at24.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * at24.c - handle most I2C EEPROMs
  3. *
  4. * Copyright (C) 2005-2007 David Brownell
  5. * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/delay.h>
  17. #include <linux/mutex.h>
  18. #include <linux/sysfs.h>
  19. #include <linux/mod_devicetable.h>
  20. #include <linux/log2.h>
  21. #include <linux/bitops.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/i2c.h>
  24. #include <linux/i2c/at24.h>
  25. /*
  26. * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
  27. * Differences between different vendor product lines (like Atmel AT24C or
  28. * MicroChip 24LC, etc) won't much matter for typical read/write access.
  29. * There are also I2C RAM chips, likewise interchangeable. One example
  30. * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
  31. *
  32. * However, misconfiguration can lose data. "Set 16-bit memory address"
  33. * to a part with 8-bit addressing will overwrite data. Writing with too
  34. * big a page size also loses data. And it's not safe to assume that the
  35. * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
  36. * uses 0x51, for just one example.
  37. *
  38. * Accordingly, explicit board-specific configuration data should be used
  39. * in almost all cases. (One partial exception is an SMBus used to access
  40. * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
  41. *
  42. * So this driver uses "new style" I2C driver binding, expecting to be
  43. * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
  44. * similar kernel-resident tables; or, configuration data coming from
  45. * a bootloader.
  46. *
  47. * Other than binding model, current differences from "eeprom" driver are
  48. * that this one handles write access and isn't restricted to 24c02 devices.
  49. * It also handles larger devices (32 kbit and up) with two-byte addresses,
  50. * which won't work on pure SMBus systems.
  51. */
  52. struct at24_data {
  53. struct at24_platform_data chip;
  54. struct memory_accessor macc;
  55. bool use_smbus;
  56. /*
  57. * Lock protects against activities from other Linux tasks,
  58. * but not from changes by other I2C masters.
  59. */
  60. struct mutex lock;
  61. struct bin_attribute bin;
  62. u8 *writebuf;
  63. unsigned write_max;
  64. unsigned num_addresses;
  65. /*
  66. * Some chips tie up multiple I2C addresses; dummy devices reserve
  67. * them for us, and we'll use them with SMBus calls.
  68. */
  69. struct i2c_client *client[];
  70. };
  71. /*
  72. * This parameter is to help this driver avoid blocking other drivers out
  73. * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
  74. * clock, one 256 byte read takes about 1/43 second which is excessive;
  75. * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
  76. * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
  77. *
  78. * This value is forced to be a power of two so that writes align on pages.
  79. */
  80. static unsigned io_limit = 128;
  81. module_param(io_limit, uint, 0);
  82. MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
  83. /*
  84. * Specs often allow 5 msec for a page write, sometimes 20 msec;
  85. * it's important to recover from write timeouts.
  86. */
  87. static unsigned write_timeout = 25;
  88. module_param(write_timeout, uint, 0);
  89. MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
  90. #define AT24_SIZE_BYTELEN 5
  91. #define AT24_SIZE_FLAGS 8
  92. #define AT24_BITMASK(x) (BIT(x) - 1)
  93. /* create non-zero magic value for given eeprom parameters */
  94. #define AT24_DEVICE_MAGIC(_len, _flags) \
  95. ((1 << AT24_SIZE_FLAGS | (_flags)) \
  96. << AT24_SIZE_BYTELEN | ilog2(_len))
  97. static const struct i2c_device_id at24_ids[] = {
  98. /* needs 8 addresses as A0-A2 are ignored */
  99. { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
  100. /* old variants can't be handled with this generic entry! */
  101. { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
  102. { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
  103. /* spd is a 24c02 in memory DIMMs */
  104. { "spd", AT24_DEVICE_MAGIC(2048 / 8,
  105. AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
  106. { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
  107. /* 24rf08 quirk is handled at i2c-core */
  108. { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
  109. { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
  110. { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
  111. { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
  112. { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
  113. { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
  114. { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
  115. { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
  116. { "at24", 0 },
  117. { /* END OF LIST */ }
  118. };
  119. MODULE_DEVICE_TABLE(i2c, at24_ids);
  120. /*-------------------------------------------------------------------------*/
  121. /*
  122. * This routine supports chips which consume multiple I2C addresses. It
  123. * computes the addressing information to be used for a given r/w request.
  124. * Assumes that sanity checks for offset happened at sysfs-layer.
  125. */
  126. static struct i2c_client *at24_translate_offset(struct at24_data *at24,
  127. unsigned *offset)
  128. {
  129. unsigned i;
  130. if (at24->chip.flags & AT24_FLAG_ADDR16) {
  131. i = *offset >> 16;
  132. *offset &= 0xffff;
  133. } else {
  134. i = *offset >> 8;
  135. *offset &= 0xff;
  136. }
  137. return at24->client[i];
  138. }
  139. static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
  140. unsigned offset, size_t count)
  141. {
  142. struct i2c_msg msg[2];
  143. u8 msgbuf[2];
  144. struct i2c_client *client;
  145. unsigned long timeout, read_time;
  146. int status, i;
  147. memset(msg, 0, sizeof(msg));
  148. /*
  149. * REVISIT some multi-address chips don't rollover page reads to
  150. * the next slave address, so we may need to truncate the count.
  151. * Those chips might need another quirk flag.
  152. *
  153. * If the real hardware used four adjacent 24c02 chips and that
  154. * were misconfigured as one 24c08, that would be a similar effect:
  155. * one "eeprom" file not four, but larger reads would fail when
  156. * they crossed certain pages.
  157. */
  158. /*
  159. * Slave address and byte offset derive from the offset. Always
  160. * set the byte address; on a multi-master board, another master
  161. * may have changed the chip's "current" address pointer.
  162. */
  163. client = at24_translate_offset(at24, &offset);
  164. if (count > io_limit)
  165. count = io_limit;
  166. if (at24->use_smbus) {
  167. /* Smaller eeproms can work given some SMBus extension calls */
  168. if (count > I2C_SMBUS_BLOCK_MAX)
  169. count = I2C_SMBUS_BLOCK_MAX;
  170. } else {
  171. /*
  172. * When we have a better choice than SMBus calls, use a
  173. * combined I2C message. Write address; then read up to
  174. * io_limit data bytes. Note that read page rollover helps us
  175. * here (unlike writes). msgbuf is u8 and will cast to our
  176. * needs.
  177. */
  178. i = 0;
  179. if (at24->chip.flags & AT24_FLAG_ADDR16)
  180. msgbuf[i++] = offset >> 8;
  181. msgbuf[i++] = offset;
  182. msg[0].addr = client->addr;
  183. msg[0].buf = msgbuf;
  184. msg[0].len = i;
  185. msg[1].addr = client->addr;
  186. msg[1].flags = I2C_M_RD;
  187. msg[1].buf = buf;
  188. msg[1].len = count;
  189. }
  190. /*
  191. * Reads fail if the previous write didn't complete yet. We may
  192. * loop a few times until this one succeeds, waiting at least
  193. * long enough for one entire page write to work.
  194. */
  195. timeout = jiffies + msecs_to_jiffies(write_timeout);
  196. do {
  197. read_time = jiffies;
  198. if (at24->use_smbus) {
  199. status = i2c_smbus_read_i2c_block_data(client, offset,
  200. count, buf);
  201. } else {
  202. status = i2c_transfer(client->adapter, msg, 2);
  203. if (status == 2)
  204. status = count;
  205. }
  206. dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
  207. count, offset, status, jiffies);
  208. if (status == count)
  209. return count;
  210. /* REVISIT: at HZ=100, this is sloooow */
  211. msleep(1);
  212. } while (time_before(read_time, timeout));
  213. return -ETIMEDOUT;
  214. }
  215. static ssize_t at24_read(struct at24_data *at24,
  216. char *buf, loff_t off, size_t count)
  217. {
  218. ssize_t retval = 0;
  219. if (unlikely(!count))
  220. return count;
  221. /*
  222. * Read data from chip, protecting against concurrent updates
  223. * from this host, but not from other I2C masters.
  224. */
  225. mutex_lock(&at24->lock);
  226. while (count) {
  227. ssize_t status;
  228. status = at24_eeprom_read(at24, buf, off, count);
  229. if (status <= 0) {
  230. if (retval == 0)
  231. retval = status;
  232. break;
  233. }
  234. buf += status;
  235. off += status;
  236. count -= status;
  237. retval += status;
  238. }
  239. mutex_unlock(&at24->lock);
  240. return retval;
  241. }
  242. static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr,
  243. char *buf, loff_t off, size_t count)
  244. {
  245. struct at24_data *at24;
  246. at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
  247. return at24_read(at24, buf, off, count);
  248. }
  249. /*
  250. * Note that if the hardware write-protect pin is pulled high, the whole
  251. * chip is normally write protected. But there are plenty of product
  252. * variants here, including OTP fuses and partial chip protect.
  253. *
  254. * We only use page mode writes; the alternative is sloooow. This routine
  255. * writes at most one page.
  256. */
  257. static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
  258. unsigned offset, size_t count)
  259. {
  260. struct i2c_client *client;
  261. struct i2c_msg msg;
  262. ssize_t status;
  263. unsigned long timeout, write_time;
  264. unsigned next_page;
  265. /* Get corresponding I2C address and adjust offset */
  266. client = at24_translate_offset(at24, &offset);
  267. /* write_max is at most a page */
  268. if (count > at24->write_max)
  269. count = at24->write_max;
  270. /* Never roll over backwards, to the start of this page */
  271. next_page = roundup(offset + 1, at24->chip.page_size);
  272. if (offset + count > next_page)
  273. count = next_page - offset;
  274. /* If we'll use I2C calls for I/O, set up the message */
  275. if (!at24->use_smbus) {
  276. int i = 0;
  277. msg.addr = client->addr;
  278. msg.flags = 0;
  279. /* msg.buf is u8 and casts will mask the values */
  280. msg.buf = at24->writebuf;
  281. if (at24->chip.flags & AT24_FLAG_ADDR16)
  282. msg.buf[i++] = offset >> 8;
  283. msg.buf[i++] = offset;
  284. memcpy(&msg.buf[i], buf, count);
  285. msg.len = i + count;
  286. }
  287. /*
  288. * Writes fail if the previous one didn't complete yet. We may
  289. * loop a few times until this one succeeds, waiting at least
  290. * long enough for one entire page write to work.
  291. */
  292. timeout = jiffies + msecs_to_jiffies(write_timeout);
  293. do {
  294. write_time = jiffies;
  295. if (at24->use_smbus) {
  296. status = i2c_smbus_write_i2c_block_data(client,
  297. offset, count, buf);
  298. if (status == 0)
  299. status = count;
  300. } else {
  301. status = i2c_transfer(client->adapter, &msg, 1);
  302. if (status == 1)
  303. status = count;
  304. }
  305. dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
  306. count, offset, status, jiffies);
  307. if (status == count)
  308. return count;
  309. /* REVISIT: at HZ=100, this is sloooow */
  310. msleep(1);
  311. } while (time_before(write_time, timeout));
  312. return -ETIMEDOUT;
  313. }
  314. static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
  315. size_t count)
  316. {
  317. ssize_t retval = 0;
  318. if (unlikely(!count))
  319. return count;
  320. /*
  321. * Write data to chip, protecting against concurrent updates
  322. * from this host, but not from other I2C masters.
  323. */
  324. mutex_lock(&at24->lock);
  325. while (count) {
  326. ssize_t status;
  327. status = at24_eeprom_write(at24, buf, off, count);
  328. if (status <= 0) {
  329. if (retval == 0)
  330. retval = status;
  331. break;
  332. }
  333. buf += status;
  334. off += status;
  335. count -= status;
  336. retval += status;
  337. }
  338. mutex_unlock(&at24->lock);
  339. return retval;
  340. }
  341. static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr,
  342. char *buf, loff_t off, size_t count)
  343. {
  344. struct at24_data *at24;
  345. at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
  346. return at24_write(at24, buf, off, count);
  347. }
  348. /*-------------------------------------------------------------------------*/
  349. /*
  350. * This lets other kernel code access the eeprom data. For example, it
  351. * might hold a board's Ethernet address, or board-specific calibration
  352. * data generated on the manufacturing floor.
  353. */
  354. static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
  355. off_t offset, size_t count)
  356. {
  357. struct at24_data *at24 = container_of(macc, struct at24_data, macc);
  358. return at24_read(at24, buf, offset, count);
  359. }
  360. static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
  361. off_t offset, size_t count)
  362. {
  363. struct at24_data *at24 = container_of(macc, struct at24_data, macc);
  364. return at24_write(at24, buf, offset, count);
  365. }
  366. /*-------------------------------------------------------------------------*/
  367. static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
  368. {
  369. struct at24_platform_data chip;
  370. bool writable;
  371. bool use_smbus = false;
  372. struct at24_data *at24;
  373. int err;
  374. unsigned i, num_addresses;
  375. kernel_ulong_t magic;
  376. if (client->dev.platform_data) {
  377. chip = *(struct at24_platform_data *)client->dev.platform_data;
  378. } else {
  379. if (!id->driver_data) {
  380. err = -ENODEV;
  381. goto err_out;
  382. }
  383. magic = id->driver_data;
  384. chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
  385. magic >>= AT24_SIZE_BYTELEN;
  386. chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
  387. /*
  388. * This is slow, but we can't know all eeproms, so we better
  389. * play safe. Specifying custom eeprom-types via platform_data
  390. * is recommended anyhow.
  391. */
  392. chip.page_size = 1;
  393. chip.setup = NULL;
  394. chip.context = NULL;
  395. }
  396. if (!is_power_of_2(chip.byte_len))
  397. dev_warn(&client->dev,
  398. "byte_len looks suspicious (no power of 2)!\n");
  399. if (!is_power_of_2(chip.page_size))
  400. dev_warn(&client->dev,
  401. "page_size looks suspicious (no power of 2)!\n");
  402. /* Use I2C operations unless we're stuck with SMBus extensions. */
  403. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
  404. if (chip.flags & AT24_FLAG_ADDR16) {
  405. err = -EPFNOSUPPORT;
  406. goto err_out;
  407. }
  408. if (!i2c_check_functionality(client->adapter,
  409. I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
  410. err = -EPFNOSUPPORT;
  411. goto err_out;
  412. }
  413. use_smbus = true;
  414. }
  415. if (chip.flags & AT24_FLAG_TAKE8ADDR)
  416. num_addresses = 8;
  417. else
  418. num_addresses = DIV_ROUND_UP(chip.byte_len,
  419. (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
  420. at24 = kzalloc(sizeof(struct at24_data) +
  421. num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
  422. if (!at24) {
  423. err = -ENOMEM;
  424. goto err_out;
  425. }
  426. mutex_init(&at24->lock);
  427. at24->use_smbus = use_smbus;
  428. at24->chip = chip;
  429. at24->num_addresses = num_addresses;
  430. /*
  431. * Export the EEPROM bytes through sysfs, since that's convenient.
  432. * By default, only root should see the data (maybe passwords etc)
  433. */
  434. at24->bin.attr.name = "eeprom";
  435. at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
  436. at24->bin.read = at24_bin_read;
  437. at24->bin.size = chip.byte_len;
  438. at24->macc.read = at24_macc_read;
  439. writable = !(chip.flags & AT24_FLAG_READONLY);
  440. if (writable) {
  441. if (!use_smbus || i2c_check_functionality(client->adapter,
  442. I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
  443. unsigned write_max = chip.page_size;
  444. at24->macc.write = at24_macc_write;
  445. at24->bin.write = at24_bin_write;
  446. at24->bin.attr.mode |= S_IWUSR;
  447. if (write_max > io_limit)
  448. write_max = io_limit;
  449. if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
  450. write_max = I2C_SMBUS_BLOCK_MAX;
  451. at24->write_max = write_max;
  452. /* buffer (data + address at the beginning) */
  453. at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
  454. if (!at24->writebuf) {
  455. err = -ENOMEM;
  456. goto err_struct;
  457. }
  458. } else {
  459. dev_warn(&client->dev,
  460. "cannot write due to controller restrictions.");
  461. }
  462. }
  463. at24->client[0] = client;
  464. /* use dummy devices for multiple-address chips */
  465. for (i = 1; i < num_addresses; i++) {
  466. at24->client[i] = i2c_new_dummy(client->adapter,
  467. client->addr + i);
  468. if (!at24->client[i]) {
  469. dev_err(&client->dev, "address 0x%02x unavailable\n",
  470. client->addr + i);
  471. err = -EADDRINUSE;
  472. goto err_clients;
  473. }
  474. }
  475. err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
  476. if (err)
  477. goto err_clients;
  478. i2c_set_clientdata(client, at24);
  479. dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
  480. at24->bin.size, client->name,
  481. writable ? "(writable)" : "(read-only)");
  482. dev_dbg(&client->dev,
  483. "page_size %d, num_addresses %d, write_max %d%s\n",
  484. chip.page_size, num_addresses,
  485. at24->write_max,
  486. use_smbus ? ", use_smbus" : "");
  487. /* export data to kernel code */
  488. if (chip.setup)
  489. chip.setup(&at24->macc, chip.context);
  490. return 0;
  491. err_clients:
  492. for (i = 1; i < num_addresses; i++)
  493. if (at24->client[i])
  494. i2c_unregister_device(at24->client[i]);
  495. kfree(at24->writebuf);
  496. err_struct:
  497. kfree(at24);
  498. err_out:
  499. dev_dbg(&client->dev, "probe error %d\n", err);
  500. return err;
  501. }
  502. static int __devexit at24_remove(struct i2c_client *client)
  503. {
  504. struct at24_data *at24;
  505. int i;
  506. at24 = i2c_get_clientdata(client);
  507. sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
  508. for (i = 1; i < at24->num_addresses; i++)
  509. i2c_unregister_device(at24->client[i]);
  510. kfree(at24->writebuf);
  511. kfree(at24);
  512. i2c_set_clientdata(client, NULL);
  513. return 0;
  514. }
  515. /*-------------------------------------------------------------------------*/
  516. static struct i2c_driver at24_driver = {
  517. .driver = {
  518. .name = "at24",
  519. .owner = THIS_MODULE,
  520. },
  521. .probe = at24_probe,
  522. .remove = __devexit_p(at24_remove),
  523. .id_table = at24_ids,
  524. };
  525. static int __init at24_init(void)
  526. {
  527. io_limit = rounddown_pow_of_two(io_limit);
  528. return i2c_add_driver(&at24_driver);
  529. }
  530. module_init(at24_init);
  531. static void __exit at24_exit(void)
  532. {
  533. i2c_del_driver(&at24_driver);
  534. }
  535. module_exit(at24_exit);
  536. MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
  537. MODULE_AUTHOR("David Brownell and Wolfram Sang");
  538. MODULE_LICENSE("GPL");