123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559 |
- /*******************************************************************************
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2009 Intel Corporation.
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
- *******************************************************************************/
- #include "e1000.h"
- enum e1000_mng_mode {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_if_only
- };
- #define E1000_FACTPS_MNGCG 0x20000000
- /* Intel(R) Active Management Technology signature */
- #define E1000_IAMT_SIGNATURE 0x544D4149
- /**
- * e1000e_get_bus_info_pcie - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
- s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
- {
- struct e1000_bus_info *bus = &hw->bus;
- struct e1000_adapter *adapter = hw->adapter;
- u32 status;
- u16 pcie_link_status, pci_header_type, cap_offset;
- cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
- if (!cap_offset) {
- bus->width = e1000_bus_width_unknown;
- } else {
- pci_read_config_word(adapter->pdev,
- cap_offset + PCIE_LINK_STATUS,
- &pcie_link_status);
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >>
- PCIE_LINK_WIDTH_SHIFT);
- }
- pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
- &pci_header_type);
- if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
- status = er32(STATUS);
- bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
- } else {
- bus->func = 0;
- }
- return 0;
- }
- /**
- * e1000_clear_vfta_generic - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
- void e1000_clear_vfta_generic(struct e1000_hw *hw)
- {
- u32 offset;
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
- e1e_flush();
- }
- }
- /**
- * e1000_write_vfta_generic - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
- void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
- {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- e1e_flush();
- }
- /**
- * e1000e_init_rx_addrs - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setups the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
- void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
- {
- u32 i;
- u8 mac_addr[ETH_ALEN] = {0};
- /* Setup the receive address */
- e_dbg("Programming MAC Address into RAR[0]\n");
- e1000e_rar_set(hw, hw->mac.addr, 0);
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- e1000e_rar_set(hw, mac_addr, i);
- }
- /**
- * e1000e_rar_set - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
- void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
- {
- u32 rar_low, rar_high;
- /*
- * HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
- /*
- * Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- ew32(RAL(index), rar_low);
- e1e_flush();
- ew32(RAH(index), rar_high);
- e1e_flush();
- }
- /**
- * e1000_hash_mc_addr - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value. See
- * e1000_mta_set_generic()
- **/
- static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
- {
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
- /*
- * For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
- /*
- * The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
- return hash_value;
- }
- /**
- * e1000e_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- * @rar_used_count: the first RAR register free to program
- * @rar_count: total number of supported Receive Address Registers
- *
- * Updates the Receive Address Registers and Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- * The parameter rar_count will usually be hw->mac.rar_entry_count
- * unless there are workarounds that change this.
- **/
- void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count,
- u32 rar_used_count, u32 rar_count)
- {
- u32 i;
- u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
- if (!mcarray) {
- printk(KERN_ERR "multicast array memory allocation failed\n");
- return;
- }
- /*
- * Load the first set of multicast addresses into the exact
- * filters (RAR). If there are not enough to fill the RAR
- * array, clear the filters.
- */
- for (i = rar_used_count; i < rar_count; i++) {
- if (mc_addr_count) {
- e1000e_rar_set(hw, mc_addr_list, i);
- mc_addr_count--;
- mc_addr_list += ETH_ALEN;
- } else {
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
- e1e_flush();
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
- e1e_flush();
- }
- }
- /* Load any remaining multicast addresses into the hash table. */
- for (; mc_addr_count > 0; mc_addr_count--) {
- u32 hash_value, hash_reg, hash_bit, mta;
- hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
- e_dbg("Hash value = 0x%03X\n", hash_value);
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
- mta = (1 << hash_bit);
- mcarray[hash_reg] |= mta;
- mc_addr_list += ETH_ALEN;
- }
- /* write the hash table completely */
- for (i = 0; i < hw->mac.mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
- e1e_flush();
- kfree(mcarray);
- }
- /**
- * e1000e_clear_hw_cntrs_base - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
- void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
- {
- er32(CRCERRS);
- er32(SYMERRS);
- er32(MPC);
- er32(SCC);
- er32(ECOL);
- er32(MCC);
- er32(LATECOL);
- er32(COLC);
- er32(DC);
- er32(SEC);
- er32(RLEC);
- er32(XONRXC);
- er32(XONTXC);
- er32(XOFFRXC);
- er32(XOFFTXC);
- er32(FCRUC);
- er32(GPRC);
- er32(BPRC);
- er32(MPRC);
- er32(GPTC);
- er32(GORCL);
- er32(GORCH);
- er32(GOTCL);
- er32(GOTCH);
- er32(RNBC);
- er32(RUC);
- er32(RFC);
- er32(ROC);
- er32(RJC);
- er32(TORL);
- er32(TORH);
- er32(TOTL);
- er32(TOTH);
- er32(TPR);
- er32(TPT);
- er32(MPTC);
- er32(BPTC);
- }
- /**
- * e1000e_check_for_copper_link - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
- s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return 0;
- /*
- * First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
- if (!link)
- return ret_val; /* No link detected */
- mac->get_link_status = false;
- /*
- * Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000e_check_downshift(hw);
- /*
- * If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- e1000e_config_collision_dist(hw);
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- }
- return ret_val;
- }
- /**
- * e1000e_check_for_fiber_link - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
- s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
- mac->serdes_has_link = true;
- }
- return 0;
- }
- /**
- * e1000e_check_for_serdes_link - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
- s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
- mac->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- e_dbg("SERDES: Link up - forced.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - force failed.\n");
- }
- }
- if (E1000_TXCW_ANE & er32(TXCW)) {
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- e_dbg("SERDES: Link up - autoneg "
- "completed sucessfully.\n");
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - no sync.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - autoneg failed\n");
- }
- }
- return 0;
- }
- /**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
- static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 nvm_data;
- /*
- * Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
- return 0;
- }
- /**
- * e1000e_setup_link - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
- s32 e1000e_setup_link(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- /*
- * In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (e1000_check_reset_block(hw))
- return 0;
- /*
- * If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- return ret_val;
- }
- /*
- * Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
- e_dbg("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = mac->ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
- /*
- * Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- e_dbg("Initializing the Flow Control address, type and timer regs\n");
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
- ew32(FCTTV, hw->fc.pause_time);
- return e1000e_set_fc_watermarks(hw);
- }
- /**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
- static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
- /*
- * Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
- ew32(TXCW, txcw);
- mac->txcw = txcw;
- return 0;
- }
- /**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
- static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val;
- /*
- * If we have a signal (the cable is plugged in, or assumed true for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- msleep(10);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- e_dbg("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = 1;
- /*
- * AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- e_dbg("Error while checking for link\n");
- return ret_val;
- }
- mac->autoneg_failed = 0;
- } else {
- mac->autoneg_failed = 0;
- e_dbg("Valid Link Found\n");
- }
- return 0;
- }
- /**
- * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
- s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 ret_val;
- ctrl = er32(CTRL);
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
- e1000e_config_collision_dist(hw);
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- return ret_val;
- /*
- * Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- e_dbg("Auto-negotiation enabled\n");
- ew32(CTRL, ctrl);
- e1e_flush();
- msleep(1);
- /*
- * For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- e_dbg("No signal detected\n");
- }
- return 0;
- }
- /**
- * e1000e_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
- void e1000e_config_collision_dist(struct e1000_hw *hw)
- {
- u32 tctl;
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- ew32(TCTL, tctl);
- e1e_flush();
- }
- /**
- * e1000e_set_fc_watermarks - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * transmission as well.
- **/
- s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
- {
- u32 fcrtl = 0, fcrth = 0;
- /*
- * Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /*
- * We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- fcrtl |= E1000_FCRTL_XONE;
- fcrth = hw->fc.high_water;
- }
- ew32(FCRTL, fcrtl);
- ew32(FCRTH, fcrth);
- return 0;
- }
- /**
- * e1000e_force_mac_fc - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
- s32 e1000e_force_mac_fc(struct e1000_hw *hw)
- {
- u32 ctrl;
- ctrl = er32(CTRL);
- /*
- * Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and Tx flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
- ew32(CTRL, ctrl);
- return 0;
- }
- /**
- * e1000e_config_fc_after_link_up - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
- s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = 0;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
- /*
- * Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = e1000e_force_mac_fc(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = e1000e_force_mac_fc(hw);
- }
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- /*
- * Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /*
- * Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- e_dbg("Copper PHY and Auto Neg "
- "has not completed.\n");
- return ret_val;
- }
- /*
- * The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
- /*
- * Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /*
- * Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- e_dbg("Flow Control = FULL.\r\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- e_dbg("Flow Control = "
- "RX PAUSE frames only.\r\n");
- }
- }
- /*
- * For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
- }
- /*
- * For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
- } else {
- /*
- * Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- e_dbg("Flow Control = NONE.\r\n");
- }
- /*
- * Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
- /*
- * Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000e_force_mac_fc(hw);
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- }
- return 0;
- }
- /**
- * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
- s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
- {
- u32 status;
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- e_dbg("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- e_dbg("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- e_dbg("10 Mbs, ");
- }
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- e_dbg("Half Duplex\n");
- }
- return 0;
- }
- /**
- * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
- s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
- {
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- return 0;
- }
- /**
- * e1000e_get_hw_semaphore - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
- s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
- {
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = er32(SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- udelay(50);
- i++;
- }
- if (i == timeout) {
- e_dbg("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
- /* Semaphore acquired if bit latched */
- if (er32(SWSM) & E1000_SWSM_SWESMBI)
- break;
- udelay(50);
- }
- if (i == timeout) {
- /* Release semaphores */
- e1000e_put_hw_semaphore(hw);
- e_dbg("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
- return 0;
- }
- /**
- * e1000e_put_hw_semaphore - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
- void e1000e_put_hw_semaphore(struct e1000_hw *hw)
- {
- u32 swsm;
- swsm = er32(SWSM);
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- ew32(SWSM, swsm);
- }
- /**
- * e1000e_get_auto_rd_done - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
- s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
- {
- s32 i = 0;
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (er32(EECD) & E1000_EECD_AUTO_RD)
- break;
- msleep(1);
- i++;
- }
- if (i == AUTO_READ_DONE_TIMEOUT) {
- e_dbg("Auto read by HW from NVM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- return 0;
- }
- /**
- * e1000e_valid_led_default - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
- s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
- {
- s32 ret_val;
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
- return 0;
- }
- /**
- * e1000e_id_led_init -
- * @hw: pointer to the HW structure
- *
- **/
- s32 e1000e_id_led_init(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
- mac->ledctl_default = er32(LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return 0;
- }
- /**
- * e1000e_setup_led_generic - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
- s32 e1000e_setup_led_generic(struct e1000_hw *hw)
- {
- u32 ledctl;
- if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
- return -E1000_ERR_CONFIG;
- }
- if (hw->phy.media_type == e1000_media_type_fiber) {
- ledctl = er32(LEDCTL);
- hw->mac.ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- ew32(LEDCTL, ledctl);
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- }
- return 0;
- }
- /**
- * e1000e_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
- s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
- {
- ew32(LEDCTL, hw->mac.ledctl_default);
- return 0;
- }
- /**
- * e1000e_blink_led - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
- s32 e1000e_blink_led(struct e1000_hw *hw)
- {
- u32 ledctl_blink = 0;
- u32 i;
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /*
- * set the blink bit for each LED that's "on" (0x0E)
- * in ledctl_mode2
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
- (i * 8));
- }
- ew32(LEDCTL, ledctl_blink);
- return 0;
- }
- /**
- * e1000e_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
- s32 e1000e_led_on_generic(struct e1000_hw *hw)
- {
- u32 ctrl;
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
- return 0;
- }
- /**
- * e1000e_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
- s32 e1000e_led_off_generic(struct e1000_hw *hw)
- {
- u32 ctrl;
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
- return 0;
- }
- /**
- * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
- void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
- {
- u32 gcr;
- if (no_snoop) {
- gcr = er32(GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- ew32(GCR, gcr);
- }
- }
- /**
- * e1000e_disable_pcie_master - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns 0 if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
- s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
- {
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- ew32(CTRL, ctrl);
- while (timeout) {
- if (!(er32(STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- udelay(100);
- timeout--;
- }
- if (!timeout) {
- e_dbg("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
- return 0;
- }
- /**
- * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
- void e1000e_reset_adaptive(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- if (!mac->adaptive_ifs) {
- e_dbg("Not in Adaptive IFS mode!\n");
- goto out;
- }
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
- mac->in_ifs_mode = false;
- ew32(AIT, 0);
- out:
- return;
- }
- /**
- * e1000e_update_adaptive - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
- void e1000e_update_adaptive(struct e1000_hw *hw)
- {
- struct e1000_mac_info *mac = &hw->mac;
- if (!mac->adaptive_ifs) {
- e_dbg("Not in Adaptive IFS mode!\n");
- goto out;
- }
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = true;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- ew32(AIT, mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = false;
- ew32(AIT, 0);
- }
- }
- out:
- return;
- }
- /**
- * e1000_raise_eec_clk - Raise EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Enable/Raise the EEPROM clock bit.
- **/
- static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
- {
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
- }
- /**
- * e1000_lower_eec_clk - Lower EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Clear/Lower the EEPROM clock bit.
- **/
- static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
- {
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
- }
- /**
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- * @hw: pointer to the HW structure
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
- static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u32 mask;
- mask = 0x01 << (count - 1);
- if (nvm->type == e1000_nvm_eeprom_spi)
- eecd |= E1000_EECD_DO;
- do {
- eecd &= ~E1000_EECD_DI;
- if (data & mask)
- eecd |= E1000_EECD_DI;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
- mask >>= 1;
- } while (mask);
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
- }
- /**
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- * @hw: pointer to the HW structure
- * @count: number of bits to shift in
- *
- * In order to read a register from the EEPROM, we need to shift 'count' bits
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
- * the EEPROM (setting the SK bit), and then reading the value of the data out
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
- * always be clear.
- **/
- static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
- {
- u32 eecd;
- u32 i;
- u16 data;
- eecd = er32(EECD);
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
- for (i = 0; i < count; i++) {
- data <<= 1;
- e1000_raise_eec_clk(hw, &eecd);
- eecd = er32(EECD);
- eecd &= ~E1000_EECD_DI;
- if (eecd & E1000_EECD_DO)
- data |= 1;
- e1000_lower_eec_clk(hw, &eecd);
- }
- return data;
- }
- /**
- * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- * @hw: pointer to the HW structure
- * @ee_reg: EEPROM flag for polling
- *
- * Polls the EEPROM status bit for either read or write completion based
- * upon the value of 'ee_reg'.
- **/
- s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
- {
- u32 attempts = 100000;
- u32 i, reg = 0;
- for (i = 0; i < attempts; i++) {
- if (ee_reg == E1000_NVM_POLL_READ)
- reg = er32(EERD);
- else
- reg = er32(EEWR);
- if (reg & E1000_NVM_RW_REG_DONE)
- return 0;
- udelay(5);
- }
- return -E1000_ERR_NVM;
- }
- /**
- * e1000e_acquire_nvm - Generic request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
- s32 e1000e_acquire_nvm(struct e1000_hw *hw)
- {
- u32 eecd = er32(EECD);
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
- ew32(EECD, eecd | E1000_EECD_REQ);
- eecd = er32(EECD);
- while (timeout) {
- if (eecd & E1000_EECD_GNT)
- break;
- udelay(5);
- eecd = er32(EECD);
- timeout--;
- }
- if (!timeout) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- e_dbg("Could not acquire NVM grant\n");
- return -E1000_ERR_NVM;
- }
- return 0;
- }
- /**
- * e1000_standby_nvm - Return EEPROM to standby state
- * @hw: pointer to the HW structure
- *
- * Return the EEPROM to a standby state.
- **/
- static void e1000_standby_nvm(struct e1000_hw *hw)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- }
- }
- /**
- * e1000_stop_nvm - Terminate EEPROM command
- * @hw: pointer to the HW structure
- *
- * Terminates the current command by inverting the EEPROM's chip select pin.
- **/
- static void e1000_stop_nvm(struct e1000_hw *hw)
- {
- u32 eecd;
- eecd = er32(EECD);
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- /* Pull CS high */
- eecd |= E1000_EECD_CS;
- e1000_lower_eec_clk(hw, &eecd);
- }
- }
- /**
- * e1000e_release_nvm - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
- void e1000e_release_nvm(struct e1000_hw *hw)
- {
- u32 eecd;
- e1000_stop_nvm(hw);
- eecd = er32(EECD);
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- }
- /**
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- * @hw: pointer to the HW structure
- *
- * Setups the EEPROM for reading and writing.
- **/
- static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 timeout = 0;
- u8 spi_stat_reg;
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- udelay(1);
- timeout = NVM_MAX_RETRY_SPI;
- /*
- * Read "Status Register" repeatedly until the LSB is cleared.
- * The EEPROM will signal that the command has been completed
- * by clearing bit 0 of the internal status register. If it's
- * not cleared within 'timeout', then error out.
- */
- while (timeout) {
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
- break;
- udelay(5);
- e1000_standby_nvm(hw);
- timeout--;
- }
- if (!timeout) {
- e_dbg("SPI NVM Status error\n");
- return -E1000_ERR_NVM;
- }
- }
- return 0;
- }
- /**
- * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM using the EERD register.
- **/
- s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eerd = 0;
- s32 ret_val = 0;
- /*
- * A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
- E1000_NVM_RW_REG_START;
- ew32(EERD, eerd);
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
- if (ret_val)
- break;
- data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
- }
- return ret_val;
- }
- /**
- * e1000e_write_nvm_spi - Write to EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using SPI interface.
- *
- * If e1000e_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
- s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
- {
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 widx = 0;
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
- msleep(10);
- while (widx < words) {
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val) {
- nvm->ops.release(hw);
- return ret_val;
- }
- e1000_standby_nvm(hw);
- /* Send the WRITE ENABLE command (8 bit opcode) */
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
- e1000_standby_nvm(hw);
- /*
- * Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((nvm->address_bits == 8) && (offset >= 128))
- write_opcode |= NVM_A8_OPCODE_SPI;
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
- /* Loop to allow for up to whole page write of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_eec_bits(hw, word_out, 16);
- widx++;
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
- e1000_standby_nvm(hw);
- break;
- }
- }
- }
- msleep(10);
- nvm->ops.release(hw);
- return 0;
- }
- /**
- * e1000e_read_mac_addr - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- **/
- s32 e1000e_read_mac_addr(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 offset, nvm_data, i;
- u16 mac_addr_offset = 0;
- if (hw->mac.type == e1000_82571) {
- /* Check for an alternate MAC address. An alternate MAC
- * address can be setup by pre-boot software and must be
- * treated like a permanent address and must override the
- * actual permanent MAC address.*/
- ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &mac_addr_offset);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if (mac_addr_offset == 0xFFFF)
- mac_addr_offset = 0;
- if (mac_addr_offset) {
- if (hw->bus.func == E1000_FUNC_1)
- mac_addr_offset += ETH_ALEN/sizeof(u16);
- /* make sure we have a valid mac address here
- * before using it */
- ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
- &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if (nvm_data & 0x0001)
- mac_addr_offset = 0;
- }
- if (mac_addr_offset)
- hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
- }
- for (i = 0; i < ETH_ALEN; i += 2) {
- offset = mac_addr_offset + (i >> 1);
- ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
- hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
- }
- /* Flip last bit of mac address if we're on second port */
- if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
- hw->mac.perm_addr[5] ^= 1;
- for (i = 0; i < ETH_ALEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
- return 0;
- }
- /**
- * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
- s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
- if (checksum != (u16) NVM_SUM) {
- e_dbg("NVM Checksum Invalid\n");
- return -E1000_ERR_NVM;
- }
- return 0;
- }
- /**
- * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
- s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
- {
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error while updating checksum.\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
- if (ret_val)
- e_dbg("NVM Write Error while updating checksum.\n");
- return ret_val;
- }
- /**
- * e1000e_reload_nvm - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
- void e1000e_reload_nvm(struct e1000_hw *hw)
- {
- u32 ctrl_ext;
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
- }
- /**
- * e1000_calculate_checksum - Calculate checksum for buffer
- * @buffer: pointer to EEPROM
- * @length: size of EEPROM to calculate a checksum for
- *
- * Calculates the checksum for some buffer on a specified length. The
- * checksum calculated is returned.
- **/
- static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
- {
- u32 i;
- u8 sum = 0;
- if (!buffer)
- return 0;
- for (i = 0; i < length; i++)
- sum += buffer[i];
- return (u8) (0 - sum);
- }
- /**
- * e1000_mng_enable_host_if - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
- static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
- {
- u32 hicr;
- u8 i;
- /* Check that the host interface is enabled. */
- hicr = er32(HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- e_dbg("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = er32(HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- mdelay(1);
- }
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- e_dbg("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return 0;
- }
- /**
- * e1000e_check_mng_mode_generic - check management mode
- * @hw: pointer to the HW structure
- *
- * Reads the firmware semaphore register and returns true (>0) if
- * manageability is enabled, else false (0).
- **/
- bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
- {
- u32 fwsm = er32(FWSM);
- return (fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
- }
- /**
- * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- **/
- bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
- {
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
- u32 *buffer = (u32 *)&hw->mng_cookie;
- u32 offset;
- s32 ret_val, hdr_csum, csum;
- u8 i, len;
- hw->mac.tx_pkt_filtering = true;
- /* No manageability, no filtering */
- if (!e1000e_check_mng_mode(hw)) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
- /*
- * If we can't read from the host interface for whatever
- * reason, disable filtering.
- */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
- /* Read in the header. Length and offset are in dwords. */
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
- for (i = 0; i < len; i++)
- *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
- hdr_csum = hdr->checksum;
- hdr->checksum = 0;
- csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /*
- * If either the checksums or signature don't match, then
- * the cookie area isn't considered valid, in which case we
- * take the safe route of assuming Tx filtering is enabled.
- */
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
- hw->mac.tx_pkt_filtering = true;
- goto out;
- }
- /* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
- out:
- return hw->mac.tx_pkt_filtering;
- }
- /**
- * e1000_mng_write_cmd_header - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
- static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
- {
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
- /* Write the whole command header structure with new checksum. */
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
- length >>= 2;
- /* Write the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
- e1e_flush();
- }
- return 0;
- }
- /**
- * e1000_mng_host_if_write - Write to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
- static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
- {
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- u16 remaining, i, j, prev_bytes;
- /* sum = only sum of the data and it is not checksum */
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
- return -E1000_ERR_PARAM;
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset >>= 2;
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
- remaining = length & 0x3;
- length -= remaining;
- /* Calculate length in DWORDs */
- length >>= 2;
- /*
- * The device driver writes the relevant command block into the
- * ram area.
- */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
- return 0;
- }
- /**
- * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
- s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
- {
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
- /* Enable the host interface */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val)
- return ret_val;
- /* Populate the host interface with the contents of "buffer". */
- ret_val = e1000_mng_host_if_write(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- return ret_val;
- /* Write the manageability command header */
- ret_val = e1000_mng_write_cmd_header(hw, &hdr);
- if (ret_val)
- return ret_val;
- /* Tell the ARC a new command is pending. */
- hicr = er32(HICR);
- ew32(HICR, hicr | E1000_HICR_C);
- return 0;
- }
- /**
- * e1000e_enable_mng_pass_thru - Enable processing of ARP's
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to allow ARPs to be processed by the host.
- **/
- bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
- {
- u32 manc;
- u32 fwsm, factps;
- bool ret_val = false;
- manc = er32(MANC);
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return ret_val;
- if (hw->mac.arc_subsystem_valid) {
- fwsm = er32(FWSM);
- factps = er32(FACTPS);
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = true;
- return ret_val;
- }
- } else {
- if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = true;
- return ret_val;
- }
- }
- return ret_val;
- }
- s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
- {
- s32 ret_val;
- u16 nvm_data;
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- *pba_num = (u32)(nvm_data << 16);
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- *pba_num |= nvm_data;
- return 0;
- }
|