dm9000.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/dm9000.h>
  32. #include <linux/delay.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/irq.h>
  35. #include <asm/delay.h>
  36. #include <asm/irq.h>
  37. #include <asm/io.h>
  38. #include "dm9000.h"
  39. /* Board/System/Debug information/definition ---------------- */
  40. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  41. #define CARDNAME "dm9000"
  42. #define DRV_VERSION "1.31"
  43. /*
  44. * Transmit timeout, default 5 seconds.
  45. */
  46. static int watchdog = 5000;
  47. module_param(watchdog, int, 0400);
  48. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  49. /* DM9000 register address locking.
  50. *
  51. * The DM9000 uses an address register to control where data written
  52. * to the data register goes. This means that the address register
  53. * must be preserved over interrupts or similar calls.
  54. *
  55. * During interrupt and other critical calls, a spinlock is used to
  56. * protect the system, but the calls themselves save the address
  57. * in the address register in case they are interrupting another
  58. * access to the device.
  59. *
  60. * For general accesses a lock is provided so that calls which are
  61. * allowed to sleep are serialised so that the address register does
  62. * not need to be saved. This lock also serves to serialise access
  63. * to the EEPROM and PHY access registers which are shared between
  64. * these two devices.
  65. */
  66. /* The driver supports the original DM9000E, and now the two newer
  67. * devices, DM9000A and DM9000B.
  68. */
  69. enum dm9000_type {
  70. TYPE_DM9000E, /* original DM9000 */
  71. TYPE_DM9000A,
  72. TYPE_DM9000B
  73. };
  74. /* Structure/enum declaration ------------------------------- */
  75. typedef struct board_info {
  76. void __iomem *io_addr; /* Register I/O base address */
  77. void __iomem *io_data; /* Data I/O address */
  78. u16 irq; /* IRQ */
  79. u16 tx_pkt_cnt;
  80. u16 queue_pkt_len;
  81. u16 queue_start_addr;
  82. u16 queue_ip_summed;
  83. u16 dbug_cnt;
  84. u8 io_mode; /* 0:word, 2:byte */
  85. u8 phy_addr;
  86. u8 imr_all;
  87. unsigned int flags;
  88. unsigned int in_suspend :1;
  89. unsigned int wake_supported :1;
  90. int debug_level;
  91. enum dm9000_type type;
  92. void (*inblk)(void __iomem *port, void *data, int length);
  93. void (*outblk)(void __iomem *port, void *data, int length);
  94. void (*dumpblk)(void __iomem *port, int length);
  95. struct device *dev; /* parent device */
  96. struct resource *addr_res; /* resources found */
  97. struct resource *data_res;
  98. struct resource *addr_req; /* resources requested */
  99. struct resource *data_req;
  100. struct resource *irq_res;
  101. int irq_wake;
  102. struct mutex addr_lock; /* phy and eeprom access lock */
  103. struct delayed_work phy_poll;
  104. struct net_device *ndev;
  105. spinlock_t lock;
  106. struct mii_if_info mii;
  107. u32 msg_enable;
  108. u32 wake_state;
  109. int rx_csum;
  110. int can_csum;
  111. int ip_summed;
  112. } board_info_t;
  113. /* debug code */
  114. #define dm9000_dbg(db, lev, msg...) do { \
  115. if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
  116. (lev) < db->debug_level) { \
  117. dev_dbg(db->dev, msg); \
  118. } \
  119. } while (0)
  120. static inline board_info_t *to_dm9000_board(struct net_device *dev)
  121. {
  122. return netdev_priv(dev);
  123. }
  124. /* DM9000 network board routine ---------------------------- */
  125. static void
  126. dm9000_reset(board_info_t * db)
  127. {
  128. dev_dbg(db->dev, "resetting device\n");
  129. /* RESET device */
  130. writeb(DM9000_NCR, db->io_addr);
  131. udelay(200);
  132. writeb(NCR_RST, db->io_data);
  133. udelay(200);
  134. }
  135. /*
  136. * Read a byte from I/O port
  137. */
  138. static u8
  139. ior(board_info_t * db, int reg)
  140. {
  141. writeb(reg, db->io_addr);
  142. return readb(db->io_data);
  143. }
  144. /*
  145. * Write a byte to I/O port
  146. */
  147. static void
  148. iow(board_info_t * db, int reg, int value)
  149. {
  150. writeb(reg, db->io_addr);
  151. writeb(value, db->io_data);
  152. }
  153. /* routines for sending block to chip */
  154. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  155. {
  156. writesb(reg, data, count);
  157. }
  158. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  159. {
  160. writesw(reg, data, (count+1) >> 1);
  161. }
  162. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  163. {
  164. writesl(reg, data, (count+3) >> 2);
  165. }
  166. /* input block from chip to memory */
  167. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  168. {
  169. readsb(reg, data, count);
  170. }
  171. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  172. {
  173. readsw(reg, data, (count+1) >> 1);
  174. }
  175. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  176. {
  177. readsl(reg, data, (count+3) >> 2);
  178. }
  179. /* dump block from chip to null */
  180. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  181. {
  182. int i;
  183. int tmp;
  184. for (i = 0; i < count; i++)
  185. tmp = readb(reg);
  186. }
  187. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  188. {
  189. int i;
  190. int tmp;
  191. count = (count + 1) >> 1;
  192. for (i = 0; i < count; i++)
  193. tmp = readw(reg);
  194. }
  195. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  196. {
  197. int i;
  198. int tmp;
  199. count = (count + 3) >> 2;
  200. for (i = 0; i < count; i++)
  201. tmp = readl(reg);
  202. }
  203. /* dm9000_set_io
  204. *
  205. * select the specified set of io routines to use with the
  206. * device
  207. */
  208. static void dm9000_set_io(struct board_info *db, int byte_width)
  209. {
  210. /* use the size of the data resource to work out what IO
  211. * routines we want to use
  212. */
  213. switch (byte_width) {
  214. case 1:
  215. db->dumpblk = dm9000_dumpblk_8bit;
  216. db->outblk = dm9000_outblk_8bit;
  217. db->inblk = dm9000_inblk_8bit;
  218. break;
  219. case 3:
  220. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  221. case 2:
  222. db->dumpblk = dm9000_dumpblk_16bit;
  223. db->outblk = dm9000_outblk_16bit;
  224. db->inblk = dm9000_inblk_16bit;
  225. break;
  226. case 4:
  227. default:
  228. db->dumpblk = dm9000_dumpblk_32bit;
  229. db->outblk = dm9000_outblk_32bit;
  230. db->inblk = dm9000_inblk_32bit;
  231. break;
  232. }
  233. }
  234. static void dm9000_schedule_poll(board_info_t *db)
  235. {
  236. if (db->type == TYPE_DM9000E)
  237. schedule_delayed_work(&db->phy_poll, HZ * 2);
  238. }
  239. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  240. {
  241. board_info_t *dm = to_dm9000_board(dev);
  242. if (!netif_running(dev))
  243. return -EINVAL;
  244. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  245. }
  246. static unsigned int
  247. dm9000_read_locked(board_info_t *db, int reg)
  248. {
  249. unsigned long flags;
  250. unsigned int ret;
  251. spin_lock_irqsave(&db->lock, flags);
  252. ret = ior(db, reg);
  253. spin_unlock_irqrestore(&db->lock, flags);
  254. return ret;
  255. }
  256. static int dm9000_wait_eeprom(board_info_t *db)
  257. {
  258. unsigned int status;
  259. int timeout = 8; /* wait max 8msec */
  260. /* The DM9000 data sheets say we should be able to
  261. * poll the ERRE bit in EPCR to wait for the EEPROM
  262. * operation. From testing several chips, this bit
  263. * does not seem to work.
  264. *
  265. * We attempt to use the bit, but fall back to the
  266. * timeout (which is why we do not return an error
  267. * on expiry) to say that the EEPROM operation has
  268. * completed.
  269. */
  270. while (1) {
  271. status = dm9000_read_locked(db, DM9000_EPCR);
  272. if ((status & EPCR_ERRE) == 0)
  273. break;
  274. msleep(1);
  275. if (timeout-- < 0) {
  276. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  277. break;
  278. }
  279. }
  280. return 0;
  281. }
  282. /*
  283. * Read a word data from EEPROM
  284. */
  285. static void
  286. dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
  287. {
  288. unsigned long flags;
  289. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  290. to[0] = 0xff;
  291. to[1] = 0xff;
  292. return;
  293. }
  294. mutex_lock(&db->addr_lock);
  295. spin_lock_irqsave(&db->lock, flags);
  296. iow(db, DM9000_EPAR, offset);
  297. iow(db, DM9000_EPCR, EPCR_ERPRR);
  298. spin_unlock_irqrestore(&db->lock, flags);
  299. dm9000_wait_eeprom(db);
  300. /* delay for at-least 150uS */
  301. msleep(1);
  302. spin_lock_irqsave(&db->lock, flags);
  303. iow(db, DM9000_EPCR, 0x0);
  304. to[0] = ior(db, DM9000_EPDRL);
  305. to[1] = ior(db, DM9000_EPDRH);
  306. spin_unlock_irqrestore(&db->lock, flags);
  307. mutex_unlock(&db->addr_lock);
  308. }
  309. /*
  310. * Write a word data to SROM
  311. */
  312. static void
  313. dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
  314. {
  315. unsigned long flags;
  316. if (db->flags & DM9000_PLATF_NO_EEPROM)
  317. return;
  318. mutex_lock(&db->addr_lock);
  319. spin_lock_irqsave(&db->lock, flags);
  320. iow(db, DM9000_EPAR, offset);
  321. iow(db, DM9000_EPDRH, data[1]);
  322. iow(db, DM9000_EPDRL, data[0]);
  323. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  324. spin_unlock_irqrestore(&db->lock, flags);
  325. dm9000_wait_eeprom(db);
  326. mdelay(1); /* wait at least 150uS to clear */
  327. spin_lock_irqsave(&db->lock, flags);
  328. iow(db, DM9000_EPCR, 0);
  329. spin_unlock_irqrestore(&db->lock, flags);
  330. mutex_unlock(&db->addr_lock);
  331. }
  332. /* ethtool ops */
  333. static void dm9000_get_drvinfo(struct net_device *dev,
  334. struct ethtool_drvinfo *info)
  335. {
  336. board_info_t *dm = to_dm9000_board(dev);
  337. strcpy(info->driver, CARDNAME);
  338. strcpy(info->version, DRV_VERSION);
  339. strcpy(info->bus_info, to_platform_device(dm->dev)->name);
  340. }
  341. static u32 dm9000_get_msglevel(struct net_device *dev)
  342. {
  343. board_info_t *dm = to_dm9000_board(dev);
  344. return dm->msg_enable;
  345. }
  346. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  347. {
  348. board_info_t *dm = to_dm9000_board(dev);
  349. dm->msg_enable = value;
  350. }
  351. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  352. {
  353. board_info_t *dm = to_dm9000_board(dev);
  354. mii_ethtool_gset(&dm->mii, cmd);
  355. return 0;
  356. }
  357. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  358. {
  359. board_info_t *dm = to_dm9000_board(dev);
  360. return mii_ethtool_sset(&dm->mii, cmd);
  361. }
  362. static int dm9000_nway_reset(struct net_device *dev)
  363. {
  364. board_info_t *dm = to_dm9000_board(dev);
  365. return mii_nway_restart(&dm->mii);
  366. }
  367. static uint32_t dm9000_get_rx_csum(struct net_device *dev)
  368. {
  369. board_info_t *dm = to_dm9000_board(dev);
  370. return dm->rx_csum;
  371. }
  372. static int dm9000_set_rx_csum(struct net_device *dev, uint32_t data)
  373. {
  374. board_info_t *dm = to_dm9000_board(dev);
  375. unsigned long flags;
  376. if (dm->can_csum) {
  377. dm->rx_csum = data;
  378. spin_lock_irqsave(&dm->lock, flags);
  379. iow(dm, DM9000_RCSR, dm->rx_csum ? RCSR_CSUM : 0);
  380. spin_unlock_irqrestore(&dm->lock, flags);
  381. return 0;
  382. }
  383. return -EOPNOTSUPP;
  384. }
  385. static int dm9000_set_tx_csum(struct net_device *dev, uint32_t data)
  386. {
  387. board_info_t *dm = to_dm9000_board(dev);
  388. int ret = -EOPNOTSUPP;
  389. if (dm->can_csum)
  390. ret = ethtool_op_set_tx_csum(dev, data);
  391. return ret;
  392. }
  393. static u32 dm9000_get_link(struct net_device *dev)
  394. {
  395. board_info_t *dm = to_dm9000_board(dev);
  396. u32 ret;
  397. if (dm->flags & DM9000_PLATF_EXT_PHY)
  398. ret = mii_link_ok(&dm->mii);
  399. else
  400. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  401. return ret;
  402. }
  403. #define DM_EEPROM_MAGIC (0x444D394B)
  404. static int dm9000_get_eeprom_len(struct net_device *dev)
  405. {
  406. return 128;
  407. }
  408. static int dm9000_get_eeprom(struct net_device *dev,
  409. struct ethtool_eeprom *ee, u8 *data)
  410. {
  411. board_info_t *dm = to_dm9000_board(dev);
  412. int offset = ee->offset;
  413. int len = ee->len;
  414. int i;
  415. /* EEPROM access is aligned to two bytes */
  416. if ((len & 1) != 0 || (offset & 1) != 0)
  417. return -EINVAL;
  418. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  419. return -ENOENT;
  420. ee->magic = DM_EEPROM_MAGIC;
  421. for (i = 0; i < len; i += 2)
  422. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  423. return 0;
  424. }
  425. static int dm9000_set_eeprom(struct net_device *dev,
  426. struct ethtool_eeprom *ee, u8 *data)
  427. {
  428. board_info_t *dm = to_dm9000_board(dev);
  429. int offset = ee->offset;
  430. int len = ee->len;
  431. int i;
  432. /* EEPROM access is aligned to two bytes */
  433. if ((len & 1) != 0 || (offset & 1) != 0)
  434. return -EINVAL;
  435. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  436. return -ENOENT;
  437. if (ee->magic != DM_EEPROM_MAGIC)
  438. return -EINVAL;
  439. for (i = 0; i < len; i += 2)
  440. dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
  441. return 0;
  442. }
  443. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  444. {
  445. board_info_t *dm = to_dm9000_board(dev);
  446. memset(w, 0, sizeof(struct ethtool_wolinfo));
  447. /* note, we could probably support wake-phy too */
  448. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  449. w->wolopts = dm->wake_state;
  450. }
  451. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  452. {
  453. board_info_t *dm = to_dm9000_board(dev);
  454. unsigned long flags;
  455. u32 opts = w->wolopts;
  456. u32 wcr = 0;
  457. if (!dm->wake_supported)
  458. return -EOPNOTSUPP;
  459. if (opts & ~WAKE_MAGIC)
  460. return -EINVAL;
  461. if (opts & WAKE_MAGIC)
  462. wcr |= WCR_MAGICEN;
  463. mutex_lock(&dm->addr_lock);
  464. spin_lock_irqsave(&dm->lock, flags);
  465. iow(dm, DM9000_WCR, wcr);
  466. spin_unlock_irqrestore(&dm->lock, flags);
  467. mutex_unlock(&dm->addr_lock);
  468. if (dm->wake_state != opts) {
  469. /* change in wol state, update IRQ state */
  470. if (!dm->wake_state)
  471. set_irq_wake(dm->irq_wake, 1);
  472. else if (dm->wake_state & !opts)
  473. set_irq_wake(dm->irq_wake, 0);
  474. }
  475. dm->wake_state = opts;
  476. return 0;
  477. }
  478. static const struct ethtool_ops dm9000_ethtool_ops = {
  479. .get_drvinfo = dm9000_get_drvinfo,
  480. .get_settings = dm9000_get_settings,
  481. .set_settings = dm9000_set_settings,
  482. .get_msglevel = dm9000_get_msglevel,
  483. .set_msglevel = dm9000_set_msglevel,
  484. .nway_reset = dm9000_nway_reset,
  485. .get_link = dm9000_get_link,
  486. .get_wol = dm9000_get_wol,
  487. .set_wol = dm9000_set_wol,
  488. .get_eeprom_len = dm9000_get_eeprom_len,
  489. .get_eeprom = dm9000_get_eeprom,
  490. .set_eeprom = dm9000_set_eeprom,
  491. .get_rx_csum = dm9000_get_rx_csum,
  492. .set_rx_csum = dm9000_set_rx_csum,
  493. .get_tx_csum = ethtool_op_get_tx_csum,
  494. .set_tx_csum = dm9000_set_tx_csum,
  495. };
  496. static void dm9000_show_carrier(board_info_t *db,
  497. unsigned carrier, unsigned nsr)
  498. {
  499. struct net_device *ndev = db->ndev;
  500. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  501. if (carrier)
  502. dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
  503. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  504. (ncr & NCR_FDX) ? "full" : "half");
  505. else
  506. dev_info(db->dev, "%s: link down\n", ndev->name);
  507. }
  508. static void
  509. dm9000_poll_work(struct work_struct *w)
  510. {
  511. struct delayed_work *dw = to_delayed_work(w);
  512. board_info_t *db = container_of(dw, board_info_t, phy_poll);
  513. struct net_device *ndev = db->ndev;
  514. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  515. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  516. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  517. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  518. unsigned new_carrier;
  519. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  520. if (old_carrier != new_carrier) {
  521. if (netif_msg_link(db))
  522. dm9000_show_carrier(db, new_carrier, nsr);
  523. if (!new_carrier)
  524. netif_carrier_off(ndev);
  525. else
  526. netif_carrier_on(ndev);
  527. }
  528. } else
  529. mii_check_media(&db->mii, netif_msg_link(db), 0);
  530. if (netif_running(ndev))
  531. dm9000_schedule_poll(db);
  532. }
  533. /* dm9000_release_board
  534. *
  535. * release a board, and any mapped resources
  536. */
  537. static void
  538. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  539. {
  540. /* unmap our resources */
  541. iounmap(db->io_addr);
  542. iounmap(db->io_data);
  543. /* release the resources */
  544. release_resource(db->data_req);
  545. kfree(db->data_req);
  546. release_resource(db->addr_req);
  547. kfree(db->addr_req);
  548. }
  549. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  550. {
  551. switch (type) {
  552. case TYPE_DM9000E: return 'e';
  553. case TYPE_DM9000A: return 'a';
  554. case TYPE_DM9000B: return 'b';
  555. }
  556. return '?';
  557. }
  558. /*
  559. * Set DM9000 multicast address
  560. */
  561. static void
  562. dm9000_hash_table(struct net_device *dev)
  563. {
  564. board_info_t *db = netdev_priv(dev);
  565. struct dev_mc_list *mcptr = dev->mc_list;
  566. int mc_cnt = dev->mc_count;
  567. int i, oft;
  568. u32 hash_val;
  569. u16 hash_table[4];
  570. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  571. unsigned long flags;
  572. dm9000_dbg(db, 1, "entering %s\n", __func__);
  573. spin_lock_irqsave(&db->lock, flags);
  574. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  575. iow(db, oft, dev->dev_addr[i]);
  576. /* Clear Hash Table */
  577. for (i = 0; i < 4; i++)
  578. hash_table[i] = 0x0;
  579. /* broadcast address */
  580. hash_table[3] = 0x8000;
  581. if (dev->flags & IFF_PROMISC)
  582. rcr |= RCR_PRMSC;
  583. if (dev->flags & IFF_ALLMULTI)
  584. rcr |= RCR_ALL;
  585. /* the multicast address in Hash Table : 64 bits */
  586. for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
  587. hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
  588. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  589. }
  590. /* Write the hash table to MAC MD table */
  591. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  592. iow(db, oft++, hash_table[i]);
  593. iow(db, oft++, hash_table[i] >> 8);
  594. }
  595. iow(db, DM9000_RCR, rcr);
  596. spin_unlock_irqrestore(&db->lock, flags);
  597. }
  598. /*
  599. * Initilize dm9000 board
  600. */
  601. static void
  602. dm9000_init_dm9000(struct net_device *dev)
  603. {
  604. board_info_t *db = netdev_priv(dev);
  605. unsigned int imr;
  606. unsigned int ncr;
  607. dm9000_dbg(db, 1, "entering %s\n", __func__);
  608. /* I/O mode */
  609. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  610. /* Checksum mode */
  611. dm9000_set_rx_csum(dev, db->rx_csum);
  612. /* GPIO0 on pre-activate PHY */
  613. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  614. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  615. iow(db, DM9000_GPR, 0); /* Enable PHY */
  616. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  617. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  618. * up dumping the wake events if we disable this. There is already
  619. * a wake-mask in DM9000_WCR */
  620. if (db->wake_supported)
  621. ncr |= NCR_WAKEEN;
  622. iow(db, DM9000_NCR, ncr);
  623. /* Program operating register */
  624. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  625. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  626. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  627. iow(db, DM9000_SMCR, 0); /* Special Mode */
  628. /* clear TX status */
  629. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  630. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  631. /* Set address filter table */
  632. dm9000_hash_table(dev);
  633. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  634. if (db->type != TYPE_DM9000E)
  635. imr |= IMR_LNKCHNG;
  636. db->imr_all = imr;
  637. /* Enable TX/RX interrupt mask */
  638. iow(db, DM9000_IMR, imr);
  639. /* Init Driver variable */
  640. db->tx_pkt_cnt = 0;
  641. db->queue_pkt_len = 0;
  642. dev->trans_start = 0;
  643. }
  644. /* Our watchdog timed out. Called by the networking layer */
  645. static void dm9000_timeout(struct net_device *dev)
  646. {
  647. board_info_t *db = netdev_priv(dev);
  648. u8 reg_save;
  649. unsigned long flags;
  650. /* Save previous register address */
  651. reg_save = readb(db->io_addr);
  652. spin_lock_irqsave(&db->lock, flags);
  653. netif_stop_queue(dev);
  654. dm9000_reset(db);
  655. dm9000_init_dm9000(dev);
  656. /* We can accept TX packets again */
  657. dev->trans_start = jiffies;
  658. netif_wake_queue(dev);
  659. /* Restore previous register address */
  660. writeb(reg_save, db->io_addr);
  661. spin_unlock_irqrestore(&db->lock, flags);
  662. }
  663. static void dm9000_send_packet(struct net_device *dev,
  664. int ip_summed,
  665. u16 pkt_len)
  666. {
  667. board_info_t *dm = to_dm9000_board(dev);
  668. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  669. if (dm->ip_summed != ip_summed) {
  670. if (ip_summed == CHECKSUM_NONE)
  671. iow(dm, DM9000_TCCR, 0);
  672. else
  673. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  674. dm->ip_summed = ip_summed;
  675. }
  676. /* Set TX length to DM9000 */
  677. iow(dm, DM9000_TXPLL, pkt_len);
  678. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  679. /* Issue TX polling command */
  680. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  681. }
  682. /*
  683. * Hardware start transmission.
  684. * Send a packet to media from the upper layer.
  685. */
  686. static int
  687. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  688. {
  689. unsigned long flags;
  690. board_info_t *db = netdev_priv(dev);
  691. dm9000_dbg(db, 3, "%s:\n", __func__);
  692. if (db->tx_pkt_cnt > 1)
  693. return NETDEV_TX_BUSY;
  694. spin_lock_irqsave(&db->lock, flags);
  695. /* Move data to DM9000 TX RAM */
  696. writeb(DM9000_MWCMD, db->io_addr);
  697. (db->outblk)(db->io_data, skb->data, skb->len);
  698. dev->stats.tx_bytes += skb->len;
  699. db->tx_pkt_cnt++;
  700. /* TX control: First packet immediately send, second packet queue */
  701. if (db->tx_pkt_cnt == 1) {
  702. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  703. } else {
  704. /* Second packet */
  705. db->queue_pkt_len = skb->len;
  706. db->queue_ip_summed = skb->ip_summed;
  707. netif_stop_queue(dev);
  708. }
  709. spin_unlock_irqrestore(&db->lock, flags);
  710. /* free this SKB */
  711. dev_kfree_skb(skb);
  712. return NETDEV_TX_OK;
  713. }
  714. /*
  715. * DM9000 interrupt handler
  716. * receive the packet to upper layer, free the transmitted packet
  717. */
  718. static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
  719. {
  720. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  721. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  722. /* One packet sent complete */
  723. db->tx_pkt_cnt--;
  724. dev->stats.tx_packets++;
  725. if (netif_msg_tx_done(db))
  726. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  727. /* Queue packet check & send */
  728. if (db->tx_pkt_cnt > 0)
  729. dm9000_send_packet(dev, db->queue_ip_summed,
  730. db->queue_pkt_len);
  731. netif_wake_queue(dev);
  732. }
  733. }
  734. struct dm9000_rxhdr {
  735. u8 RxPktReady;
  736. u8 RxStatus;
  737. __le16 RxLen;
  738. } __attribute__((__packed__));
  739. /*
  740. * Received a packet and pass to upper layer
  741. */
  742. static void
  743. dm9000_rx(struct net_device *dev)
  744. {
  745. board_info_t *db = netdev_priv(dev);
  746. struct dm9000_rxhdr rxhdr;
  747. struct sk_buff *skb;
  748. u8 rxbyte, *rdptr;
  749. bool GoodPacket;
  750. int RxLen;
  751. /* Check packet ready or not */
  752. do {
  753. ior(db, DM9000_MRCMDX); /* Dummy read */
  754. /* Get most updated data */
  755. rxbyte = readb(db->io_data);
  756. /* Status check: this byte must be 0 or 1 */
  757. if (rxbyte & DM9000_PKT_ERR) {
  758. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  759. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  760. iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
  761. return;
  762. }
  763. if (!(rxbyte & DM9000_PKT_RDY))
  764. return;
  765. /* A packet ready now & Get status/length */
  766. GoodPacket = true;
  767. writeb(DM9000_MRCMD, db->io_addr);
  768. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  769. RxLen = le16_to_cpu(rxhdr.RxLen);
  770. if (netif_msg_rx_status(db))
  771. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  772. rxhdr.RxStatus, RxLen);
  773. /* Packet Status check */
  774. if (RxLen < 0x40) {
  775. GoodPacket = false;
  776. if (netif_msg_rx_err(db))
  777. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  778. }
  779. if (RxLen > DM9000_PKT_MAX) {
  780. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  781. }
  782. /* rxhdr.RxStatus is identical to RSR register. */
  783. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  784. RSR_PLE | RSR_RWTO |
  785. RSR_LCS | RSR_RF)) {
  786. GoodPacket = false;
  787. if (rxhdr.RxStatus & RSR_FOE) {
  788. if (netif_msg_rx_err(db))
  789. dev_dbg(db->dev, "fifo error\n");
  790. dev->stats.rx_fifo_errors++;
  791. }
  792. if (rxhdr.RxStatus & RSR_CE) {
  793. if (netif_msg_rx_err(db))
  794. dev_dbg(db->dev, "crc error\n");
  795. dev->stats.rx_crc_errors++;
  796. }
  797. if (rxhdr.RxStatus & RSR_RF) {
  798. if (netif_msg_rx_err(db))
  799. dev_dbg(db->dev, "length error\n");
  800. dev->stats.rx_length_errors++;
  801. }
  802. }
  803. /* Move data from DM9000 */
  804. if (GoodPacket &&
  805. ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
  806. skb_reserve(skb, 2);
  807. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  808. /* Read received packet from RX SRAM */
  809. (db->inblk)(db->io_data, rdptr, RxLen);
  810. dev->stats.rx_bytes += RxLen;
  811. /* Pass to upper layer */
  812. skb->protocol = eth_type_trans(skb, dev);
  813. if (db->rx_csum) {
  814. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  815. skb->ip_summed = CHECKSUM_UNNECESSARY;
  816. else
  817. skb->ip_summed = CHECKSUM_NONE;
  818. }
  819. netif_rx(skb);
  820. dev->stats.rx_packets++;
  821. } else {
  822. /* need to dump the packet's data */
  823. (db->dumpblk)(db->io_data, RxLen);
  824. }
  825. } while (rxbyte & DM9000_PKT_RDY);
  826. }
  827. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  828. {
  829. struct net_device *dev = dev_id;
  830. board_info_t *db = netdev_priv(dev);
  831. int int_status;
  832. unsigned long flags;
  833. u8 reg_save;
  834. dm9000_dbg(db, 3, "entering %s\n", __func__);
  835. /* A real interrupt coming */
  836. /* holders of db->lock must always block IRQs */
  837. spin_lock_irqsave(&db->lock, flags);
  838. /* Save previous register address */
  839. reg_save = readb(db->io_addr);
  840. /* Disable all interrupts */
  841. iow(db, DM9000_IMR, IMR_PAR);
  842. /* Got DM9000 interrupt status */
  843. int_status = ior(db, DM9000_ISR); /* Got ISR */
  844. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  845. if (netif_msg_intr(db))
  846. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  847. /* Received the coming packet */
  848. if (int_status & ISR_PRS)
  849. dm9000_rx(dev);
  850. /* Trnasmit Interrupt check */
  851. if (int_status & ISR_PTS)
  852. dm9000_tx_done(dev, db);
  853. if (db->type != TYPE_DM9000E) {
  854. if (int_status & ISR_LNKCHNG) {
  855. /* fire a link-change request */
  856. schedule_delayed_work(&db->phy_poll, 1);
  857. }
  858. }
  859. /* Re-enable interrupt mask */
  860. iow(db, DM9000_IMR, db->imr_all);
  861. /* Restore previous register address */
  862. writeb(reg_save, db->io_addr);
  863. spin_unlock_irqrestore(&db->lock, flags);
  864. return IRQ_HANDLED;
  865. }
  866. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  867. {
  868. struct net_device *dev = dev_id;
  869. board_info_t *db = netdev_priv(dev);
  870. unsigned long flags;
  871. unsigned nsr, wcr;
  872. spin_lock_irqsave(&db->lock, flags);
  873. nsr = ior(db, DM9000_NSR);
  874. wcr = ior(db, DM9000_WCR);
  875. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  876. if (nsr & NSR_WAKEST) {
  877. /* clear, so we can avoid */
  878. iow(db, DM9000_NSR, NSR_WAKEST);
  879. if (wcr & WCR_LINKST)
  880. dev_info(db->dev, "wake by link status change\n");
  881. if (wcr & WCR_SAMPLEST)
  882. dev_info(db->dev, "wake by sample packet\n");
  883. if (wcr & WCR_MAGICST )
  884. dev_info(db->dev, "wake by magic packet\n");
  885. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  886. dev_err(db->dev, "wake signalled with no reason? "
  887. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  888. }
  889. spin_unlock_irqrestore(&db->lock, flags);
  890. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  891. }
  892. #ifdef CONFIG_NET_POLL_CONTROLLER
  893. /*
  894. *Used by netconsole
  895. */
  896. static void dm9000_poll_controller(struct net_device *dev)
  897. {
  898. disable_irq(dev->irq);
  899. dm9000_interrupt(dev->irq, dev);
  900. enable_irq(dev->irq);
  901. }
  902. #endif
  903. /*
  904. * Open the interface.
  905. * The interface is opened whenever "ifconfig" actives it.
  906. */
  907. static int
  908. dm9000_open(struct net_device *dev)
  909. {
  910. board_info_t *db = netdev_priv(dev);
  911. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  912. if (netif_msg_ifup(db))
  913. dev_dbg(db->dev, "enabling %s\n", dev->name);
  914. /* If there is no IRQ type specified, default to something that
  915. * may work, and tell the user that this is a problem */
  916. if (irqflags == IRQF_TRIGGER_NONE)
  917. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  918. irqflags |= IRQF_SHARED;
  919. if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
  920. return -EAGAIN;
  921. /* Initialize DM9000 board */
  922. dm9000_reset(db);
  923. dm9000_init_dm9000(dev);
  924. /* Init driver variable */
  925. db->dbug_cnt = 0;
  926. mii_check_media(&db->mii, netif_msg_link(db), 1);
  927. netif_start_queue(dev);
  928. dm9000_schedule_poll(db);
  929. return 0;
  930. }
  931. /*
  932. * Sleep, either by using msleep() or if we are suspending, then
  933. * use mdelay() to sleep.
  934. */
  935. static void dm9000_msleep(board_info_t *db, unsigned int ms)
  936. {
  937. if (db->in_suspend)
  938. mdelay(ms);
  939. else
  940. msleep(ms);
  941. }
  942. /*
  943. * Read a word from phyxcer
  944. */
  945. static int
  946. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  947. {
  948. board_info_t *db = netdev_priv(dev);
  949. unsigned long flags;
  950. unsigned int reg_save;
  951. int ret;
  952. mutex_lock(&db->addr_lock);
  953. spin_lock_irqsave(&db->lock,flags);
  954. /* Save previous register address */
  955. reg_save = readb(db->io_addr);
  956. /* Fill the phyxcer register into REG_0C */
  957. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  958. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
  959. writeb(reg_save, db->io_addr);
  960. spin_unlock_irqrestore(&db->lock,flags);
  961. dm9000_msleep(db, 1); /* Wait read complete */
  962. spin_lock_irqsave(&db->lock,flags);
  963. reg_save = readb(db->io_addr);
  964. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  965. /* The read data keeps on REG_0D & REG_0E */
  966. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  967. /* restore the previous address */
  968. writeb(reg_save, db->io_addr);
  969. spin_unlock_irqrestore(&db->lock,flags);
  970. mutex_unlock(&db->addr_lock);
  971. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  972. return ret;
  973. }
  974. /*
  975. * Write a word to phyxcer
  976. */
  977. static void
  978. dm9000_phy_write(struct net_device *dev,
  979. int phyaddr_unused, int reg, int value)
  980. {
  981. board_info_t *db = netdev_priv(dev);
  982. unsigned long flags;
  983. unsigned long reg_save;
  984. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  985. mutex_lock(&db->addr_lock);
  986. spin_lock_irqsave(&db->lock,flags);
  987. /* Save previous register address */
  988. reg_save = readb(db->io_addr);
  989. /* Fill the phyxcer register into REG_0C */
  990. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  991. /* Fill the written data into REG_0D & REG_0E */
  992. iow(db, DM9000_EPDRL, value);
  993. iow(db, DM9000_EPDRH, value >> 8);
  994. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
  995. writeb(reg_save, db->io_addr);
  996. spin_unlock_irqrestore(&db->lock, flags);
  997. dm9000_msleep(db, 1); /* Wait write complete */
  998. spin_lock_irqsave(&db->lock,flags);
  999. reg_save = readb(db->io_addr);
  1000. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  1001. /* restore the previous address */
  1002. writeb(reg_save, db->io_addr);
  1003. spin_unlock_irqrestore(&db->lock, flags);
  1004. mutex_unlock(&db->addr_lock);
  1005. }
  1006. static void
  1007. dm9000_shutdown(struct net_device *dev)
  1008. {
  1009. board_info_t *db = netdev_priv(dev);
  1010. /* RESET device */
  1011. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1012. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1013. iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
  1014. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1015. }
  1016. /*
  1017. * Stop the interface.
  1018. * The interface is stopped when it is brought.
  1019. */
  1020. static int
  1021. dm9000_stop(struct net_device *ndev)
  1022. {
  1023. board_info_t *db = netdev_priv(ndev);
  1024. if (netif_msg_ifdown(db))
  1025. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1026. cancel_delayed_work_sync(&db->phy_poll);
  1027. netif_stop_queue(ndev);
  1028. netif_carrier_off(ndev);
  1029. /* free interrupt */
  1030. free_irq(ndev->irq, ndev);
  1031. dm9000_shutdown(ndev);
  1032. return 0;
  1033. }
  1034. static const struct net_device_ops dm9000_netdev_ops = {
  1035. .ndo_open = dm9000_open,
  1036. .ndo_stop = dm9000_stop,
  1037. .ndo_start_xmit = dm9000_start_xmit,
  1038. .ndo_tx_timeout = dm9000_timeout,
  1039. .ndo_set_multicast_list = dm9000_hash_table,
  1040. .ndo_do_ioctl = dm9000_ioctl,
  1041. .ndo_change_mtu = eth_change_mtu,
  1042. .ndo_validate_addr = eth_validate_addr,
  1043. .ndo_set_mac_address = eth_mac_addr,
  1044. #ifdef CONFIG_NET_POLL_CONTROLLER
  1045. .ndo_poll_controller = dm9000_poll_controller,
  1046. #endif
  1047. };
  1048. /*
  1049. * Search DM9000 board, allocate space and register it
  1050. */
  1051. static int __devinit
  1052. dm9000_probe(struct platform_device *pdev)
  1053. {
  1054. struct dm9000_plat_data *pdata = pdev->dev.platform_data;
  1055. struct board_info *db; /* Point a board information structure */
  1056. struct net_device *ndev;
  1057. const unsigned char *mac_src;
  1058. int ret = 0;
  1059. int iosize;
  1060. int i;
  1061. u32 id_val;
  1062. /* Init network device */
  1063. ndev = alloc_etherdev(sizeof(struct board_info));
  1064. if (!ndev) {
  1065. dev_err(&pdev->dev, "could not allocate device.\n");
  1066. return -ENOMEM;
  1067. }
  1068. SET_NETDEV_DEV(ndev, &pdev->dev);
  1069. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1070. /* setup board info structure */
  1071. db = netdev_priv(ndev);
  1072. db->dev = &pdev->dev;
  1073. db->ndev = ndev;
  1074. spin_lock_init(&db->lock);
  1075. mutex_init(&db->addr_lock);
  1076. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1077. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1078. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1079. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1080. if (db->addr_res == NULL || db->data_res == NULL ||
  1081. db->irq_res == NULL) {
  1082. dev_err(db->dev, "insufficient resources\n");
  1083. ret = -ENOENT;
  1084. goto out;
  1085. }
  1086. db->irq_wake = platform_get_irq(pdev, 1);
  1087. if (db->irq_wake >= 0) {
  1088. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1089. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1090. IRQF_SHARED, dev_name(db->dev), ndev);
  1091. if (ret) {
  1092. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1093. } else {
  1094. /* test to see if irq is really wakeup capable */
  1095. ret = set_irq_wake(db->irq_wake, 1);
  1096. if (ret) {
  1097. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1098. db->irq_wake, ret);
  1099. ret = 0;
  1100. } else {
  1101. set_irq_wake(db->irq_wake, 0);
  1102. db->wake_supported = 1;
  1103. }
  1104. }
  1105. }
  1106. iosize = resource_size(db->addr_res);
  1107. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1108. pdev->name);
  1109. if (db->addr_req == NULL) {
  1110. dev_err(db->dev, "cannot claim address reg area\n");
  1111. ret = -EIO;
  1112. goto out;
  1113. }
  1114. db->io_addr = ioremap(db->addr_res->start, iosize);
  1115. if (db->io_addr == NULL) {
  1116. dev_err(db->dev, "failed to ioremap address reg\n");
  1117. ret = -EINVAL;
  1118. goto out;
  1119. }
  1120. iosize = resource_size(db->data_res);
  1121. db->data_req = request_mem_region(db->data_res->start, iosize,
  1122. pdev->name);
  1123. if (db->data_req == NULL) {
  1124. dev_err(db->dev, "cannot claim data reg area\n");
  1125. ret = -EIO;
  1126. goto out;
  1127. }
  1128. db->io_data = ioremap(db->data_res->start, iosize);
  1129. if (db->io_data == NULL) {
  1130. dev_err(db->dev, "failed to ioremap data reg\n");
  1131. ret = -EINVAL;
  1132. goto out;
  1133. }
  1134. /* fill in parameters for net-dev structure */
  1135. ndev->base_addr = (unsigned long)db->io_addr;
  1136. ndev->irq = db->irq_res->start;
  1137. /* ensure at least we have a default set of IO routines */
  1138. dm9000_set_io(db, iosize);
  1139. /* check to see if anything is being over-ridden */
  1140. if (pdata != NULL) {
  1141. /* check to see if the driver wants to over-ride the
  1142. * default IO width */
  1143. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1144. dm9000_set_io(db, 1);
  1145. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1146. dm9000_set_io(db, 2);
  1147. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1148. dm9000_set_io(db, 4);
  1149. /* check to see if there are any IO routine
  1150. * over-rides */
  1151. if (pdata->inblk != NULL)
  1152. db->inblk = pdata->inblk;
  1153. if (pdata->outblk != NULL)
  1154. db->outblk = pdata->outblk;
  1155. if (pdata->dumpblk != NULL)
  1156. db->dumpblk = pdata->dumpblk;
  1157. db->flags = pdata->flags;
  1158. }
  1159. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1160. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1161. #endif
  1162. dm9000_reset(db);
  1163. /* try multiple times, DM9000 sometimes gets the read wrong */
  1164. for (i = 0; i < 8; i++) {
  1165. id_val = ior(db, DM9000_VIDL);
  1166. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1167. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1168. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1169. if (id_val == DM9000_ID)
  1170. break;
  1171. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1172. }
  1173. if (id_val != DM9000_ID) {
  1174. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1175. ret = -ENODEV;
  1176. goto out;
  1177. }
  1178. /* Identify what type of DM9000 we are working on */
  1179. id_val = ior(db, DM9000_CHIPR);
  1180. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1181. switch (id_val) {
  1182. case CHIPR_DM9000A:
  1183. db->type = TYPE_DM9000A;
  1184. break;
  1185. case CHIPR_DM9000B:
  1186. db->type = TYPE_DM9000B;
  1187. break;
  1188. default:
  1189. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1190. db->type = TYPE_DM9000E;
  1191. }
  1192. /* dm9000a/b are capable of hardware checksum offload */
  1193. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1194. db->can_csum = 1;
  1195. db->rx_csum = 1;
  1196. ndev->features |= NETIF_F_IP_CSUM;
  1197. }
  1198. /* from this point we assume that we have found a DM9000 */
  1199. /* driver system function */
  1200. ether_setup(ndev);
  1201. ndev->netdev_ops = &dm9000_netdev_ops;
  1202. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1203. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1204. db->msg_enable = NETIF_MSG_LINK;
  1205. db->mii.phy_id_mask = 0x1f;
  1206. db->mii.reg_num_mask = 0x1f;
  1207. db->mii.force_media = 0;
  1208. db->mii.full_duplex = 0;
  1209. db->mii.dev = ndev;
  1210. db->mii.mdio_read = dm9000_phy_read;
  1211. db->mii.mdio_write = dm9000_phy_write;
  1212. mac_src = "eeprom";
  1213. /* try reading the node address from the attached EEPROM */
  1214. for (i = 0; i < 6; i += 2)
  1215. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1216. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1217. mac_src = "platform data";
  1218. memcpy(ndev->dev_addr, pdata->dev_addr, 6);
  1219. }
  1220. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1221. /* try reading from mac */
  1222. mac_src = "chip";
  1223. for (i = 0; i < 6; i++)
  1224. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1225. }
  1226. if (!is_valid_ether_addr(ndev->dev_addr))
  1227. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  1228. "set using ifconfig\n", ndev->name);
  1229. platform_set_drvdata(pdev, ndev);
  1230. ret = register_netdev(ndev);
  1231. if (ret == 0)
  1232. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1233. ndev->name, dm9000_type_to_char(db->type),
  1234. db->io_addr, db->io_data, ndev->irq,
  1235. ndev->dev_addr, mac_src);
  1236. return 0;
  1237. out:
  1238. dev_err(db->dev, "not found (%d).\n", ret);
  1239. dm9000_release_board(pdev, db);
  1240. free_netdev(ndev);
  1241. return ret;
  1242. }
  1243. static int
  1244. dm9000_drv_suspend(struct device *dev)
  1245. {
  1246. struct platform_device *pdev = to_platform_device(dev);
  1247. struct net_device *ndev = platform_get_drvdata(pdev);
  1248. board_info_t *db;
  1249. if (ndev) {
  1250. db = netdev_priv(ndev);
  1251. db->in_suspend = 1;
  1252. if (!netif_running(ndev))
  1253. return 0;
  1254. netif_device_detach(ndev);
  1255. /* only shutdown if not using WoL */
  1256. if (!db->wake_state)
  1257. dm9000_shutdown(ndev);
  1258. }
  1259. return 0;
  1260. }
  1261. static int
  1262. dm9000_drv_resume(struct device *dev)
  1263. {
  1264. struct platform_device *pdev = to_platform_device(dev);
  1265. struct net_device *ndev = platform_get_drvdata(pdev);
  1266. board_info_t *db = netdev_priv(ndev);
  1267. if (ndev) {
  1268. if (netif_running(ndev)) {
  1269. /* reset if we were not in wake mode to ensure if
  1270. * the device was powered off it is in a known state */
  1271. if (!db->wake_state) {
  1272. dm9000_reset(db);
  1273. dm9000_init_dm9000(ndev);
  1274. }
  1275. netif_device_attach(ndev);
  1276. }
  1277. db->in_suspend = 0;
  1278. }
  1279. return 0;
  1280. }
  1281. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1282. .suspend = dm9000_drv_suspend,
  1283. .resume = dm9000_drv_resume,
  1284. };
  1285. static int __devexit
  1286. dm9000_drv_remove(struct platform_device *pdev)
  1287. {
  1288. struct net_device *ndev = platform_get_drvdata(pdev);
  1289. platform_set_drvdata(pdev, NULL);
  1290. unregister_netdev(ndev);
  1291. dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
  1292. free_netdev(ndev); /* free device structure */
  1293. dev_dbg(&pdev->dev, "released and freed device\n");
  1294. return 0;
  1295. }
  1296. static struct platform_driver dm9000_driver = {
  1297. .driver = {
  1298. .name = "dm9000",
  1299. .owner = THIS_MODULE,
  1300. .pm = &dm9000_drv_pm_ops,
  1301. },
  1302. .probe = dm9000_probe,
  1303. .remove = __devexit_p(dm9000_drv_remove),
  1304. };
  1305. static int __init
  1306. dm9000_init(void)
  1307. {
  1308. printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
  1309. return platform_driver_register(&dm9000_driver);
  1310. }
  1311. static void __exit
  1312. dm9000_cleanup(void)
  1313. {
  1314. platform_driver_unregister(&dm9000_driver);
  1315. }
  1316. module_init(dm9000_init);
  1317. module_exit(dm9000_cleanup);
  1318. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1319. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1320. MODULE_LICENSE("GPL");
  1321. MODULE_ALIAS("platform:dm9000");