bnx2.c 205 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.3"
  58. #define DRV_MODULE_RELDATE "Dec 03, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp)
  561. {
  562. bnx2_cnic_stop(bp);
  563. if (netif_running(bp->dev)) {
  564. int i;
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. /* prevent tx timeout */
  568. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  569. struct netdev_queue *txq;
  570. txq = netdev_get_tx_queue(bp->dev, i);
  571. txq->trans_start = jiffies;
  572. }
  573. }
  574. bnx2_disable_int_sync(bp);
  575. }
  576. static void
  577. bnx2_netif_start(struct bnx2 *bp)
  578. {
  579. if (atomic_dec_and_test(&bp->intr_sem)) {
  580. if (netif_running(bp->dev)) {
  581. netif_tx_wake_all_queues(bp->dev);
  582. bnx2_napi_enable(bp);
  583. bnx2_enable_int(bp);
  584. bnx2_cnic_start(bp);
  585. }
  586. }
  587. }
  588. static void
  589. bnx2_free_tx_mem(struct bnx2 *bp)
  590. {
  591. int i;
  592. for (i = 0; i < bp->num_tx_rings; i++) {
  593. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  594. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  595. if (txr->tx_desc_ring) {
  596. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  597. txr->tx_desc_ring,
  598. txr->tx_desc_mapping);
  599. txr->tx_desc_ring = NULL;
  600. }
  601. kfree(txr->tx_buf_ring);
  602. txr->tx_buf_ring = NULL;
  603. }
  604. }
  605. static void
  606. bnx2_free_rx_mem(struct bnx2 *bp)
  607. {
  608. int i;
  609. for (i = 0; i < bp->num_rx_rings; i++) {
  610. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  611. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  612. int j;
  613. for (j = 0; j < bp->rx_max_ring; j++) {
  614. if (rxr->rx_desc_ring[j])
  615. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  616. rxr->rx_desc_ring[j],
  617. rxr->rx_desc_mapping[j]);
  618. rxr->rx_desc_ring[j] = NULL;
  619. }
  620. vfree(rxr->rx_buf_ring);
  621. rxr->rx_buf_ring = NULL;
  622. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  623. if (rxr->rx_pg_desc_ring[j])
  624. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  625. rxr->rx_pg_desc_ring[j],
  626. rxr->rx_pg_desc_mapping[j]);
  627. rxr->rx_pg_desc_ring[j] = NULL;
  628. }
  629. vfree(rxr->rx_pg_ring);
  630. rxr->rx_pg_ring = NULL;
  631. }
  632. }
  633. static int
  634. bnx2_alloc_tx_mem(struct bnx2 *bp)
  635. {
  636. int i;
  637. for (i = 0; i < bp->num_tx_rings; i++) {
  638. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  639. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  640. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  641. if (txr->tx_buf_ring == NULL)
  642. return -ENOMEM;
  643. txr->tx_desc_ring =
  644. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  645. &txr->tx_desc_mapping);
  646. if (txr->tx_desc_ring == NULL)
  647. return -ENOMEM;
  648. }
  649. return 0;
  650. }
  651. static int
  652. bnx2_alloc_rx_mem(struct bnx2 *bp)
  653. {
  654. int i;
  655. for (i = 0; i < bp->num_rx_rings; i++) {
  656. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  657. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  658. int j;
  659. rxr->rx_buf_ring =
  660. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  661. if (rxr->rx_buf_ring == NULL)
  662. return -ENOMEM;
  663. memset(rxr->rx_buf_ring, 0,
  664. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  665. for (j = 0; j < bp->rx_max_ring; j++) {
  666. rxr->rx_desc_ring[j] =
  667. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  668. &rxr->rx_desc_mapping[j]);
  669. if (rxr->rx_desc_ring[j] == NULL)
  670. return -ENOMEM;
  671. }
  672. if (bp->rx_pg_ring_size) {
  673. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  674. bp->rx_max_pg_ring);
  675. if (rxr->rx_pg_ring == NULL)
  676. return -ENOMEM;
  677. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  678. bp->rx_max_pg_ring);
  679. }
  680. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  681. rxr->rx_pg_desc_ring[j] =
  682. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  683. &rxr->rx_pg_desc_mapping[j]);
  684. if (rxr->rx_pg_desc_ring[j] == NULL)
  685. return -ENOMEM;
  686. }
  687. }
  688. return 0;
  689. }
  690. static void
  691. bnx2_free_mem(struct bnx2 *bp)
  692. {
  693. int i;
  694. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  695. bnx2_free_tx_mem(bp);
  696. bnx2_free_rx_mem(bp);
  697. for (i = 0; i < bp->ctx_pages; i++) {
  698. if (bp->ctx_blk[i]) {
  699. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  700. bp->ctx_blk[i],
  701. bp->ctx_blk_mapping[i]);
  702. bp->ctx_blk[i] = NULL;
  703. }
  704. }
  705. if (bnapi->status_blk.msi) {
  706. pci_free_consistent(bp->pdev, bp->status_stats_size,
  707. bnapi->status_blk.msi,
  708. bp->status_blk_mapping);
  709. bnapi->status_blk.msi = NULL;
  710. bp->stats_blk = NULL;
  711. }
  712. }
  713. static int
  714. bnx2_alloc_mem(struct bnx2 *bp)
  715. {
  716. int i, status_blk_size, err;
  717. struct bnx2_napi *bnapi;
  718. void *status_blk;
  719. /* Combine status and statistics blocks into one allocation. */
  720. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  721. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  722. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  723. BNX2_SBLK_MSIX_ALIGN_SIZE);
  724. bp->status_stats_size = status_blk_size +
  725. sizeof(struct statistics_block);
  726. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  727. &bp->status_blk_mapping);
  728. if (status_blk == NULL)
  729. goto alloc_mem_err;
  730. memset(status_blk, 0, bp->status_stats_size);
  731. bnapi = &bp->bnx2_napi[0];
  732. bnapi->status_blk.msi = status_blk;
  733. bnapi->hw_tx_cons_ptr =
  734. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  735. bnapi->hw_rx_cons_ptr =
  736. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  737. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  738. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  739. struct status_block_msix *sblk;
  740. bnapi = &bp->bnx2_napi[i];
  741. sblk = (void *) (status_blk +
  742. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  743. bnapi->status_blk.msix = sblk;
  744. bnapi->hw_tx_cons_ptr =
  745. &sblk->status_tx_quick_consumer_index;
  746. bnapi->hw_rx_cons_ptr =
  747. &sblk->status_rx_quick_consumer_index;
  748. bnapi->int_num = i << 24;
  749. }
  750. }
  751. bp->stats_blk = status_blk + status_blk_size;
  752. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  753. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  754. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  755. if (bp->ctx_pages == 0)
  756. bp->ctx_pages = 1;
  757. for (i = 0; i < bp->ctx_pages; i++) {
  758. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  759. BCM_PAGE_SIZE,
  760. &bp->ctx_blk_mapping[i]);
  761. if (bp->ctx_blk[i] == NULL)
  762. goto alloc_mem_err;
  763. }
  764. }
  765. err = bnx2_alloc_rx_mem(bp);
  766. if (err)
  767. goto alloc_mem_err;
  768. err = bnx2_alloc_tx_mem(bp);
  769. if (err)
  770. goto alloc_mem_err;
  771. return 0;
  772. alloc_mem_err:
  773. bnx2_free_mem(bp);
  774. return -ENOMEM;
  775. }
  776. static void
  777. bnx2_report_fw_link(struct bnx2 *bp)
  778. {
  779. u32 fw_link_status = 0;
  780. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  781. return;
  782. if (bp->link_up) {
  783. u32 bmsr;
  784. switch (bp->line_speed) {
  785. case SPEED_10:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_10HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_10FULL;
  790. break;
  791. case SPEED_100:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_100HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_100FULL;
  796. break;
  797. case SPEED_1000:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  802. break;
  803. case SPEED_2500:
  804. if (bp->duplex == DUPLEX_HALF)
  805. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  806. else
  807. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  808. break;
  809. }
  810. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  811. if (bp->autoneg) {
  812. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  815. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  816. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  817. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  818. else
  819. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  820. }
  821. }
  822. else
  823. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  824. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  825. }
  826. static char *
  827. bnx2_xceiver_str(struct bnx2 *bp)
  828. {
  829. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  830. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  831. "Copper"));
  832. }
  833. static void
  834. bnx2_report_link(struct bnx2 *bp)
  835. {
  836. if (bp->link_up) {
  837. netif_carrier_on(bp->dev);
  838. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  839. bnx2_xceiver_str(bp));
  840. printk("%d Mbps ", bp->line_speed);
  841. if (bp->duplex == DUPLEX_FULL)
  842. printk("full duplex");
  843. else
  844. printk("half duplex");
  845. if (bp->flow_ctrl) {
  846. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  847. printk(", receive ");
  848. if (bp->flow_ctrl & FLOW_CTRL_TX)
  849. printk("& transmit ");
  850. }
  851. else {
  852. printk(", transmit ");
  853. }
  854. printk("flow control ON");
  855. }
  856. printk("\n");
  857. }
  858. else {
  859. netif_carrier_off(bp->dev);
  860. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  861. bnx2_xceiver_str(bp));
  862. }
  863. bnx2_report_fw_link(bp);
  864. }
  865. static void
  866. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  867. {
  868. u32 local_adv, remote_adv;
  869. bp->flow_ctrl = 0;
  870. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  871. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  872. if (bp->duplex == DUPLEX_FULL) {
  873. bp->flow_ctrl = bp->req_flow_ctrl;
  874. }
  875. return;
  876. }
  877. if (bp->duplex != DUPLEX_FULL) {
  878. return;
  879. }
  880. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  881. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  882. u32 val;
  883. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  884. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  885. bp->flow_ctrl |= FLOW_CTRL_TX;
  886. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  887. bp->flow_ctrl |= FLOW_CTRL_RX;
  888. return;
  889. }
  890. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  891. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  892. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  893. u32 new_local_adv = 0;
  894. u32 new_remote_adv = 0;
  895. if (local_adv & ADVERTISE_1000XPAUSE)
  896. new_local_adv |= ADVERTISE_PAUSE_CAP;
  897. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  898. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  899. if (remote_adv & ADVERTISE_1000XPAUSE)
  900. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  901. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  902. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  903. local_adv = new_local_adv;
  904. remote_adv = new_remote_adv;
  905. }
  906. /* See Table 28B-3 of 802.3ab-1999 spec. */
  907. if (local_adv & ADVERTISE_PAUSE_CAP) {
  908. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  909. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  910. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  911. }
  912. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  913. bp->flow_ctrl = FLOW_CTRL_RX;
  914. }
  915. }
  916. else {
  917. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  918. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  919. }
  920. }
  921. }
  922. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  923. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  924. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  925. bp->flow_ctrl = FLOW_CTRL_TX;
  926. }
  927. }
  928. }
  929. static int
  930. bnx2_5709s_linkup(struct bnx2 *bp)
  931. {
  932. u32 val, speed;
  933. bp->link_up = 1;
  934. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  935. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  936. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  937. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  938. bp->line_speed = bp->req_line_speed;
  939. bp->duplex = bp->req_duplex;
  940. return 0;
  941. }
  942. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  943. switch (speed) {
  944. case MII_BNX2_GP_TOP_AN_SPEED_10:
  945. bp->line_speed = SPEED_10;
  946. break;
  947. case MII_BNX2_GP_TOP_AN_SPEED_100:
  948. bp->line_speed = SPEED_100;
  949. break;
  950. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  951. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  952. bp->line_speed = SPEED_1000;
  953. break;
  954. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  955. bp->line_speed = SPEED_2500;
  956. break;
  957. }
  958. if (val & MII_BNX2_GP_TOP_AN_FD)
  959. bp->duplex = DUPLEX_FULL;
  960. else
  961. bp->duplex = DUPLEX_HALF;
  962. return 0;
  963. }
  964. static int
  965. bnx2_5708s_linkup(struct bnx2 *bp)
  966. {
  967. u32 val;
  968. bp->link_up = 1;
  969. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  970. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  971. case BCM5708S_1000X_STAT1_SPEED_10:
  972. bp->line_speed = SPEED_10;
  973. break;
  974. case BCM5708S_1000X_STAT1_SPEED_100:
  975. bp->line_speed = SPEED_100;
  976. break;
  977. case BCM5708S_1000X_STAT1_SPEED_1G:
  978. bp->line_speed = SPEED_1000;
  979. break;
  980. case BCM5708S_1000X_STAT1_SPEED_2G5:
  981. bp->line_speed = SPEED_2500;
  982. break;
  983. }
  984. if (val & BCM5708S_1000X_STAT1_FD)
  985. bp->duplex = DUPLEX_FULL;
  986. else
  987. bp->duplex = DUPLEX_HALF;
  988. return 0;
  989. }
  990. static int
  991. bnx2_5706s_linkup(struct bnx2 *bp)
  992. {
  993. u32 bmcr, local_adv, remote_adv, common;
  994. bp->link_up = 1;
  995. bp->line_speed = SPEED_1000;
  996. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  997. if (bmcr & BMCR_FULLDPLX) {
  998. bp->duplex = DUPLEX_FULL;
  999. }
  1000. else {
  1001. bp->duplex = DUPLEX_HALF;
  1002. }
  1003. if (!(bmcr & BMCR_ANENABLE)) {
  1004. return 0;
  1005. }
  1006. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1007. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1008. common = local_adv & remote_adv;
  1009. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1010. if (common & ADVERTISE_1000XFULL) {
  1011. bp->duplex = DUPLEX_FULL;
  1012. }
  1013. else {
  1014. bp->duplex = DUPLEX_HALF;
  1015. }
  1016. }
  1017. return 0;
  1018. }
  1019. static int
  1020. bnx2_copper_linkup(struct bnx2 *bp)
  1021. {
  1022. u32 bmcr;
  1023. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1024. if (bmcr & BMCR_ANENABLE) {
  1025. u32 local_adv, remote_adv, common;
  1026. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1027. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1028. common = local_adv & (remote_adv >> 2);
  1029. if (common & ADVERTISE_1000FULL) {
  1030. bp->line_speed = SPEED_1000;
  1031. bp->duplex = DUPLEX_FULL;
  1032. }
  1033. else if (common & ADVERTISE_1000HALF) {
  1034. bp->line_speed = SPEED_1000;
  1035. bp->duplex = DUPLEX_HALF;
  1036. }
  1037. else {
  1038. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1039. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1040. common = local_adv & remote_adv;
  1041. if (common & ADVERTISE_100FULL) {
  1042. bp->line_speed = SPEED_100;
  1043. bp->duplex = DUPLEX_FULL;
  1044. }
  1045. else if (common & ADVERTISE_100HALF) {
  1046. bp->line_speed = SPEED_100;
  1047. bp->duplex = DUPLEX_HALF;
  1048. }
  1049. else if (common & ADVERTISE_10FULL) {
  1050. bp->line_speed = SPEED_10;
  1051. bp->duplex = DUPLEX_FULL;
  1052. }
  1053. else if (common & ADVERTISE_10HALF) {
  1054. bp->line_speed = SPEED_10;
  1055. bp->duplex = DUPLEX_HALF;
  1056. }
  1057. else {
  1058. bp->line_speed = 0;
  1059. bp->link_up = 0;
  1060. }
  1061. }
  1062. }
  1063. else {
  1064. if (bmcr & BMCR_SPEED100) {
  1065. bp->line_speed = SPEED_100;
  1066. }
  1067. else {
  1068. bp->line_speed = SPEED_10;
  1069. }
  1070. if (bmcr & BMCR_FULLDPLX) {
  1071. bp->duplex = DUPLEX_FULL;
  1072. }
  1073. else {
  1074. bp->duplex = DUPLEX_HALF;
  1075. }
  1076. }
  1077. return 0;
  1078. }
  1079. static void
  1080. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1081. {
  1082. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1083. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1084. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1085. val |= 0x02 << 8;
  1086. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1087. u32 lo_water, hi_water;
  1088. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1089. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1090. else
  1091. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1092. if (lo_water >= bp->rx_ring_size)
  1093. lo_water = 0;
  1094. hi_water = bp->rx_ring_size / 4;
  1095. if (hi_water <= lo_water)
  1096. lo_water = 0;
  1097. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1098. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1099. if (hi_water > 0xf)
  1100. hi_water = 0xf;
  1101. else if (hi_water == 0)
  1102. lo_water = 0;
  1103. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1104. }
  1105. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1106. }
  1107. static void
  1108. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1109. {
  1110. int i;
  1111. u32 cid;
  1112. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1113. if (i == 1)
  1114. cid = RX_RSS_CID;
  1115. bnx2_init_rx_context(bp, cid);
  1116. }
  1117. }
  1118. static void
  1119. bnx2_set_mac_link(struct bnx2 *bp)
  1120. {
  1121. u32 val;
  1122. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1123. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1124. (bp->duplex == DUPLEX_HALF)) {
  1125. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1126. }
  1127. /* Configure the EMAC mode register. */
  1128. val = REG_RD(bp, BNX2_EMAC_MODE);
  1129. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1130. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1131. BNX2_EMAC_MODE_25G_MODE);
  1132. if (bp->link_up) {
  1133. switch (bp->line_speed) {
  1134. case SPEED_10:
  1135. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1136. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1137. break;
  1138. }
  1139. /* fall through */
  1140. case SPEED_100:
  1141. val |= BNX2_EMAC_MODE_PORT_MII;
  1142. break;
  1143. case SPEED_2500:
  1144. val |= BNX2_EMAC_MODE_25G_MODE;
  1145. /* fall through */
  1146. case SPEED_1000:
  1147. val |= BNX2_EMAC_MODE_PORT_GMII;
  1148. break;
  1149. }
  1150. }
  1151. else {
  1152. val |= BNX2_EMAC_MODE_PORT_GMII;
  1153. }
  1154. /* Set the MAC to operate in the appropriate duplex mode. */
  1155. if (bp->duplex == DUPLEX_HALF)
  1156. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1157. REG_WR(bp, BNX2_EMAC_MODE, val);
  1158. /* Enable/disable rx PAUSE. */
  1159. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1160. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1161. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1162. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1163. /* Enable/disable tx PAUSE. */
  1164. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1165. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1166. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1167. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1168. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1169. /* Acknowledge the interrupt. */
  1170. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1171. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1172. bnx2_init_all_rx_contexts(bp);
  1173. }
  1174. static void
  1175. bnx2_enable_bmsr1(struct bnx2 *bp)
  1176. {
  1177. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1178. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1179. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1180. MII_BNX2_BLK_ADDR_GP_STATUS);
  1181. }
  1182. static void
  1183. bnx2_disable_bmsr1(struct bnx2 *bp)
  1184. {
  1185. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1186. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1187. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1188. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1189. }
  1190. static int
  1191. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1192. {
  1193. u32 up1;
  1194. int ret = 1;
  1195. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1196. return 0;
  1197. if (bp->autoneg & AUTONEG_SPEED)
  1198. bp->advertising |= ADVERTISED_2500baseX_Full;
  1199. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1200. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1201. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1202. if (!(up1 & BCM5708S_UP1_2G5)) {
  1203. up1 |= BCM5708S_UP1_2G5;
  1204. bnx2_write_phy(bp, bp->mii_up1, up1);
  1205. ret = 0;
  1206. }
  1207. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1208. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1209. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1210. return ret;
  1211. }
  1212. static int
  1213. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1214. {
  1215. u32 up1;
  1216. int ret = 0;
  1217. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1218. return 0;
  1219. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1220. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1221. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1222. if (up1 & BCM5708S_UP1_2G5) {
  1223. up1 &= ~BCM5708S_UP1_2G5;
  1224. bnx2_write_phy(bp, bp->mii_up1, up1);
  1225. ret = 1;
  1226. }
  1227. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1228. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1229. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1230. return ret;
  1231. }
  1232. static void
  1233. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1234. {
  1235. u32 bmcr;
  1236. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1237. return;
  1238. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1239. u32 val;
  1240. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1241. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1242. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1243. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1244. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1245. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1246. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1247. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1248. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1249. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1250. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1251. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1252. } else {
  1253. return;
  1254. }
  1255. if (bp->autoneg & AUTONEG_SPEED) {
  1256. bmcr &= ~BMCR_ANENABLE;
  1257. if (bp->req_duplex == DUPLEX_FULL)
  1258. bmcr |= BMCR_FULLDPLX;
  1259. }
  1260. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1261. }
  1262. static void
  1263. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1264. {
  1265. u32 bmcr;
  1266. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1267. return;
  1268. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1269. u32 val;
  1270. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1271. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1272. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1273. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1274. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1275. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1276. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1277. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1278. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1279. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1280. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1281. } else {
  1282. return;
  1283. }
  1284. if (bp->autoneg & AUTONEG_SPEED)
  1285. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1286. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1287. }
  1288. static void
  1289. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1290. {
  1291. u32 val;
  1292. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1293. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1294. if (start)
  1295. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1296. else
  1297. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1298. }
  1299. static int
  1300. bnx2_set_link(struct bnx2 *bp)
  1301. {
  1302. u32 bmsr;
  1303. u8 link_up;
  1304. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1305. bp->link_up = 1;
  1306. return 0;
  1307. }
  1308. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1309. return 0;
  1310. link_up = bp->link_up;
  1311. bnx2_enable_bmsr1(bp);
  1312. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1313. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1314. bnx2_disable_bmsr1(bp);
  1315. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1316. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1317. u32 val, an_dbg;
  1318. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1319. bnx2_5706s_force_link_dn(bp, 0);
  1320. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1321. }
  1322. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1323. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1324. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1325. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1326. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1327. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1328. bmsr |= BMSR_LSTATUS;
  1329. else
  1330. bmsr &= ~BMSR_LSTATUS;
  1331. }
  1332. if (bmsr & BMSR_LSTATUS) {
  1333. bp->link_up = 1;
  1334. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1335. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1336. bnx2_5706s_linkup(bp);
  1337. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1338. bnx2_5708s_linkup(bp);
  1339. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1340. bnx2_5709s_linkup(bp);
  1341. }
  1342. else {
  1343. bnx2_copper_linkup(bp);
  1344. }
  1345. bnx2_resolve_flow_ctrl(bp);
  1346. }
  1347. else {
  1348. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1349. (bp->autoneg & AUTONEG_SPEED))
  1350. bnx2_disable_forced_2g5(bp);
  1351. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1352. u32 bmcr;
  1353. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1354. bmcr |= BMCR_ANENABLE;
  1355. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1356. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1357. }
  1358. bp->link_up = 0;
  1359. }
  1360. if (bp->link_up != link_up) {
  1361. bnx2_report_link(bp);
  1362. }
  1363. bnx2_set_mac_link(bp);
  1364. return 0;
  1365. }
  1366. static int
  1367. bnx2_reset_phy(struct bnx2 *bp)
  1368. {
  1369. int i;
  1370. u32 reg;
  1371. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1372. #define PHY_RESET_MAX_WAIT 100
  1373. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1374. udelay(10);
  1375. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1376. if (!(reg & BMCR_RESET)) {
  1377. udelay(20);
  1378. break;
  1379. }
  1380. }
  1381. if (i == PHY_RESET_MAX_WAIT) {
  1382. return -EBUSY;
  1383. }
  1384. return 0;
  1385. }
  1386. static u32
  1387. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1388. {
  1389. u32 adv = 0;
  1390. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1391. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1392. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1393. adv = ADVERTISE_1000XPAUSE;
  1394. }
  1395. else {
  1396. adv = ADVERTISE_PAUSE_CAP;
  1397. }
  1398. }
  1399. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1400. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1401. adv = ADVERTISE_1000XPSE_ASYM;
  1402. }
  1403. else {
  1404. adv = ADVERTISE_PAUSE_ASYM;
  1405. }
  1406. }
  1407. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1408. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1409. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1410. }
  1411. else {
  1412. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1413. }
  1414. }
  1415. return adv;
  1416. }
  1417. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1418. static int
  1419. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1420. __releases(&bp->phy_lock)
  1421. __acquires(&bp->phy_lock)
  1422. {
  1423. u32 speed_arg = 0, pause_adv;
  1424. pause_adv = bnx2_phy_get_pause_adv(bp);
  1425. if (bp->autoneg & AUTONEG_SPEED) {
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1427. if (bp->advertising & ADVERTISED_10baseT_Half)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1429. if (bp->advertising & ADVERTISED_10baseT_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1431. if (bp->advertising & ADVERTISED_100baseT_Half)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1433. if (bp->advertising & ADVERTISED_100baseT_Full)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1435. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1436. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1437. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1438. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1439. } else {
  1440. if (bp->req_line_speed == SPEED_2500)
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1442. else if (bp->req_line_speed == SPEED_1000)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1444. else if (bp->req_line_speed == SPEED_100) {
  1445. if (bp->req_duplex == DUPLEX_FULL)
  1446. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1447. else
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1449. } else if (bp->req_line_speed == SPEED_10) {
  1450. if (bp->req_duplex == DUPLEX_FULL)
  1451. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1452. else
  1453. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1454. }
  1455. }
  1456. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1458. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1459. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1460. if (port == PORT_TP)
  1461. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1462. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1463. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1464. spin_unlock_bh(&bp->phy_lock);
  1465. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1466. spin_lock_bh(&bp->phy_lock);
  1467. return 0;
  1468. }
  1469. static int
  1470. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1471. __releases(&bp->phy_lock)
  1472. __acquires(&bp->phy_lock)
  1473. {
  1474. u32 adv, bmcr;
  1475. u32 new_adv = 0;
  1476. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1477. return (bnx2_setup_remote_phy(bp, port));
  1478. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1479. u32 new_bmcr;
  1480. int force_link_down = 0;
  1481. if (bp->req_line_speed == SPEED_2500) {
  1482. if (!bnx2_test_and_enable_2g5(bp))
  1483. force_link_down = 1;
  1484. } else if (bp->req_line_speed == SPEED_1000) {
  1485. if (bnx2_test_and_disable_2g5(bp))
  1486. force_link_down = 1;
  1487. }
  1488. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1489. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1490. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1491. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1492. new_bmcr |= BMCR_SPEED1000;
  1493. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1494. if (bp->req_line_speed == SPEED_2500)
  1495. bnx2_enable_forced_2g5(bp);
  1496. else if (bp->req_line_speed == SPEED_1000) {
  1497. bnx2_disable_forced_2g5(bp);
  1498. new_bmcr &= ~0x2000;
  1499. }
  1500. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1501. if (bp->req_line_speed == SPEED_2500)
  1502. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1503. else
  1504. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1505. }
  1506. if (bp->req_duplex == DUPLEX_FULL) {
  1507. adv |= ADVERTISE_1000XFULL;
  1508. new_bmcr |= BMCR_FULLDPLX;
  1509. }
  1510. else {
  1511. adv |= ADVERTISE_1000XHALF;
  1512. new_bmcr &= ~BMCR_FULLDPLX;
  1513. }
  1514. if ((new_bmcr != bmcr) || (force_link_down)) {
  1515. /* Force a link down visible on the other side */
  1516. if (bp->link_up) {
  1517. bnx2_write_phy(bp, bp->mii_adv, adv &
  1518. ~(ADVERTISE_1000XFULL |
  1519. ADVERTISE_1000XHALF));
  1520. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1521. BMCR_ANRESTART | BMCR_ANENABLE);
  1522. bp->link_up = 0;
  1523. netif_carrier_off(bp->dev);
  1524. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1525. bnx2_report_link(bp);
  1526. }
  1527. bnx2_write_phy(bp, bp->mii_adv, adv);
  1528. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1529. } else {
  1530. bnx2_resolve_flow_ctrl(bp);
  1531. bnx2_set_mac_link(bp);
  1532. }
  1533. return 0;
  1534. }
  1535. bnx2_test_and_enable_2g5(bp);
  1536. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1537. new_adv |= ADVERTISE_1000XFULL;
  1538. new_adv |= bnx2_phy_get_pause_adv(bp);
  1539. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1540. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1541. bp->serdes_an_pending = 0;
  1542. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1543. /* Force a link down visible on the other side */
  1544. if (bp->link_up) {
  1545. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1546. spin_unlock_bh(&bp->phy_lock);
  1547. msleep(20);
  1548. spin_lock_bh(&bp->phy_lock);
  1549. }
  1550. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1551. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1552. BMCR_ANENABLE);
  1553. /* Speed up link-up time when the link partner
  1554. * does not autonegotiate which is very common
  1555. * in blade servers. Some blade servers use
  1556. * IPMI for kerboard input and it's important
  1557. * to minimize link disruptions. Autoneg. involves
  1558. * exchanging base pages plus 3 next pages and
  1559. * normally completes in about 120 msec.
  1560. */
  1561. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1562. bp->serdes_an_pending = 1;
  1563. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1564. } else {
  1565. bnx2_resolve_flow_ctrl(bp);
  1566. bnx2_set_mac_link(bp);
  1567. }
  1568. return 0;
  1569. }
  1570. #define ETHTOOL_ALL_FIBRE_SPEED \
  1571. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1572. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1573. (ADVERTISED_1000baseT_Full)
  1574. #define ETHTOOL_ALL_COPPER_SPEED \
  1575. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1576. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1577. ADVERTISED_1000baseT_Full)
  1578. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1579. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1580. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1581. static void
  1582. bnx2_set_default_remote_link(struct bnx2 *bp)
  1583. {
  1584. u32 link;
  1585. if (bp->phy_port == PORT_TP)
  1586. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1587. else
  1588. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1589. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1590. bp->req_line_speed = 0;
  1591. bp->autoneg |= AUTONEG_SPEED;
  1592. bp->advertising = ADVERTISED_Autoneg;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1594. bp->advertising |= ADVERTISED_10baseT_Half;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1596. bp->advertising |= ADVERTISED_10baseT_Full;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1598. bp->advertising |= ADVERTISED_100baseT_Half;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1600. bp->advertising |= ADVERTISED_100baseT_Full;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1602. bp->advertising |= ADVERTISED_1000baseT_Full;
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1604. bp->advertising |= ADVERTISED_2500baseX_Full;
  1605. } else {
  1606. bp->autoneg = 0;
  1607. bp->advertising = 0;
  1608. bp->req_duplex = DUPLEX_FULL;
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1610. bp->req_line_speed = SPEED_10;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1612. bp->req_duplex = DUPLEX_HALF;
  1613. }
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1615. bp->req_line_speed = SPEED_100;
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1617. bp->req_duplex = DUPLEX_HALF;
  1618. }
  1619. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1620. bp->req_line_speed = SPEED_1000;
  1621. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1622. bp->req_line_speed = SPEED_2500;
  1623. }
  1624. }
  1625. static void
  1626. bnx2_set_default_link(struct bnx2 *bp)
  1627. {
  1628. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1629. bnx2_set_default_remote_link(bp);
  1630. return;
  1631. }
  1632. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1633. bp->req_line_speed = 0;
  1634. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1635. u32 reg;
  1636. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1637. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1638. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1639. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1640. bp->autoneg = 0;
  1641. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1642. bp->req_duplex = DUPLEX_FULL;
  1643. }
  1644. } else
  1645. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1646. }
  1647. static void
  1648. bnx2_send_heart_beat(struct bnx2 *bp)
  1649. {
  1650. u32 msg;
  1651. u32 addr;
  1652. spin_lock(&bp->indirect_lock);
  1653. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1654. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1655. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1656. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1657. spin_unlock(&bp->indirect_lock);
  1658. }
  1659. static void
  1660. bnx2_remote_phy_event(struct bnx2 *bp)
  1661. {
  1662. u32 msg;
  1663. u8 link_up = bp->link_up;
  1664. u8 old_port;
  1665. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1666. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1667. bnx2_send_heart_beat(bp);
  1668. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1669. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1670. bp->link_up = 0;
  1671. else {
  1672. u32 speed;
  1673. bp->link_up = 1;
  1674. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1675. bp->duplex = DUPLEX_FULL;
  1676. switch (speed) {
  1677. case BNX2_LINK_STATUS_10HALF:
  1678. bp->duplex = DUPLEX_HALF;
  1679. case BNX2_LINK_STATUS_10FULL:
  1680. bp->line_speed = SPEED_10;
  1681. break;
  1682. case BNX2_LINK_STATUS_100HALF:
  1683. bp->duplex = DUPLEX_HALF;
  1684. case BNX2_LINK_STATUS_100BASE_T4:
  1685. case BNX2_LINK_STATUS_100FULL:
  1686. bp->line_speed = SPEED_100;
  1687. break;
  1688. case BNX2_LINK_STATUS_1000HALF:
  1689. bp->duplex = DUPLEX_HALF;
  1690. case BNX2_LINK_STATUS_1000FULL:
  1691. bp->line_speed = SPEED_1000;
  1692. break;
  1693. case BNX2_LINK_STATUS_2500HALF:
  1694. bp->duplex = DUPLEX_HALF;
  1695. case BNX2_LINK_STATUS_2500FULL:
  1696. bp->line_speed = SPEED_2500;
  1697. break;
  1698. default:
  1699. bp->line_speed = 0;
  1700. break;
  1701. }
  1702. bp->flow_ctrl = 0;
  1703. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1704. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1705. if (bp->duplex == DUPLEX_FULL)
  1706. bp->flow_ctrl = bp->req_flow_ctrl;
  1707. } else {
  1708. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1709. bp->flow_ctrl |= FLOW_CTRL_TX;
  1710. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1711. bp->flow_ctrl |= FLOW_CTRL_RX;
  1712. }
  1713. old_port = bp->phy_port;
  1714. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1715. bp->phy_port = PORT_FIBRE;
  1716. else
  1717. bp->phy_port = PORT_TP;
  1718. if (old_port != bp->phy_port)
  1719. bnx2_set_default_link(bp);
  1720. }
  1721. if (bp->link_up != link_up)
  1722. bnx2_report_link(bp);
  1723. bnx2_set_mac_link(bp);
  1724. }
  1725. static int
  1726. bnx2_set_remote_link(struct bnx2 *bp)
  1727. {
  1728. u32 evt_code;
  1729. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1730. switch (evt_code) {
  1731. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1732. bnx2_remote_phy_event(bp);
  1733. break;
  1734. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1735. default:
  1736. bnx2_send_heart_beat(bp);
  1737. break;
  1738. }
  1739. return 0;
  1740. }
  1741. static int
  1742. bnx2_setup_copper_phy(struct bnx2 *bp)
  1743. __releases(&bp->phy_lock)
  1744. __acquires(&bp->phy_lock)
  1745. {
  1746. u32 bmcr;
  1747. u32 new_bmcr;
  1748. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1749. if (bp->autoneg & AUTONEG_SPEED) {
  1750. u32 adv_reg, adv1000_reg;
  1751. u32 new_adv_reg = 0;
  1752. u32 new_adv1000_reg = 0;
  1753. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1754. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1755. ADVERTISE_PAUSE_ASYM);
  1756. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1757. adv1000_reg &= PHY_ALL_1000_SPEED;
  1758. if (bp->advertising & ADVERTISED_10baseT_Half)
  1759. new_adv_reg |= ADVERTISE_10HALF;
  1760. if (bp->advertising & ADVERTISED_10baseT_Full)
  1761. new_adv_reg |= ADVERTISE_10FULL;
  1762. if (bp->advertising & ADVERTISED_100baseT_Half)
  1763. new_adv_reg |= ADVERTISE_100HALF;
  1764. if (bp->advertising & ADVERTISED_100baseT_Full)
  1765. new_adv_reg |= ADVERTISE_100FULL;
  1766. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1767. new_adv1000_reg |= ADVERTISE_1000FULL;
  1768. new_adv_reg |= ADVERTISE_CSMA;
  1769. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1770. if ((adv1000_reg != new_adv1000_reg) ||
  1771. (adv_reg != new_adv_reg) ||
  1772. ((bmcr & BMCR_ANENABLE) == 0)) {
  1773. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1774. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1775. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1776. BMCR_ANENABLE);
  1777. }
  1778. else if (bp->link_up) {
  1779. /* Flow ctrl may have changed from auto to forced */
  1780. /* or vice-versa. */
  1781. bnx2_resolve_flow_ctrl(bp);
  1782. bnx2_set_mac_link(bp);
  1783. }
  1784. return 0;
  1785. }
  1786. new_bmcr = 0;
  1787. if (bp->req_line_speed == SPEED_100) {
  1788. new_bmcr |= BMCR_SPEED100;
  1789. }
  1790. if (bp->req_duplex == DUPLEX_FULL) {
  1791. new_bmcr |= BMCR_FULLDPLX;
  1792. }
  1793. if (new_bmcr != bmcr) {
  1794. u32 bmsr;
  1795. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1796. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1797. if (bmsr & BMSR_LSTATUS) {
  1798. /* Force link down */
  1799. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1800. spin_unlock_bh(&bp->phy_lock);
  1801. msleep(50);
  1802. spin_lock_bh(&bp->phy_lock);
  1803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1804. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1805. }
  1806. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1807. /* Normally, the new speed is setup after the link has
  1808. * gone down and up again. In some cases, link will not go
  1809. * down so we need to set up the new speed here.
  1810. */
  1811. if (bmsr & BMSR_LSTATUS) {
  1812. bp->line_speed = bp->req_line_speed;
  1813. bp->duplex = bp->req_duplex;
  1814. bnx2_resolve_flow_ctrl(bp);
  1815. bnx2_set_mac_link(bp);
  1816. }
  1817. } else {
  1818. bnx2_resolve_flow_ctrl(bp);
  1819. bnx2_set_mac_link(bp);
  1820. }
  1821. return 0;
  1822. }
  1823. static int
  1824. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1825. __releases(&bp->phy_lock)
  1826. __acquires(&bp->phy_lock)
  1827. {
  1828. if (bp->loopback == MAC_LOOPBACK)
  1829. return 0;
  1830. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1831. return (bnx2_setup_serdes_phy(bp, port));
  1832. }
  1833. else {
  1834. return (bnx2_setup_copper_phy(bp));
  1835. }
  1836. }
  1837. static int
  1838. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1839. {
  1840. u32 val;
  1841. bp->mii_bmcr = MII_BMCR + 0x10;
  1842. bp->mii_bmsr = MII_BMSR + 0x10;
  1843. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1844. bp->mii_adv = MII_ADVERTISE + 0x10;
  1845. bp->mii_lpa = MII_LPA + 0x10;
  1846. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1848. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1849. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1850. if (reset_phy)
  1851. bnx2_reset_phy(bp);
  1852. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1853. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1854. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1855. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1856. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1857. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1858. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1859. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1860. val |= BCM5708S_UP1_2G5;
  1861. else
  1862. val &= ~BCM5708S_UP1_2G5;
  1863. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1865. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1866. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1867. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1868. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1869. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1870. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1871. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1872. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1873. return 0;
  1874. }
  1875. static int
  1876. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1877. {
  1878. u32 val;
  1879. if (reset_phy)
  1880. bnx2_reset_phy(bp);
  1881. bp->mii_up1 = BCM5708S_UP1;
  1882. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1883. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1884. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1885. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1886. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1887. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1888. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1889. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1890. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1891. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1892. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1893. val |= BCM5708S_UP1_2G5;
  1894. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1895. }
  1896. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1897. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1898. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1899. /* increase tx signal amplitude */
  1900. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1901. BCM5708S_BLK_ADDR_TX_MISC);
  1902. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1903. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1904. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1905. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1906. }
  1907. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1908. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1909. if (val) {
  1910. u32 is_backplane;
  1911. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1912. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1913. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1914. BCM5708S_BLK_ADDR_TX_MISC);
  1915. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1916. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1917. BCM5708S_BLK_ADDR_DIG);
  1918. }
  1919. }
  1920. return 0;
  1921. }
  1922. static int
  1923. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1924. {
  1925. if (reset_phy)
  1926. bnx2_reset_phy(bp);
  1927. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1928. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1929. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1930. if (bp->dev->mtu > 1500) {
  1931. u32 val;
  1932. /* Set extended packet length bit */
  1933. bnx2_write_phy(bp, 0x18, 0x7);
  1934. bnx2_read_phy(bp, 0x18, &val);
  1935. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1936. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1937. bnx2_read_phy(bp, 0x1c, &val);
  1938. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1939. }
  1940. else {
  1941. u32 val;
  1942. bnx2_write_phy(bp, 0x18, 0x7);
  1943. bnx2_read_phy(bp, 0x18, &val);
  1944. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1945. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1946. bnx2_read_phy(bp, 0x1c, &val);
  1947. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1948. }
  1949. return 0;
  1950. }
  1951. static int
  1952. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1953. {
  1954. u32 val;
  1955. if (reset_phy)
  1956. bnx2_reset_phy(bp);
  1957. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1958. bnx2_write_phy(bp, 0x18, 0x0c00);
  1959. bnx2_write_phy(bp, 0x17, 0x000a);
  1960. bnx2_write_phy(bp, 0x15, 0x310b);
  1961. bnx2_write_phy(bp, 0x17, 0x201f);
  1962. bnx2_write_phy(bp, 0x15, 0x9506);
  1963. bnx2_write_phy(bp, 0x17, 0x401f);
  1964. bnx2_write_phy(bp, 0x15, 0x14e2);
  1965. bnx2_write_phy(bp, 0x18, 0x0400);
  1966. }
  1967. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1968. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1969. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1970. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1971. val &= ~(1 << 8);
  1972. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1973. }
  1974. if (bp->dev->mtu > 1500) {
  1975. /* Set extended packet length bit */
  1976. bnx2_write_phy(bp, 0x18, 0x7);
  1977. bnx2_read_phy(bp, 0x18, &val);
  1978. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1979. bnx2_read_phy(bp, 0x10, &val);
  1980. bnx2_write_phy(bp, 0x10, val | 0x1);
  1981. }
  1982. else {
  1983. bnx2_write_phy(bp, 0x18, 0x7);
  1984. bnx2_read_phy(bp, 0x18, &val);
  1985. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1986. bnx2_read_phy(bp, 0x10, &val);
  1987. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1988. }
  1989. /* ethernet@wirespeed */
  1990. bnx2_write_phy(bp, 0x18, 0x7007);
  1991. bnx2_read_phy(bp, 0x18, &val);
  1992. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1993. return 0;
  1994. }
  1995. static int
  1996. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1997. __releases(&bp->phy_lock)
  1998. __acquires(&bp->phy_lock)
  1999. {
  2000. u32 val;
  2001. int rc = 0;
  2002. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2003. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2004. bp->mii_bmcr = MII_BMCR;
  2005. bp->mii_bmsr = MII_BMSR;
  2006. bp->mii_bmsr1 = MII_BMSR;
  2007. bp->mii_adv = MII_ADVERTISE;
  2008. bp->mii_lpa = MII_LPA;
  2009. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2010. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2011. goto setup_phy;
  2012. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2013. bp->phy_id = val << 16;
  2014. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2015. bp->phy_id |= val & 0xffff;
  2016. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2017. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2018. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2019. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2020. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2021. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2022. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2023. }
  2024. else {
  2025. rc = bnx2_init_copper_phy(bp, reset_phy);
  2026. }
  2027. setup_phy:
  2028. if (!rc)
  2029. rc = bnx2_setup_phy(bp, bp->phy_port);
  2030. return rc;
  2031. }
  2032. static int
  2033. bnx2_set_mac_loopback(struct bnx2 *bp)
  2034. {
  2035. u32 mac_mode;
  2036. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2037. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2038. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2039. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2040. bp->link_up = 1;
  2041. return 0;
  2042. }
  2043. static int bnx2_test_link(struct bnx2 *);
  2044. static int
  2045. bnx2_set_phy_loopback(struct bnx2 *bp)
  2046. {
  2047. u32 mac_mode;
  2048. int rc, i;
  2049. spin_lock_bh(&bp->phy_lock);
  2050. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2051. BMCR_SPEED1000);
  2052. spin_unlock_bh(&bp->phy_lock);
  2053. if (rc)
  2054. return rc;
  2055. for (i = 0; i < 10; i++) {
  2056. if (bnx2_test_link(bp) == 0)
  2057. break;
  2058. msleep(100);
  2059. }
  2060. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2061. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2062. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2063. BNX2_EMAC_MODE_25G_MODE);
  2064. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2065. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2066. bp->link_up = 1;
  2067. return 0;
  2068. }
  2069. static int
  2070. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2071. {
  2072. int i;
  2073. u32 val;
  2074. bp->fw_wr_seq++;
  2075. msg_data |= bp->fw_wr_seq;
  2076. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2077. if (!ack)
  2078. return 0;
  2079. /* wait for an acknowledgement. */
  2080. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2081. msleep(10);
  2082. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2083. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2084. break;
  2085. }
  2086. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2087. return 0;
  2088. /* If we timed out, inform the firmware that this is the case. */
  2089. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2090. if (!silent)
  2091. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2092. "%x\n", msg_data);
  2093. msg_data &= ~BNX2_DRV_MSG_CODE;
  2094. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2095. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2096. return -EBUSY;
  2097. }
  2098. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2099. return -EIO;
  2100. return 0;
  2101. }
  2102. static int
  2103. bnx2_init_5709_context(struct bnx2 *bp)
  2104. {
  2105. int i, ret = 0;
  2106. u32 val;
  2107. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2108. val |= (BCM_PAGE_BITS - 8) << 16;
  2109. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2110. for (i = 0; i < 10; i++) {
  2111. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2112. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2113. break;
  2114. udelay(2);
  2115. }
  2116. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2117. return -EBUSY;
  2118. for (i = 0; i < bp->ctx_pages; i++) {
  2119. int j;
  2120. if (bp->ctx_blk[i])
  2121. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2122. else
  2123. return -ENOMEM;
  2124. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2125. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2126. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2127. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2128. (u64) bp->ctx_blk_mapping[i] >> 32);
  2129. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2130. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2131. for (j = 0; j < 10; j++) {
  2132. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2133. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2134. break;
  2135. udelay(5);
  2136. }
  2137. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2138. ret = -EBUSY;
  2139. break;
  2140. }
  2141. }
  2142. return ret;
  2143. }
  2144. static void
  2145. bnx2_init_context(struct bnx2 *bp)
  2146. {
  2147. u32 vcid;
  2148. vcid = 96;
  2149. while (vcid) {
  2150. u32 vcid_addr, pcid_addr, offset;
  2151. int i;
  2152. vcid--;
  2153. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2154. u32 new_vcid;
  2155. vcid_addr = GET_PCID_ADDR(vcid);
  2156. if (vcid & 0x8) {
  2157. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2158. }
  2159. else {
  2160. new_vcid = vcid;
  2161. }
  2162. pcid_addr = GET_PCID_ADDR(new_vcid);
  2163. }
  2164. else {
  2165. vcid_addr = GET_CID_ADDR(vcid);
  2166. pcid_addr = vcid_addr;
  2167. }
  2168. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2169. vcid_addr += (i << PHY_CTX_SHIFT);
  2170. pcid_addr += (i << PHY_CTX_SHIFT);
  2171. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2172. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2173. /* Zero out the context. */
  2174. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2175. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2176. }
  2177. }
  2178. }
  2179. static int
  2180. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2181. {
  2182. u16 *good_mbuf;
  2183. u32 good_mbuf_cnt;
  2184. u32 val;
  2185. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2186. if (good_mbuf == NULL) {
  2187. printk(KERN_ERR PFX "Failed to allocate memory in "
  2188. "bnx2_alloc_bad_rbuf\n");
  2189. return -ENOMEM;
  2190. }
  2191. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2192. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2193. good_mbuf_cnt = 0;
  2194. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2195. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2196. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2197. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2198. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2199. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2200. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2201. /* The addresses with Bit 9 set are bad memory blocks. */
  2202. if (!(val & (1 << 9))) {
  2203. good_mbuf[good_mbuf_cnt] = (u16) val;
  2204. good_mbuf_cnt++;
  2205. }
  2206. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2207. }
  2208. /* Free the good ones back to the mbuf pool thus discarding
  2209. * all the bad ones. */
  2210. while (good_mbuf_cnt) {
  2211. good_mbuf_cnt--;
  2212. val = good_mbuf[good_mbuf_cnt];
  2213. val = (val << 9) | val | 1;
  2214. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2215. }
  2216. kfree(good_mbuf);
  2217. return 0;
  2218. }
  2219. static void
  2220. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2221. {
  2222. u32 val;
  2223. val = (mac_addr[0] << 8) | mac_addr[1];
  2224. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2225. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2226. (mac_addr[4] << 8) | mac_addr[5];
  2227. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2228. }
  2229. static inline int
  2230. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2231. {
  2232. dma_addr_t mapping;
  2233. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2234. struct rx_bd *rxbd =
  2235. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2236. struct page *page = alloc_page(GFP_ATOMIC);
  2237. if (!page)
  2238. return -ENOMEM;
  2239. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2240. PCI_DMA_FROMDEVICE);
  2241. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2242. __free_page(page);
  2243. return -EIO;
  2244. }
  2245. rx_pg->page = page;
  2246. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2247. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2248. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2249. return 0;
  2250. }
  2251. static void
  2252. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2253. {
  2254. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2255. struct page *page = rx_pg->page;
  2256. if (!page)
  2257. return;
  2258. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2259. PCI_DMA_FROMDEVICE);
  2260. __free_page(page);
  2261. rx_pg->page = NULL;
  2262. }
  2263. static inline int
  2264. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2265. {
  2266. struct sk_buff *skb;
  2267. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2268. dma_addr_t mapping;
  2269. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2270. unsigned long align;
  2271. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2272. if (skb == NULL) {
  2273. return -ENOMEM;
  2274. }
  2275. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2276. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2277. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2278. PCI_DMA_FROMDEVICE);
  2279. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2280. dev_kfree_skb(skb);
  2281. return -EIO;
  2282. }
  2283. rx_buf->skb = skb;
  2284. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2285. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2286. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2287. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2288. return 0;
  2289. }
  2290. static int
  2291. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2292. {
  2293. struct status_block *sblk = bnapi->status_blk.msi;
  2294. u32 new_link_state, old_link_state;
  2295. int is_set = 1;
  2296. new_link_state = sblk->status_attn_bits & event;
  2297. old_link_state = sblk->status_attn_bits_ack & event;
  2298. if (new_link_state != old_link_state) {
  2299. if (new_link_state)
  2300. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2301. else
  2302. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2303. } else
  2304. is_set = 0;
  2305. return is_set;
  2306. }
  2307. static void
  2308. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2309. {
  2310. spin_lock(&bp->phy_lock);
  2311. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2312. bnx2_set_link(bp);
  2313. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2314. bnx2_set_remote_link(bp);
  2315. spin_unlock(&bp->phy_lock);
  2316. }
  2317. static inline u16
  2318. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2319. {
  2320. u16 cons;
  2321. /* Tell compiler that status block fields can change. */
  2322. barrier();
  2323. cons = *bnapi->hw_tx_cons_ptr;
  2324. barrier();
  2325. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2326. cons++;
  2327. return cons;
  2328. }
  2329. static int
  2330. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2331. {
  2332. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2333. u16 hw_cons, sw_cons, sw_ring_cons;
  2334. int tx_pkt = 0, index;
  2335. struct netdev_queue *txq;
  2336. index = (bnapi - bp->bnx2_napi);
  2337. txq = netdev_get_tx_queue(bp->dev, index);
  2338. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2339. sw_cons = txr->tx_cons;
  2340. while (sw_cons != hw_cons) {
  2341. struct sw_tx_bd *tx_buf;
  2342. struct sk_buff *skb;
  2343. int i, last;
  2344. sw_ring_cons = TX_RING_IDX(sw_cons);
  2345. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2346. skb = tx_buf->skb;
  2347. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2348. prefetch(&skb->end);
  2349. /* partial BD completions possible with TSO packets */
  2350. if (tx_buf->is_gso) {
  2351. u16 last_idx, last_ring_idx;
  2352. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2353. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2354. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2355. last_idx++;
  2356. }
  2357. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2358. break;
  2359. }
  2360. }
  2361. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2362. skb_headlen(skb), PCI_DMA_TODEVICE);
  2363. tx_buf->skb = NULL;
  2364. last = tx_buf->nr_frags;
  2365. for (i = 0; i < last; i++) {
  2366. sw_cons = NEXT_TX_BD(sw_cons);
  2367. pci_unmap_page(bp->pdev,
  2368. pci_unmap_addr(
  2369. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2370. mapping),
  2371. skb_shinfo(skb)->frags[i].size,
  2372. PCI_DMA_TODEVICE);
  2373. }
  2374. sw_cons = NEXT_TX_BD(sw_cons);
  2375. dev_kfree_skb(skb);
  2376. tx_pkt++;
  2377. if (tx_pkt == budget)
  2378. break;
  2379. if (hw_cons == sw_cons)
  2380. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2381. }
  2382. txr->hw_tx_cons = hw_cons;
  2383. txr->tx_cons = sw_cons;
  2384. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2385. * before checking for netif_tx_queue_stopped(). Without the
  2386. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2387. * will miss it and cause the queue to be stopped forever.
  2388. */
  2389. smp_mb();
  2390. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2391. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2392. __netif_tx_lock(txq, smp_processor_id());
  2393. if ((netif_tx_queue_stopped(txq)) &&
  2394. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2395. netif_tx_wake_queue(txq);
  2396. __netif_tx_unlock(txq);
  2397. }
  2398. return tx_pkt;
  2399. }
  2400. static void
  2401. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2402. struct sk_buff *skb, int count)
  2403. {
  2404. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2405. struct rx_bd *cons_bd, *prod_bd;
  2406. int i;
  2407. u16 hw_prod, prod;
  2408. u16 cons = rxr->rx_pg_cons;
  2409. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2410. /* The caller was unable to allocate a new page to replace the
  2411. * last one in the frags array, so we need to recycle that page
  2412. * and then free the skb.
  2413. */
  2414. if (skb) {
  2415. struct page *page;
  2416. struct skb_shared_info *shinfo;
  2417. shinfo = skb_shinfo(skb);
  2418. shinfo->nr_frags--;
  2419. page = shinfo->frags[shinfo->nr_frags].page;
  2420. shinfo->frags[shinfo->nr_frags].page = NULL;
  2421. cons_rx_pg->page = page;
  2422. dev_kfree_skb(skb);
  2423. }
  2424. hw_prod = rxr->rx_pg_prod;
  2425. for (i = 0; i < count; i++) {
  2426. prod = RX_PG_RING_IDX(hw_prod);
  2427. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2428. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2429. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2430. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2431. if (prod != cons) {
  2432. prod_rx_pg->page = cons_rx_pg->page;
  2433. cons_rx_pg->page = NULL;
  2434. pci_unmap_addr_set(prod_rx_pg, mapping,
  2435. pci_unmap_addr(cons_rx_pg, mapping));
  2436. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2437. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2438. }
  2439. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2440. hw_prod = NEXT_RX_BD(hw_prod);
  2441. }
  2442. rxr->rx_pg_prod = hw_prod;
  2443. rxr->rx_pg_cons = cons;
  2444. }
  2445. static inline void
  2446. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2447. struct sk_buff *skb, u16 cons, u16 prod)
  2448. {
  2449. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2450. struct rx_bd *cons_bd, *prod_bd;
  2451. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2452. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2453. pci_dma_sync_single_for_device(bp->pdev,
  2454. pci_unmap_addr(cons_rx_buf, mapping),
  2455. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2456. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2457. prod_rx_buf->skb = skb;
  2458. if (cons == prod)
  2459. return;
  2460. pci_unmap_addr_set(prod_rx_buf, mapping,
  2461. pci_unmap_addr(cons_rx_buf, mapping));
  2462. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2463. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2464. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2465. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2466. }
  2467. static int
  2468. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2469. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2470. u32 ring_idx)
  2471. {
  2472. int err;
  2473. u16 prod = ring_idx & 0xffff;
  2474. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2475. if (unlikely(err)) {
  2476. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2477. if (hdr_len) {
  2478. unsigned int raw_len = len + 4;
  2479. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2480. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2481. }
  2482. return err;
  2483. }
  2484. skb_reserve(skb, BNX2_RX_OFFSET);
  2485. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2486. PCI_DMA_FROMDEVICE);
  2487. if (hdr_len == 0) {
  2488. skb_put(skb, len);
  2489. return 0;
  2490. } else {
  2491. unsigned int i, frag_len, frag_size, pages;
  2492. struct sw_pg *rx_pg;
  2493. u16 pg_cons = rxr->rx_pg_cons;
  2494. u16 pg_prod = rxr->rx_pg_prod;
  2495. frag_size = len + 4 - hdr_len;
  2496. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2497. skb_put(skb, hdr_len);
  2498. for (i = 0; i < pages; i++) {
  2499. dma_addr_t mapping_old;
  2500. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2501. if (unlikely(frag_len <= 4)) {
  2502. unsigned int tail = 4 - frag_len;
  2503. rxr->rx_pg_cons = pg_cons;
  2504. rxr->rx_pg_prod = pg_prod;
  2505. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2506. pages - i);
  2507. skb->len -= tail;
  2508. if (i == 0) {
  2509. skb->tail -= tail;
  2510. } else {
  2511. skb_frag_t *frag =
  2512. &skb_shinfo(skb)->frags[i - 1];
  2513. frag->size -= tail;
  2514. skb->data_len -= tail;
  2515. skb->truesize -= tail;
  2516. }
  2517. return 0;
  2518. }
  2519. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2520. /* Don't unmap yet. If we're unable to allocate a new
  2521. * page, we need to recycle the page and the DMA addr.
  2522. */
  2523. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2524. if (i == pages - 1)
  2525. frag_len -= 4;
  2526. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2527. rx_pg->page = NULL;
  2528. err = bnx2_alloc_rx_page(bp, rxr,
  2529. RX_PG_RING_IDX(pg_prod));
  2530. if (unlikely(err)) {
  2531. rxr->rx_pg_cons = pg_cons;
  2532. rxr->rx_pg_prod = pg_prod;
  2533. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2534. pages - i);
  2535. return err;
  2536. }
  2537. pci_unmap_page(bp->pdev, mapping_old,
  2538. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2539. frag_size -= frag_len;
  2540. skb->data_len += frag_len;
  2541. skb->truesize += frag_len;
  2542. skb->len += frag_len;
  2543. pg_prod = NEXT_RX_BD(pg_prod);
  2544. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2545. }
  2546. rxr->rx_pg_prod = pg_prod;
  2547. rxr->rx_pg_cons = pg_cons;
  2548. }
  2549. return 0;
  2550. }
  2551. static inline u16
  2552. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2553. {
  2554. u16 cons;
  2555. /* Tell compiler that status block fields can change. */
  2556. barrier();
  2557. cons = *bnapi->hw_rx_cons_ptr;
  2558. barrier();
  2559. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2560. cons++;
  2561. return cons;
  2562. }
  2563. static int
  2564. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2565. {
  2566. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2567. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2568. struct l2_fhdr *rx_hdr;
  2569. int rx_pkt = 0, pg_ring_used = 0;
  2570. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2571. sw_cons = rxr->rx_cons;
  2572. sw_prod = rxr->rx_prod;
  2573. /* Memory barrier necessary as speculative reads of the rx
  2574. * buffer can be ahead of the index in the status block
  2575. */
  2576. rmb();
  2577. while (sw_cons != hw_cons) {
  2578. unsigned int len, hdr_len;
  2579. u32 status;
  2580. struct sw_bd *rx_buf;
  2581. struct sk_buff *skb;
  2582. dma_addr_t dma_addr;
  2583. u16 vtag = 0;
  2584. int hw_vlan __maybe_unused = 0;
  2585. sw_ring_cons = RX_RING_IDX(sw_cons);
  2586. sw_ring_prod = RX_RING_IDX(sw_prod);
  2587. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2588. skb = rx_buf->skb;
  2589. rx_buf->skb = NULL;
  2590. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2591. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2592. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2593. PCI_DMA_FROMDEVICE);
  2594. rx_hdr = (struct l2_fhdr *) skb->data;
  2595. len = rx_hdr->l2_fhdr_pkt_len;
  2596. status = rx_hdr->l2_fhdr_status;
  2597. hdr_len = 0;
  2598. if (status & L2_FHDR_STATUS_SPLIT) {
  2599. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2600. pg_ring_used = 1;
  2601. } else if (len > bp->rx_jumbo_thresh) {
  2602. hdr_len = bp->rx_jumbo_thresh;
  2603. pg_ring_used = 1;
  2604. }
  2605. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2606. L2_FHDR_ERRORS_PHY_DECODE |
  2607. L2_FHDR_ERRORS_ALIGNMENT |
  2608. L2_FHDR_ERRORS_TOO_SHORT |
  2609. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2610. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2611. sw_ring_prod);
  2612. if (pg_ring_used) {
  2613. int pages;
  2614. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2615. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2616. }
  2617. goto next_rx;
  2618. }
  2619. len -= 4;
  2620. if (len <= bp->rx_copy_thresh) {
  2621. struct sk_buff *new_skb;
  2622. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2623. if (new_skb == NULL) {
  2624. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2625. sw_ring_prod);
  2626. goto next_rx;
  2627. }
  2628. /* aligned copy */
  2629. skb_copy_from_linear_data_offset(skb,
  2630. BNX2_RX_OFFSET - 6,
  2631. new_skb->data, len + 6);
  2632. skb_reserve(new_skb, 6);
  2633. skb_put(new_skb, len);
  2634. bnx2_reuse_rx_skb(bp, rxr, skb,
  2635. sw_ring_cons, sw_ring_prod);
  2636. skb = new_skb;
  2637. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2638. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2639. goto next_rx;
  2640. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2641. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2642. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2643. #ifdef BCM_VLAN
  2644. if (bp->vlgrp)
  2645. hw_vlan = 1;
  2646. else
  2647. #endif
  2648. {
  2649. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2650. __skb_push(skb, 4);
  2651. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2652. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2653. ve->h_vlan_TCI = htons(vtag);
  2654. len += 4;
  2655. }
  2656. }
  2657. skb->protocol = eth_type_trans(skb, bp->dev);
  2658. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2659. (ntohs(skb->protocol) != 0x8100)) {
  2660. dev_kfree_skb(skb);
  2661. goto next_rx;
  2662. }
  2663. skb->ip_summed = CHECKSUM_NONE;
  2664. if (bp->rx_csum &&
  2665. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2666. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2667. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2668. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2669. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2670. }
  2671. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2672. #ifdef BCM_VLAN
  2673. if (hw_vlan)
  2674. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2675. else
  2676. #endif
  2677. netif_receive_skb(skb);
  2678. rx_pkt++;
  2679. next_rx:
  2680. sw_cons = NEXT_RX_BD(sw_cons);
  2681. sw_prod = NEXT_RX_BD(sw_prod);
  2682. if ((rx_pkt == budget))
  2683. break;
  2684. /* Refresh hw_cons to see if there is new work */
  2685. if (sw_cons == hw_cons) {
  2686. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2687. rmb();
  2688. }
  2689. }
  2690. rxr->rx_cons = sw_cons;
  2691. rxr->rx_prod = sw_prod;
  2692. if (pg_ring_used)
  2693. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2694. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2695. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2696. mmiowb();
  2697. return rx_pkt;
  2698. }
  2699. /* MSI ISR - The only difference between this and the INTx ISR
  2700. * is that the MSI interrupt is always serviced.
  2701. */
  2702. static irqreturn_t
  2703. bnx2_msi(int irq, void *dev_instance)
  2704. {
  2705. struct bnx2_napi *bnapi = dev_instance;
  2706. struct bnx2 *bp = bnapi->bp;
  2707. prefetch(bnapi->status_blk.msi);
  2708. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2709. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2710. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2711. /* Return here if interrupt is disabled. */
  2712. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2713. return IRQ_HANDLED;
  2714. napi_schedule(&bnapi->napi);
  2715. return IRQ_HANDLED;
  2716. }
  2717. static irqreturn_t
  2718. bnx2_msi_1shot(int irq, void *dev_instance)
  2719. {
  2720. struct bnx2_napi *bnapi = dev_instance;
  2721. struct bnx2 *bp = bnapi->bp;
  2722. prefetch(bnapi->status_blk.msi);
  2723. /* Return here if interrupt is disabled. */
  2724. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2725. return IRQ_HANDLED;
  2726. napi_schedule(&bnapi->napi);
  2727. return IRQ_HANDLED;
  2728. }
  2729. static irqreturn_t
  2730. bnx2_interrupt(int irq, void *dev_instance)
  2731. {
  2732. struct bnx2_napi *bnapi = dev_instance;
  2733. struct bnx2 *bp = bnapi->bp;
  2734. struct status_block *sblk = bnapi->status_blk.msi;
  2735. /* When using INTx, it is possible for the interrupt to arrive
  2736. * at the CPU before the status block posted prior to the
  2737. * interrupt. Reading a register will flush the status block.
  2738. * When using MSI, the MSI message will always complete after
  2739. * the status block write.
  2740. */
  2741. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2742. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2743. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2744. return IRQ_NONE;
  2745. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2746. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2747. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2748. /* Read back to deassert IRQ immediately to avoid too many
  2749. * spurious interrupts.
  2750. */
  2751. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2752. /* Return here if interrupt is shared and is disabled. */
  2753. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2754. return IRQ_HANDLED;
  2755. if (napi_schedule_prep(&bnapi->napi)) {
  2756. bnapi->last_status_idx = sblk->status_idx;
  2757. __napi_schedule(&bnapi->napi);
  2758. }
  2759. return IRQ_HANDLED;
  2760. }
  2761. static inline int
  2762. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2763. {
  2764. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2765. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2766. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2767. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2768. return 1;
  2769. return 0;
  2770. }
  2771. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2772. STATUS_ATTN_BITS_TIMER_ABORT)
  2773. static inline int
  2774. bnx2_has_work(struct bnx2_napi *bnapi)
  2775. {
  2776. struct status_block *sblk = bnapi->status_blk.msi;
  2777. if (bnx2_has_fast_work(bnapi))
  2778. return 1;
  2779. #ifdef BCM_CNIC
  2780. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2781. return 1;
  2782. #endif
  2783. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2784. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2785. return 1;
  2786. return 0;
  2787. }
  2788. static void
  2789. bnx2_chk_missed_msi(struct bnx2 *bp)
  2790. {
  2791. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2792. u32 msi_ctrl;
  2793. if (bnx2_has_work(bnapi)) {
  2794. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2795. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2796. return;
  2797. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2798. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2799. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2800. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2801. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2802. }
  2803. }
  2804. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2805. }
  2806. #ifdef BCM_CNIC
  2807. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2808. {
  2809. struct cnic_ops *c_ops;
  2810. if (!bnapi->cnic_present)
  2811. return;
  2812. rcu_read_lock();
  2813. c_ops = rcu_dereference(bp->cnic_ops);
  2814. if (c_ops)
  2815. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2816. bnapi->status_blk.msi);
  2817. rcu_read_unlock();
  2818. }
  2819. #endif
  2820. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2821. {
  2822. struct status_block *sblk = bnapi->status_blk.msi;
  2823. u32 status_attn_bits = sblk->status_attn_bits;
  2824. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2825. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2826. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2827. bnx2_phy_int(bp, bnapi);
  2828. /* This is needed to take care of transient status
  2829. * during link changes.
  2830. */
  2831. REG_WR(bp, BNX2_HC_COMMAND,
  2832. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2833. REG_RD(bp, BNX2_HC_COMMAND);
  2834. }
  2835. }
  2836. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2837. int work_done, int budget)
  2838. {
  2839. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2840. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2841. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2842. bnx2_tx_int(bp, bnapi, 0);
  2843. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2844. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2845. return work_done;
  2846. }
  2847. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2848. {
  2849. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2850. struct bnx2 *bp = bnapi->bp;
  2851. int work_done = 0;
  2852. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2853. while (1) {
  2854. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2855. if (unlikely(work_done >= budget))
  2856. break;
  2857. bnapi->last_status_idx = sblk->status_idx;
  2858. /* status idx must be read before checking for more work. */
  2859. rmb();
  2860. if (likely(!bnx2_has_fast_work(bnapi))) {
  2861. napi_complete(napi);
  2862. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2863. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2864. bnapi->last_status_idx);
  2865. break;
  2866. }
  2867. }
  2868. return work_done;
  2869. }
  2870. static int bnx2_poll(struct napi_struct *napi, int budget)
  2871. {
  2872. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2873. struct bnx2 *bp = bnapi->bp;
  2874. int work_done = 0;
  2875. struct status_block *sblk = bnapi->status_blk.msi;
  2876. while (1) {
  2877. bnx2_poll_link(bp, bnapi);
  2878. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2879. #ifdef BCM_CNIC
  2880. bnx2_poll_cnic(bp, bnapi);
  2881. #endif
  2882. /* bnapi->last_status_idx is used below to tell the hw how
  2883. * much work has been processed, so we must read it before
  2884. * checking for more work.
  2885. */
  2886. bnapi->last_status_idx = sblk->status_idx;
  2887. if (unlikely(work_done >= budget))
  2888. break;
  2889. rmb();
  2890. if (likely(!bnx2_has_work(bnapi))) {
  2891. napi_complete(napi);
  2892. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2893. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2894. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2895. bnapi->last_status_idx);
  2896. break;
  2897. }
  2898. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2899. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2900. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2901. bnapi->last_status_idx);
  2902. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2903. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2904. bnapi->last_status_idx);
  2905. break;
  2906. }
  2907. }
  2908. return work_done;
  2909. }
  2910. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2911. * from set_multicast.
  2912. */
  2913. static void
  2914. bnx2_set_rx_mode(struct net_device *dev)
  2915. {
  2916. struct bnx2 *bp = netdev_priv(dev);
  2917. u32 rx_mode, sort_mode;
  2918. struct netdev_hw_addr *ha;
  2919. int i;
  2920. if (!netif_running(dev))
  2921. return;
  2922. spin_lock_bh(&bp->phy_lock);
  2923. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2924. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2925. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2926. #ifdef BCM_VLAN
  2927. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2928. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2929. #else
  2930. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2931. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2932. #endif
  2933. if (dev->flags & IFF_PROMISC) {
  2934. /* Promiscuous mode. */
  2935. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2936. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2937. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2938. }
  2939. else if (dev->flags & IFF_ALLMULTI) {
  2940. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2941. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2942. 0xffffffff);
  2943. }
  2944. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2945. }
  2946. else {
  2947. /* Accept one or more multicast(s). */
  2948. struct dev_mc_list *mclist;
  2949. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2950. u32 regidx;
  2951. u32 bit;
  2952. u32 crc;
  2953. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2954. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2955. i++, mclist = mclist->next) {
  2956. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2957. bit = crc & 0xff;
  2958. regidx = (bit & 0xe0) >> 5;
  2959. bit &= 0x1f;
  2960. mc_filter[regidx] |= (1 << bit);
  2961. }
  2962. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2963. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2964. mc_filter[i]);
  2965. }
  2966. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2967. }
  2968. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2969. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2970. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2971. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2972. } else if (!(dev->flags & IFF_PROMISC)) {
  2973. /* Add all entries into to the match filter list */
  2974. i = 0;
  2975. list_for_each_entry(ha, &dev->uc.list, list) {
  2976. bnx2_set_mac_addr(bp, ha->addr,
  2977. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2978. sort_mode |= (1 <<
  2979. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2980. i++;
  2981. }
  2982. }
  2983. if (rx_mode != bp->rx_mode) {
  2984. bp->rx_mode = rx_mode;
  2985. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2986. }
  2987. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2988. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2989. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2990. spin_unlock_bh(&bp->phy_lock);
  2991. }
  2992. static int __devinit
  2993. check_fw_section(const struct firmware *fw,
  2994. const struct bnx2_fw_file_section *section,
  2995. u32 alignment, bool non_empty)
  2996. {
  2997. u32 offset = be32_to_cpu(section->offset);
  2998. u32 len = be32_to_cpu(section->len);
  2999. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3000. return -EINVAL;
  3001. if ((non_empty && len == 0) || len > fw->size - offset ||
  3002. len & (alignment - 1))
  3003. return -EINVAL;
  3004. return 0;
  3005. }
  3006. static int __devinit
  3007. check_mips_fw_entry(const struct firmware *fw,
  3008. const struct bnx2_mips_fw_file_entry *entry)
  3009. {
  3010. if (check_fw_section(fw, &entry->text, 4, true) ||
  3011. check_fw_section(fw, &entry->data, 4, false) ||
  3012. check_fw_section(fw, &entry->rodata, 4, false))
  3013. return -EINVAL;
  3014. return 0;
  3015. }
  3016. static int __devinit
  3017. bnx2_request_firmware(struct bnx2 *bp)
  3018. {
  3019. const char *mips_fw_file, *rv2p_fw_file;
  3020. const struct bnx2_mips_fw_file *mips_fw;
  3021. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3022. int rc;
  3023. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3024. mips_fw_file = FW_MIPS_FILE_09;
  3025. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3026. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3027. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3028. else
  3029. rv2p_fw_file = FW_RV2P_FILE_09;
  3030. } else {
  3031. mips_fw_file = FW_MIPS_FILE_06;
  3032. rv2p_fw_file = FW_RV2P_FILE_06;
  3033. }
  3034. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3035. if (rc) {
  3036. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3037. mips_fw_file);
  3038. return rc;
  3039. }
  3040. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3041. if (rc) {
  3042. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3043. rv2p_fw_file);
  3044. return rc;
  3045. }
  3046. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3047. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3048. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3049. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3050. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3051. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3052. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3053. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3054. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3055. mips_fw_file);
  3056. return -EINVAL;
  3057. }
  3058. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3059. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3060. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3061. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3062. rv2p_fw_file);
  3063. return -EINVAL;
  3064. }
  3065. return 0;
  3066. }
  3067. static u32
  3068. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3069. {
  3070. switch (idx) {
  3071. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3072. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3073. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3074. break;
  3075. }
  3076. return rv2p_code;
  3077. }
  3078. static int
  3079. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3080. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3081. {
  3082. u32 rv2p_code_len, file_offset;
  3083. __be32 *rv2p_code;
  3084. int i;
  3085. u32 val, cmd, addr;
  3086. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3087. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3088. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3089. if (rv2p_proc == RV2P_PROC1) {
  3090. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3091. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3092. } else {
  3093. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3094. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3095. }
  3096. for (i = 0; i < rv2p_code_len; i += 8) {
  3097. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3098. rv2p_code++;
  3099. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3100. rv2p_code++;
  3101. val = (i / 8) | cmd;
  3102. REG_WR(bp, addr, val);
  3103. }
  3104. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3105. for (i = 0; i < 8; i++) {
  3106. u32 loc, code;
  3107. loc = be32_to_cpu(fw_entry->fixup[i]);
  3108. if (loc && ((loc * 4) < rv2p_code_len)) {
  3109. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3110. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3111. code = be32_to_cpu(*(rv2p_code + loc));
  3112. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3113. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3114. val = (loc / 2) | cmd;
  3115. REG_WR(bp, addr, val);
  3116. }
  3117. }
  3118. /* Reset the processor, un-stall is done later. */
  3119. if (rv2p_proc == RV2P_PROC1) {
  3120. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3121. }
  3122. else {
  3123. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3124. }
  3125. return 0;
  3126. }
  3127. static int
  3128. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3129. const struct bnx2_mips_fw_file_entry *fw_entry)
  3130. {
  3131. u32 addr, len, file_offset;
  3132. __be32 *data;
  3133. u32 offset;
  3134. u32 val;
  3135. /* Halt the CPU. */
  3136. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3137. val |= cpu_reg->mode_value_halt;
  3138. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3139. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3140. /* Load the Text area. */
  3141. addr = be32_to_cpu(fw_entry->text.addr);
  3142. len = be32_to_cpu(fw_entry->text.len);
  3143. file_offset = be32_to_cpu(fw_entry->text.offset);
  3144. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3145. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3146. if (len) {
  3147. int j;
  3148. for (j = 0; j < (len / 4); j++, offset += 4)
  3149. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3150. }
  3151. /* Load the Data area. */
  3152. addr = be32_to_cpu(fw_entry->data.addr);
  3153. len = be32_to_cpu(fw_entry->data.len);
  3154. file_offset = be32_to_cpu(fw_entry->data.offset);
  3155. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3156. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3157. if (len) {
  3158. int j;
  3159. for (j = 0; j < (len / 4); j++, offset += 4)
  3160. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3161. }
  3162. /* Load the Read-Only area. */
  3163. addr = be32_to_cpu(fw_entry->rodata.addr);
  3164. len = be32_to_cpu(fw_entry->rodata.len);
  3165. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3166. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3167. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3168. if (len) {
  3169. int j;
  3170. for (j = 0; j < (len / 4); j++, offset += 4)
  3171. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3172. }
  3173. /* Clear the pre-fetch instruction. */
  3174. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3175. val = be32_to_cpu(fw_entry->start_addr);
  3176. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3177. /* Start the CPU. */
  3178. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3179. val &= ~cpu_reg->mode_value_halt;
  3180. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3181. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3182. return 0;
  3183. }
  3184. static int
  3185. bnx2_init_cpus(struct bnx2 *bp)
  3186. {
  3187. const struct bnx2_mips_fw_file *mips_fw =
  3188. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3189. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3190. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3191. int rc;
  3192. /* Initialize the RV2P processor. */
  3193. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3194. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3195. /* Initialize the RX Processor. */
  3196. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3197. if (rc)
  3198. goto init_cpu_err;
  3199. /* Initialize the TX Processor. */
  3200. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3201. if (rc)
  3202. goto init_cpu_err;
  3203. /* Initialize the TX Patch-up Processor. */
  3204. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3205. if (rc)
  3206. goto init_cpu_err;
  3207. /* Initialize the Completion Processor. */
  3208. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3209. if (rc)
  3210. goto init_cpu_err;
  3211. /* Initialize the Command Processor. */
  3212. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3213. init_cpu_err:
  3214. return rc;
  3215. }
  3216. static int
  3217. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3218. {
  3219. u16 pmcsr;
  3220. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3221. switch (state) {
  3222. case PCI_D0: {
  3223. u32 val;
  3224. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3225. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3226. PCI_PM_CTRL_PME_STATUS);
  3227. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3228. /* delay required during transition out of D3hot */
  3229. msleep(20);
  3230. val = REG_RD(bp, BNX2_EMAC_MODE);
  3231. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3232. val &= ~BNX2_EMAC_MODE_MPKT;
  3233. REG_WR(bp, BNX2_EMAC_MODE, val);
  3234. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3235. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3236. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3237. break;
  3238. }
  3239. case PCI_D3hot: {
  3240. int i;
  3241. u32 val, wol_msg;
  3242. if (bp->wol) {
  3243. u32 advertising;
  3244. u8 autoneg;
  3245. autoneg = bp->autoneg;
  3246. advertising = bp->advertising;
  3247. if (bp->phy_port == PORT_TP) {
  3248. bp->autoneg = AUTONEG_SPEED;
  3249. bp->advertising = ADVERTISED_10baseT_Half |
  3250. ADVERTISED_10baseT_Full |
  3251. ADVERTISED_100baseT_Half |
  3252. ADVERTISED_100baseT_Full |
  3253. ADVERTISED_Autoneg;
  3254. }
  3255. spin_lock_bh(&bp->phy_lock);
  3256. bnx2_setup_phy(bp, bp->phy_port);
  3257. spin_unlock_bh(&bp->phy_lock);
  3258. bp->autoneg = autoneg;
  3259. bp->advertising = advertising;
  3260. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3261. val = REG_RD(bp, BNX2_EMAC_MODE);
  3262. /* Enable port mode. */
  3263. val &= ~BNX2_EMAC_MODE_PORT;
  3264. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3265. BNX2_EMAC_MODE_ACPI_RCVD |
  3266. BNX2_EMAC_MODE_MPKT;
  3267. if (bp->phy_port == PORT_TP)
  3268. val |= BNX2_EMAC_MODE_PORT_MII;
  3269. else {
  3270. val |= BNX2_EMAC_MODE_PORT_GMII;
  3271. if (bp->line_speed == SPEED_2500)
  3272. val |= BNX2_EMAC_MODE_25G_MODE;
  3273. }
  3274. REG_WR(bp, BNX2_EMAC_MODE, val);
  3275. /* receive all multicast */
  3276. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3277. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3278. 0xffffffff);
  3279. }
  3280. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3281. BNX2_EMAC_RX_MODE_SORT_MODE);
  3282. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3283. BNX2_RPM_SORT_USER0_MC_EN;
  3284. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3285. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3286. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3287. BNX2_RPM_SORT_USER0_ENA);
  3288. /* Need to enable EMAC and RPM for WOL. */
  3289. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3290. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3291. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3292. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3293. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3294. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3295. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3296. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3297. }
  3298. else {
  3299. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3300. }
  3301. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3302. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3303. 1, 0);
  3304. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3305. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3306. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3307. if (bp->wol)
  3308. pmcsr |= 3;
  3309. }
  3310. else {
  3311. pmcsr |= 3;
  3312. }
  3313. if (bp->wol) {
  3314. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3315. }
  3316. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3317. pmcsr);
  3318. /* No more memory access after this point until
  3319. * device is brought back to D0.
  3320. */
  3321. udelay(50);
  3322. break;
  3323. }
  3324. default:
  3325. return -EINVAL;
  3326. }
  3327. return 0;
  3328. }
  3329. static int
  3330. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3331. {
  3332. u32 val;
  3333. int j;
  3334. /* Request access to the flash interface. */
  3335. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3336. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3337. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3338. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3339. break;
  3340. udelay(5);
  3341. }
  3342. if (j >= NVRAM_TIMEOUT_COUNT)
  3343. return -EBUSY;
  3344. return 0;
  3345. }
  3346. static int
  3347. bnx2_release_nvram_lock(struct bnx2 *bp)
  3348. {
  3349. int j;
  3350. u32 val;
  3351. /* Relinquish nvram interface. */
  3352. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3353. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3354. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3355. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3356. break;
  3357. udelay(5);
  3358. }
  3359. if (j >= NVRAM_TIMEOUT_COUNT)
  3360. return -EBUSY;
  3361. return 0;
  3362. }
  3363. static int
  3364. bnx2_enable_nvram_write(struct bnx2 *bp)
  3365. {
  3366. u32 val;
  3367. val = REG_RD(bp, BNX2_MISC_CFG);
  3368. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3369. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3370. int j;
  3371. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3372. REG_WR(bp, BNX2_NVM_COMMAND,
  3373. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3374. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3375. udelay(5);
  3376. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3377. if (val & BNX2_NVM_COMMAND_DONE)
  3378. break;
  3379. }
  3380. if (j >= NVRAM_TIMEOUT_COUNT)
  3381. return -EBUSY;
  3382. }
  3383. return 0;
  3384. }
  3385. static void
  3386. bnx2_disable_nvram_write(struct bnx2 *bp)
  3387. {
  3388. u32 val;
  3389. val = REG_RD(bp, BNX2_MISC_CFG);
  3390. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3391. }
  3392. static void
  3393. bnx2_enable_nvram_access(struct bnx2 *bp)
  3394. {
  3395. u32 val;
  3396. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3397. /* Enable both bits, even on read. */
  3398. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3399. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3400. }
  3401. static void
  3402. bnx2_disable_nvram_access(struct bnx2 *bp)
  3403. {
  3404. u32 val;
  3405. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3406. /* Disable both bits, even after read. */
  3407. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3408. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3409. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3410. }
  3411. static int
  3412. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3413. {
  3414. u32 cmd;
  3415. int j;
  3416. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3417. /* Buffered flash, no erase needed */
  3418. return 0;
  3419. /* Build an erase command */
  3420. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3421. BNX2_NVM_COMMAND_DOIT;
  3422. /* Need to clear DONE bit separately. */
  3423. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3424. /* Address of the NVRAM to read from. */
  3425. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3426. /* Issue an erase command. */
  3427. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3428. /* Wait for completion. */
  3429. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3430. u32 val;
  3431. udelay(5);
  3432. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3433. if (val & BNX2_NVM_COMMAND_DONE)
  3434. break;
  3435. }
  3436. if (j >= NVRAM_TIMEOUT_COUNT)
  3437. return -EBUSY;
  3438. return 0;
  3439. }
  3440. static int
  3441. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3442. {
  3443. u32 cmd;
  3444. int j;
  3445. /* Build the command word. */
  3446. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3447. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3448. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3449. offset = ((offset / bp->flash_info->page_size) <<
  3450. bp->flash_info->page_bits) +
  3451. (offset % bp->flash_info->page_size);
  3452. }
  3453. /* Need to clear DONE bit separately. */
  3454. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3455. /* Address of the NVRAM to read from. */
  3456. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3457. /* Issue a read command. */
  3458. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3459. /* Wait for completion. */
  3460. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3461. u32 val;
  3462. udelay(5);
  3463. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3464. if (val & BNX2_NVM_COMMAND_DONE) {
  3465. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3466. memcpy(ret_val, &v, 4);
  3467. break;
  3468. }
  3469. }
  3470. if (j >= NVRAM_TIMEOUT_COUNT)
  3471. return -EBUSY;
  3472. return 0;
  3473. }
  3474. static int
  3475. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3476. {
  3477. u32 cmd;
  3478. __be32 val32;
  3479. int j;
  3480. /* Build the command word. */
  3481. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3482. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3483. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3484. offset = ((offset / bp->flash_info->page_size) <<
  3485. bp->flash_info->page_bits) +
  3486. (offset % bp->flash_info->page_size);
  3487. }
  3488. /* Need to clear DONE bit separately. */
  3489. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3490. memcpy(&val32, val, 4);
  3491. /* Write the data. */
  3492. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3493. /* Address of the NVRAM to write to. */
  3494. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3495. /* Issue the write command. */
  3496. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3497. /* Wait for completion. */
  3498. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3499. udelay(5);
  3500. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3501. break;
  3502. }
  3503. if (j >= NVRAM_TIMEOUT_COUNT)
  3504. return -EBUSY;
  3505. return 0;
  3506. }
  3507. static int
  3508. bnx2_init_nvram(struct bnx2 *bp)
  3509. {
  3510. u32 val;
  3511. int j, entry_count, rc = 0;
  3512. const struct flash_spec *flash;
  3513. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3514. bp->flash_info = &flash_5709;
  3515. goto get_flash_size;
  3516. }
  3517. /* Determine the selected interface. */
  3518. val = REG_RD(bp, BNX2_NVM_CFG1);
  3519. entry_count = ARRAY_SIZE(flash_table);
  3520. if (val & 0x40000000) {
  3521. /* Flash interface has been reconfigured */
  3522. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3523. j++, flash++) {
  3524. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3525. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3526. bp->flash_info = flash;
  3527. break;
  3528. }
  3529. }
  3530. }
  3531. else {
  3532. u32 mask;
  3533. /* Not yet been reconfigured */
  3534. if (val & (1 << 23))
  3535. mask = FLASH_BACKUP_STRAP_MASK;
  3536. else
  3537. mask = FLASH_STRAP_MASK;
  3538. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3539. j++, flash++) {
  3540. if ((val & mask) == (flash->strapping & mask)) {
  3541. bp->flash_info = flash;
  3542. /* Request access to the flash interface. */
  3543. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3544. return rc;
  3545. /* Enable access to flash interface */
  3546. bnx2_enable_nvram_access(bp);
  3547. /* Reconfigure the flash interface */
  3548. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3549. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3550. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3551. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3552. /* Disable access to flash interface */
  3553. bnx2_disable_nvram_access(bp);
  3554. bnx2_release_nvram_lock(bp);
  3555. break;
  3556. }
  3557. }
  3558. } /* if (val & 0x40000000) */
  3559. if (j == entry_count) {
  3560. bp->flash_info = NULL;
  3561. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3562. return -ENODEV;
  3563. }
  3564. get_flash_size:
  3565. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3566. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3567. if (val)
  3568. bp->flash_size = val;
  3569. else
  3570. bp->flash_size = bp->flash_info->total_size;
  3571. return rc;
  3572. }
  3573. static int
  3574. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3575. int buf_size)
  3576. {
  3577. int rc = 0;
  3578. u32 cmd_flags, offset32, len32, extra;
  3579. if (buf_size == 0)
  3580. return 0;
  3581. /* Request access to the flash interface. */
  3582. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3583. return rc;
  3584. /* Enable access to flash interface */
  3585. bnx2_enable_nvram_access(bp);
  3586. len32 = buf_size;
  3587. offset32 = offset;
  3588. extra = 0;
  3589. cmd_flags = 0;
  3590. if (offset32 & 3) {
  3591. u8 buf[4];
  3592. u32 pre_len;
  3593. offset32 &= ~3;
  3594. pre_len = 4 - (offset & 3);
  3595. if (pre_len >= len32) {
  3596. pre_len = len32;
  3597. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3598. BNX2_NVM_COMMAND_LAST;
  3599. }
  3600. else {
  3601. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3602. }
  3603. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3604. if (rc)
  3605. return rc;
  3606. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3607. offset32 += 4;
  3608. ret_buf += pre_len;
  3609. len32 -= pre_len;
  3610. }
  3611. if (len32 & 3) {
  3612. extra = 4 - (len32 & 3);
  3613. len32 = (len32 + 4) & ~3;
  3614. }
  3615. if (len32 == 4) {
  3616. u8 buf[4];
  3617. if (cmd_flags)
  3618. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3619. else
  3620. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3621. BNX2_NVM_COMMAND_LAST;
  3622. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3623. memcpy(ret_buf, buf, 4 - extra);
  3624. }
  3625. else if (len32 > 0) {
  3626. u8 buf[4];
  3627. /* Read the first word. */
  3628. if (cmd_flags)
  3629. cmd_flags = 0;
  3630. else
  3631. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3632. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3633. /* Advance to the next dword. */
  3634. offset32 += 4;
  3635. ret_buf += 4;
  3636. len32 -= 4;
  3637. while (len32 > 4 && rc == 0) {
  3638. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3639. /* Advance to the next dword. */
  3640. offset32 += 4;
  3641. ret_buf += 4;
  3642. len32 -= 4;
  3643. }
  3644. if (rc)
  3645. return rc;
  3646. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3647. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3648. memcpy(ret_buf, buf, 4 - extra);
  3649. }
  3650. /* Disable access to flash interface */
  3651. bnx2_disable_nvram_access(bp);
  3652. bnx2_release_nvram_lock(bp);
  3653. return rc;
  3654. }
  3655. static int
  3656. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3657. int buf_size)
  3658. {
  3659. u32 written, offset32, len32;
  3660. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3661. int rc = 0;
  3662. int align_start, align_end;
  3663. buf = data_buf;
  3664. offset32 = offset;
  3665. len32 = buf_size;
  3666. align_start = align_end = 0;
  3667. if ((align_start = (offset32 & 3))) {
  3668. offset32 &= ~3;
  3669. len32 += align_start;
  3670. if (len32 < 4)
  3671. len32 = 4;
  3672. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3673. return rc;
  3674. }
  3675. if (len32 & 3) {
  3676. align_end = 4 - (len32 & 3);
  3677. len32 += align_end;
  3678. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3679. return rc;
  3680. }
  3681. if (align_start || align_end) {
  3682. align_buf = kmalloc(len32, GFP_KERNEL);
  3683. if (align_buf == NULL)
  3684. return -ENOMEM;
  3685. if (align_start) {
  3686. memcpy(align_buf, start, 4);
  3687. }
  3688. if (align_end) {
  3689. memcpy(align_buf + len32 - 4, end, 4);
  3690. }
  3691. memcpy(align_buf + align_start, data_buf, buf_size);
  3692. buf = align_buf;
  3693. }
  3694. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3695. flash_buffer = kmalloc(264, GFP_KERNEL);
  3696. if (flash_buffer == NULL) {
  3697. rc = -ENOMEM;
  3698. goto nvram_write_end;
  3699. }
  3700. }
  3701. written = 0;
  3702. while ((written < len32) && (rc == 0)) {
  3703. u32 page_start, page_end, data_start, data_end;
  3704. u32 addr, cmd_flags;
  3705. int i;
  3706. /* Find the page_start addr */
  3707. page_start = offset32 + written;
  3708. page_start -= (page_start % bp->flash_info->page_size);
  3709. /* Find the page_end addr */
  3710. page_end = page_start + bp->flash_info->page_size;
  3711. /* Find the data_start addr */
  3712. data_start = (written == 0) ? offset32 : page_start;
  3713. /* Find the data_end addr */
  3714. data_end = (page_end > offset32 + len32) ?
  3715. (offset32 + len32) : page_end;
  3716. /* Request access to the flash interface. */
  3717. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3718. goto nvram_write_end;
  3719. /* Enable access to flash interface */
  3720. bnx2_enable_nvram_access(bp);
  3721. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3722. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3723. int j;
  3724. /* Read the whole page into the buffer
  3725. * (non-buffer flash only) */
  3726. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3727. if (j == (bp->flash_info->page_size - 4)) {
  3728. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3729. }
  3730. rc = bnx2_nvram_read_dword(bp,
  3731. page_start + j,
  3732. &flash_buffer[j],
  3733. cmd_flags);
  3734. if (rc)
  3735. goto nvram_write_end;
  3736. cmd_flags = 0;
  3737. }
  3738. }
  3739. /* Enable writes to flash interface (unlock write-protect) */
  3740. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3741. goto nvram_write_end;
  3742. /* Loop to write back the buffer data from page_start to
  3743. * data_start */
  3744. i = 0;
  3745. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3746. /* Erase the page */
  3747. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3748. goto nvram_write_end;
  3749. /* Re-enable the write again for the actual write */
  3750. bnx2_enable_nvram_write(bp);
  3751. for (addr = page_start; addr < data_start;
  3752. addr += 4, i += 4) {
  3753. rc = bnx2_nvram_write_dword(bp, addr,
  3754. &flash_buffer[i], cmd_flags);
  3755. if (rc != 0)
  3756. goto nvram_write_end;
  3757. cmd_flags = 0;
  3758. }
  3759. }
  3760. /* Loop to write the new data from data_start to data_end */
  3761. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3762. if ((addr == page_end - 4) ||
  3763. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3764. (addr == data_end - 4))) {
  3765. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3766. }
  3767. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3768. cmd_flags);
  3769. if (rc != 0)
  3770. goto nvram_write_end;
  3771. cmd_flags = 0;
  3772. buf += 4;
  3773. }
  3774. /* Loop to write back the buffer data from data_end
  3775. * to page_end */
  3776. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3777. for (addr = data_end; addr < page_end;
  3778. addr += 4, i += 4) {
  3779. if (addr == page_end-4) {
  3780. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3781. }
  3782. rc = bnx2_nvram_write_dword(bp, addr,
  3783. &flash_buffer[i], cmd_flags);
  3784. if (rc != 0)
  3785. goto nvram_write_end;
  3786. cmd_flags = 0;
  3787. }
  3788. }
  3789. /* Disable writes to flash interface (lock write-protect) */
  3790. bnx2_disable_nvram_write(bp);
  3791. /* Disable access to flash interface */
  3792. bnx2_disable_nvram_access(bp);
  3793. bnx2_release_nvram_lock(bp);
  3794. /* Increment written */
  3795. written += data_end - data_start;
  3796. }
  3797. nvram_write_end:
  3798. kfree(flash_buffer);
  3799. kfree(align_buf);
  3800. return rc;
  3801. }
  3802. static void
  3803. bnx2_init_fw_cap(struct bnx2 *bp)
  3804. {
  3805. u32 val, sig = 0;
  3806. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3807. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3808. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3809. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3810. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3811. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3812. return;
  3813. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3814. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3815. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3816. }
  3817. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3818. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3819. u32 link;
  3820. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3821. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3822. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3823. bp->phy_port = PORT_FIBRE;
  3824. else
  3825. bp->phy_port = PORT_TP;
  3826. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3827. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3828. }
  3829. if (netif_running(bp->dev) && sig)
  3830. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3831. }
  3832. static void
  3833. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3834. {
  3835. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3836. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3837. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3838. }
  3839. static int
  3840. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3841. {
  3842. u32 val;
  3843. int i, rc = 0;
  3844. u8 old_port;
  3845. /* Wait for the current PCI transaction to complete before
  3846. * issuing a reset. */
  3847. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3848. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3849. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3850. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3851. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3852. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3853. udelay(5);
  3854. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3855. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3856. /* Deposit a driver reset signature so the firmware knows that
  3857. * this is a soft reset. */
  3858. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3859. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3860. /* Do a dummy read to force the chip to complete all current transaction
  3861. * before we issue a reset. */
  3862. val = REG_RD(bp, BNX2_MISC_ID);
  3863. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3864. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3865. REG_RD(bp, BNX2_MISC_COMMAND);
  3866. udelay(5);
  3867. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3868. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3869. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3870. } else {
  3871. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3872. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3873. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3874. /* Chip reset. */
  3875. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3876. /* Reading back any register after chip reset will hang the
  3877. * bus on 5706 A0 and A1. The msleep below provides plenty
  3878. * of margin for write posting.
  3879. */
  3880. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3881. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3882. msleep(20);
  3883. /* Reset takes approximate 30 usec */
  3884. for (i = 0; i < 10; i++) {
  3885. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3886. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3887. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3888. break;
  3889. udelay(10);
  3890. }
  3891. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3892. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3893. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3894. return -EBUSY;
  3895. }
  3896. }
  3897. /* Make sure byte swapping is properly configured. */
  3898. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3899. if (val != 0x01020304) {
  3900. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3901. return -ENODEV;
  3902. }
  3903. /* Wait for the firmware to finish its initialization. */
  3904. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3905. if (rc)
  3906. return rc;
  3907. spin_lock_bh(&bp->phy_lock);
  3908. old_port = bp->phy_port;
  3909. bnx2_init_fw_cap(bp);
  3910. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3911. old_port != bp->phy_port)
  3912. bnx2_set_default_remote_link(bp);
  3913. spin_unlock_bh(&bp->phy_lock);
  3914. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3915. /* Adjust the voltage regular to two steps lower. The default
  3916. * of this register is 0x0000000e. */
  3917. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3918. /* Remove bad rbuf memory from the free pool. */
  3919. rc = bnx2_alloc_bad_rbuf(bp);
  3920. }
  3921. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3922. bnx2_setup_msix_tbl(bp);
  3923. return rc;
  3924. }
  3925. static int
  3926. bnx2_init_chip(struct bnx2 *bp)
  3927. {
  3928. u32 val, mtu;
  3929. int rc, i;
  3930. /* Make sure the interrupt is not active. */
  3931. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3932. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3933. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3934. #ifdef __BIG_ENDIAN
  3935. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3936. #endif
  3937. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3938. DMA_READ_CHANS << 12 |
  3939. DMA_WRITE_CHANS << 16;
  3940. val |= (0x2 << 20) | (1 << 11);
  3941. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3942. val |= (1 << 23);
  3943. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3944. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3945. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3946. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3947. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3948. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3949. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3950. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3951. }
  3952. if (bp->flags & BNX2_FLAG_PCIX) {
  3953. u16 val16;
  3954. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3955. &val16);
  3956. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3957. val16 & ~PCI_X_CMD_ERO);
  3958. }
  3959. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3960. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3961. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3962. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3963. /* Initialize context mapping and zero out the quick contexts. The
  3964. * context block must have already been enabled. */
  3965. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3966. rc = bnx2_init_5709_context(bp);
  3967. if (rc)
  3968. return rc;
  3969. } else
  3970. bnx2_init_context(bp);
  3971. if ((rc = bnx2_init_cpus(bp)) != 0)
  3972. return rc;
  3973. bnx2_init_nvram(bp);
  3974. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3975. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3976. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3977. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3978. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3979. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3980. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3981. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3982. }
  3983. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3984. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3985. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3986. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3987. val = (BCM_PAGE_BITS - 8) << 24;
  3988. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3989. /* Configure page size. */
  3990. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3991. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3992. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3993. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3994. val = bp->mac_addr[0] +
  3995. (bp->mac_addr[1] << 8) +
  3996. (bp->mac_addr[2] << 16) +
  3997. bp->mac_addr[3] +
  3998. (bp->mac_addr[4] << 8) +
  3999. (bp->mac_addr[5] << 16);
  4000. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4001. /* Program the MTU. Also include 4 bytes for CRC32. */
  4002. mtu = bp->dev->mtu;
  4003. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4004. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4005. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4006. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4007. if (mtu < 1500)
  4008. mtu = 1500;
  4009. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4010. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4011. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4012. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4013. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4014. bp->bnx2_napi[i].last_status_idx = 0;
  4015. bp->idle_chk_status_idx = 0xffff;
  4016. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4017. /* Set up how to generate a link change interrupt. */
  4018. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4019. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4020. (u64) bp->status_blk_mapping & 0xffffffff);
  4021. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4022. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4023. (u64) bp->stats_blk_mapping & 0xffffffff);
  4024. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4025. (u64) bp->stats_blk_mapping >> 32);
  4026. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4027. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4028. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4029. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4030. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4031. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4032. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4033. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4034. REG_WR(bp, BNX2_HC_COM_TICKS,
  4035. (bp->com_ticks_int << 16) | bp->com_ticks);
  4036. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4037. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4038. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4039. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4040. else
  4041. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4042. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4043. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4044. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4045. else {
  4046. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4047. BNX2_HC_CONFIG_COLLECT_STATS;
  4048. }
  4049. if (bp->irq_nvecs > 1) {
  4050. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4051. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4052. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4053. }
  4054. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4055. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4056. REG_WR(bp, BNX2_HC_CONFIG, val);
  4057. for (i = 1; i < bp->irq_nvecs; i++) {
  4058. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4059. BNX2_HC_SB_CONFIG_1;
  4060. REG_WR(bp, base,
  4061. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4062. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4063. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4064. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4065. (bp->tx_quick_cons_trip_int << 16) |
  4066. bp->tx_quick_cons_trip);
  4067. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4068. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4069. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4070. (bp->rx_quick_cons_trip_int << 16) |
  4071. bp->rx_quick_cons_trip);
  4072. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4073. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4074. }
  4075. /* Clear internal stats counters. */
  4076. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4077. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4078. /* Initialize the receive filter. */
  4079. bnx2_set_rx_mode(bp->dev);
  4080. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4081. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4082. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4083. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4084. }
  4085. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4086. 1, 0);
  4087. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4088. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4089. udelay(20);
  4090. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4091. return rc;
  4092. }
  4093. static void
  4094. bnx2_clear_ring_states(struct bnx2 *bp)
  4095. {
  4096. struct bnx2_napi *bnapi;
  4097. struct bnx2_tx_ring_info *txr;
  4098. struct bnx2_rx_ring_info *rxr;
  4099. int i;
  4100. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4101. bnapi = &bp->bnx2_napi[i];
  4102. txr = &bnapi->tx_ring;
  4103. rxr = &bnapi->rx_ring;
  4104. txr->tx_cons = 0;
  4105. txr->hw_tx_cons = 0;
  4106. rxr->rx_prod_bseq = 0;
  4107. rxr->rx_prod = 0;
  4108. rxr->rx_cons = 0;
  4109. rxr->rx_pg_prod = 0;
  4110. rxr->rx_pg_cons = 0;
  4111. }
  4112. }
  4113. static void
  4114. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4115. {
  4116. u32 val, offset0, offset1, offset2, offset3;
  4117. u32 cid_addr = GET_CID_ADDR(cid);
  4118. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4119. offset0 = BNX2_L2CTX_TYPE_XI;
  4120. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4121. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4122. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4123. } else {
  4124. offset0 = BNX2_L2CTX_TYPE;
  4125. offset1 = BNX2_L2CTX_CMD_TYPE;
  4126. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4127. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4128. }
  4129. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4130. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4131. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4132. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4133. val = (u64) txr->tx_desc_mapping >> 32;
  4134. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4135. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4136. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4137. }
  4138. static void
  4139. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4140. {
  4141. struct tx_bd *txbd;
  4142. u32 cid = TX_CID;
  4143. struct bnx2_napi *bnapi;
  4144. struct bnx2_tx_ring_info *txr;
  4145. bnapi = &bp->bnx2_napi[ring_num];
  4146. txr = &bnapi->tx_ring;
  4147. if (ring_num == 0)
  4148. cid = TX_CID;
  4149. else
  4150. cid = TX_TSS_CID + ring_num - 1;
  4151. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4152. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4153. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4154. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4155. txr->tx_prod = 0;
  4156. txr->tx_prod_bseq = 0;
  4157. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4158. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4159. bnx2_init_tx_context(bp, cid, txr);
  4160. }
  4161. static void
  4162. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4163. int num_rings)
  4164. {
  4165. int i;
  4166. struct rx_bd *rxbd;
  4167. for (i = 0; i < num_rings; i++) {
  4168. int j;
  4169. rxbd = &rx_ring[i][0];
  4170. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4171. rxbd->rx_bd_len = buf_size;
  4172. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4173. }
  4174. if (i == (num_rings - 1))
  4175. j = 0;
  4176. else
  4177. j = i + 1;
  4178. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4179. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4180. }
  4181. }
  4182. static void
  4183. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4184. {
  4185. int i;
  4186. u16 prod, ring_prod;
  4187. u32 cid, rx_cid_addr, val;
  4188. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4189. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4190. if (ring_num == 0)
  4191. cid = RX_CID;
  4192. else
  4193. cid = RX_RSS_CID + ring_num - 1;
  4194. rx_cid_addr = GET_CID_ADDR(cid);
  4195. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4196. bp->rx_buf_use_size, bp->rx_max_ring);
  4197. bnx2_init_rx_context(bp, cid);
  4198. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4199. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4200. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4201. }
  4202. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4203. if (bp->rx_pg_ring_size) {
  4204. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4205. rxr->rx_pg_desc_mapping,
  4206. PAGE_SIZE, bp->rx_max_pg_ring);
  4207. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4208. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4209. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4210. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4211. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4212. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4213. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4214. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4215. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4216. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4217. }
  4218. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4219. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4220. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4221. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4222. ring_prod = prod = rxr->rx_pg_prod;
  4223. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4224. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4225. printk(KERN_WARNING PFX "%s: init'ed rx page ring %d "
  4226. "with %d/%d pages only\n",
  4227. bp->dev->name, ring_num, i, bp->rx_pg_ring_size);
  4228. break;
  4229. }
  4230. prod = NEXT_RX_BD(prod);
  4231. ring_prod = RX_PG_RING_IDX(prod);
  4232. }
  4233. rxr->rx_pg_prod = prod;
  4234. ring_prod = prod = rxr->rx_prod;
  4235. for (i = 0; i < bp->rx_ring_size; i++) {
  4236. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4237. printk(KERN_WARNING PFX "%s: init'ed rx ring %d with "
  4238. "%d/%d skbs only\n",
  4239. bp->dev->name, ring_num, i, bp->rx_ring_size);
  4240. break;
  4241. }
  4242. prod = NEXT_RX_BD(prod);
  4243. ring_prod = RX_RING_IDX(prod);
  4244. }
  4245. rxr->rx_prod = prod;
  4246. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4247. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4248. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4249. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4250. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4251. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4252. }
  4253. static void
  4254. bnx2_init_all_rings(struct bnx2 *bp)
  4255. {
  4256. int i;
  4257. u32 val;
  4258. bnx2_clear_ring_states(bp);
  4259. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4260. for (i = 0; i < bp->num_tx_rings; i++)
  4261. bnx2_init_tx_ring(bp, i);
  4262. if (bp->num_tx_rings > 1)
  4263. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4264. (TX_TSS_CID << 7));
  4265. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4266. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4267. for (i = 0; i < bp->num_rx_rings; i++)
  4268. bnx2_init_rx_ring(bp, i);
  4269. if (bp->num_rx_rings > 1) {
  4270. u32 tbl_32;
  4271. u8 *tbl = (u8 *) &tbl_32;
  4272. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4273. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4274. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4275. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4276. if ((i % 4) == 3)
  4277. bnx2_reg_wr_ind(bp,
  4278. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4279. cpu_to_be32(tbl_32));
  4280. }
  4281. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4282. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4283. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4284. }
  4285. }
  4286. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4287. {
  4288. u32 max, num_rings = 1;
  4289. while (ring_size > MAX_RX_DESC_CNT) {
  4290. ring_size -= MAX_RX_DESC_CNT;
  4291. num_rings++;
  4292. }
  4293. /* round to next power of 2 */
  4294. max = max_size;
  4295. while ((max & num_rings) == 0)
  4296. max >>= 1;
  4297. if (num_rings != max)
  4298. max <<= 1;
  4299. return max;
  4300. }
  4301. static void
  4302. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4303. {
  4304. u32 rx_size, rx_space, jumbo_size;
  4305. /* 8 for CRC and VLAN */
  4306. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4307. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4308. sizeof(struct skb_shared_info);
  4309. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4310. bp->rx_pg_ring_size = 0;
  4311. bp->rx_max_pg_ring = 0;
  4312. bp->rx_max_pg_ring_idx = 0;
  4313. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4314. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4315. jumbo_size = size * pages;
  4316. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4317. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4318. bp->rx_pg_ring_size = jumbo_size;
  4319. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4320. MAX_RX_PG_RINGS);
  4321. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4322. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4323. bp->rx_copy_thresh = 0;
  4324. }
  4325. bp->rx_buf_use_size = rx_size;
  4326. /* hw alignment */
  4327. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4328. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4329. bp->rx_ring_size = size;
  4330. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4331. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4332. }
  4333. static void
  4334. bnx2_free_tx_skbs(struct bnx2 *bp)
  4335. {
  4336. int i;
  4337. for (i = 0; i < bp->num_tx_rings; i++) {
  4338. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4339. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4340. int j;
  4341. if (txr->tx_buf_ring == NULL)
  4342. continue;
  4343. for (j = 0; j < TX_DESC_CNT; ) {
  4344. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4345. struct sk_buff *skb = tx_buf->skb;
  4346. int k, last;
  4347. if (skb == NULL) {
  4348. j++;
  4349. continue;
  4350. }
  4351. pci_unmap_single(bp->pdev,
  4352. pci_unmap_addr(tx_buf, mapping),
  4353. skb_headlen(skb),
  4354. PCI_DMA_TODEVICE);
  4355. tx_buf->skb = NULL;
  4356. last = tx_buf->nr_frags;
  4357. j++;
  4358. for (k = 0; k < last; k++, j++) {
  4359. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4360. pci_unmap_page(bp->pdev,
  4361. pci_unmap_addr(tx_buf, mapping),
  4362. skb_shinfo(skb)->frags[k].size,
  4363. PCI_DMA_TODEVICE);
  4364. }
  4365. dev_kfree_skb(skb);
  4366. }
  4367. }
  4368. }
  4369. static void
  4370. bnx2_free_rx_skbs(struct bnx2 *bp)
  4371. {
  4372. int i;
  4373. for (i = 0; i < bp->num_rx_rings; i++) {
  4374. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4375. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4376. int j;
  4377. if (rxr->rx_buf_ring == NULL)
  4378. return;
  4379. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4380. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4381. struct sk_buff *skb = rx_buf->skb;
  4382. if (skb == NULL)
  4383. continue;
  4384. pci_unmap_single(bp->pdev,
  4385. pci_unmap_addr(rx_buf, mapping),
  4386. bp->rx_buf_use_size,
  4387. PCI_DMA_FROMDEVICE);
  4388. rx_buf->skb = NULL;
  4389. dev_kfree_skb(skb);
  4390. }
  4391. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4392. bnx2_free_rx_page(bp, rxr, j);
  4393. }
  4394. }
  4395. static void
  4396. bnx2_free_skbs(struct bnx2 *bp)
  4397. {
  4398. bnx2_free_tx_skbs(bp);
  4399. bnx2_free_rx_skbs(bp);
  4400. }
  4401. static int
  4402. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4403. {
  4404. int rc;
  4405. rc = bnx2_reset_chip(bp, reset_code);
  4406. bnx2_free_skbs(bp);
  4407. if (rc)
  4408. return rc;
  4409. if ((rc = bnx2_init_chip(bp)) != 0)
  4410. return rc;
  4411. bnx2_init_all_rings(bp);
  4412. return 0;
  4413. }
  4414. static int
  4415. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4416. {
  4417. int rc;
  4418. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4419. return rc;
  4420. spin_lock_bh(&bp->phy_lock);
  4421. bnx2_init_phy(bp, reset_phy);
  4422. bnx2_set_link(bp);
  4423. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4424. bnx2_remote_phy_event(bp);
  4425. spin_unlock_bh(&bp->phy_lock);
  4426. return 0;
  4427. }
  4428. static int
  4429. bnx2_shutdown_chip(struct bnx2 *bp)
  4430. {
  4431. u32 reset_code;
  4432. if (bp->flags & BNX2_FLAG_NO_WOL)
  4433. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4434. else if (bp->wol)
  4435. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4436. else
  4437. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4438. return bnx2_reset_chip(bp, reset_code);
  4439. }
  4440. static int
  4441. bnx2_test_registers(struct bnx2 *bp)
  4442. {
  4443. int ret;
  4444. int i, is_5709;
  4445. static const struct {
  4446. u16 offset;
  4447. u16 flags;
  4448. #define BNX2_FL_NOT_5709 1
  4449. u32 rw_mask;
  4450. u32 ro_mask;
  4451. } reg_tbl[] = {
  4452. { 0x006c, 0, 0x00000000, 0x0000003f },
  4453. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4454. { 0x0094, 0, 0x00000000, 0x00000000 },
  4455. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4456. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4457. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4458. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4459. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4460. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4461. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4462. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4463. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4464. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4465. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4466. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4467. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4468. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4469. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4470. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4471. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4472. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4473. { 0x1000, 0, 0x00000000, 0x00000001 },
  4474. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4475. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4476. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4477. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4478. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4479. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4480. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4481. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4482. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4483. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4484. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4485. { 0x1800, 0, 0x00000000, 0x00000001 },
  4486. { 0x1804, 0, 0x00000000, 0x00000003 },
  4487. { 0x2800, 0, 0x00000000, 0x00000001 },
  4488. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4489. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4490. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4491. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4492. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4493. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4494. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4495. { 0x2840, 0, 0x00000000, 0xffffffff },
  4496. { 0x2844, 0, 0x00000000, 0xffffffff },
  4497. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4498. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4499. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4500. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4501. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4502. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4503. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4504. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4505. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4506. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4507. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4508. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4509. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4510. { 0x5004, 0, 0x00000000, 0x0000007f },
  4511. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4512. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4513. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4514. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4515. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4516. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4517. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4518. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4519. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4520. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4521. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4522. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4523. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4524. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4525. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4526. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4527. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4528. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4529. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4530. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4531. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4532. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4533. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4534. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4535. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4536. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4537. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4538. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4539. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4540. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4541. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4542. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4543. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4544. { 0xffff, 0, 0x00000000, 0x00000000 },
  4545. };
  4546. ret = 0;
  4547. is_5709 = 0;
  4548. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4549. is_5709 = 1;
  4550. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4551. u32 offset, rw_mask, ro_mask, save_val, val;
  4552. u16 flags = reg_tbl[i].flags;
  4553. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4554. continue;
  4555. offset = (u32) reg_tbl[i].offset;
  4556. rw_mask = reg_tbl[i].rw_mask;
  4557. ro_mask = reg_tbl[i].ro_mask;
  4558. save_val = readl(bp->regview + offset);
  4559. writel(0, bp->regview + offset);
  4560. val = readl(bp->regview + offset);
  4561. if ((val & rw_mask) != 0) {
  4562. goto reg_test_err;
  4563. }
  4564. if ((val & ro_mask) != (save_val & ro_mask)) {
  4565. goto reg_test_err;
  4566. }
  4567. writel(0xffffffff, bp->regview + offset);
  4568. val = readl(bp->regview + offset);
  4569. if ((val & rw_mask) != rw_mask) {
  4570. goto reg_test_err;
  4571. }
  4572. if ((val & ro_mask) != (save_val & ro_mask)) {
  4573. goto reg_test_err;
  4574. }
  4575. writel(save_val, bp->regview + offset);
  4576. continue;
  4577. reg_test_err:
  4578. writel(save_val, bp->regview + offset);
  4579. ret = -ENODEV;
  4580. break;
  4581. }
  4582. return ret;
  4583. }
  4584. static int
  4585. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4586. {
  4587. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4588. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4589. int i;
  4590. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4591. u32 offset;
  4592. for (offset = 0; offset < size; offset += 4) {
  4593. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4594. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4595. test_pattern[i]) {
  4596. return -ENODEV;
  4597. }
  4598. }
  4599. }
  4600. return 0;
  4601. }
  4602. static int
  4603. bnx2_test_memory(struct bnx2 *bp)
  4604. {
  4605. int ret = 0;
  4606. int i;
  4607. static struct mem_entry {
  4608. u32 offset;
  4609. u32 len;
  4610. } mem_tbl_5706[] = {
  4611. { 0x60000, 0x4000 },
  4612. { 0xa0000, 0x3000 },
  4613. { 0xe0000, 0x4000 },
  4614. { 0x120000, 0x4000 },
  4615. { 0x1a0000, 0x4000 },
  4616. { 0x160000, 0x4000 },
  4617. { 0xffffffff, 0 },
  4618. },
  4619. mem_tbl_5709[] = {
  4620. { 0x60000, 0x4000 },
  4621. { 0xa0000, 0x3000 },
  4622. { 0xe0000, 0x4000 },
  4623. { 0x120000, 0x4000 },
  4624. { 0x1a0000, 0x4000 },
  4625. { 0xffffffff, 0 },
  4626. };
  4627. struct mem_entry *mem_tbl;
  4628. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4629. mem_tbl = mem_tbl_5709;
  4630. else
  4631. mem_tbl = mem_tbl_5706;
  4632. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4633. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4634. mem_tbl[i].len)) != 0) {
  4635. return ret;
  4636. }
  4637. }
  4638. return ret;
  4639. }
  4640. #define BNX2_MAC_LOOPBACK 0
  4641. #define BNX2_PHY_LOOPBACK 1
  4642. static int
  4643. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4644. {
  4645. unsigned int pkt_size, num_pkts, i;
  4646. struct sk_buff *skb, *rx_skb;
  4647. unsigned char *packet;
  4648. u16 rx_start_idx, rx_idx;
  4649. dma_addr_t map;
  4650. struct tx_bd *txbd;
  4651. struct sw_bd *rx_buf;
  4652. struct l2_fhdr *rx_hdr;
  4653. int ret = -ENODEV;
  4654. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4655. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4656. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4657. tx_napi = bnapi;
  4658. txr = &tx_napi->tx_ring;
  4659. rxr = &bnapi->rx_ring;
  4660. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4661. bp->loopback = MAC_LOOPBACK;
  4662. bnx2_set_mac_loopback(bp);
  4663. }
  4664. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4665. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4666. return 0;
  4667. bp->loopback = PHY_LOOPBACK;
  4668. bnx2_set_phy_loopback(bp);
  4669. }
  4670. else
  4671. return -EINVAL;
  4672. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4673. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4674. if (!skb)
  4675. return -ENOMEM;
  4676. packet = skb_put(skb, pkt_size);
  4677. memcpy(packet, bp->dev->dev_addr, 6);
  4678. memset(packet + 6, 0x0, 8);
  4679. for (i = 14; i < pkt_size; i++)
  4680. packet[i] = (unsigned char) (i & 0xff);
  4681. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4682. PCI_DMA_TODEVICE);
  4683. if (pci_dma_mapping_error(bp->pdev, map)) {
  4684. dev_kfree_skb(skb);
  4685. return -EIO;
  4686. }
  4687. REG_WR(bp, BNX2_HC_COMMAND,
  4688. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4689. REG_RD(bp, BNX2_HC_COMMAND);
  4690. udelay(5);
  4691. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4692. num_pkts = 0;
  4693. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4694. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4695. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4696. txbd->tx_bd_mss_nbytes = pkt_size;
  4697. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4698. num_pkts++;
  4699. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4700. txr->tx_prod_bseq += pkt_size;
  4701. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4702. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4703. udelay(100);
  4704. REG_WR(bp, BNX2_HC_COMMAND,
  4705. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4706. REG_RD(bp, BNX2_HC_COMMAND);
  4707. udelay(5);
  4708. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4709. dev_kfree_skb(skb);
  4710. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4711. goto loopback_test_done;
  4712. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4713. if (rx_idx != rx_start_idx + num_pkts) {
  4714. goto loopback_test_done;
  4715. }
  4716. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4717. rx_skb = rx_buf->skb;
  4718. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4719. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4720. pci_dma_sync_single_for_cpu(bp->pdev,
  4721. pci_unmap_addr(rx_buf, mapping),
  4722. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4723. if (rx_hdr->l2_fhdr_status &
  4724. (L2_FHDR_ERRORS_BAD_CRC |
  4725. L2_FHDR_ERRORS_PHY_DECODE |
  4726. L2_FHDR_ERRORS_ALIGNMENT |
  4727. L2_FHDR_ERRORS_TOO_SHORT |
  4728. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4729. goto loopback_test_done;
  4730. }
  4731. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4732. goto loopback_test_done;
  4733. }
  4734. for (i = 14; i < pkt_size; i++) {
  4735. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4736. goto loopback_test_done;
  4737. }
  4738. }
  4739. ret = 0;
  4740. loopback_test_done:
  4741. bp->loopback = 0;
  4742. return ret;
  4743. }
  4744. #define BNX2_MAC_LOOPBACK_FAILED 1
  4745. #define BNX2_PHY_LOOPBACK_FAILED 2
  4746. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4747. BNX2_PHY_LOOPBACK_FAILED)
  4748. static int
  4749. bnx2_test_loopback(struct bnx2 *bp)
  4750. {
  4751. int rc = 0;
  4752. if (!netif_running(bp->dev))
  4753. return BNX2_LOOPBACK_FAILED;
  4754. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4755. spin_lock_bh(&bp->phy_lock);
  4756. bnx2_init_phy(bp, 1);
  4757. spin_unlock_bh(&bp->phy_lock);
  4758. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4759. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4760. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4761. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4762. return rc;
  4763. }
  4764. #define NVRAM_SIZE 0x200
  4765. #define CRC32_RESIDUAL 0xdebb20e3
  4766. static int
  4767. bnx2_test_nvram(struct bnx2 *bp)
  4768. {
  4769. __be32 buf[NVRAM_SIZE / 4];
  4770. u8 *data = (u8 *) buf;
  4771. int rc = 0;
  4772. u32 magic, csum;
  4773. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4774. goto test_nvram_done;
  4775. magic = be32_to_cpu(buf[0]);
  4776. if (magic != 0x669955aa) {
  4777. rc = -ENODEV;
  4778. goto test_nvram_done;
  4779. }
  4780. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4781. goto test_nvram_done;
  4782. csum = ether_crc_le(0x100, data);
  4783. if (csum != CRC32_RESIDUAL) {
  4784. rc = -ENODEV;
  4785. goto test_nvram_done;
  4786. }
  4787. csum = ether_crc_le(0x100, data + 0x100);
  4788. if (csum != CRC32_RESIDUAL) {
  4789. rc = -ENODEV;
  4790. }
  4791. test_nvram_done:
  4792. return rc;
  4793. }
  4794. static int
  4795. bnx2_test_link(struct bnx2 *bp)
  4796. {
  4797. u32 bmsr;
  4798. if (!netif_running(bp->dev))
  4799. return -ENODEV;
  4800. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4801. if (bp->link_up)
  4802. return 0;
  4803. return -ENODEV;
  4804. }
  4805. spin_lock_bh(&bp->phy_lock);
  4806. bnx2_enable_bmsr1(bp);
  4807. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4808. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4809. bnx2_disable_bmsr1(bp);
  4810. spin_unlock_bh(&bp->phy_lock);
  4811. if (bmsr & BMSR_LSTATUS) {
  4812. return 0;
  4813. }
  4814. return -ENODEV;
  4815. }
  4816. static int
  4817. bnx2_test_intr(struct bnx2 *bp)
  4818. {
  4819. int i;
  4820. u16 status_idx;
  4821. if (!netif_running(bp->dev))
  4822. return -ENODEV;
  4823. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4824. /* This register is not touched during run-time. */
  4825. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4826. REG_RD(bp, BNX2_HC_COMMAND);
  4827. for (i = 0; i < 10; i++) {
  4828. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4829. status_idx) {
  4830. break;
  4831. }
  4832. msleep_interruptible(10);
  4833. }
  4834. if (i < 10)
  4835. return 0;
  4836. return -ENODEV;
  4837. }
  4838. /* Determining link for parallel detection. */
  4839. static int
  4840. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4841. {
  4842. u32 mode_ctl, an_dbg, exp;
  4843. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4844. return 0;
  4845. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4846. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4847. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4848. return 0;
  4849. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4850. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4851. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4852. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4853. return 0;
  4854. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4855. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4856. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4857. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4858. return 0;
  4859. return 1;
  4860. }
  4861. static void
  4862. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4863. {
  4864. int check_link = 1;
  4865. spin_lock(&bp->phy_lock);
  4866. if (bp->serdes_an_pending) {
  4867. bp->serdes_an_pending--;
  4868. check_link = 0;
  4869. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4870. u32 bmcr;
  4871. bp->current_interval = BNX2_TIMER_INTERVAL;
  4872. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4873. if (bmcr & BMCR_ANENABLE) {
  4874. if (bnx2_5706_serdes_has_link(bp)) {
  4875. bmcr &= ~BMCR_ANENABLE;
  4876. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4877. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4878. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4879. }
  4880. }
  4881. }
  4882. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4883. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4884. u32 phy2;
  4885. bnx2_write_phy(bp, 0x17, 0x0f01);
  4886. bnx2_read_phy(bp, 0x15, &phy2);
  4887. if (phy2 & 0x20) {
  4888. u32 bmcr;
  4889. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4890. bmcr |= BMCR_ANENABLE;
  4891. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4892. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4893. }
  4894. } else
  4895. bp->current_interval = BNX2_TIMER_INTERVAL;
  4896. if (check_link) {
  4897. u32 val;
  4898. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4899. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4900. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4901. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4902. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4903. bnx2_5706s_force_link_dn(bp, 1);
  4904. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4905. } else
  4906. bnx2_set_link(bp);
  4907. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4908. bnx2_set_link(bp);
  4909. }
  4910. spin_unlock(&bp->phy_lock);
  4911. }
  4912. static void
  4913. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4914. {
  4915. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4916. return;
  4917. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4918. bp->serdes_an_pending = 0;
  4919. return;
  4920. }
  4921. spin_lock(&bp->phy_lock);
  4922. if (bp->serdes_an_pending)
  4923. bp->serdes_an_pending--;
  4924. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4925. u32 bmcr;
  4926. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4927. if (bmcr & BMCR_ANENABLE) {
  4928. bnx2_enable_forced_2g5(bp);
  4929. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4930. } else {
  4931. bnx2_disable_forced_2g5(bp);
  4932. bp->serdes_an_pending = 2;
  4933. bp->current_interval = BNX2_TIMER_INTERVAL;
  4934. }
  4935. } else
  4936. bp->current_interval = BNX2_TIMER_INTERVAL;
  4937. spin_unlock(&bp->phy_lock);
  4938. }
  4939. static void
  4940. bnx2_timer(unsigned long data)
  4941. {
  4942. struct bnx2 *bp = (struct bnx2 *) data;
  4943. if (!netif_running(bp->dev))
  4944. return;
  4945. if (atomic_read(&bp->intr_sem) != 0)
  4946. goto bnx2_restart_timer;
  4947. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4948. BNX2_FLAG_USING_MSI)
  4949. bnx2_chk_missed_msi(bp);
  4950. bnx2_send_heart_beat(bp);
  4951. bp->stats_blk->stat_FwRxDrop =
  4952. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4953. /* workaround occasional corrupted counters */
  4954. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4955. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4956. BNX2_HC_COMMAND_STATS_NOW);
  4957. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4958. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4959. bnx2_5706_serdes_timer(bp);
  4960. else
  4961. bnx2_5708_serdes_timer(bp);
  4962. }
  4963. bnx2_restart_timer:
  4964. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4965. }
  4966. static int
  4967. bnx2_request_irq(struct bnx2 *bp)
  4968. {
  4969. unsigned long flags;
  4970. struct bnx2_irq *irq;
  4971. int rc = 0, i;
  4972. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4973. flags = 0;
  4974. else
  4975. flags = IRQF_SHARED;
  4976. for (i = 0; i < bp->irq_nvecs; i++) {
  4977. irq = &bp->irq_tbl[i];
  4978. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4979. &bp->bnx2_napi[i]);
  4980. if (rc)
  4981. break;
  4982. irq->requested = 1;
  4983. }
  4984. return rc;
  4985. }
  4986. static void
  4987. bnx2_free_irq(struct bnx2 *bp)
  4988. {
  4989. struct bnx2_irq *irq;
  4990. int i;
  4991. for (i = 0; i < bp->irq_nvecs; i++) {
  4992. irq = &bp->irq_tbl[i];
  4993. if (irq->requested)
  4994. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4995. irq->requested = 0;
  4996. }
  4997. if (bp->flags & BNX2_FLAG_USING_MSI)
  4998. pci_disable_msi(bp->pdev);
  4999. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5000. pci_disable_msix(bp->pdev);
  5001. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5002. }
  5003. static void
  5004. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5005. {
  5006. int i, rc;
  5007. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5008. struct net_device *dev = bp->dev;
  5009. const int len = sizeof(bp->irq_tbl[0].name);
  5010. bnx2_setup_msix_tbl(bp);
  5011. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5012. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5013. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5014. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5015. msix_ent[i].entry = i;
  5016. msix_ent[i].vector = 0;
  5017. }
  5018. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5019. if (rc != 0)
  5020. return;
  5021. bp->irq_nvecs = msix_vecs;
  5022. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5023. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5024. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5025. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5026. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5027. }
  5028. }
  5029. static void
  5030. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5031. {
  5032. int cpus = num_online_cpus();
  5033. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5034. bp->irq_tbl[0].handler = bnx2_interrupt;
  5035. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5036. bp->irq_nvecs = 1;
  5037. bp->irq_tbl[0].vector = bp->pdev->irq;
  5038. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5039. bnx2_enable_msix(bp, msix_vecs);
  5040. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5041. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5042. if (pci_enable_msi(bp->pdev) == 0) {
  5043. bp->flags |= BNX2_FLAG_USING_MSI;
  5044. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5045. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5046. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5047. } else
  5048. bp->irq_tbl[0].handler = bnx2_msi;
  5049. bp->irq_tbl[0].vector = bp->pdev->irq;
  5050. }
  5051. }
  5052. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5053. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5054. bp->num_rx_rings = bp->irq_nvecs;
  5055. }
  5056. /* Called with rtnl_lock */
  5057. static int
  5058. bnx2_open(struct net_device *dev)
  5059. {
  5060. struct bnx2 *bp = netdev_priv(dev);
  5061. int rc;
  5062. netif_carrier_off(dev);
  5063. bnx2_set_power_state(bp, PCI_D0);
  5064. bnx2_disable_int(bp);
  5065. bnx2_setup_int_mode(bp, disable_msi);
  5066. bnx2_napi_enable(bp);
  5067. rc = bnx2_alloc_mem(bp);
  5068. if (rc)
  5069. goto open_err;
  5070. rc = bnx2_request_irq(bp);
  5071. if (rc)
  5072. goto open_err;
  5073. rc = bnx2_init_nic(bp, 1);
  5074. if (rc)
  5075. goto open_err;
  5076. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5077. atomic_set(&bp->intr_sem, 0);
  5078. bnx2_enable_int(bp);
  5079. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5080. /* Test MSI to make sure it is working
  5081. * If MSI test fails, go back to INTx mode
  5082. */
  5083. if (bnx2_test_intr(bp) != 0) {
  5084. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5085. " using MSI, switching to INTx mode. Please"
  5086. " report this failure to the PCI maintainer"
  5087. " and include system chipset information.\n",
  5088. bp->dev->name);
  5089. bnx2_disable_int(bp);
  5090. bnx2_free_irq(bp);
  5091. bnx2_setup_int_mode(bp, 1);
  5092. rc = bnx2_init_nic(bp, 0);
  5093. if (!rc)
  5094. rc = bnx2_request_irq(bp);
  5095. if (rc) {
  5096. del_timer_sync(&bp->timer);
  5097. goto open_err;
  5098. }
  5099. bnx2_enable_int(bp);
  5100. }
  5101. }
  5102. if (bp->flags & BNX2_FLAG_USING_MSI)
  5103. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5104. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5105. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5106. netif_tx_start_all_queues(dev);
  5107. return 0;
  5108. open_err:
  5109. bnx2_napi_disable(bp);
  5110. bnx2_free_skbs(bp);
  5111. bnx2_free_irq(bp);
  5112. bnx2_free_mem(bp);
  5113. return rc;
  5114. }
  5115. static void
  5116. bnx2_reset_task(struct work_struct *work)
  5117. {
  5118. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5119. rtnl_lock();
  5120. if (!netif_running(bp->dev)) {
  5121. rtnl_unlock();
  5122. return;
  5123. }
  5124. bnx2_netif_stop(bp);
  5125. bnx2_init_nic(bp, 1);
  5126. atomic_set(&bp->intr_sem, 1);
  5127. bnx2_netif_start(bp);
  5128. rtnl_unlock();
  5129. }
  5130. static void
  5131. bnx2_dump_state(struct bnx2 *bp)
  5132. {
  5133. struct net_device *dev = bp->dev;
  5134. printk(KERN_ERR PFX "%s DEBUG: intr_sem[%x]\n", dev->name,
  5135. atomic_read(&bp->intr_sem));
  5136. printk(KERN_ERR PFX "%s DEBUG: EMAC_TX_STATUS[%08x] "
  5137. "RPM_MGMT_PKT_CTRL[%08x]\n", dev->name,
  5138. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5139. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5140. printk(KERN_ERR PFX "%s DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5141. dev->name, bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5142. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5143. printk(KERN_ERR PFX "%s DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5144. dev->name, REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5145. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5146. printk(KERN_ERR PFX "%s DEBUG: PBA[%08x]\n", dev->name,
  5147. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5148. }
  5149. static void
  5150. bnx2_tx_timeout(struct net_device *dev)
  5151. {
  5152. struct bnx2 *bp = netdev_priv(dev);
  5153. bnx2_dump_state(bp);
  5154. /* This allows the netif to be shutdown gracefully before resetting */
  5155. schedule_work(&bp->reset_task);
  5156. }
  5157. #ifdef BCM_VLAN
  5158. /* Called with rtnl_lock */
  5159. static void
  5160. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5161. {
  5162. struct bnx2 *bp = netdev_priv(dev);
  5163. if (netif_running(dev))
  5164. bnx2_netif_stop(bp);
  5165. bp->vlgrp = vlgrp;
  5166. if (!netif_running(dev))
  5167. return;
  5168. bnx2_set_rx_mode(dev);
  5169. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5170. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5171. bnx2_netif_start(bp);
  5172. }
  5173. #endif
  5174. /* Called with netif_tx_lock.
  5175. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5176. * netif_wake_queue().
  5177. */
  5178. static netdev_tx_t
  5179. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5180. {
  5181. struct bnx2 *bp = netdev_priv(dev);
  5182. dma_addr_t mapping;
  5183. struct tx_bd *txbd;
  5184. struct sw_tx_bd *tx_buf;
  5185. u32 len, vlan_tag_flags, last_frag, mss;
  5186. u16 prod, ring_prod;
  5187. int i;
  5188. struct bnx2_napi *bnapi;
  5189. struct bnx2_tx_ring_info *txr;
  5190. struct netdev_queue *txq;
  5191. /* Determine which tx ring we will be placed on */
  5192. i = skb_get_queue_mapping(skb);
  5193. bnapi = &bp->bnx2_napi[i];
  5194. txr = &bnapi->tx_ring;
  5195. txq = netdev_get_tx_queue(dev, i);
  5196. if (unlikely(bnx2_tx_avail(bp, txr) <
  5197. (skb_shinfo(skb)->nr_frags + 1))) {
  5198. netif_tx_stop_queue(txq);
  5199. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5200. dev->name);
  5201. return NETDEV_TX_BUSY;
  5202. }
  5203. len = skb_headlen(skb);
  5204. prod = txr->tx_prod;
  5205. ring_prod = TX_RING_IDX(prod);
  5206. vlan_tag_flags = 0;
  5207. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5208. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5209. }
  5210. #ifdef BCM_VLAN
  5211. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5212. vlan_tag_flags |=
  5213. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5214. }
  5215. #endif
  5216. if ((mss = skb_shinfo(skb)->gso_size)) {
  5217. u32 tcp_opt_len;
  5218. struct iphdr *iph;
  5219. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5220. tcp_opt_len = tcp_optlen(skb);
  5221. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5222. u32 tcp_off = skb_transport_offset(skb) -
  5223. sizeof(struct ipv6hdr) - ETH_HLEN;
  5224. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5225. TX_BD_FLAGS_SW_FLAGS;
  5226. if (likely(tcp_off == 0))
  5227. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5228. else {
  5229. tcp_off >>= 3;
  5230. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5231. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5232. ((tcp_off & 0x10) <<
  5233. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5234. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5235. }
  5236. } else {
  5237. iph = ip_hdr(skb);
  5238. if (tcp_opt_len || (iph->ihl > 5)) {
  5239. vlan_tag_flags |= ((iph->ihl - 5) +
  5240. (tcp_opt_len >> 2)) << 8;
  5241. }
  5242. }
  5243. } else
  5244. mss = 0;
  5245. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5246. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5247. dev_kfree_skb(skb);
  5248. return NETDEV_TX_OK;
  5249. }
  5250. tx_buf = &txr->tx_buf_ring[ring_prod];
  5251. tx_buf->skb = skb;
  5252. pci_unmap_addr_set(tx_buf, mapping, mapping);
  5253. txbd = &txr->tx_desc_ring[ring_prod];
  5254. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5255. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5256. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5257. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5258. last_frag = skb_shinfo(skb)->nr_frags;
  5259. tx_buf->nr_frags = last_frag;
  5260. tx_buf->is_gso = skb_is_gso(skb);
  5261. for (i = 0; i < last_frag; i++) {
  5262. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5263. prod = NEXT_TX_BD(prod);
  5264. ring_prod = TX_RING_IDX(prod);
  5265. txbd = &txr->tx_desc_ring[ring_prod];
  5266. len = frag->size;
  5267. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5268. len, PCI_DMA_TODEVICE);
  5269. if (pci_dma_mapping_error(bp->pdev, mapping))
  5270. goto dma_error;
  5271. pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5272. mapping);
  5273. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5274. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5275. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5276. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5277. }
  5278. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5279. prod = NEXT_TX_BD(prod);
  5280. txr->tx_prod_bseq += skb->len;
  5281. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5282. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5283. mmiowb();
  5284. txr->tx_prod = prod;
  5285. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5286. netif_tx_stop_queue(txq);
  5287. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5288. netif_tx_wake_queue(txq);
  5289. }
  5290. return NETDEV_TX_OK;
  5291. dma_error:
  5292. /* save value of frag that failed */
  5293. last_frag = i;
  5294. /* start back at beginning and unmap skb */
  5295. prod = txr->tx_prod;
  5296. ring_prod = TX_RING_IDX(prod);
  5297. tx_buf = &txr->tx_buf_ring[ring_prod];
  5298. tx_buf->skb = NULL;
  5299. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5300. skb_headlen(skb), PCI_DMA_TODEVICE);
  5301. /* unmap remaining mapped pages */
  5302. for (i = 0; i < last_frag; i++) {
  5303. prod = NEXT_TX_BD(prod);
  5304. ring_prod = TX_RING_IDX(prod);
  5305. tx_buf = &txr->tx_buf_ring[ring_prod];
  5306. pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5307. skb_shinfo(skb)->frags[i].size,
  5308. PCI_DMA_TODEVICE);
  5309. }
  5310. dev_kfree_skb(skb);
  5311. return NETDEV_TX_OK;
  5312. }
  5313. /* Called with rtnl_lock */
  5314. static int
  5315. bnx2_close(struct net_device *dev)
  5316. {
  5317. struct bnx2 *bp = netdev_priv(dev);
  5318. cancel_work_sync(&bp->reset_task);
  5319. bnx2_disable_int_sync(bp);
  5320. bnx2_napi_disable(bp);
  5321. del_timer_sync(&bp->timer);
  5322. bnx2_shutdown_chip(bp);
  5323. bnx2_free_irq(bp);
  5324. bnx2_free_skbs(bp);
  5325. bnx2_free_mem(bp);
  5326. bp->link_up = 0;
  5327. netif_carrier_off(bp->dev);
  5328. bnx2_set_power_state(bp, PCI_D3hot);
  5329. return 0;
  5330. }
  5331. #define GET_NET_STATS64(ctr) \
  5332. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5333. (unsigned long) (ctr##_lo)
  5334. #define GET_NET_STATS32(ctr) \
  5335. (ctr##_lo)
  5336. #if (BITS_PER_LONG == 64)
  5337. #define GET_NET_STATS GET_NET_STATS64
  5338. #else
  5339. #define GET_NET_STATS GET_NET_STATS32
  5340. #endif
  5341. static struct net_device_stats *
  5342. bnx2_get_stats(struct net_device *dev)
  5343. {
  5344. struct bnx2 *bp = netdev_priv(dev);
  5345. struct statistics_block *stats_blk = bp->stats_blk;
  5346. struct net_device_stats *net_stats = &dev->stats;
  5347. if (bp->stats_blk == NULL) {
  5348. return net_stats;
  5349. }
  5350. net_stats->rx_packets =
  5351. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5352. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5353. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5354. net_stats->tx_packets =
  5355. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5356. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5357. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5358. net_stats->rx_bytes =
  5359. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5360. net_stats->tx_bytes =
  5361. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5362. net_stats->multicast =
  5363. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5364. net_stats->collisions =
  5365. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5366. net_stats->rx_length_errors =
  5367. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5368. stats_blk->stat_EtherStatsOverrsizePkts);
  5369. net_stats->rx_over_errors =
  5370. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5371. stats_blk->stat_IfInMBUFDiscards);
  5372. net_stats->rx_frame_errors =
  5373. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5374. net_stats->rx_crc_errors =
  5375. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5376. net_stats->rx_errors = net_stats->rx_length_errors +
  5377. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5378. net_stats->rx_crc_errors;
  5379. net_stats->tx_aborted_errors =
  5380. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5381. stats_blk->stat_Dot3StatsLateCollisions);
  5382. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5383. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5384. net_stats->tx_carrier_errors = 0;
  5385. else {
  5386. net_stats->tx_carrier_errors =
  5387. (unsigned long)
  5388. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5389. }
  5390. net_stats->tx_errors =
  5391. (unsigned long)
  5392. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5393. +
  5394. net_stats->tx_aborted_errors +
  5395. net_stats->tx_carrier_errors;
  5396. net_stats->rx_missed_errors =
  5397. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5398. stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
  5399. return net_stats;
  5400. }
  5401. /* All ethtool functions called with rtnl_lock */
  5402. static int
  5403. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5404. {
  5405. struct bnx2 *bp = netdev_priv(dev);
  5406. int support_serdes = 0, support_copper = 0;
  5407. cmd->supported = SUPPORTED_Autoneg;
  5408. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5409. support_serdes = 1;
  5410. support_copper = 1;
  5411. } else if (bp->phy_port == PORT_FIBRE)
  5412. support_serdes = 1;
  5413. else
  5414. support_copper = 1;
  5415. if (support_serdes) {
  5416. cmd->supported |= SUPPORTED_1000baseT_Full |
  5417. SUPPORTED_FIBRE;
  5418. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5419. cmd->supported |= SUPPORTED_2500baseX_Full;
  5420. }
  5421. if (support_copper) {
  5422. cmd->supported |= SUPPORTED_10baseT_Half |
  5423. SUPPORTED_10baseT_Full |
  5424. SUPPORTED_100baseT_Half |
  5425. SUPPORTED_100baseT_Full |
  5426. SUPPORTED_1000baseT_Full |
  5427. SUPPORTED_TP;
  5428. }
  5429. spin_lock_bh(&bp->phy_lock);
  5430. cmd->port = bp->phy_port;
  5431. cmd->advertising = bp->advertising;
  5432. if (bp->autoneg & AUTONEG_SPEED) {
  5433. cmd->autoneg = AUTONEG_ENABLE;
  5434. }
  5435. else {
  5436. cmd->autoneg = AUTONEG_DISABLE;
  5437. }
  5438. if (netif_carrier_ok(dev)) {
  5439. cmd->speed = bp->line_speed;
  5440. cmd->duplex = bp->duplex;
  5441. }
  5442. else {
  5443. cmd->speed = -1;
  5444. cmd->duplex = -1;
  5445. }
  5446. spin_unlock_bh(&bp->phy_lock);
  5447. cmd->transceiver = XCVR_INTERNAL;
  5448. cmd->phy_address = bp->phy_addr;
  5449. return 0;
  5450. }
  5451. static int
  5452. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5453. {
  5454. struct bnx2 *bp = netdev_priv(dev);
  5455. u8 autoneg = bp->autoneg;
  5456. u8 req_duplex = bp->req_duplex;
  5457. u16 req_line_speed = bp->req_line_speed;
  5458. u32 advertising = bp->advertising;
  5459. int err = -EINVAL;
  5460. spin_lock_bh(&bp->phy_lock);
  5461. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5462. goto err_out_unlock;
  5463. if (cmd->port != bp->phy_port &&
  5464. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5465. goto err_out_unlock;
  5466. /* If device is down, we can store the settings only if the user
  5467. * is setting the currently active port.
  5468. */
  5469. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5470. goto err_out_unlock;
  5471. if (cmd->autoneg == AUTONEG_ENABLE) {
  5472. autoneg |= AUTONEG_SPEED;
  5473. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5474. /* allow advertising 1 speed */
  5475. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5476. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5477. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5478. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5479. if (cmd->port == PORT_FIBRE)
  5480. goto err_out_unlock;
  5481. advertising = cmd->advertising;
  5482. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5483. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5484. (cmd->port == PORT_TP))
  5485. goto err_out_unlock;
  5486. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5487. advertising = cmd->advertising;
  5488. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5489. goto err_out_unlock;
  5490. else {
  5491. if (cmd->port == PORT_FIBRE)
  5492. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5493. else
  5494. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5495. }
  5496. advertising |= ADVERTISED_Autoneg;
  5497. }
  5498. else {
  5499. if (cmd->port == PORT_FIBRE) {
  5500. if ((cmd->speed != SPEED_1000 &&
  5501. cmd->speed != SPEED_2500) ||
  5502. (cmd->duplex != DUPLEX_FULL))
  5503. goto err_out_unlock;
  5504. if (cmd->speed == SPEED_2500 &&
  5505. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5506. goto err_out_unlock;
  5507. }
  5508. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5509. goto err_out_unlock;
  5510. autoneg &= ~AUTONEG_SPEED;
  5511. req_line_speed = cmd->speed;
  5512. req_duplex = cmd->duplex;
  5513. advertising = 0;
  5514. }
  5515. bp->autoneg = autoneg;
  5516. bp->advertising = advertising;
  5517. bp->req_line_speed = req_line_speed;
  5518. bp->req_duplex = req_duplex;
  5519. err = 0;
  5520. /* If device is down, the new settings will be picked up when it is
  5521. * brought up.
  5522. */
  5523. if (netif_running(dev))
  5524. err = bnx2_setup_phy(bp, cmd->port);
  5525. err_out_unlock:
  5526. spin_unlock_bh(&bp->phy_lock);
  5527. return err;
  5528. }
  5529. static void
  5530. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5531. {
  5532. struct bnx2 *bp = netdev_priv(dev);
  5533. strcpy(info->driver, DRV_MODULE_NAME);
  5534. strcpy(info->version, DRV_MODULE_VERSION);
  5535. strcpy(info->bus_info, pci_name(bp->pdev));
  5536. strcpy(info->fw_version, bp->fw_version);
  5537. }
  5538. #define BNX2_REGDUMP_LEN (32 * 1024)
  5539. static int
  5540. bnx2_get_regs_len(struct net_device *dev)
  5541. {
  5542. return BNX2_REGDUMP_LEN;
  5543. }
  5544. static void
  5545. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5546. {
  5547. u32 *p = _p, i, offset;
  5548. u8 *orig_p = _p;
  5549. struct bnx2 *bp = netdev_priv(dev);
  5550. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5551. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5552. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5553. 0x1040, 0x1048, 0x1080, 0x10a4,
  5554. 0x1400, 0x1490, 0x1498, 0x14f0,
  5555. 0x1500, 0x155c, 0x1580, 0x15dc,
  5556. 0x1600, 0x1658, 0x1680, 0x16d8,
  5557. 0x1800, 0x1820, 0x1840, 0x1854,
  5558. 0x1880, 0x1894, 0x1900, 0x1984,
  5559. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5560. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5561. 0x2000, 0x2030, 0x23c0, 0x2400,
  5562. 0x2800, 0x2820, 0x2830, 0x2850,
  5563. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5564. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5565. 0x4080, 0x4090, 0x43c0, 0x4458,
  5566. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5567. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5568. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5569. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5570. 0x6800, 0x6848, 0x684c, 0x6860,
  5571. 0x6888, 0x6910, 0x8000 };
  5572. regs->version = 0;
  5573. memset(p, 0, BNX2_REGDUMP_LEN);
  5574. if (!netif_running(bp->dev))
  5575. return;
  5576. i = 0;
  5577. offset = reg_boundaries[0];
  5578. p += offset;
  5579. while (offset < BNX2_REGDUMP_LEN) {
  5580. *p++ = REG_RD(bp, offset);
  5581. offset += 4;
  5582. if (offset == reg_boundaries[i + 1]) {
  5583. offset = reg_boundaries[i + 2];
  5584. p = (u32 *) (orig_p + offset);
  5585. i += 2;
  5586. }
  5587. }
  5588. }
  5589. static void
  5590. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5591. {
  5592. struct bnx2 *bp = netdev_priv(dev);
  5593. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5594. wol->supported = 0;
  5595. wol->wolopts = 0;
  5596. }
  5597. else {
  5598. wol->supported = WAKE_MAGIC;
  5599. if (bp->wol)
  5600. wol->wolopts = WAKE_MAGIC;
  5601. else
  5602. wol->wolopts = 0;
  5603. }
  5604. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5605. }
  5606. static int
  5607. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5608. {
  5609. struct bnx2 *bp = netdev_priv(dev);
  5610. if (wol->wolopts & ~WAKE_MAGIC)
  5611. return -EINVAL;
  5612. if (wol->wolopts & WAKE_MAGIC) {
  5613. if (bp->flags & BNX2_FLAG_NO_WOL)
  5614. return -EINVAL;
  5615. bp->wol = 1;
  5616. }
  5617. else {
  5618. bp->wol = 0;
  5619. }
  5620. return 0;
  5621. }
  5622. static int
  5623. bnx2_nway_reset(struct net_device *dev)
  5624. {
  5625. struct bnx2 *bp = netdev_priv(dev);
  5626. u32 bmcr;
  5627. if (!netif_running(dev))
  5628. return -EAGAIN;
  5629. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5630. return -EINVAL;
  5631. }
  5632. spin_lock_bh(&bp->phy_lock);
  5633. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5634. int rc;
  5635. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5636. spin_unlock_bh(&bp->phy_lock);
  5637. return rc;
  5638. }
  5639. /* Force a link down visible on the other side */
  5640. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5641. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5642. spin_unlock_bh(&bp->phy_lock);
  5643. msleep(20);
  5644. spin_lock_bh(&bp->phy_lock);
  5645. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5646. bp->serdes_an_pending = 1;
  5647. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5648. }
  5649. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5650. bmcr &= ~BMCR_LOOPBACK;
  5651. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5652. spin_unlock_bh(&bp->phy_lock);
  5653. return 0;
  5654. }
  5655. static u32
  5656. bnx2_get_link(struct net_device *dev)
  5657. {
  5658. struct bnx2 *bp = netdev_priv(dev);
  5659. return bp->link_up;
  5660. }
  5661. static int
  5662. bnx2_get_eeprom_len(struct net_device *dev)
  5663. {
  5664. struct bnx2 *bp = netdev_priv(dev);
  5665. if (bp->flash_info == NULL)
  5666. return 0;
  5667. return (int) bp->flash_size;
  5668. }
  5669. static int
  5670. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5671. u8 *eebuf)
  5672. {
  5673. struct bnx2 *bp = netdev_priv(dev);
  5674. int rc;
  5675. if (!netif_running(dev))
  5676. return -EAGAIN;
  5677. /* parameters already validated in ethtool_get_eeprom */
  5678. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5679. return rc;
  5680. }
  5681. static int
  5682. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5683. u8 *eebuf)
  5684. {
  5685. struct bnx2 *bp = netdev_priv(dev);
  5686. int rc;
  5687. if (!netif_running(dev))
  5688. return -EAGAIN;
  5689. /* parameters already validated in ethtool_set_eeprom */
  5690. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5691. return rc;
  5692. }
  5693. static int
  5694. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5695. {
  5696. struct bnx2 *bp = netdev_priv(dev);
  5697. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5698. coal->rx_coalesce_usecs = bp->rx_ticks;
  5699. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5700. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5701. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5702. coal->tx_coalesce_usecs = bp->tx_ticks;
  5703. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5704. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5705. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5706. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5707. return 0;
  5708. }
  5709. static int
  5710. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5711. {
  5712. struct bnx2 *bp = netdev_priv(dev);
  5713. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5714. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5715. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5716. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5717. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5718. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5719. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5720. if (bp->rx_quick_cons_trip_int > 0xff)
  5721. bp->rx_quick_cons_trip_int = 0xff;
  5722. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5723. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5724. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5725. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5726. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5727. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5728. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5729. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5730. 0xff;
  5731. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5732. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5733. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5734. bp->stats_ticks = USEC_PER_SEC;
  5735. }
  5736. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5737. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5738. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5739. if (netif_running(bp->dev)) {
  5740. bnx2_netif_stop(bp);
  5741. bnx2_init_nic(bp, 0);
  5742. bnx2_netif_start(bp);
  5743. }
  5744. return 0;
  5745. }
  5746. static void
  5747. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5748. {
  5749. struct bnx2 *bp = netdev_priv(dev);
  5750. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5751. ering->rx_mini_max_pending = 0;
  5752. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5753. ering->rx_pending = bp->rx_ring_size;
  5754. ering->rx_mini_pending = 0;
  5755. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5756. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5757. ering->tx_pending = bp->tx_ring_size;
  5758. }
  5759. static int
  5760. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5761. {
  5762. if (netif_running(bp->dev)) {
  5763. bnx2_netif_stop(bp);
  5764. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5765. bnx2_free_skbs(bp);
  5766. bnx2_free_mem(bp);
  5767. }
  5768. bnx2_set_rx_ring_size(bp, rx);
  5769. bp->tx_ring_size = tx;
  5770. if (netif_running(bp->dev)) {
  5771. int rc;
  5772. rc = bnx2_alloc_mem(bp);
  5773. if (!rc)
  5774. rc = bnx2_init_nic(bp, 0);
  5775. if (rc) {
  5776. bnx2_napi_enable(bp);
  5777. dev_close(bp->dev);
  5778. return rc;
  5779. }
  5780. bnx2_netif_start(bp);
  5781. }
  5782. return 0;
  5783. }
  5784. static int
  5785. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5786. {
  5787. struct bnx2 *bp = netdev_priv(dev);
  5788. int rc;
  5789. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5790. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5791. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5792. return -EINVAL;
  5793. }
  5794. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5795. return rc;
  5796. }
  5797. static void
  5798. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5799. {
  5800. struct bnx2 *bp = netdev_priv(dev);
  5801. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5802. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5803. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5804. }
  5805. static int
  5806. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5807. {
  5808. struct bnx2 *bp = netdev_priv(dev);
  5809. bp->req_flow_ctrl = 0;
  5810. if (epause->rx_pause)
  5811. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5812. if (epause->tx_pause)
  5813. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5814. if (epause->autoneg) {
  5815. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5816. }
  5817. else {
  5818. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5819. }
  5820. if (netif_running(dev)) {
  5821. spin_lock_bh(&bp->phy_lock);
  5822. bnx2_setup_phy(bp, bp->phy_port);
  5823. spin_unlock_bh(&bp->phy_lock);
  5824. }
  5825. return 0;
  5826. }
  5827. static u32
  5828. bnx2_get_rx_csum(struct net_device *dev)
  5829. {
  5830. struct bnx2 *bp = netdev_priv(dev);
  5831. return bp->rx_csum;
  5832. }
  5833. static int
  5834. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5835. {
  5836. struct bnx2 *bp = netdev_priv(dev);
  5837. bp->rx_csum = data;
  5838. return 0;
  5839. }
  5840. static int
  5841. bnx2_set_tso(struct net_device *dev, u32 data)
  5842. {
  5843. struct bnx2 *bp = netdev_priv(dev);
  5844. if (data) {
  5845. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5846. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5847. dev->features |= NETIF_F_TSO6;
  5848. } else
  5849. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5850. NETIF_F_TSO_ECN);
  5851. return 0;
  5852. }
  5853. static struct {
  5854. char string[ETH_GSTRING_LEN];
  5855. } bnx2_stats_str_arr[] = {
  5856. { "rx_bytes" },
  5857. { "rx_error_bytes" },
  5858. { "tx_bytes" },
  5859. { "tx_error_bytes" },
  5860. { "rx_ucast_packets" },
  5861. { "rx_mcast_packets" },
  5862. { "rx_bcast_packets" },
  5863. { "tx_ucast_packets" },
  5864. { "tx_mcast_packets" },
  5865. { "tx_bcast_packets" },
  5866. { "tx_mac_errors" },
  5867. { "tx_carrier_errors" },
  5868. { "rx_crc_errors" },
  5869. { "rx_align_errors" },
  5870. { "tx_single_collisions" },
  5871. { "tx_multi_collisions" },
  5872. { "tx_deferred" },
  5873. { "tx_excess_collisions" },
  5874. { "tx_late_collisions" },
  5875. { "tx_total_collisions" },
  5876. { "rx_fragments" },
  5877. { "rx_jabbers" },
  5878. { "rx_undersize_packets" },
  5879. { "rx_oversize_packets" },
  5880. { "rx_64_byte_packets" },
  5881. { "rx_65_to_127_byte_packets" },
  5882. { "rx_128_to_255_byte_packets" },
  5883. { "rx_256_to_511_byte_packets" },
  5884. { "rx_512_to_1023_byte_packets" },
  5885. { "rx_1024_to_1522_byte_packets" },
  5886. { "rx_1523_to_9022_byte_packets" },
  5887. { "tx_64_byte_packets" },
  5888. { "tx_65_to_127_byte_packets" },
  5889. { "tx_128_to_255_byte_packets" },
  5890. { "tx_256_to_511_byte_packets" },
  5891. { "tx_512_to_1023_byte_packets" },
  5892. { "tx_1024_to_1522_byte_packets" },
  5893. { "tx_1523_to_9022_byte_packets" },
  5894. { "rx_xon_frames" },
  5895. { "rx_xoff_frames" },
  5896. { "tx_xon_frames" },
  5897. { "tx_xoff_frames" },
  5898. { "rx_mac_ctrl_frames" },
  5899. { "rx_filtered_packets" },
  5900. { "rx_ftq_discards" },
  5901. { "rx_discards" },
  5902. { "rx_fw_discards" },
  5903. };
  5904. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5905. sizeof(bnx2_stats_str_arr[0]))
  5906. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5907. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5908. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5909. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5910. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5911. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5912. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5913. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5914. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5915. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5916. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5917. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5918. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5919. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5920. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5921. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5922. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5923. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5924. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5925. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5926. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5927. STATS_OFFSET32(stat_EtherStatsCollisions),
  5928. STATS_OFFSET32(stat_EtherStatsFragments),
  5929. STATS_OFFSET32(stat_EtherStatsJabbers),
  5930. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5931. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5932. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5933. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5934. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5935. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5936. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5937. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5938. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5939. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5940. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5941. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5942. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5943. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5944. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5945. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5946. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5947. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5948. STATS_OFFSET32(stat_OutXonSent),
  5949. STATS_OFFSET32(stat_OutXoffSent),
  5950. STATS_OFFSET32(stat_MacControlFramesReceived),
  5951. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5952. STATS_OFFSET32(stat_IfInFTQDiscards),
  5953. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5954. STATS_OFFSET32(stat_FwRxDrop),
  5955. };
  5956. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5957. * skipped because of errata.
  5958. */
  5959. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5960. 8,0,8,8,8,8,8,8,8,8,
  5961. 4,0,4,4,4,4,4,4,4,4,
  5962. 4,4,4,4,4,4,4,4,4,4,
  5963. 4,4,4,4,4,4,4,4,4,4,
  5964. 4,4,4,4,4,4,4,
  5965. };
  5966. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5967. 8,0,8,8,8,8,8,8,8,8,
  5968. 4,4,4,4,4,4,4,4,4,4,
  5969. 4,4,4,4,4,4,4,4,4,4,
  5970. 4,4,4,4,4,4,4,4,4,4,
  5971. 4,4,4,4,4,4,4,
  5972. };
  5973. #define BNX2_NUM_TESTS 6
  5974. static struct {
  5975. char string[ETH_GSTRING_LEN];
  5976. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5977. { "register_test (offline)" },
  5978. { "memory_test (offline)" },
  5979. { "loopback_test (offline)" },
  5980. { "nvram_test (online)" },
  5981. { "interrupt_test (online)" },
  5982. { "link_test (online)" },
  5983. };
  5984. static int
  5985. bnx2_get_sset_count(struct net_device *dev, int sset)
  5986. {
  5987. switch (sset) {
  5988. case ETH_SS_TEST:
  5989. return BNX2_NUM_TESTS;
  5990. case ETH_SS_STATS:
  5991. return BNX2_NUM_STATS;
  5992. default:
  5993. return -EOPNOTSUPP;
  5994. }
  5995. }
  5996. static void
  5997. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5998. {
  5999. struct bnx2 *bp = netdev_priv(dev);
  6000. bnx2_set_power_state(bp, PCI_D0);
  6001. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6002. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6003. int i;
  6004. bnx2_netif_stop(bp);
  6005. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6006. bnx2_free_skbs(bp);
  6007. if (bnx2_test_registers(bp) != 0) {
  6008. buf[0] = 1;
  6009. etest->flags |= ETH_TEST_FL_FAILED;
  6010. }
  6011. if (bnx2_test_memory(bp) != 0) {
  6012. buf[1] = 1;
  6013. etest->flags |= ETH_TEST_FL_FAILED;
  6014. }
  6015. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6016. etest->flags |= ETH_TEST_FL_FAILED;
  6017. if (!netif_running(bp->dev))
  6018. bnx2_shutdown_chip(bp);
  6019. else {
  6020. bnx2_init_nic(bp, 1);
  6021. bnx2_netif_start(bp);
  6022. }
  6023. /* wait for link up */
  6024. for (i = 0; i < 7; i++) {
  6025. if (bp->link_up)
  6026. break;
  6027. msleep_interruptible(1000);
  6028. }
  6029. }
  6030. if (bnx2_test_nvram(bp) != 0) {
  6031. buf[3] = 1;
  6032. etest->flags |= ETH_TEST_FL_FAILED;
  6033. }
  6034. if (bnx2_test_intr(bp) != 0) {
  6035. buf[4] = 1;
  6036. etest->flags |= ETH_TEST_FL_FAILED;
  6037. }
  6038. if (bnx2_test_link(bp) != 0) {
  6039. buf[5] = 1;
  6040. etest->flags |= ETH_TEST_FL_FAILED;
  6041. }
  6042. if (!netif_running(bp->dev))
  6043. bnx2_set_power_state(bp, PCI_D3hot);
  6044. }
  6045. static void
  6046. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6047. {
  6048. switch (stringset) {
  6049. case ETH_SS_STATS:
  6050. memcpy(buf, bnx2_stats_str_arr,
  6051. sizeof(bnx2_stats_str_arr));
  6052. break;
  6053. case ETH_SS_TEST:
  6054. memcpy(buf, bnx2_tests_str_arr,
  6055. sizeof(bnx2_tests_str_arr));
  6056. break;
  6057. }
  6058. }
  6059. static void
  6060. bnx2_get_ethtool_stats(struct net_device *dev,
  6061. struct ethtool_stats *stats, u64 *buf)
  6062. {
  6063. struct bnx2 *bp = netdev_priv(dev);
  6064. int i;
  6065. u32 *hw_stats = (u32 *) bp->stats_blk;
  6066. u8 *stats_len_arr = NULL;
  6067. if (hw_stats == NULL) {
  6068. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6069. return;
  6070. }
  6071. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6072. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6073. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6074. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6075. stats_len_arr = bnx2_5706_stats_len_arr;
  6076. else
  6077. stats_len_arr = bnx2_5708_stats_len_arr;
  6078. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6079. if (stats_len_arr[i] == 0) {
  6080. /* skip this counter */
  6081. buf[i] = 0;
  6082. continue;
  6083. }
  6084. if (stats_len_arr[i] == 4) {
  6085. /* 4-byte counter */
  6086. buf[i] = (u64)
  6087. *(hw_stats + bnx2_stats_offset_arr[i]);
  6088. continue;
  6089. }
  6090. /* 8-byte counter */
  6091. buf[i] = (((u64) *(hw_stats +
  6092. bnx2_stats_offset_arr[i])) << 32) +
  6093. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  6094. }
  6095. }
  6096. static int
  6097. bnx2_phys_id(struct net_device *dev, u32 data)
  6098. {
  6099. struct bnx2 *bp = netdev_priv(dev);
  6100. int i;
  6101. u32 save;
  6102. bnx2_set_power_state(bp, PCI_D0);
  6103. if (data == 0)
  6104. data = 2;
  6105. save = REG_RD(bp, BNX2_MISC_CFG);
  6106. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6107. for (i = 0; i < (data * 2); i++) {
  6108. if ((i % 2) == 0) {
  6109. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6110. }
  6111. else {
  6112. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6113. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6114. BNX2_EMAC_LED_100MB_OVERRIDE |
  6115. BNX2_EMAC_LED_10MB_OVERRIDE |
  6116. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6117. BNX2_EMAC_LED_TRAFFIC);
  6118. }
  6119. msleep_interruptible(500);
  6120. if (signal_pending(current))
  6121. break;
  6122. }
  6123. REG_WR(bp, BNX2_EMAC_LED, 0);
  6124. REG_WR(bp, BNX2_MISC_CFG, save);
  6125. if (!netif_running(dev))
  6126. bnx2_set_power_state(bp, PCI_D3hot);
  6127. return 0;
  6128. }
  6129. static int
  6130. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6131. {
  6132. struct bnx2 *bp = netdev_priv(dev);
  6133. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6134. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6135. else
  6136. return (ethtool_op_set_tx_csum(dev, data));
  6137. }
  6138. static const struct ethtool_ops bnx2_ethtool_ops = {
  6139. .get_settings = bnx2_get_settings,
  6140. .set_settings = bnx2_set_settings,
  6141. .get_drvinfo = bnx2_get_drvinfo,
  6142. .get_regs_len = bnx2_get_regs_len,
  6143. .get_regs = bnx2_get_regs,
  6144. .get_wol = bnx2_get_wol,
  6145. .set_wol = bnx2_set_wol,
  6146. .nway_reset = bnx2_nway_reset,
  6147. .get_link = bnx2_get_link,
  6148. .get_eeprom_len = bnx2_get_eeprom_len,
  6149. .get_eeprom = bnx2_get_eeprom,
  6150. .set_eeprom = bnx2_set_eeprom,
  6151. .get_coalesce = bnx2_get_coalesce,
  6152. .set_coalesce = bnx2_set_coalesce,
  6153. .get_ringparam = bnx2_get_ringparam,
  6154. .set_ringparam = bnx2_set_ringparam,
  6155. .get_pauseparam = bnx2_get_pauseparam,
  6156. .set_pauseparam = bnx2_set_pauseparam,
  6157. .get_rx_csum = bnx2_get_rx_csum,
  6158. .set_rx_csum = bnx2_set_rx_csum,
  6159. .set_tx_csum = bnx2_set_tx_csum,
  6160. .set_sg = ethtool_op_set_sg,
  6161. .set_tso = bnx2_set_tso,
  6162. .self_test = bnx2_self_test,
  6163. .get_strings = bnx2_get_strings,
  6164. .phys_id = bnx2_phys_id,
  6165. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6166. .get_sset_count = bnx2_get_sset_count,
  6167. };
  6168. /* Called with rtnl_lock */
  6169. static int
  6170. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6171. {
  6172. struct mii_ioctl_data *data = if_mii(ifr);
  6173. struct bnx2 *bp = netdev_priv(dev);
  6174. int err;
  6175. switch(cmd) {
  6176. case SIOCGMIIPHY:
  6177. data->phy_id = bp->phy_addr;
  6178. /* fallthru */
  6179. case SIOCGMIIREG: {
  6180. u32 mii_regval;
  6181. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6182. return -EOPNOTSUPP;
  6183. if (!netif_running(dev))
  6184. return -EAGAIN;
  6185. spin_lock_bh(&bp->phy_lock);
  6186. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6187. spin_unlock_bh(&bp->phy_lock);
  6188. data->val_out = mii_regval;
  6189. return err;
  6190. }
  6191. case SIOCSMIIREG:
  6192. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6193. return -EOPNOTSUPP;
  6194. if (!netif_running(dev))
  6195. return -EAGAIN;
  6196. spin_lock_bh(&bp->phy_lock);
  6197. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6198. spin_unlock_bh(&bp->phy_lock);
  6199. return err;
  6200. default:
  6201. /* do nothing */
  6202. break;
  6203. }
  6204. return -EOPNOTSUPP;
  6205. }
  6206. /* Called with rtnl_lock */
  6207. static int
  6208. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6209. {
  6210. struct sockaddr *addr = p;
  6211. struct bnx2 *bp = netdev_priv(dev);
  6212. if (!is_valid_ether_addr(addr->sa_data))
  6213. return -EINVAL;
  6214. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6215. if (netif_running(dev))
  6216. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6217. return 0;
  6218. }
  6219. /* Called with rtnl_lock */
  6220. static int
  6221. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6222. {
  6223. struct bnx2 *bp = netdev_priv(dev);
  6224. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6225. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6226. return -EINVAL;
  6227. dev->mtu = new_mtu;
  6228. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6229. }
  6230. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6231. static void
  6232. poll_bnx2(struct net_device *dev)
  6233. {
  6234. struct bnx2 *bp = netdev_priv(dev);
  6235. int i;
  6236. for (i = 0; i < bp->irq_nvecs; i++) {
  6237. disable_irq(bp->irq_tbl[i].vector);
  6238. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6239. enable_irq(bp->irq_tbl[i].vector);
  6240. }
  6241. }
  6242. #endif
  6243. static void __devinit
  6244. bnx2_get_5709_media(struct bnx2 *bp)
  6245. {
  6246. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6247. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6248. u32 strap;
  6249. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6250. return;
  6251. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6252. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6253. return;
  6254. }
  6255. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6256. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6257. else
  6258. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6259. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6260. switch (strap) {
  6261. case 0x4:
  6262. case 0x5:
  6263. case 0x6:
  6264. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6265. return;
  6266. }
  6267. } else {
  6268. switch (strap) {
  6269. case 0x1:
  6270. case 0x2:
  6271. case 0x4:
  6272. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6273. return;
  6274. }
  6275. }
  6276. }
  6277. static void __devinit
  6278. bnx2_get_pci_speed(struct bnx2 *bp)
  6279. {
  6280. u32 reg;
  6281. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6282. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6283. u32 clkreg;
  6284. bp->flags |= BNX2_FLAG_PCIX;
  6285. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6286. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6287. switch (clkreg) {
  6288. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6289. bp->bus_speed_mhz = 133;
  6290. break;
  6291. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6292. bp->bus_speed_mhz = 100;
  6293. break;
  6294. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6295. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6296. bp->bus_speed_mhz = 66;
  6297. break;
  6298. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6299. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6300. bp->bus_speed_mhz = 50;
  6301. break;
  6302. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6303. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6304. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6305. bp->bus_speed_mhz = 33;
  6306. break;
  6307. }
  6308. }
  6309. else {
  6310. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6311. bp->bus_speed_mhz = 66;
  6312. else
  6313. bp->bus_speed_mhz = 33;
  6314. }
  6315. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6316. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6317. }
  6318. static void __devinit
  6319. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6320. {
  6321. int rc, i, v0_len = 0;
  6322. u8 *data;
  6323. u8 *v0_str = NULL;
  6324. bool mn_match = false;
  6325. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6326. #define BNX2_VPD_LEN 128
  6327. #define BNX2_MAX_VER_SLEN 30
  6328. data = kmalloc(256, GFP_KERNEL);
  6329. if (!data)
  6330. return;
  6331. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6332. BNX2_VPD_LEN);
  6333. if (rc)
  6334. goto vpd_done;
  6335. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6336. data[i] = data[i + BNX2_VPD_LEN + 3];
  6337. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6338. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6339. data[i + 3] = data[i + BNX2_VPD_LEN];
  6340. }
  6341. for (i = 0; i <= BNX2_VPD_LEN - 3; ) {
  6342. unsigned char val = data[i];
  6343. unsigned int block_end;
  6344. if (val == 0x82 || val == 0x91) {
  6345. i = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6346. continue;
  6347. }
  6348. if (val != 0x90)
  6349. goto vpd_done;
  6350. block_end = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6351. i += 3;
  6352. if (block_end > BNX2_VPD_LEN)
  6353. goto vpd_done;
  6354. while (i < (block_end - 2)) {
  6355. int len = data[i + 2];
  6356. if (i + 3 + len > block_end)
  6357. goto vpd_done;
  6358. if (data[i] == 'M' && data[i + 1] == 'N') {
  6359. if (len != 4 ||
  6360. memcmp(&data[i + 3], "1028", 4))
  6361. goto vpd_done;
  6362. mn_match = true;
  6363. } else if (data[i] == 'V' && data[i + 1] == '0') {
  6364. if (len > BNX2_MAX_VER_SLEN)
  6365. goto vpd_done;
  6366. v0_len = len;
  6367. v0_str = &data[i + 3];
  6368. }
  6369. i += 3 + len;
  6370. if (mn_match && v0_str) {
  6371. memcpy(bp->fw_version, v0_str, v0_len);
  6372. bp->fw_version[v0_len] = ' ';
  6373. goto vpd_done;
  6374. }
  6375. }
  6376. goto vpd_done;
  6377. }
  6378. vpd_done:
  6379. kfree(data);
  6380. }
  6381. static int __devinit
  6382. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6383. {
  6384. struct bnx2 *bp;
  6385. unsigned long mem_len;
  6386. int rc, i, j;
  6387. u32 reg;
  6388. u64 dma_mask, persist_dma_mask;
  6389. SET_NETDEV_DEV(dev, &pdev->dev);
  6390. bp = netdev_priv(dev);
  6391. bp->flags = 0;
  6392. bp->phy_flags = 0;
  6393. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6394. rc = pci_enable_device(pdev);
  6395. if (rc) {
  6396. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6397. goto err_out;
  6398. }
  6399. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6400. dev_err(&pdev->dev,
  6401. "Cannot find PCI device base address, aborting.\n");
  6402. rc = -ENODEV;
  6403. goto err_out_disable;
  6404. }
  6405. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6406. if (rc) {
  6407. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6408. goto err_out_disable;
  6409. }
  6410. pci_set_master(pdev);
  6411. pci_save_state(pdev);
  6412. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6413. if (bp->pm_cap == 0) {
  6414. dev_err(&pdev->dev,
  6415. "Cannot find power management capability, aborting.\n");
  6416. rc = -EIO;
  6417. goto err_out_release;
  6418. }
  6419. bp->dev = dev;
  6420. bp->pdev = pdev;
  6421. spin_lock_init(&bp->phy_lock);
  6422. spin_lock_init(&bp->indirect_lock);
  6423. #ifdef BCM_CNIC
  6424. mutex_init(&bp->cnic_lock);
  6425. #endif
  6426. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6427. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6428. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6429. dev->mem_end = dev->mem_start + mem_len;
  6430. dev->irq = pdev->irq;
  6431. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6432. if (!bp->regview) {
  6433. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6434. rc = -ENOMEM;
  6435. goto err_out_release;
  6436. }
  6437. /* Configure byte swap and enable write to the reg_window registers.
  6438. * Rely on CPU to do target byte swapping on big endian systems
  6439. * The chip's target access swapping will not swap all accesses
  6440. */
  6441. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6442. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6443. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6444. bnx2_set_power_state(bp, PCI_D0);
  6445. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6446. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6447. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6448. dev_err(&pdev->dev,
  6449. "Cannot find PCIE capability, aborting.\n");
  6450. rc = -EIO;
  6451. goto err_out_unmap;
  6452. }
  6453. bp->flags |= BNX2_FLAG_PCIE;
  6454. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6455. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6456. } else {
  6457. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6458. if (bp->pcix_cap == 0) {
  6459. dev_err(&pdev->dev,
  6460. "Cannot find PCIX capability, aborting.\n");
  6461. rc = -EIO;
  6462. goto err_out_unmap;
  6463. }
  6464. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6465. }
  6466. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6467. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6468. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6469. }
  6470. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6471. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6472. bp->flags |= BNX2_FLAG_MSI_CAP;
  6473. }
  6474. /* 5708 cannot support DMA addresses > 40-bit. */
  6475. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6476. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6477. else
  6478. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6479. /* Configure DMA attributes. */
  6480. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6481. dev->features |= NETIF_F_HIGHDMA;
  6482. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6483. if (rc) {
  6484. dev_err(&pdev->dev,
  6485. "pci_set_consistent_dma_mask failed, aborting.\n");
  6486. goto err_out_unmap;
  6487. }
  6488. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6489. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6490. goto err_out_unmap;
  6491. }
  6492. if (!(bp->flags & BNX2_FLAG_PCIE))
  6493. bnx2_get_pci_speed(bp);
  6494. /* 5706A0 may falsely detect SERR and PERR. */
  6495. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6496. reg = REG_RD(bp, PCI_COMMAND);
  6497. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6498. REG_WR(bp, PCI_COMMAND, reg);
  6499. }
  6500. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6501. !(bp->flags & BNX2_FLAG_PCIX)) {
  6502. dev_err(&pdev->dev,
  6503. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6504. goto err_out_unmap;
  6505. }
  6506. bnx2_init_nvram(bp);
  6507. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6508. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6509. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6510. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6511. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6512. } else
  6513. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6514. /* Get the permanent MAC address. First we need to make sure the
  6515. * firmware is actually running.
  6516. */
  6517. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6518. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6519. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6520. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6521. rc = -ENODEV;
  6522. goto err_out_unmap;
  6523. }
  6524. bnx2_read_vpd_fw_ver(bp);
  6525. j = strlen(bp->fw_version);
  6526. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6527. for (i = 0; i < 3 && j < 24; i++) {
  6528. u8 num, k, skip0;
  6529. if (i == 0) {
  6530. bp->fw_version[j++] = 'b';
  6531. bp->fw_version[j++] = 'c';
  6532. bp->fw_version[j++] = ' ';
  6533. }
  6534. num = (u8) (reg >> (24 - (i * 8)));
  6535. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6536. if (num >= k || !skip0 || k == 1) {
  6537. bp->fw_version[j++] = (num / k) + '0';
  6538. skip0 = 0;
  6539. }
  6540. }
  6541. if (i != 2)
  6542. bp->fw_version[j++] = '.';
  6543. }
  6544. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6545. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6546. bp->wol = 1;
  6547. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6548. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6549. for (i = 0; i < 30; i++) {
  6550. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6551. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6552. break;
  6553. msleep(10);
  6554. }
  6555. }
  6556. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6557. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6558. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6559. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6560. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6561. if (j < 32)
  6562. bp->fw_version[j++] = ' ';
  6563. for (i = 0; i < 3 && j < 28; i++) {
  6564. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6565. reg = swab32(reg);
  6566. memcpy(&bp->fw_version[j], &reg, 4);
  6567. j += 4;
  6568. }
  6569. }
  6570. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6571. bp->mac_addr[0] = (u8) (reg >> 8);
  6572. bp->mac_addr[1] = (u8) reg;
  6573. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6574. bp->mac_addr[2] = (u8) (reg >> 24);
  6575. bp->mac_addr[3] = (u8) (reg >> 16);
  6576. bp->mac_addr[4] = (u8) (reg >> 8);
  6577. bp->mac_addr[5] = (u8) reg;
  6578. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6579. bnx2_set_rx_ring_size(bp, 255);
  6580. bp->rx_csum = 1;
  6581. bp->tx_quick_cons_trip_int = 2;
  6582. bp->tx_quick_cons_trip = 20;
  6583. bp->tx_ticks_int = 18;
  6584. bp->tx_ticks = 80;
  6585. bp->rx_quick_cons_trip_int = 2;
  6586. bp->rx_quick_cons_trip = 12;
  6587. bp->rx_ticks_int = 18;
  6588. bp->rx_ticks = 18;
  6589. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6590. bp->current_interval = BNX2_TIMER_INTERVAL;
  6591. bp->phy_addr = 1;
  6592. /* Disable WOL support if we are running on a SERDES chip. */
  6593. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6594. bnx2_get_5709_media(bp);
  6595. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6596. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6597. bp->phy_port = PORT_TP;
  6598. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6599. bp->phy_port = PORT_FIBRE;
  6600. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6601. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6602. bp->flags |= BNX2_FLAG_NO_WOL;
  6603. bp->wol = 0;
  6604. }
  6605. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6606. /* Don't do parallel detect on this board because of
  6607. * some board problems. The link will not go down
  6608. * if we do parallel detect.
  6609. */
  6610. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6611. pdev->subsystem_device == 0x310c)
  6612. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6613. } else {
  6614. bp->phy_addr = 2;
  6615. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6616. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6617. }
  6618. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6619. CHIP_NUM(bp) == CHIP_NUM_5708)
  6620. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6621. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6622. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6623. CHIP_REV(bp) == CHIP_REV_Bx))
  6624. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6625. bnx2_init_fw_cap(bp);
  6626. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6627. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6628. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6629. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6630. bp->flags |= BNX2_FLAG_NO_WOL;
  6631. bp->wol = 0;
  6632. }
  6633. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6634. bp->tx_quick_cons_trip_int =
  6635. bp->tx_quick_cons_trip;
  6636. bp->tx_ticks_int = bp->tx_ticks;
  6637. bp->rx_quick_cons_trip_int =
  6638. bp->rx_quick_cons_trip;
  6639. bp->rx_ticks_int = bp->rx_ticks;
  6640. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6641. bp->com_ticks_int = bp->com_ticks;
  6642. bp->cmd_ticks_int = bp->cmd_ticks;
  6643. }
  6644. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6645. *
  6646. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6647. * with byte enables disabled on the unused 32-bit word. This is legal
  6648. * but causes problems on the AMD 8132 which will eventually stop
  6649. * responding after a while.
  6650. *
  6651. * AMD believes this incompatibility is unique to the 5706, and
  6652. * prefers to locally disable MSI rather than globally disabling it.
  6653. */
  6654. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6655. struct pci_dev *amd_8132 = NULL;
  6656. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6657. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6658. amd_8132))) {
  6659. if (amd_8132->revision >= 0x10 &&
  6660. amd_8132->revision <= 0x13) {
  6661. disable_msi = 1;
  6662. pci_dev_put(amd_8132);
  6663. break;
  6664. }
  6665. }
  6666. }
  6667. bnx2_set_default_link(bp);
  6668. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6669. init_timer(&bp->timer);
  6670. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6671. bp->timer.data = (unsigned long) bp;
  6672. bp->timer.function = bnx2_timer;
  6673. return 0;
  6674. err_out_unmap:
  6675. if (bp->regview) {
  6676. iounmap(bp->regview);
  6677. bp->regview = NULL;
  6678. }
  6679. err_out_release:
  6680. pci_release_regions(pdev);
  6681. err_out_disable:
  6682. pci_disable_device(pdev);
  6683. pci_set_drvdata(pdev, NULL);
  6684. err_out:
  6685. return rc;
  6686. }
  6687. static char * __devinit
  6688. bnx2_bus_string(struct bnx2 *bp, char *str)
  6689. {
  6690. char *s = str;
  6691. if (bp->flags & BNX2_FLAG_PCIE) {
  6692. s += sprintf(s, "PCI Express");
  6693. } else {
  6694. s += sprintf(s, "PCI");
  6695. if (bp->flags & BNX2_FLAG_PCIX)
  6696. s += sprintf(s, "-X");
  6697. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6698. s += sprintf(s, " 32-bit");
  6699. else
  6700. s += sprintf(s, " 64-bit");
  6701. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6702. }
  6703. return str;
  6704. }
  6705. static void __devinit
  6706. bnx2_init_napi(struct bnx2 *bp)
  6707. {
  6708. int i;
  6709. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6710. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6711. int (*poll)(struct napi_struct *, int);
  6712. if (i == 0)
  6713. poll = bnx2_poll;
  6714. else
  6715. poll = bnx2_poll_msix;
  6716. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6717. bnapi->bp = bp;
  6718. }
  6719. }
  6720. static const struct net_device_ops bnx2_netdev_ops = {
  6721. .ndo_open = bnx2_open,
  6722. .ndo_start_xmit = bnx2_start_xmit,
  6723. .ndo_stop = bnx2_close,
  6724. .ndo_get_stats = bnx2_get_stats,
  6725. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6726. .ndo_do_ioctl = bnx2_ioctl,
  6727. .ndo_validate_addr = eth_validate_addr,
  6728. .ndo_set_mac_address = bnx2_change_mac_addr,
  6729. .ndo_change_mtu = bnx2_change_mtu,
  6730. .ndo_tx_timeout = bnx2_tx_timeout,
  6731. #ifdef BCM_VLAN
  6732. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6733. #endif
  6734. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6735. .ndo_poll_controller = poll_bnx2,
  6736. #endif
  6737. };
  6738. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6739. {
  6740. #ifdef BCM_VLAN
  6741. dev->vlan_features |= flags;
  6742. #endif
  6743. }
  6744. static int __devinit
  6745. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6746. {
  6747. static int version_printed = 0;
  6748. struct net_device *dev = NULL;
  6749. struct bnx2 *bp;
  6750. int rc;
  6751. char str[40];
  6752. if (version_printed++ == 0)
  6753. printk(KERN_INFO "%s", version);
  6754. /* dev zeroed in init_etherdev */
  6755. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6756. if (!dev)
  6757. return -ENOMEM;
  6758. rc = bnx2_init_board(pdev, dev);
  6759. if (rc < 0) {
  6760. free_netdev(dev);
  6761. return rc;
  6762. }
  6763. dev->netdev_ops = &bnx2_netdev_ops;
  6764. dev->watchdog_timeo = TX_TIMEOUT;
  6765. dev->ethtool_ops = &bnx2_ethtool_ops;
  6766. bp = netdev_priv(dev);
  6767. bnx2_init_napi(bp);
  6768. pci_set_drvdata(pdev, dev);
  6769. rc = bnx2_request_firmware(bp);
  6770. if (rc)
  6771. goto error;
  6772. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6773. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6774. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6775. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6776. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6777. dev->features |= NETIF_F_IPV6_CSUM;
  6778. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6779. }
  6780. #ifdef BCM_VLAN
  6781. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6782. #endif
  6783. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6784. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6785. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6786. dev->features |= NETIF_F_TSO6;
  6787. vlan_features_add(dev, NETIF_F_TSO6);
  6788. }
  6789. if ((rc = register_netdev(dev))) {
  6790. dev_err(&pdev->dev, "Cannot register net device\n");
  6791. goto error;
  6792. }
  6793. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6794. "IRQ %d, node addr %pM\n",
  6795. dev->name,
  6796. board_info[ent->driver_data].name,
  6797. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6798. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6799. bnx2_bus_string(bp, str),
  6800. dev->base_addr,
  6801. bp->pdev->irq, dev->dev_addr);
  6802. return 0;
  6803. error:
  6804. if (bp->mips_firmware)
  6805. release_firmware(bp->mips_firmware);
  6806. if (bp->rv2p_firmware)
  6807. release_firmware(bp->rv2p_firmware);
  6808. if (bp->regview)
  6809. iounmap(bp->regview);
  6810. pci_release_regions(pdev);
  6811. pci_disable_device(pdev);
  6812. pci_set_drvdata(pdev, NULL);
  6813. free_netdev(dev);
  6814. return rc;
  6815. }
  6816. static void __devexit
  6817. bnx2_remove_one(struct pci_dev *pdev)
  6818. {
  6819. struct net_device *dev = pci_get_drvdata(pdev);
  6820. struct bnx2 *bp = netdev_priv(dev);
  6821. flush_scheduled_work();
  6822. unregister_netdev(dev);
  6823. if (bp->mips_firmware)
  6824. release_firmware(bp->mips_firmware);
  6825. if (bp->rv2p_firmware)
  6826. release_firmware(bp->rv2p_firmware);
  6827. if (bp->regview)
  6828. iounmap(bp->regview);
  6829. free_netdev(dev);
  6830. pci_release_regions(pdev);
  6831. pci_disable_device(pdev);
  6832. pci_set_drvdata(pdev, NULL);
  6833. }
  6834. static int
  6835. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6836. {
  6837. struct net_device *dev = pci_get_drvdata(pdev);
  6838. struct bnx2 *bp = netdev_priv(dev);
  6839. /* PCI register 4 needs to be saved whether netif_running() or not.
  6840. * MSI address and data need to be saved if using MSI and
  6841. * netif_running().
  6842. */
  6843. pci_save_state(pdev);
  6844. if (!netif_running(dev))
  6845. return 0;
  6846. flush_scheduled_work();
  6847. bnx2_netif_stop(bp);
  6848. netif_device_detach(dev);
  6849. del_timer_sync(&bp->timer);
  6850. bnx2_shutdown_chip(bp);
  6851. bnx2_free_skbs(bp);
  6852. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6853. return 0;
  6854. }
  6855. static int
  6856. bnx2_resume(struct pci_dev *pdev)
  6857. {
  6858. struct net_device *dev = pci_get_drvdata(pdev);
  6859. struct bnx2 *bp = netdev_priv(dev);
  6860. pci_restore_state(pdev);
  6861. if (!netif_running(dev))
  6862. return 0;
  6863. bnx2_set_power_state(bp, PCI_D0);
  6864. netif_device_attach(dev);
  6865. bnx2_init_nic(bp, 1);
  6866. bnx2_netif_start(bp);
  6867. return 0;
  6868. }
  6869. /**
  6870. * bnx2_io_error_detected - called when PCI error is detected
  6871. * @pdev: Pointer to PCI device
  6872. * @state: The current pci connection state
  6873. *
  6874. * This function is called after a PCI bus error affecting
  6875. * this device has been detected.
  6876. */
  6877. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6878. pci_channel_state_t state)
  6879. {
  6880. struct net_device *dev = pci_get_drvdata(pdev);
  6881. struct bnx2 *bp = netdev_priv(dev);
  6882. rtnl_lock();
  6883. netif_device_detach(dev);
  6884. if (state == pci_channel_io_perm_failure) {
  6885. rtnl_unlock();
  6886. return PCI_ERS_RESULT_DISCONNECT;
  6887. }
  6888. if (netif_running(dev)) {
  6889. bnx2_netif_stop(bp);
  6890. del_timer_sync(&bp->timer);
  6891. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6892. }
  6893. pci_disable_device(pdev);
  6894. rtnl_unlock();
  6895. /* Request a slot slot reset. */
  6896. return PCI_ERS_RESULT_NEED_RESET;
  6897. }
  6898. /**
  6899. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6900. * @pdev: Pointer to PCI device
  6901. *
  6902. * Restart the card from scratch, as if from a cold-boot.
  6903. */
  6904. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6905. {
  6906. struct net_device *dev = pci_get_drvdata(pdev);
  6907. struct bnx2 *bp = netdev_priv(dev);
  6908. rtnl_lock();
  6909. if (pci_enable_device(pdev)) {
  6910. dev_err(&pdev->dev,
  6911. "Cannot re-enable PCI device after reset.\n");
  6912. rtnl_unlock();
  6913. return PCI_ERS_RESULT_DISCONNECT;
  6914. }
  6915. pci_set_master(pdev);
  6916. pci_restore_state(pdev);
  6917. pci_save_state(pdev);
  6918. if (netif_running(dev)) {
  6919. bnx2_set_power_state(bp, PCI_D0);
  6920. bnx2_init_nic(bp, 1);
  6921. }
  6922. rtnl_unlock();
  6923. return PCI_ERS_RESULT_RECOVERED;
  6924. }
  6925. /**
  6926. * bnx2_io_resume - called when traffic can start flowing again.
  6927. * @pdev: Pointer to PCI device
  6928. *
  6929. * This callback is called when the error recovery driver tells us that
  6930. * its OK to resume normal operation.
  6931. */
  6932. static void bnx2_io_resume(struct pci_dev *pdev)
  6933. {
  6934. struct net_device *dev = pci_get_drvdata(pdev);
  6935. struct bnx2 *bp = netdev_priv(dev);
  6936. rtnl_lock();
  6937. if (netif_running(dev))
  6938. bnx2_netif_start(bp);
  6939. netif_device_attach(dev);
  6940. rtnl_unlock();
  6941. }
  6942. static struct pci_error_handlers bnx2_err_handler = {
  6943. .error_detected = bnx2_io_error_detected,
  6944. .slot_reset = bnx2_io_slot_reset,
  6945. .resume = bnx2_io_resume,
  6946. };
  6947. static struct pci_driver bnx2_pci_driver = {
  6948. .name = DRV_MODULE_NAME,
  6949. .id_table = bnx2_pci_tbl,
  6950. .probe = bnx2_init_one,
  6951. .remove = __devexit_p(bnx2_remove_one),
  6952. .suspend = bnx2_suspend,
  6953. .resume = bnx2_resume,
  6954. .err_handler = &bnx2_err_handler,
  6955. };
  6956. static int __init bnx2_init(void)
  6957. {
  6958. return pci_register_driver(&bnx2_pci_driver);
  6959. }
  6960. static void __exit bnx2_cleanup(void)
  6961. {
  6962. pci_unregister_driver(&bnx2_pci_driver);
  6963. }
  6964. module_init(bnx2_init);
  6965. module_exit(bnx2_cleanup);