mcp251x.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can.h>
  61. #include <linux/can/core.h>
  62. #include <linux/can/dev.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. #define EFLG 0x2d
  126. # define EFLG_EWARN 0x01
  127. # define EFLG_RXWAR 0x02
  128. # define EFLG_TXWAR 0x04
  129. # define EFLG_RXEP 0x08
  130. # define EFLG_TXEP 0x10
  131. # define EFLG_TXBO 0x20
  132. # define EFLG_RX0OVR 0x40
  133. # define EFLG_RX1OVR 0x80
  134. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  135. # define TXBCTRL_ABTF 0x40
  136. # define TXBCTRL_MLOA 0x20
  137. # define TXBCTRL_TXERR 0x10
  138. # define TXBCTRL_TXREQ 0x08
  139. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  140. # define SIDH_SHIFT 3
  141. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  142. # define SIDL_SID_MASK 7
  143. # define SIDL_SID_SHIFT 5
  144. # define SIDL_EXIDE_SHIFT 3
  145. # define SIDL_EID_SHIFT 16
  146. # define SIDL_EID_MASK 3
  147. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  148. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  149. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  150. # define DLC_RTR_SHIFT 6
  151. #define TXBCTRL_OFF 0
  152. #define TXBSIDH_OFF 1
  153. #define TXBSIDL_OFF 2
  154. #define TXBEID8_OFF 3
  155. #define TXBEID0_OFF 4
  156. #define TXBDLC_OFF 5
  157. #define TXBDAT_OFF 6
  158. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  159. # define RXBCTRL_BUKT 0x04
  160. # define RXBCTRL_RXM0 0x20
  161. # define RXBCTRL_RXM1 0x40
  162. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  163. # define RXBSIDH_SHIFT 3
  164. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  165. # define RXBSIDL_IDE 0x08
  166. # define RXBSIDL_EID 3
  167. # define RXBSIDL_SHIFT 5
  168. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  169. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  170. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  171. # define RXBDLC_LEN_MASK 0x0f
  172. # define RXBDLC_RTR 0x40
  173. #define RXBCTRL_OFF 0
  174. #define RXBSIDH_OFF 1
  175. #define RXBSIDL_OFF 2
  176. #define RXBEID8_OFF 3
  177. #define RXBEID0_OFF 4
  178. #define RXBDLC_OFF 5
  179. #define RXBDAT_OFF 6
  180. #define GET_BYTE(val, byte) \
  181. (((val) >> ((byte) * 8)) & 0xff)
  182. #define SET_BYTE(val, byte) \
  183. (((val) & 0xff) << ((byte) * 8))
  184. /*
  185. * Buffer size required for the largest SPI transfer (i.e., reading a
  186. * frame)
  187. */
  188. #define CAN_FRAME_MAX_DATA_LEN 8
  189. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  190. #define CAN_FRAME_MAX_BITS 128
  191. #define TX_ECHO_SKB_MAX 1
  192. #define DEVICE_NAME "mcp251x"
  193. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  194. module_param(mcp251x_enable_dma, int, S_IRUGO);
  195. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  196. static struct can_bittiming_const mcp251x_bittiming_const = {
  197. .name = DEVICE_NAME,
  198. .tseg1_min = 3,
  199. .tseg1_max = 16,
  200. .tseg2_min = 2,
  201. .tseg2_max = 8,
  202. .sjw_max = 4,
  203. .brp_min = 1,
  204. .brp_max = 64,
  205. .brp_inc = 1,
  206. };
  207. struct mcp251x_priv {
  208. struct can_priv can;
  209. struct net_device *net;
  210. struct spi_device *spi;
  211. struct mutex spi_lock; /* SPI buffer lock */
  212. u8 *spi_tx_buf;
  213. u8 *spi_rx_buf;
  214. dma_addr_t spi_tx_dma;
  215. dma_addr_t spi_rx_dma;
  216. struct sk_buff *tx_skb;
  217. int tx_len;
  218. struct workqueue_struct *wq;
  219. struct work_struct tx_work;
  220. struct work_struct irq_work;
  221. struct completion awake;
  222. int wake;
  223. int force_quit;
  224. int after_suspend;
  225. #define AFTER_SUSPEND_UP 1
  226. #define AFTER_SUSPEND_DOWN 2
  227. #define AFTER_SUSPEND_POWER 4
  228. #define AFTER_SUSPEND_RESTART 8
  229. int restart_tx;
  230. };
  231. static void mcp251x_clean(struct net_device *net)
  232. {
  233. struct mcp251x_priv *priv = netdev_priv(net);
  234. net->stats.tx_errors++;
  235. if (priv->tx_skb)
  236. dev_kfree_skb(priv->tx_skb);
  237. if (priv->tx_len)
  238. can_free_echo_skb(priv->net, 0);
  239. priv->tx_skb = NULL;
  240. priv->tx_len = 0;
  241. }
  242. /*
  243. * Note about handling of error return of mcp251x_spi_trans: accessing
  244. * registers via SPI is not really different conceptually than using
  245. * normal I/O assembler instructions, although it's much more
  246. * complicated from a practical POV. So it's not advisable to always
  247. * check the return value of this function. Imagine that every
  248. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  249. * error();", it would be a great mess (well there are some situation
  250. * when exception handling C++ like could be useful after all). So we
  251. * just check that transfers are OK at the beginning of our
  252. * conversation with the chip and to avoid doing really nasty things
  253. * (like injecting bogus packets in the network stack).
  254. */
  255. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  256. {
  257. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  258. struct spi_transfer t = {
  259. .tx_buf = priv->spi_tx_buf,
  260. .rx_buf = priv->spi_rx_buf,
  261. .len = len,
  262. .cs_change = 0,
  263. };
  264. struct spi_message m;
  265. int ret;
  266. spi_message_init(&m);
  267. if (mcp251x_enable_dma) {
  268. t.tx_dma = priv->spi_tx_dma;
  269. t.rx_dma = priv->spi_rx_dma;
  270. m.is_dma_mapped = 1;
  271. }
  272. spi_message_add_tail(&t, &m);
  273. ret = spi_sync(spi, &m);
  274. if (ret)
  275. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  276. return ret;
  277. }
  278. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  279. {
  280. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  281. u8 val = 0;
  282. mutex_lock(&priv->spi_lock);
  283. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  284. priv->spi_tx_buf[1] = reg;
  285. mcp251x_spi_trans(spi, 3);
  286. val = priv->spi_rx_buf[2];
  287. mutex_unlock(&priv->spi_lock);
  288. return val;
  289. }
  290. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  291. {
  292. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  293. mutex_lock(&priv->spi_lock);
  294. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  295. priv->spi_tx_buf[1] = reg;
  296. priv->spi_tx_buf[2] = val;
  297. mcp251x_spi_trans(spi, 3);
  298. mutex_unlock(&priv->spi_lock);
  299. }
  300. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  301. u8 mask, uint8_t val)
  302. {
  303. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  304. mutex_lock(&priv->spi_lock);
  305. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  306. priv->spi_tx_buf[1] = reg;
  307. priv->spi_tx_buf[2] = mask;
  308. priv->spi_tx_buf[3] = val;
  309. mcp251x_spi_trans(spi, 4);
  310. mutex_unlock(&priv->spi_lock);
  311. }
  312. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  313. int len, int tx_buf_idx)
  314. {
  315. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  316. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  317. if (pdata->model == CAN_MCP251X_MCP2510) {
  318. int i;
  319. for (i = 1; i < TXBDAT_OFF + len; i++)
  320. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  321. buf[i]);
  322. } else {
  323. mutex_lock(&priv->spi_lock);
  324. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  325. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  326. mutex_unlock(&priv->spi_lock);
  327. }
  328. }
  329. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  330. int tx_buf_idx)
  331. {
  332. u32 sid, eid, exide, rtr;
  333. u8 buf[SPI_TRANSFER_BUF_LEN];
  334. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  335. if (exide)
  336. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  337. else
  338. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  339. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  340. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  341. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  342. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  343. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  344. (exide << SIDL_EXIDE_SHIFT) |
  345. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  346. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  347. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  348. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  349. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  350. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  351. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  352. }
  353. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  354. int buf_idx)
  355. {
  356. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  357. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  358. if (pdata->model == CAN_MCP251X_MCP2510) {
  359. int i, len;
  360. for (i = 1; i < RXBDAT_OFF; i++)
  361. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  362. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  363. for (; i < (RXBDAT_OFF + len); i++)
  364. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  365. } else {
  366. mutex_lock(&priv->spi_lock);
  367. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  368. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  369. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  370. mutex_unlock(&priv->spi_lock);
  371. }
  372. }
  373. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  374. {
  375. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  376. struct sk_buff *skb;
  377. struct can_frame *frame;
  378. u8 buf[SPI_TRANSFER_BUF_LEN];
  379. skb = alloc_can_skb(priv->net, &frame);
  380. if (!skb) {
  381. dev_err(&spi->dev, "cannot allocate RX skb\n");
  382. priv->net->stats.rx_dropped++;
  383. return;
  384. }
  385. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  386. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  387. /* Extended ID format */
  388. frame->can_id = CAN_EFF_FLAG;
  389. frame->can_id |=
  390. /* Extended ID part */
  391. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  392. SET_BYTE(buf[RXBEID8_OFF], 1) |
  393. SET_BYTE(buf[RXBEID0_OFF], 0) |
  394. /* Standard ID part */
  395. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  396. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  397. /* Remote transmission request */
  398. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  399. frame->can_id |= CAN_RTR_FLAG;
  400. } else {
  401. /* Standard ID format */
  402. frame->can_id =
  403. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  404. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  405. }
  406. /* Data length */
  407. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  408. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  409. priv->net->stats.rx_packets++;
  410. priv->net->stats.rx_bytes += frame->can_dlc;
  411. netif_rx(skb);
  412. }
  413. static void mcp251x_hw_sleep(struct spi_device *spi)
  414. {
  415. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  416. }
  417. static void mcp251x_hw_wakeup(struct spi_device *spi)
  418. {
  419. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  420. priv->wake = 1;
  421. /* Can only wake up by generating a wake-up interrupt. */
  422. mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
  423. mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
  424. /* Wait until the device is awake */
  425. if (!wait_for_completion_timeout(&priv->awake, HZ))
  426. dev_err(&spi->dev, "MCP251x didn't wake-up\n");
  427. }
  428. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  429. struct net_device *net)
  430. {
  431. struct mcp251x_priv *priv = netdev_priv(net);
  432. struct spi_device *spi = priv->spi;
  433. if (priv->tx_skb || priv->tx_len) {
  434. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  435. netif_stop_queue(net);
  436. return NETDEV_TX_BUSY;
  437. }
  438. if (skb->len != sizeof(struct can_frame)) {
  439. dev_err(&spi->dev, "dropping packet - bad length\n");
  440. dev_kfree_skb(skb);
  441. net->stats.tx_dropped++;
  442. return NETDEV_TX_OK;
  443. }
  444. netif_stop_queue(net);
  445. priv->tx_skb = skb;
  446. net->trans_start = jiffies;
  447. queue_work(priv->wq, &priv->tx_work);
  448. return NETDEV_TX_OK;
  449. }
  450. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  451. {
  452. struct mcp251x_priv *priv = netdev_priv(net);
  453. switch (mode) {
  454. case CAN_MODE_START:
  455. /* We have to delay work since SPI I/O may sleep */
  456. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  457. priv->restart_tx = 1;
  458. if (priv->can.restart_ms == 0)
  459. priv->after_suspend = AFTER_SUSPEND_RESTART;
  460. queue_work(priv->wq, &priv->irq_work);
  461. break;
  462. default:
  463. return -EOPNOTSUPP;
  464. }
  465. return 0;
  466. }
  467. static void mcp251x_set_normal_mode(struct spi_device *spi)
  468. {
  469. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  470. unsigned long timeout;
  471. /* Enable interrupts */
  472. mcp251x_write_reg(spi, CANINTE,
  473. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  474. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
  475. CANINTF_MERRF);
  476. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  477. /* Put device into loopback mode */
  478. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  479. } else {
  480. /* Put device into normal mode */
  481. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  482. /* Wait for the device to enter normal mode */
  483. timeout = jiffies + HZ;
  484. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  485. schedule();
  486. if (time_after(jiffies, timeout)) {
  487. dev_err(&spi->dev, "MCP251x didn't"
  488. " enter in normal mode\n");
  489. return;
  490. }
  491. }
  492. }
  493. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  494. }
  495. static int mcp251x_do_set_bittiming(struct net_device *net)
  496. {
  497. struct mcp251x_priv *priv = netdev_priv(net);
  498. struct can_bittiming *bt = &priv->can.bittiming;
  499. struct spi_device *spi = priv->spi;
  500. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  501. (bt->brp - 1));
  502. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  503. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  504. CNF2_SAM : 0) |
  505. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  506. (bt->prop_seg - 1));
  507. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  508. (bt->phase_seg2 - 1));
  509. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  510. mcp251x_read_reg(spi, CNF1),
  511. mcp251x_read_reg(spi, CNF2),
  512. mcp251x_read_reg(spi, CNF3));
  513. return 0;
  514. }
  515. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  516. struct spi_device *spi)
  517. {
  518. mcp251x_do_set_bittiming(net);
  519. /* Enable RX0->RX1 buffer roll over and disable filters */
  520. mcp251x_write_bits(spi, RXBCTRL(0),
  521. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
  522. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  523. mcp251x_write_bits(spi, RXBCTRL(1),
  524. RXBCTRL_RXM0 | RXBCTRL_RXM1,
  525. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  526. return 0;
  527. }
  528. static void mcp251x_hw_reset(struct spi_device *spi)
  529. {
  530. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  531. int ret;
  532. mutex_lock(&priv->spi_lock);
  533. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  534. ret = spi_write(spi, priv->spi_tx_buf, 1);
  535. mutex_unlock(&priv->spi_lock);
  536. if (ret)
  537. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  538. /* Wait for reset to finish */
  539. mdelay(10);
  540. }
  541. static int mcp251x_hw_probe(struct spi_device *spi)
  542. {
  543. int st1, st2;
  544. mcp251x_hw_reset(spi);
  545. /*
  546. * Please note that these are "magic values" based on after
  547. * reset defaults taken from data sheet which allows us to see
  548. * if we really have a chip on the bus (we avoid common all
  549. * zeroes or all ones situations)
  550. */
  551. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  552. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  553. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  554. /* Check for power up default values */
  555. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  556. }
  557. static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
  558. {
  559. struct net_device *net = (struct net_device *)dev_id;
  560. struct mcp251x_priv *priv = netdev_priv(net);
  561. /* Schedule bottom half */
  562. if (!work_pending(&priv->irq_work))
  563. queue_work(priv->wq, &priv->irq_work);
  564. return IRQ_HANDLED;
  565. }
  566. static int mcp251x_open(struct net_device *net)
  567. {
  568. struct mcp251x_priv *priv = netdev_priv(net);
  569. struct spi_device *spi = priv->spi;
  570. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  571. int ret;
  572. ret = open_candev(net);
  573. if (ret) {
  574. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  575. return ret;
  576. }
  577. if (pdata->transceiver_enable)
  578. pdata->transceiver_enable(1);
  579. priv->force_quit = 0;
  580. priv->tx_skb = NULL;
  581. priv->tx_len = 0;
  582. ret = request_irq(spi->irq, mcp251x_can_isr,
  583. IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
  584. if (ret) {
  585. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  586. if (pdata->transceiver_enable)
  587. pdata->transceiver_enable(0);
  588. close_candev(net);
  589. return ret;
  590. }
  591. mcp251x_hw_wakeup(spi);
  592. mcp251x_hw_reset(spi);
  593. ret = mcp251x_setup(net, priv, spi);
  594. if (ret) {
  595. free_irq(spi->irq, net);
  596. mcp251x_hw_sleep(spi);
  597. if (pdata->transceiver_enable)
  598. pdata->transceiver_enable(0);
  599. close_candev(net);
  600. return ret;
  601. }
  602. mcp251x_set_normal_mode(spi);
  603. netif_wake_queue(net);
  604. return 0;
  605. }
  606. static int mcp251x_stop(struct net_device *net)
  607. {
  608. struct mcp251x_priv *priv = netdev_priv(net);
  609. struct spi_device *spi = priv->spi;
  610. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  611. close_candev(net);
  612. /* Disable and clear pending interrupts */
  613. mcp251x_write_reg(spi, CANINTE, 0x00);
  614. mcp251x_write_reg(spi, CANINTF, 0x00);
  615. priv->force_quit = 1;
  616. free_irq(spi->irq, net);
  617. flush_workqueue(priv->wq);
  618. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  619. if (priv->tx_skb || priv->tx_len)
  620. mcp251x_clean(net);
  621. mcp251x_hw_sleep(spi);
  622. if (pdata->transceiver_enable)
  623. pdata->transceiver_enable(0);
  624. priv->can.state = CAN_STATE_STOPPED;
  625. return 0;
  626. }
  627. static void mcp251x_tx_work_handler(struct work_struct *ws)
  628. {
  629. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  630. tx_work);
  631. struct spi_device *spi = priv->spi;
  632. struct net_device *net = priv->net;
  633. struct can_frame *frame;
  634. if (priv->tx_skb) {
  635. frame = (struct can_frame *)priv->tx_skb->data;
  636. if (priv->can.state == CAN_STATE_BUS_OFF) {
  637. mcp251x_clean(net);
  638. netif_wake_queue(net);
  639. return;
  640. }
  641. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  642. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  643. mcp251x_hw_tx(spi, frame, 0);
  644. priv->tx_len = 1 + frame->can_dlc;
  645. can_put_echo_skb(priv->tx_skb, net, 0);
  646. priv->tx_skb = NULL;
  647. }
  648. }
  649. static void mcp251x_irq_work_handler(struct work_struct *ws)
  650. {
  651. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  652. irq_work);
  653. struct spi_device *spi = priv->spi;
  654. struct net_device *net = priv->net;
  655. u8 txbnctrl;
  656. u8 intf;
  657. enum can_state new_state;
  658. if (priv->after_suspend) {
  659. mdelay(10);
  660. mcp251x_hw_reset(spi);
  661. mcp251x_setup(net, priv, spi);
  662. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  663. mcp251x_set_normal_mode(spi);
  664. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  665. netif_device_attach(net);
  666. /* Clean since we lost tx buffer */
  667. if (priv->tx_skb || priv->tx_len) {
  668. mcp251x_clean(net);
  669. netif_wake_queue(net);
  670. }
  671. mcp251x_set_normal_mode(spi);
  672. } else {
  673. mcp251x_hw_sleep(spi);
  674. }
  675. priv->after_suspend = 0;
  676. }
  677. if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
  678. return;
  679. while (!priv->force_quit && !freezing(current)) {
  680. u8 eflag = mcp251x_read_reg(spi, EFLG);
  681. int can_id = 0, data1 = 0;
  682. mcp251x_write_reg(spi, EFLG, 0x00);
  683. if (priv->restart_tx) {
  684. priv->restart_tx = 0;
  685. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  686. if (priv->tx_skb || priv->tx_len)
  687. mcp251x_clean(net);
  688. netif_wake_queue(net);
  689. can_id |= CAN_ERR_RESTARTED;
  690. }
  691. if (priv->wake) {
  692. /* Wait whilst the device wakes up */
  693. mdelay(10);
  694. priv->wake = 0;
  695. }
  696. intf = mcp251x_read_reg(spi, CANINTF);
  697. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  698. /* Update can state */
  699. if (eflag & EFLG_TXBO) {
  700. new_state = CAN_STATE_BUS_OFF;
  701. can_id |= CAN_ERR_BUSOFF;
  702. } else if (eflag & EFLG_TXEP) {
  703. new_state = CAN_STATE_ERROR_PASSIVE;
  704. can_id |= CAN_ERR_CRTL;
  705. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  706. } else if (eflag & EFLG_RXEP) {
  707. new_state = CAN_STATE_ERROR_PASSIVE;
  708. can_id |= CAN_ERR_CRTL;
  709. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  710. } else if (eflag & EFLG_TXWAR) {
  711. new_state = CAN_STATE_ERROR_WARNING;
  712. can_id |= CAN_ERR_CRTL;
  713. data1 |= CAN_ERR_CRTL_TX_WARNING;
  714. } else if (eflag & EFLG_RXWAR) {
  715. new_state = CAN_STATE_ERROR_WARNING;
  716. can_id |= CAN_ERR_CRTL;
  717. data1 |= CAN_ERR_CRTL_RX_WARNING;
  718. } else {
  719. new_state = CAN_STATE_ERROR_ACTIVE;
  720. }
  721. /* Update can state statistics */
  722. switch (priv->can.state) {
  723. case CAN_STATE_ERROR_ACTIVE:
  724. if (new_state >= CAN_STATE_ERROR_WARNING &&
  725. new_state <= CAN_STATE_BUS_OFF)
  726. priv->can.can_stats.error_warning++;
  727. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  728. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  729. new_state <= CAN_STATE_BUS_OFF)
  730. priv->can.can_stats.error_passive++;
  731. break;
  732. default:
  733. break;
  734. }
  735. priv->can.state = new_state;
  736. if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
  737. struct sk_buff *skb;
  738. struct can_frame *frame;
  739. /* Create error frame */
  740. skb = alloc_can_err_skb(net, &frame);
  741. if (skb) {
  742. /* Set error frame flags based on bus state */
  743. frame->can_id = can_id;
  744. frame->data[1] = data1;
  745. /* Update net stats for overflows */
  746. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  747. if (eflag & EFLG_RX0OVR)
  748. net->stats.rx_over_errors++;
  749. if (eflag & EFLG_RX1OVR)
  750. net->stats.rx_over_errors++;
  751. frame->can_id |= CAN_ERR_CRTL;
  752. frame->data[1] |=
  753. CAN_ERR_CRTL_RX_OVERFLOW;
  754. }
  755. netif_rx(skb);
  756. } else {
  757. dev_info(&spi->dev,
  758. "cannot allocate error skb\n");
  759. }
  760. }
  761. if (priv->can.state == CAN_STATE_BUS_OFF) {
  762. if (priv->can.restart_ms == 0) {
  763. can_bus_off(net);
  764. mcp251x_hw_sleep(spi);
  765. return;
  766. }
  767. }
  768. if (intf == 0)
  769. break;
  770. if (intf & CANINTF_WAKIF)
  771. complete(&priv->awake);
  772. if (intf & CANINTF_MERRF) {
  773. /* If there are pending Tx buffers, restart queue */
  774. txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
  775. if (!(txbnctrl & TXBCTRL_TXREQ)) {
  776. if (priv->tx_skb || priv->tx_len)
  777. mcp251x_clean(net);
  778. netif_wake_queue(net);
  779. }
  780. }
  781. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  782. net->stats.tx_packets++;
  783. net->stats.tx_bytes += priv->tx_len - 1;
  784. if (priv->tx_len) {
  785. can_get_echo_skb(net, 0);
  786. priv->tx_len = 0;
  787. }
  788. netif_wake_queue(net);
  789. }
  790. if (intf & CANINTF_RX0IF)
  791. mcp251x_hw_rx(spi, 0);
  792. if (intf & CANINTF_RX1IF)
  793. mcp251x_hw_rx(spi, 1);
  794. }
  795. }
  796. static const struct net_device_ops mcp251x_netdev_ops = {
  797. .ndo_open = mcp251x_open,
  798. .ndo_stop = mcp251x_stop,
  799. .ndo_start_xmit = mcp251x_hard_start_xmit,
  800. };
  801. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  802. {
  803. struct net_device *net;
  804. struct mcp251x_priv *priv;
  805. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  806. int ret = -ENODEV;
  807. if (!pdata)
  808. /* Platform data is required for osc freq */
  809. goto error_out;
  810. /* Allocate can/net device */
  811. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  812. if (!net) {
  813. ret = -ENOMEM;
  814. goto error_alloc;
  815. }
  816. net->netdev_ops = &mcp251x_netdev_ops;
  817. net->flags |= IFF_ECHO;
  818. priv = netdev_priv(net);
  819. priv->can.bittiming_const = &mcp251x_bittiming_const;
  820. priv->can.do_set_mode = mcp251x_do_set_mode;
  821. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  822. priv->net = net;
  823. dev_set_drvdata(&spi->dev, priv);
  824. priv->spi = spi;
  825. mutex_init(&priv->spi_lock);
  826. /* If requested, allocate DMA buffers */
  827. if (mcp251x_enable_dma) {
  828. spi->dev.coherent_dma_mask = ~0;
  829. /*
  830. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  831. * that much and share it between Tx and Rx DMA buffers.
  832. */
  833. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  834. PAGE_SIZE,
  835. &priv->spi_tx_dma,
  836. GFP_DMA);
  837. if (priv->spi_tx_buf) {
  838. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  839. (PAGE_SIZE / 2));
  840. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  841. (PAGE_SIZE / 2));
  842. } else {
  843. /* Fall back to non-DMA */
  844. mcp251x_enable_dma = 0;
  845. }
  846. }
  847. /* Allocate non-DMA buffers */
  848. if (!mcp251x_enable_dma) {
  849. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  850. if (!priv->spi_tx_buf) {
  851. ret = -ENOMEM;
  852. goto error_tx_buf;
  853. }
  854. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  855. if (!priv->spi_rx_buf) {
  856. ret = -ENOMEM;
  857. goto error_rx_buf;
  858. }
  859. }
  860. if (pdata->power_enable)
  861. pdata->power_enable(1);
  862. /* Call out to platform specific setup */
  863. if (pdata->board_specific_setup)
  864. pdata->board_specific_setup(spi);
  865. SET_NETDEV_DEV(net, &spi->dev);
  866. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  867. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  868. INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
  869. init_completion(&priv->awake);
  870. /* Configure the SPI bus */
  871. spi->mode = SPI_MODE_0;
  872. spi->bits_per_word = 8;
  873. spi_setup(spi);
  874. if (!mcp251x_hw_probe(spi)) {
  875. dev_info(&spi->dev, "Probe failed\n");
  876. goto error_probe;
  877. }
  878. mcp251x_hw_sleep(spi);
  879. if (pdata->transceiver_enable)
  880. pdata->transceiver_enable(0);
  881. ret = register_candev(net);
  882. if (!ret) {
  883. dev_info(&spi->dev, "probed\n");
  884. return ret;
  885. }
  886. error_probe:
  887. if (!mcp251x_enable_dma)
  888. kfree(priv->spi_rx_buf);
  889. error_rx_buf:
  890. if (!mcp251x_enable_dma)
  891. kfree(priv->spi_tx_buf);
  892. error_tx_buf:
  893. free_candev(net);
  894. if (mcp251x_enable_dma)
  895. dma_free_coherent(&spi->dev, PAGE_SIZE,
  896. priv->spi_tx_buf, priv->spi_tx_dma);
  897. error_alloc:
  898. if (pdata->power_enable)
  899. pdata->power_enable(0);
  900. dev_err(&spi->dev, "probe failed\n");
  901. error_out:
  902. return ret;
  903. }
  904. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  905. {
  906. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  907. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  908. struct net_device *net = priv->net;
  909. unregister_candev(net);
  910. free_candev(net);
  911. priv->force_quit = 1;
  912. flush_workqueue(priv->wq);
  913. destroy_workqueue(priv->wq);
  914. if (mcp251x_enable_dma) {
  915. dma_free_coherent(&spi->dev, PAGE_SIZE,
  916. priv->spi_tx_buf, priv->spi_tx_dma);
  917. } else {
  918. kfree(priv->spi_tx_buf);
  919. kfree(priv->spi_rx_buf);
  920. }
  921. if (pdata->power_enable)
  922. pdata->power_enable(0);
  923. return 0;
  924. }
  925. #ifdef CONFIG_PM
  926. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  927. {
  928. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  929. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  930. struct net_device *net = priv->net;
  931. if (netif_running(net)) {
  932. netif_device_detach(net);
  933. mcp251x_hw_sleep(spi);
  934. if (pdata->transceiver_enable)
  935. pdata->transceiver_enable(0);
  936. priv->after_suspend = AFTER_SUSPEND_UP;
  937. } else {
  938. priv->after_suspend = AFTER_SUSPEND_DOWN;
  939. }
  940. if (pdata->power_enable) {
  941. pdata->power_enable(0);
  942. priv->after_suspend |= AFTER_SUSPEND_POWER;
  943. }
  944. return 0;
  945. }
  946. static int mcp251x_can_resume(struct spi_device *spi)
  947. {
  948. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  949. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  950. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  951. pdata->power_enable(1);
  952. queue_work(priv->wq, &priv->irq_work);
  953. } else {
  954. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  955. if (pdata->transceiver_enable)
  956. pdata->transceiver_enable(1);
  957. queue_work(priv->wq, &priv->irq_work);
  958. } else {
  959. priv->after_suspend = 0;
  960. }
  961. }
  962. return 0;
  963. }
  964. #else
  965. #define mcp251x_can_suspend NULL
  966. #define mcp251x_can_resume NULL
  967. #endif
  968. static struct spi_driver mcp251x_can_driver = {
  969. .driver = {
  970. .name = DEVICE_NAME,
  971. .bus = &spi_bus_type,
  972. .owner = THIS_MODULE,
  973. },
  974. .probe = mcp251x_can_probe,
  975. .remove = __devexit_p(mcp251x_can_remove),
  976. .suspend = mcp251x_can_suspend,
  977. .resume = mcp251x_can_resume,
  978. };
  979. static int __init mcp251x_can_init(void)
  980. {
  981. return spi_register_driver(&mcp251x_can_driver);
  982. }
  983. static void __exit mcp251x_can_exit(void)
  984. {
  985. spi_unregister_driver(&mcp251x_can_driver);
  986. }
  987. module_init(mcp251x_can_init);
  988. module_exit(mcp251x_can_exit);
  989. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  990. "Christian Pellegrin <chripell@evolware.org>");
  991. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  992. MODULE_LICENSE("GPL v2");