writel(48, &lp->eth_regs->ethfifott);
  721. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  722. napi_enable(&lp->napi);
  723. netif_start_queue(dev);
  724. return 0;
  725. }
  726. /*
  727. * Restart the RC32434 ethernet controller.
  728. * FIXME: check the return status where we call it
  729. */
  730. static int korina_restart(struct net_device *dev)
  731. {
  732. struct korina_private *lp = netdev_priv(dev);
  733. int ret;
  734. /*
  735. * Disable interrupts
  736. */
  737. disable_irq(lp->rx_irq);
  738. disable_irq(lp->tx_irq);
  739. disable_irq(lp->ovr_irq);
  740. disable_irq(lp->und_irq);
  741. writel(readl(&lp->tx_dma_regs->dmasm) |
  742. DMA_STAT_FINI | DMA_STAT_ERR,
  743. &lp->tx_dma_regs->dmasm);
  744. writel(readl(&lp->rx_dma_regs->dmasm) |
  745. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  746. &lp->rx_dma_regs->dmasm);
  747. korina_free_ring(dev);
  748. napi_disable(&lp->napi);
  749. ret = korina_init(dev);
  750. if (ret < 0) {
  751. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  752. return ret;
  753. }
  754. korina_multicast_list(dev);
  755. enable_irq(lp->und_irq);
  756. enable_irq(lp->ovr_irq);
  757. enable_irq(lp->tx_irq);
  758. enable_irq(lp->rx_irq);
  759. return ret;
  760. }
  761. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  762. {
  763. struct korina_private *lp = netdev_priv(dev);
  764. netif_stop_queue(dev);
  765. writel(value, &lp->eth_regs->ethintfc);
  766. korina_restart(dev);
  767. }
  768. /* Ethernet Tx Underflow interrupt */
  769. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  770. {
  771. struct net_device *dev = dev_id;
  772. struct korina_private *lp = netdev_priv(dev);
  773. unsigned int und;
  774. spin_lock(&lp->lock);
  775. und = readl(&lp->eth_regs->ethintfc);
  776. if (und & ETH_INT_FC_UND)
  777. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  778. spin_unlock(&lp->lock);
  779. return IRQ_HANDLED;
  780. }
  781. static void korina_tx_timeout(struct net_device *dev)
  782. {
  783. struct korina_private *lp = netdev_priv(dev);
  784. unsigned long flags;
  785. spin_lock_irqsave(&lp->lock, flags);
  786. korina_restart(dev);
  787. spin_unlock_irqrestore(&lp->lock, flags);
  788. }
  789. /* Ethernet Rx Overflow interrupt */
  790. static irqreturn_t
  791. korina_ovr_interrupt(int irq, void *dev_id)
  792. {
  793. struct net_device *dev = dev_id;
  794. struct korina_private *lp = netdev_priv(dev);
  795. unsigned int ovr;
  796. spin_lock(&lp->lock);
  797. ovr = readl(&lp->eth_regs->ethintfc);
  798. if (ovr & ETH_INT_FC_OVR)
  799. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  800. spin_unlock(&lp->lock);
  801. return IRQ_HANDLED;
  802. }
  803. #ifdef CONFIG_NET_POLL_CONTROLLER
  804. static void korina_poll_controller(struct net_device *dev)
  805. {
  806. disable_irq(dev->irq);
  807. korina_tx_dma_interrupt(dev->irq, dev);
  808. enable_irq(dev->irq);
  809. }
  810. #endif
  811. static int korina_open(struct net_device *dev)
  812. {
  813. struct korina_private *lp = netdev_priv(dev);
  814. int ret;
  815. /* Initialize */
  816. ret = korina_init(dev);
  817. if (ret < 0) {
  818. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  819. goto out;
  820. }
  821. /* Install the interrupt handler
  822. * that handles the Done Finished
  823. * Ovr and Und Events */
  824. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  825. IRQF_DISABLED, "Korina ethernet Rx", dev);
  826. if (ret < 0) {
  827. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  828. dev->name, lp->rx_irq);
  829. goto err_release;
  830. }
  831. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  832. IRQF_DISABLED, "Korina ethernet Tx", dev);
  833. if (ret < 0) {
  834. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  835. dev->name, lp->tx_irq);
  836. goto err_free_rx_irq;
  837. }
  838. /* Install handler for overrun error. */
  839. ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
  840. IRQF_DISABLED, "Ethernet Overflow", dev);
  841. if (ret < 0) {
  842. printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
  843. dev->name, lp->ovr_irq);
  844. goto err_free_tx_irq;
  845. }
  846. /* Install handler for underflow error. */
  847. ret = request_irq(lp->und_irq, korina_und_interrupt,
  848. IRQF_DISABLED, "Ethernet Underflow", dev);
  849. if (ret < 0) {
  850. printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
  851. dev->name, lp->und_irq);
  852. goto err_free_ovr_irq;
  853. }
  854. mod_timer(&lp->media_check_timer, jiffies + 1);
  855. out:
  856. return ret;
  857. err_free_ovr_irq:
  858. free_irq(lp->ovr_irq, dev);
  859. err_free_tx_irq:
  860. free_irq(lp->tx_irq, dev);
  861. err_free_rx_irq:
  862. free_irq(lp->rx_irq, dev);
  863. err_release:
  864. korina_free_ring(dev);
  865. goto out;
  866. }
  867. static int korina_close(struct net_device *dev)
  868. {
  869. struct korina_private *lp = netdev_priv(dev);
  870. u32 tmp;
  871. del_timer(&lp->media_check_timer);
  872. /* Disable interrupts */
  873. disable_irq(lp->rx_irq);
  874. disable_irq(lp->tx_irq);
  875. disable_irq(lp->ovr_irq);
  876. disable_irq(lp->und_irq);
  877. korina_abort_tx(dev);
  878. tmp = readl(&lp->tx_dma_regs->dmasm);
  879. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  880. writel(tmp, &lp->tx_dma_regs->dmasm);
  881. korina_abort_rx(dev);
  882. tmp = readl(&lp->rx_dma_regs->dmasm);
  883. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  884. writel(tmp, &lp->rx_dma_regs->dmasm);
  885. korina_free_ring(dev);
  886. napi_disable(&lp->napi);
  887. free_irq(lp->rx_irq, dev);
  888. free_irq(lp->tx_irq, dev);
  889. free_irq(lp->ovr_irq, dev);
  890. free_irq(lp->und_irq, dev);
  891. return 0;
  892. }
  893. static const struct net_device_ops korina_netdev_ops = {
  894. .ndo_open = korina_open,
  895. .ndo_stop = korina_close,
  896. .ndo_start_xmit = korina_send_packet,
  897. .ndo_set_multicast_list = korina_multicast_list,
  898. .ndo_tx_timeout = korina_tx_timeout,
  899. .ndo_do_ioctl = korina_ioctl,
  900. .ndo_change_mtu = eth_change_mtu,
  901. .ndo_validate_addr = eth_validate_addr,
  902. .ndo_set_mac_address = eth_mac_addr,
  903. #ifdef CONFIG_NET_POLL_CONTROLLER
  904. .ndo_poll_controller = korina_poll_controller,
  905. #endif
  906. };
  907. static int korina_probe(struct platform_device *pdev)
  908. {
  909. struct korina_device *bif = platform_get_drvdata(pdev);
  910. struct korina_private *lp;
  911. struct net_device *dev;
  912. struct resource *r;
  913. int rc;
  914. dev = alloc_etherdev(sizeof(struct korina_private));
  915. if (!dev) {
  916. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  917. return -ENOMEM;
  918. }
  919. SET_NETDEV_DEV(dev, &pdev->dev);
  920. lp = netdev_priv(dev);
  921. bif->dev = dev;
  922. memcpy(dev->dev_addr, bif->mac, 6);
  923. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  924. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  925. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  926. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  927. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  928. dev->base_addr = r->start;
  929. lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
  930. if (!lp->eth_regs) {
  931. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  932. rc = -ENXIO;
  933. goto probe_err_out;
  934. }
  935. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  936. lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  937. if (!lp->rx_dma_regs) {
  938. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  939. rc = -ENXIO;
  940. goto probe_err_dma_rx;
  941. }
  942. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  943. lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  944. if (!lp->tx_dma_regs) {
  945. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  946. rc = -ENXIO;
  947. goto probe_err_dma_tx;
  948. }
  949. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  950. if (!lp->td_ring) {
  951. printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
  952. rc = -ENXIO;
  953. goto probe_err_td_ring;
  954. }
  955. dma_cache_inv((unsigned long)(lp->td_ring),
  956. TD_RING_SIZE + RD_RING_SIZE);
  957. /* now convert TD_RING pointer to KSEG1 */
  958. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  959. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  960. spin_lock_init(&lp->lock);
  961. /* just use the rx dma irq */
  962. dev->irq = lp->rx_irq;
  963. lp->dev = dev;
  964. dev->netdev_ops = &korina_netdev_ops;
  965. dev->ethtool_ops = &netdev_ethtool_ops;
  966. dev->watchdog_timeo = TX_TIMEOUT;
  967. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  968. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  969. lp->mii_if.dev = dev;
  970. lp->mii_if.mdio_read = mdio_read;
  971. lp->mii_if.mdio_write = mdio_write;
  972. lp->mii_if.phy_id = lp->phy_addr;
  973. lp->mii_if.phy_id_mask = 0x1f;
  974. lp->mii_if.reg_num_mask = 0x1f;
  975. rc = register_netdev(dev);
  976. if (rc < 0) {
  977. printk(KERN_ERR DRV_NAME
  978. ": cannot register net device: %d\n", rc);
  979. goto probe_err_register;
  980. }
  981. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  982. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  983. dev->name);
  984. out:
  985. return rc;
  986. probe_err_register:
  987. kfree(lp->td_ring);
  988. probe_err_td_ring:
  989. iounmap(lp->tx_dma_regs);
  990. probe_err_dma_tx:
  991. iounmap(lp->rx_dma_regs);
  992. probe_err_dma_rx:
  993. iounmap(lp->eth_regs);
  994. probe_err_out:
  995. free_netdev(dev);
  996. goto out;
  997. }
  998. static int korina_remove(struct platform_device *pdev)
  999. {
  1000. struct korina_device *bif = platform_get_drvdata(pdev);
  1001. struct korina_private *lp = netdev_priv(bif->dev);
  1002. iounmap(lp->eth_regs);
  1003. iounmap(lp->rx_dma_regs);
  1004. iounmap(lp->tx_dma_regs);
  1005. platform_set_drvdata(pdev, NULL);
  1006. unregister_netdev(bif->dev);
  1007. free_netdev(bif->dev);
  1008. return 0;
  1009. }
  1010. static struct platform_driver korina_driver = {
  1011. .driver.name = "korina",
  1012. .probe = korina_probe,
  1013. .remove = korina_remove,
  1014. };
  1015. static int __init korina_init_module(void)
  1016. {
  1017. return platform_driver_register(&korina_driver);
  1018. }
  1019. static void korina_cleanup_module(void)
  1020. {
  1021. return platform_driver_unregister(&korina_driver);
  1022. }
  1023. module_init(korina_init_module);
  1024. module_exit(korina_cleanup_module);
  1025. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1026. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1027. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1028. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1029. MODULE_LICENSE("GPL");