af9013.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. *
  6. * Thanks to Afatech who kindly provided information.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/string.h>
  29. #include <linux/slab.h>
  30. #include <linux/firmware.h>
  31. #include "dvb_frontend.h"
  32. #include "af9013_priv.h"
  33. #include "af9013.h"
  34. int af9013_debug;
  35. struct af9013_state {
  36. struct i2c_adapter *i2c;
  37. struct dvb_frontend frontend;
  38. struct af9013_config config;
  39. u16 signal_strength;
  40. u32 ber;
  41. u32 ucblocks;
  42. u16 snr;
  43. u32 frequency;
  44. unsigned long next_statistics_check;
  45. };
  46. static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
  47. static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
  48. u8 *val, u8 len)
  49. {
  50. u8 buf[3+len];
  51. struct i2c_msg msg = {
  52. .addr = state->config.demod_address,
  53. .flags = 0,
  54. .len = sizeof(buf),
  55. .buf = buf };
  56. buf[0] = reg >> 8;
  57. buf[1] = reg & 0xff;
  58. buf[2] = mbox;
  59. memcpy(&buf[3], val, len);
  60. if (i2c_transfer(state->i2c, &msg, 1) != 1) {
  61. warn("I2C write failed reg:%04x len:%d", reg, len);
  62. return -EREMOTEIO;
  63. }
  64. return 0;
  65. }
  66. static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
  67. u8 len)
  68. {
  69. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
  70. return af9013_write_regs(state, mbox, reg, val, len);
  71. }
  72. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  73. u8 len)
  74. {
  75. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
  76. return af9013_write_regs(state, mbox, reg, val, len);
  77. }
  78. /* write single register */
  79. static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
  80. {
  81. return af9013_write_ofdm_regs(state, reg, &val, 1);
  82. }
  83. /* read single register */
  84. static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
  85. {
  86. u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
  87. u8 ibuf[1];
  88. struct i2c_msg msg[2] = {
  89. {
  90. .addr = state->config.demod_address,
  91. .flags = 0,
  92. .len = sizeof(obuf),
  93. .buf = obuf
  94. }, {
  95. .addr = state->config.demod_address,
  96. .flags = I2C_M_RD,
  97. .len = sizeof(ibuf),
  98. .buf = ibuf
  99. }
  100. };
  101. if (i2c_transfer(state->i2c, msg, 2) != 2) {
  102. warn("I2C read failed reg:%04x", reg);
  103. return -EREMOTEIO;
  104. }
  105. *val = ibuf[0];
  106. return 0;
  107. }
  108. static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  109. u8 len, u8 val)
  110. {
  111. int ret;
  112. u8 tmp, mask;
  113. ret = af9013_read_reg(state, reg, &tmp);
  114. if (ret)
  115. return ret;
  116. mask = regmask[len - 1] << pos;
  117. tmp = (tmp & ~mask) | ((val << pos) & mask);
  118. return af9013_write_reg(state, reg, tmp);
  119. }
  120. static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  121. u8 len, u8 *val)
  122. {
  123. int ret;
  124. u8 tmp;
  125. ret = af9013_read_reg(state, reg, &tmp);
  126. if (ret)
  127. return ret;
  128. *val = (tmp >> pos) & regmask[len - 1];
  129. return 0;
  130. }
  131. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  132. {
  133. int ret;
  134. u8 pos;
  135. u16 addr;
  136. deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);
  137. /* GPIO0 & GPIO1 0xd735
  138. GPIO2 & GPIO3 0xd736 */
  139. switch (gpio) {
  140. case 0:
  141. case 1:
  142. addr = 0xd735;
  143. break;
  144. case 2:
  145. case 3:
  146. addr = 0xd736;
  147. break;
  148. default:
  149. err("invalid gpio:%d\n", gpio);
  150. ret = -EINVAL;
  151. goto error;
  152. };
  153. switch (gpio) {
  154. case 0:
  155. case 2:
  156. pos = 0;
  157. break;
  158. case 1:
  159. case 3:
  160. default:
  161. pos = 4;
  162. break;
  163. };
  164. ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);
  165. error:
  166. return ret;
  167. }
  168. static u32 af913_div(u32 a, u32 b, u32 x)
  169. {
  170. u32 r = 0, c = 0, i;
  171. deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);
  172. if (a > b) {
  173. c = a / b;
  174. a = a - c * b;
  175. }
  176. for (i = 0; i < x; i++) {
  177. if (a >= b) {
  178. r += 1;
  179. a -= b;
  180. }
  181. a <<= 1;
  182. r <<= 1;
  183. }
  184. r = (c << (u32)x) + r;
  185. deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
  186. return r;
  187. }
  188. static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
  189. {
  190. int ret = 0;
  191. u8 i = 0;
  192. u8 buf[24];
  193. u32 uninitialized_var(ns_coeff1_2048nu);
  194. u32 uninitialized_var(ns_coeff1_8191nu);
  195. u32 uninitialized_var(ns_coeff1_8192nu);
  196. u32 uninitialized_var(ns_coeff1_8193nu);
  197. u32 uninitialized_var(ns_coeff2_2k);
  198. u32 uninitialized_var(ns_coeff2_8k);
  199. deb_info("%s: adc_clock:%d bw:%d\n", __func__,
  200. state->config.adc_clock, bw);
  201. switch (state->config.adc_clock) {
  202. case 28800: /* 28.800 MHz */
  203. switch (bw) {
  204. case BANDWIDTH_6_MHZ:
  205. ns_coeff1_2048nu = 0x01e79e7a;
  206. ns_coeff1_8191nu = 0x0079eb6e;
  207. ns_coeff1_8192nu = 0x0079e79e;
  208. ns_coeff1_8193nu = 0x0079e3cf;
  209. ns_coeff2_2k = 0x00f3cf3d;
  210. ns_coeff2_8k = 0x003cf3cf;
  211. break;
  212. case BANDWIDTH_7_MHZ:
  213. ns_coeff1_2048nu = 0x0238e38e;
  214. ns_coeff1_8191nu = 0x008e3d55;
  215. ns_coeff1_8192nu = 0x008e38e4;
  216. ns_coeff1_8193nu = 0x008e3472;
  217. ns_coeff2_2k = 0x011c71c7;
  218. ns_coeff2_8k = 0x00471c72;
  219. break;
  220. case BANDWIDTH_8_MHZ:
  221. ns_coeff1_2048nu = 0x028a28a3;
  222. ns_coeff1_8191nu = 0x00a28f3d;
  223. ns_coeff1_8192nu = 0x00a28a29;
  224. ns_coeff1_8193nu = 0x00a28514;
  225. ns_coeff2_2k = 0x01451451;
  226. ns_coeff2_8k = 0x00514514;
  227. break;
  228. default:
  229. ret = -EINVAL;
  230. }
  231. break;
  232. case 20480: /* 20.480 MHz */
  233. switch (bw) {
  234. case BANDWIDTH_6_MHZ:
  235. ns_coeff1_2048nu = 0x02adb6dc;
  236. ns_coeff1_8191nu = 0x00ab7313;
  237. ns_coeff1_8192nu = 0x00ab6db7;
  238. ns_coeff1_8193nu = 0x00ab685c;
  239. ns_coeff2_2k = 0x0156db6e;
  240. ns_coeff2_8k = 0x0055b6dc;
  241. break;
  242. case BANDWIDTH_7_MHZ:
  243. ns_coeff1_2048nu = 0x03200001;
  244. ns_coeff1_8191nu = 0x00c80640;
  245. ns_coeff1_8192nu = 0x00c80000;
  246. ns_coeff1_8193nu = 0x00c7f9c0;
  247. ns_coeff2_2k = 0x01900000;
  248. ns_coeff2_8k = 0x00640000;
  249. break;
  250. case BANDWIDTH_8_MHZ:
  251. ns_coeff1_2048nu = 0x03924926;
  252. ns_coeff1_8191nu = 0x00e4996e;
  253. ns_coeff1_8192nu = 0x00e49249;
  254. ns_coeff1_8193nu = 0x00e48b25;
  255. ns_coeff2_2k = 0x01c92493;
  256. ns_coeff2_8k = 0x00724925;
  257. break;
  258. default:
  259. ret = -EINVAL;
  260. }
  261. break;
  262. case 28000: /* 28.000 MHz */
  263. switch (bw) {
  264. case BANDWIDTH_6_MHZ:
  265. ns_coeff1_2048nu = 0x01f58d10;
  266. ns_coeff1_8191nu = 0x007d672f;
  267. ns_coeff1_8192nu = 0x007d6344;
  268. ns_coeff1_8193nu = 0x007d5f59;
  269. ns_coeff2_2k = 0x00fac688;
  270. ns_coeff2_8k = 0x003eb1a2;
  271. break;
  272. case BANDWIDTH_7_MHZ:
  273. ns_coeff1_2048nu = 0x02492492;
  274. ns_coeff1_8191nu = 0x00924db7;
  275. ns_coeff1_8192nu = 0x00924925;
  276. ns_coeff1_8193nu = 0x00924492;
  277. ns_coeff2_2k = 0x01249249;
  278. ns_coeff2_8k = 0x00492492;
  279. break;
  280. case BANDWIDTH_8_MHZ:
  281. ns_coeff1_2048nu = 0x029cbc15;
  282. ns_coeff1_8191nu = 0x00a7343f;
  283. ns_coeff1_8192nu = 0x00a72f05;
  284. ns_coeff1_8193nu = 0x00a729cc;
  285. ns_coeff2_2k = 0x014e5e0a;
  286. ns_coeff2_8k = 0x00539783;
  287. break;
  288. default:
  289. ret = -EINVAL;
  290. }
  291. break;
  292. case 25000: /* 25.000 MHz */
  293. switch (bw) {
  294. case BANDWIDTH_6_MHZ:
  295. ns_coeff1_2048nu = 0x0231bcb5;
  296. ns_coeff1_8191nu = 0x008c7391;
  297. ns_coeff1_8192nu = 0x008c6f2d;
  298. ns_coeff1_8193nu = 0x008c6aca;
  299. ns_coeff2_2k = 0x0118de5b;
  300. ns_coeff2_8k = 0x00463797;
  301. break;
  302. case BANDWIDTH_7_MHZ:
  303. ns_coeff1_2048nu = 0x028f5c29;
  304. ns_coeff1_8191nu = 0x00a3dc29;
  305. ns_coeff1_8192nu = 0x00a3d70a;
  306. ns_coeff1_8193nu = 0x00a3d1ec;
  307. ns_coeff2_2k = 0x0147ae14;
  308. ns_coeff2_8k = 0x0051eb85;
  309. break;
  310. case BANDWIDTH_8_MHZ:
  311. ns_coeff1_2048nu = 0x02ecfb9d;
  312. ns_coeff1_8191nu = 0x00bb44c1;
  313. ns_coeff1_8192nu = 0x00bb3ee7;
  314. ns_coeff1_8193nu = 0x00bb390d;
  315. ns_coeff2_2k = 0x01767dce;
  316. ns_coeff2_8k = 0x005d9f74;
  317. break;
  318. default:
  319. ret = -EINVAL;
  320. }
  321. break;
  322. default:
  323. err("invalid xtal");
  324. return -EINVAL;
  325. }
  326. if (ret) {
  327. err("invalid bandwidth");
  328. return ret;
  329. }
  330. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24);
  331. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16);
  332. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8);
  333. buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff));
  334. buf[i++] = (u8) ((ns_coeff2_2k & 0x01c00000) >> 22);
  335. buf[i++] = (u8) ((ns_coeff2_2k & 0x003fc000) >> 14);
  336. buf[i++] = (u8) ((ns_coeff2_2k & 0x00003fc0) >> 6);
  337. buf[i++] = (u8) ((ns_coeff2_2k & 0x0000003f));
  338. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24);
  339. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16);
  340. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8);
  341. buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff));
  342. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24);
  343. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16);
  344. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8);
  345. buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff));
  346. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24);
  347. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16);
  348. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8);
  349. buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff));
  350. buf[i++] = (u8) ((ns_coeff2_8k & 0x01c00000) >> 22);
  351. buf[i++] = (u8) ((ns_coeff2_8k & 0x003fc000) >> 14);
  352. buf[i++] = (u8) ((ns_coeff2_8k & 0x00003fc0) >> 6);
  353. buf[i++] = (u8) ((ns_coeff2_8k & 0x0000003f));
  354. deb_info("%s: coeff:", __func__);
  355. debug_dump(buf, sizeof(buf), deb_info);
  356. /* program */
  357. for (i = 0; i < sizeof(buf); i++) {
  358. ret = af9013_write_reg(state, 0xae00 + i, buf[i]);
  359. if (ret)
  360. break;
  361. }
  362. return ret;
  363. }
  364. static int af9013_set_adc_ctrl(struct af9013_state *state)
  365. {
  366. int ret;
  367. u8 buf[3], tmp, i;
  368. u32 adc_cw;
  369. deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);
  370. /* adc frequency type */
  371. switch (state->config.adc_clock) {
  372. case 28800: /* 28.800 MHz */
  373. tmp = 0;
  374. break;
  375. case 20480: /* 20.480 MHz */
  376. tmp = 1;
  377. break;
  378. case 28000: /* 28.000 MHz */
  379. tmp = 2;
  380. break;
  381. case 25000: /* 25.000 MHz */
  382. tmp = 3;
  383. break;
  384. default:
  385. err("invalid xtal");
  386. return -EINVAL;
  387. }
  388. adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);
  389. buf[0] = (u8) ((adc_cw & 0x000000ff));
  390. buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
  391. buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);
  392. deb_info("%s: adc_cw:", __func__);
  393. debug_dump(buf, sizeof(buf), deb_info);
  394. /* program */
  395. for (i = 0; i < sizeof(buf); i++) {
  396. ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
  397. if (ret)
  398. goto error;
  399. }
  400. ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
  401. error:
  402. return ret;
  403. }
  404. static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw)
  405. {
  406. int ret;
  407. u16 addr;
  408. u8 buf[3], i, j;
  409. u32 adc_freq, freq_cw;
  410. s8 bfs_spec_inv;
  411. int if_sample_freq;
  412. for (j = 0; j < 3; j++) {
  413. if (j == 0) {
  414. addr = 0xd140; /* fcw normal */
  415. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  416. } else if (j == 1) {
  417. addr = 0x9be7; /* fcw dummy ram */
  418. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  419. } else {
  420. addr = 0x9bea; /* fcw inverted */
  421. bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
  422. }
  423. adc_freq = state->config.adc_clock * 1000;
  424. if_sample_freq = state->config.tuner_if * 1000;
  425. /* TDA18271 uses different sampling freq for every bw */
  426. if (state->config.tuner == AF9013_TUNER_TDA18271) {
  427. switch (bw) {
  428. case BANDWIDTH_6_MHZ:
  429. if_sample_freq = 3300000; /* 3.3 MHz */
  430. break;
  431. case BANDWIDTH_7_MHZ:
  432. if_sample_freq = 3800000; /* 3.8 MHz */
  433. break;
  434. case BANDWIDTH_8_MHZ:
  435. default:
  436. if_sample_freq = 4300000; /* 4.3 MHz */
  437. break;
  438. }
  439. }
  440. while (if_sample_freq > (adc_freq / 2))
  441. if_sample_freq = if_sample_freq - adc_freq;
  442. if (if_sample_freq >= 0)
  443. bfs_spec_inv = bfs_spec_inv * (-1);
  444. else
  445. if_sample_freq = if_sample_freq * (-1);
  446. freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);
  447. if (bfs_spec_inv == -1)
  448. freq_cw = 0x00800000 - freq_cw;
  449. buf[0] = (u8) ((freq_cw & 0x000000ff));
  450. buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
  451. buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);
  452. deb_info("%s: freq_cw:", __func__);
  453. debug_dump(buf, sizeof(buf), deb_info);
  454. /* program */
  455. for (i = 0; i < sizeof(buf); i++) {
  456. ret = af9013_write_reg(state, addr++, buf[i]);
  457. if (ret)
  458. goto error;
  459. }
  460. }
  461. error:
  462. return ret;
  463. }
  464. static int af9013_set_ofdm_params(struct af9013_state *state,
  465. struct dvb_ofdm_parameters *params, u8 *auto_mode)
  466. {
  467. int ret;
  468. u8 i, buf[3] = {0, 0, 0};
  469. *auto_mode = 0; /* set if parameters are requested to auto set */
  470. /* Try auto-detect transmission parameters in case of AUTO requested or
  471. garbage parameters given by application for compatibility.
  472. MPlayer seems to provide garbage parameters currently. */
  473. switch (params->transmission_mode) {
  474. case TRANSMISSION_MODE_AUTO:
  475. *auto_mode = 1;
  476. case TRANSMISSION_MODE_2K:
  477. break;
  478. case TRANSMISSION_MODE_8K:
  479. buf[0] |= (1 << 0);
  480. break;
  481. default:
  482. deb_info("%s: invalid transmission_mode\n", __func__);
  483. *auto_mode = 1;
  484. }
  485. switch (params->guard_interval) {
  486. case GUARD_INTERVAL_AUTO:
  487. *auto_mode = 1;
  488. case GUARD_INTERVAL_1_32:
  489. break;
  490. case GUARD_INTERVAL_1_16:
  491. buf[0] |= (1 << 2);
  492. break;
  493. case GUARD_INTERVAL_1_8:
  494. buf[0] |= (2 << 2);
  495. break;
  496. case GUARD_INTERVAL_1_4:
  497. buf[0] |= (3 << 2);
  498. break;
  499. default:
  500. deb_info("%s: invalid guard_interval\n", __func__);
  501. *auto_mode = 1;
  502. }
  503. switch (params->hierarchy_information) {
  504. case HIERARCHY_AUTO:
  505. *auto_mode = 1;
  506. case HIERARCHY_NONE:
  507. break;
  508. case HIERARCHY_1:
  509. buf[0] |= (1 << 4);
  510. break;
  511. case HIERARCHY_2:
  512. buf[0] |= (2 << 4);
  513. break;
  514. case HIERARCHY_4:
  515. buf[0] |= (3 << 4);
  516. break;
  517. default:
  518. deb_info("%s: invalid hierarchy_information\n", __func__);
  519. *auto_mode = 1;
  520. };
  521. switch (params->constellation) {
  522. case QAM_AUTO:
  523. *auto_mode = 1;
  524. case QPSK:
  525. break;
  526. case QAM_16:
  527. buf[1] |= (1 << 6);
  528. break;
  529. case QAM_64:
  530. buf[1] |= (2 << 6);
  531. break;
  532. default:
  533. deb_info("%s: invalid constellation\n", __func__);
  534. *auto_mode = 1;
  535. }
  536. /* Use HP. How and which case we can switch to LP? */
  537. buf[1] |= (1 << 4);
  538. switch (params->code_rate_HP) {
  539. case FEC_AUTO:
  540. *auto_mode = 1;
  541. case FEC_1_2:
  542. break;
  543. case FEC_2_3:
  544. buf[2] |= (1 << 0);
  545. break;
  546. case FEC_3_4:
  547. buf[2] |= (2 << 0);
  548. break;
  549. case FEC_5_6:
  550. buf[2] |= (3 << 0);
  551. break;
  552. case FEC_7_8:
  553. buf[2] |= (4 << 0);
  554. break;
  555. default:
  556. deb_info("%s: invalid code_rate_HP\n", __func__);
  557. *auto_mode = 1;
  558. }
  559. switch (params->code_rate_LP) {
  560. case FEC_AUTO:
  561. /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
  562. by dvb_frontend.c for compatibility */
  563. if (params->hierarchy_information != HIERARCHY_NONE)
  564. *auto_mode = 1;
  565. case FEC_1_2:
  566. break;
  567. case FEC_2_3:
  568. buf[2] |= (1 << 3);
  569. break;
  570. case FEC_3_4:
  571. buf[2] |= (2 << 3);
  572. break;
  573. case FEC_5_6:
  574. buf[2] |= (3 << 3);
  575. break;
  576. case FEC_7_8:
  577. buf[2] |= (4 << 3);
  578. break;
  579. case FEC_NONE:
  580. if (params->hierarchy_information == HIERARCHY_AUTO)
  581. break;
  582. default:
  583. deb_info("%s: invalid code_rate_LP\n", __func__);
  584. *auto_mode = 1;
  585. }
  586. switch (params->bandwidth) {
  587. case BANDWIDTH_6_MHZ:
  588. break;
  589. case BANDWIDTH_7_MHZ:
  590. buf[1] |= (1 << 2);
  591. break;
  592. case BANDWIDTH_8_MHZ:
  593. buf[1] |= (2 << 2);
  594. break;
  595. default:
  596. deb_info("%s: invalid bandwidth\n", __func__);
  597. buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */
  598. }
  599. /* program */
  600. for (i = 0; i < sizeof(buf); i++) {
  601. ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
  602. if (ret)
  603. break;
  604. }
  605. return ret;
  606. }
  607. static int af9013_reset(struct af9013_state *state, u8 sleep)
  608. {
  609. int ret;
  610. u8 tmp, i;
  611. deb_info("%s\n", __func__);
  612. /* enable OFDM reset */
  613. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
  614. if (ret)
  615. goto error;
  616. /* start reset mechanism */
  617. ret = af9013_write_reg(state, 0xaeff, 1);
  618. if (ret)
  619. goto error;
  620. /* reset is done when bit 1 is set */
  621. for (i = 0; i < 150; i++) {
  622. ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
  623. if (ret)
  624. goto error;
  625. if (tmp)
  626. break; /* reset done */
  627. msleep(10);
  628. }
  629. if (!tmp)
  630. return -ETIMEDOUT;
  631. /* don't clear reset when going to sleep */
  632. if (!sleep) {
  633. /* clear OFDM reset */
  634. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  635. if (ret)
  636. goto error;
  637. /* disable OFDM reset */
  638. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  639. }
  640. error:
  641. return ret;
  642. }
  643. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  644. {
  645. int ret;
  646. deb_info("%s: onoff:%d\n", __func__, onoff);
  647. if (onoff) {
  648. /* power on */
  649. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
  650. if (ret)
  651. goto error;
  652. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  653. if (ret)
  654. goto error;
  655. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  656. } else {
  657. /* power off */
  658. ret = af9013_reset(state, 1);
  659. if (ret)
  660. goto error;
  661. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
  662. }
  663. error:
  664. return ret;
  665. }
  666. static int af9013_lock_led(struct af9013_state *state, u8 onoff)
  667. {
  668. deb_info("%s: onoff:%d\n", __func__, onoff);
  669. return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
  670. }
  671. static int af9013_set_frontend(struct dvb_frontend *fe,
  672. struct dvb_frontend_parameters *params)
  673. {
  674. struct af9013_state *state = fe->demodulator_priv;
  675. int ret;
  676. u8 auto_mode; /* auto set TPS */
  677. deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
  678. params->u.ofdm.bandwidth);
  679. state->frequency = params->frequency;
  680. /* program CFOE coefficients */
  681. ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
  682. if (ret)
  683. goto error;
  684. /* program frequency control */
  685. ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth);
  686. if (ret)
  687. goto error;
  688. /* clear TPS lock flag (inverted flag) */
  689. ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
  690. if (ret)
  691. goto error;
  692. /* clear MPEG2 lock flag */
  693. ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
  694. if (ret)
  695. goto error;
  696. /* empty channel function */
  697. ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
  698. if (ret)
  699. goto error;
  700. /* empty DVB-T channel function */
  701. ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
  702. if (ret)
  703. goto error;
  704. /* program tuner */
  705. if (fe->ops.tuner_ops.set_params)
  706. fe->ops.tuner_ops.set_params(fe, params);
  707. /* program TPS and bandwidth, check if auto mode needed */
  708. ret = af9013_set_ofdm_params(state, &params->u.ofdm, &auto_mode);
  709. if (ret)
  710. goto error;
  711. if (auto_mode) {
  712. /* clear easy mode flag */
  713. ret = af9013_write_reg(state, 0xaefd, 0);
  714. deb_info("%s: auto TPS\n", __func__);
  715. } else {
  716. /* set easy mode flag */
  717. ret = af9013_write_reg(state, 0xaefd, 1);
  718. if (ret)
  719. goto error;
  720. ret = af9013_write_reg(state, 0xaefe, 0);
  721. deb_info("%s: manual TPS\n", __func__);
  722. }
  723. if (ret)
  724. goto error;
  725. /* everything is set, lets try to receive channel - OFSM GO! */
  726. ret = af9013_write_reg(state, 0xffff, 0);
  727. if (ret)
  728. goto error;
  729. error:
  730. return ret;
  731. }
  732. static int af9013_get_frontend(struct dvb_frontend *fe,
  733. struct dvb_frontend_parameters *p)
  734. {
  735. struct af9013_state *state = fe->demodulator_priv;
  736. int ret;
  737. u8 i, buf[3];
  738. deb_info("%s\n", __func__);
  739. /* read TPS registers */
  740. for (i = 0; i < 3; i++) {
  741. ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
  742. if (ret)
  743. goto error;
  744. }
  745. switch ((buf[1] >> 6) & 3) {
  746. case 0:
  747. p->u.ofdm.constellation = QPSK;
  748. break;
  749. case 1:
  750. p->u.ofdm.constellation = QAM_16;
  751. break;
  752. case 2:
  753. p->u.ofdm.constellation = QAM_64;
  754. break;
  755. }
  756. switch ((buf[0] >> 0) & 3) {
  757. case 0:
  758. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
  759. break;
  760. case 1:
  761. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
  762. }
  763. switch ((buf[0] >> 2) & 3) {
  764. case 0:
  765. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
  766. break;
  767. case 1:
  768. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
  769. break;
  770. case 2:
  771. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
  772. break;
  773. case 3:
  774. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
  775. break;
  776. }
  777. switch ((buf[0] >> 4) & 7) {
  778. case 0:
  779. p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
  780. break;
  781. case 1:
  782. p->u.ofdm.hierarchy_information = HIERARCHY_1;
  783. break;
  784. case 2:
  785. p->u.ofdm.hierarchy_information = HIERARCHY_2;
  786. break;
  787. case 3:
  788. p->u.ofdm.hierarchy_information = HIERARCHY_4;
  789. break;
  790. }
  791. switch ((buf[2] >> 0) & 7) {
  792. case 0:
  793. p->u.ofdm.code_rate_HP = FEC_1_2;
  794. break;
  795. case 1:
  796. p->u.ofdm.code_rate_HP = FEC_2_3;
  797. break;
  798. case 2:
  799. p->u.ofdm.code_rate_HP = FEC_3_4;
  800. break;
  801. case 3:
  802. p->u.ofdm.code_rate_HP = FEC_5_6;
  803. break;
  804. case 4:
  805. p->u.ofdm.code_rate_HP = FEC_7_8;
  806. break;
  807. }
  808. switch ((buf[2] >> 3) & 7) {
  809. case 0:
  810. p->u.ofdm.code_rate_LP = FEC_1_2;
  811. break;
  812. case 1:
  813. p->u.ofdm.code_rate_LP = FEC_2_3;
  814. break;
  815. case 2:
  816. p->u.ofdm.code_rate_LP = FEC_3_4;
  817. break;
  818. case 3:
  819. p->u.ofdm.code_rate_LP = FEC_5_6;
  820. break;
  821. case 4:
  822. p->u.ofdm.code_rate_LP = FEC_7_8;
  823. break;
  824. }
  825. switch ((buf[1] >> 2) & 3) {
  826. case 0:
  827. p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
  828. break;
  829. case 1:
  830. p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
  831. break;
  832. case 2:
  833. p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
  834. break;
  835. }
  836. p->inversion = INVERSION_AUTO;
  837. p->frequency = state->frequency;
  838. error:
  839. return ret;
  840. }
  841. static int af9013_update_ber_unc(struct dvb_frontend *fe)
  842. {
  843. struct af9013_state *state = fe->demodulator_priv;
  844. int ret;
  845. u8 buf[3], i;
  846. u32 error_bit_count = 0;
  847. u32 total_bit_count = 0;
  848. u32 abort_packet_count = 0;
  849. state->ber = 0;
  850. /* check if error bit count is ready */
  851. ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  852. if (ret)
  853. goto error;
  854. if (!buf[0])
  855. goto exit;
  856. /* get RSD packet abort count */
  857. for (i = 0; i < 2; i++) {
  858. ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
  859. if (ret)
  860. goto error;
  861. }
  862. abort_packet_count = (buf[1] << 8) + buf[0];
  863. /* get error bit count */
  864. for (i = 0; i < 3; i++) {
  865. ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
  866. if (ret)
  867. goto error;
  868. }
  869. error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  870. error_bit_count = error_bit_count - abort_packet_count * 8 * 8;
  871. /* get used RSD counting period (10000 RSD packets used) */
  872. for (i = 0; i < 2; i++) {
  873. ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
  874. if (ret)
  875. goto error;
  876. }
  877. total_bit_count = (buf[1] << 8) + buf[0];
  878. total_bit_count = total_bit_count - abort_packet_count;
  879. total_bit_count = total_bit_count * 204 * 8;
  880. if (total_bit_count)
  881. state->ber = error_bit_count * 1000000000 / total_bit_count;
  882. state->ucblocks += abort_packet_count;
  883. deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
  884. error_bit_count, total_bit_count, abort_packet_count);
  885. /* set BER counting range */
  886. ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
  887. if (ret)
  888. goto error;
  889. ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
  890. if (ret)
  891. goto error;
  892. /* reset and start BER counter */
  893. ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
  894. if (ret)
  895. goto error;
  896. exit:
  897. error:
  898. return ret;
  899. }
  900. static int af9013_update_snr(struct dvb_frontend *fe)
  901. {
  902. struct af9013_state *state = fe->demodulator_priv;
  903. int ret;
  904. u8 buf[3], i, len;
  905. u32 quant = 0;
  906. struct snr_table *uninitialized_var(snr_table);
  907. /* check if quantizer ready (for snr) */
  908. ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
  909. if (ret)
  910. goto error;
  911. if (buf[0]) {
  912. /* quantizer ready - read it */
  913. for (i = 0; i < 3; i++) {
  914. ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
  915. if (ret)
  916. goto error;
  917. }
  918. quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  919. /* read current constellation */
  920. ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
  921. if (ret)
  922. goto error;
  923. switch ((buf[0] >> 6) & 3) {
  924. case 0:
  925. len = ARRAY_SIZE(qpsk_snr_table);
  926. snr_table = qpsk_snr_table;
  927. break;
  928. case 1:
  929. len = ARRAY_SIZE(qam16_snr_table);
  930. snr_table = qam16_snr_table;
  931. break;
  932. case 2:
  933. len = ARRAY_SIZE(qam64_snr_table);
  934. snr_table = qam64_snr_table;
  935. break;
  936. default:
  937. len = 0;
  938. break;
  939. }
  940. if (len) {
  941. for (i = 0; i < len; i++) {
  942. if (quant < snr_table[i].val) {
  943. state->snr = snr_table[i].snr * 10;
  944. break;
  945. }
  946. }
  947. }
  948. /* set quantizer super frame count */
  949. ret = af9013_write_reg(state, 0xd2e2, 1);
  950. if (ret)
  951. goto error;
  952. /* check quantizer availability */
  953. for (i = 0; i < 10; i++) {
  954. msleep(10);
  955. ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
  956. &buf[0]);
  957. if (ret)
  958. goto error;
  959. if (!buf[0])
  960. break;
  961. }
  962. /* reset quantizer */
  963. ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
  964. if (ret)
  965. goto error;
  966. }
  967. error:
  968. return ret;
  969. }
  970. static int af9013_update_signal_strength(struct dvb_frontend *fe)
  971. {
  972. struct af9013_state *state = fe->demodulator_priv;
  973. int ret;
  974. u8 tmp0;
  975. u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80;
  976. int signal_strength;
  977. deb_info("%s\n", __func__);
  978. state->signal_strength = 0;
  979. ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0);
  980. if (ret)
  981. goto error;
  982. if (tmp0) {
  983. ret = af9013_read_reg(state, 0x9bbd, &rf_50);
  984. if (ret)
  985. goto error;
  986. ret = af9013_read_reg(state, 0x9bd0, &rf_80);
  987. if (ret)
  988. goto error;
  989. ret = af9013_read_reg(state, 0x9be2, &if_50);
  990. if (ret)
  991. goto error;
  992. ret = af9013_read_reg(state, 0x9be4, &if_80);
  993. if (ret)
  994. goto error;
  995. ret = af9013_read_reg(state, 0xd07c, &rf_gain);
  996. if (ret)
  997. goto error;
  998. ret = af9013_read_reg(state, 0xd07d, &if_gain);
  999. if (ret)
  1000. goto error;
  1001. signal_strength = (0xffff / (9 * (rf_50 + if_50) - \
  1002. 11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \
  1003. 11 * (rf_80 + if_80));
  1004. if (signal_strength < 0)
  1005. signal_strength = 0;
  1006. else if (signal_strength > 0xffff)
  1007. signal_strength = 0xffff;
  1008. state->signal_strength = signal_strength;
  1009. }
  1010. error:
  1011. return ret;
  1012. }
  1013. static int af9013_update_statistics(struct dvb_frontend *fe)
  1014. {
  1015. struct af9013_state *state = fe->demodulator_priv;
  1016. int ret;
  1017. if (time_before(jiffies, state->next_statistics_check))
  1018. return 0;
  1019. /* set minimum statistic update interval */
  1020. state->next_statistics_check = jiffies + msecs_to_jiffies(1200);
  1021. ret = af9013_update_signal_strength(fe);
  1022. if (ret)
  1023. goto error;
  1024. ret = af9013_update_snr(fe);
  1025. if (ret)
  1026. goto error;
  1027. ret = af9013_update_ber_unc(fe);
  1028. if (ret)
  1029. goto error;
  1030. error:
  1031. return ret;
  1032. }
  1033. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  1034. struct dvb_frontend_tune_settings *fesettings)
  1035. {
  1036. fesettings->min_delay_ms = 800;
  1037. fesettings->step_size = 0;
  1038. fesettings->max_drift = 0;
  1039. return 0;
  1040. }
  1041. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  1042. {
  1043. struct af9013_state *state = fe->demodulator_priv;
  1044. int ret = 0;
  1045. u8 tmp;
  1046. *status = 0;
  1047. /* TPS lock */
  1048. ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
  1049. if (ret)
  1050. goto error;
  1051. if (tmp)
  1052. *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
  1053. /* MPEG2 lock */
  1054. ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
  1055. if (ret)
  1056. goto error;
  1057. if (tmp)
  1058. *status |= FE_HAS_SYNC | FE_HAS_LOCK;
  1059. if (!(*status & FE_HAS_SIGNAL)) {
  1060. /* AGC lock */
  1061. ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
  1062. if (ret)
  1063. goto error;
  1064. if (tmp)
  1065. *status |= FE_HAS_SIGNAL;
  1066. }
  1067. if (!(*status & FE_HAS_CARRIER)) {
  1068. /* CFO lock */
  1069. ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
  1070. if (ret)
  1071. goto error;
  1072. if (tmp)
  1073. *status |= FE_HAS_CARRIER;
  1074. }
  1075. if (!(*status & FE_HAS_CARRIER)) {
  1076. /* SFOE lock */
  1077. ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
  1078. if (ret)
  1079. goto error;
  1080. if (tmp)
  1081. *status |= FE_HAS_CARRIER;
  1082. }
  1083. ret = af9013_update_statistics(fe);
  1084. error:
  1085. return ret;
  1086. }
  1087. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  1088. {
  1089. struct af9013_state *state = fe->demodulator_priv;
  1090. int ret;
  1091. ret = af9013_update_statistics(fe);
  1092. *ber = state->ber;
  1093. return ret;
  1094. }
  1095. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  1096. {
  1097. struct af9013_state *state = fe->demodulator_priv;
  1098. int ret;
  1099. ret = af9013_update_statistics(fe);
  1100. *strength = state->signal_strength;
  1101. return ret;
  1102. }
  1103. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  1104. {
  1105. struct af9013_state *state = fe->demodulator_priv;
  1106. int ret;
  1107. ret = af9013_update_statistics(fe);
  1108. *snr = state->snr;
  1109. return ret;
  1110. }
  1111. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  1112. {
  1113. struct af9013_state *state = fe->demodulator_priv;
  1114. int ret;
  1115. ret = af9013_update_statistics(fe);
  1116. *ucblocks = state->ucblocks;
  1117. return ret;
  1118. }
  1119. static int af9013_sleep(struct dvb_frontend *fe)
  1120. {
  1121. struct af9013_state *state = fe->demodulator_priv;
  1122. int ret;
  1123. deb_info("%s\n", __func__);
  1124. ret = af9013_lock_led(state, 0);
  1125. if (ret)
  1126. goto error;
  1127. ret = af9013_power_ctrl(state, 0);
  1128. error:
  1129. return ret;
  1130. }
  1131. static int af9013_init(struct dvb_frontend *fe)
  1132. {
  1133. struct af9013_state *state = fe->demodulator_priv;
  1134. int ret, i, len;
  1135. u8 tmp0, tmp1;
  1136. struct regdesc *init;
  1137. deb_info("%s\n", __func__);
  1138. /* reset OFDM */
  1139. ret = af9013_reset(state, 0);
  1140. if (ret)
  1141. goto error;
  1142. /* power on */
  1143. ret = af9013_power_ctrl(state, 1);
  1144. if (ret)
  1145. goto error;
  1146. /* enable ADC */
  1147. ret = af9013_write_reg(state, 0xd73a, 0xa4);
  1148. if (ret)
  1149. goto error;
  1150. /* write API version to firmware */
  1151. for (i = 0; i < sizeof(state->config.api_version); i++) {
  1152. ret = af9013_write_reg(state, 0x9bf2 + i,
  1153. state->config.api_version[i]);
  1154. if (ret)
  1155. goto error;
  1156. }
  1157. /* program ADC control */
  1158. ret = af9013_set_adc_ctrl(state);
  1159. if (ret)
  1160. goto error;
  1161. /* set I2C master clock */
  1162. ret = af9013_write_reg(state, 0xd416, 0x14);
  1163. if (ret)
  1164. goto error;
  1165. /* set 16 embx */
  1166. ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
  1167. if (ret)
  1168. goto error;
  1169. /* set no trigger */
  1170. ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
  1171. if (ret)
  1172. goto error;
  1173. /* set read-update bit for constellation */
  1174. ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
  1175. if (ret)
  1176. goto error;
  1177. /* enable FEC monitor */
  1178. ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
  1179. if (ret)
  1180. goto error;
  1181. /* load OFSM settings */
  1182. deb_info("%s: load ofsm settings\n", __func__);
  1183. len = ARRAY_SIZE(ofsm_init);
  1184. init = ofsm_init;
  1185. for (i = 0; i < len; i++) {
  1186. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1187. init[i].len, init[i].val);
  1188. if (ret)
  1189. goto error;
  1190. }
  1191. /* load tuner specific settings */
  1192. deb_info("%s: load tuner specific settings\n", __func__);
  1193. switch (state->config.tuner) {
  1194. case AF9013_TUNER_MXL5003D:
  1195. len = ARRAY_SIZE(tuner_init_mxl5003d);
  1196. init = tuner_init_mxl5003d;
  1197. break;
  1198. case AF9013_TUNER_MXL5005D:
  1199. case AF9013_TUNER_MXL5005R:
  1200. len = ARRAY_SIZE(tuner_init_mxl5005);
  1201. init = tuner_init_mxl5005;
  1202. break;
  1203. case AF9013_TUNER_ENV77H11D5:
  1204. len = ARRAY_SIZE(tuner_init_env77h11d5);
  1205. init = tuner_init_env77h11d5;
  1206. break;
  1207. case AF9013_TUNER_MT2060:
  1208. len = ARRAY_SIZE(tuner_init_mt2060);
  1209. init = tuner_init_mt2060;
  1210. break;
  1211. case AF9013_TUNER_MC44S803:
  1212. len = ARRAY_SIZE(tuner_init_mc44s803);
  1213. init = tuner_init_mc44s803;
  1214. break;
  1215. case AF9013_TUNER_QT1010:
  1216. case AF9013_TUNER_QT1010A:
  1217. len = ARRAY_SIZE(tuner_init_qt1010);
  1218. init = tuner_init_qt1010;
  1219. break;
  1220. case AF9013_TUNER_MT2060_2:
  1221. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1222. init = tuner_init_mt2060_2;
  1223. break;
  1224. case AF9013_TUNER_TDA18271:
  1225. len = ARRAY_SIZE(tuner_init_tda18271);
  1226. init = tuner_init_tda18271;
  1227. break;
  1228. case AF9013_TUNER_UNKNOWN:
  1229. default:
  1230. len = ARRAY_SIZE(tuner_init_unknown);
  1231. init = tuner_init_unknown;
  1232. break;
  1233. }
  1234. for (i = 0; i < len; i++) {
  1235. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1236. init[i].len, init[i].val);
  1237. if (ret)
  1238. goto error;
  1239. }
  1240. /* set TS mode */
  1241. deb_info("%s: setting ts mode\n", __func__);
  1242. tmp0 = 0; /* parallel mode */
  1243. tmp1 = 0; /* serial mode */
  1244. switch (state->config.output_mode) {
  1245. case AF9013_OUTPUT_MODE_PARALLEL:
  1246. tmp0 = 1;
  1247. break;
  1248. case AF9013_OUTPUT_MODE_SERIAL:
  1249. tmp1 = 1;
  1250. break;
  1251. case AF9013_OUTPUT_MODE_USB:
  1252. /* usb mode for AF9015 */
  1253. default:
  1254. break;
  1255. }
  1256. ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
  1257. if (ret)
  1258. goto error;
  1259. ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
  1260. if (ret)
  1261. goto error;
  1262. /* enable lock led */
  1263. ret = af9013_lock_led(state, 1);
  1264. if (ret)
  1265. goto error;
  1266. error:
  1267. return ret;
  1268. }
  1269. static struct dvb_frontend_ops af9013_ops;
  1270. static int af9013_download_firmware(struct af9013_state *state)
  1271. {
  1272. int i, len, packets, remainder, ret;
  1273. const struct firmware *fw;
  1274. u16 addr = 0x5100; /* firmware start address */
  1275. u16 checksum = 0;
  1276. u8 val;
  1277. u8 fw_params[4];
  1278. u8 *data;
  1279. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1280. msleep(100);
  1281. /* check whether firmware is already running */
  1282. ret = af9013_read_reg(state, 0x98be, &val);
  1283. if (ret)
  1284. goto error;
  1285. else
  1286. deb_info("%s: firmware status:%02x\n", __func__, val);
  1287. if (val == 0x0c) /* fw is running, no need for download */
  1288. goto exit;
  1289. info("found a '%s' in cold state, will try to load a firmware",
  1290. af9013_ops.info.name);
  1291. /* request the firmware, this will block and timeout */
  1292. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1293. if (ret) {
  1294. err("did not find the firmware file. (%s) "
  1295. "Please see linux/Documentation/dvb/ for more details" \
  1296. " on firmware-problems. (%d)",
  1297. fw_file, ret);
  1298. goto error;
  1299. }
  1300. info("downloading firmware from file '%s'", fw_file);
  1301. /* calc checksum */
  1302. for (i = 0; i < fw->size; i++)
  1303. checksum += fw->data[i];
  1304. fw_params[0] = checksum >> 8;
  1305. fw_params[1] = checksum & 0xff;
  1306. fw_params[2] = fw->size >> 8;
  1307. fw_params[3] = fw->size & 0xff;
  1308. /* write fw checksum & size */
  1309. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1310. fw_params, sizeof(fw_params));
  1311. if (ret)
  1312. goto error_release;
  1313. #define FW_PACKET_MAX_DATA 16
  1314. packets = fw->size / FW_PACKET_MAX_DATA;
  1315. remainder = fw->size % FW_PACKET_MAX_DATA;
  1316. len = FW_PACKET_MAX_DATA;
  1317. for (i = 0; i <= packets; i++) {
  1318. if (i == packets) /* set size of the last packet */
  1319. len = remainder;
  1320. data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA);
  1321. ret = af9013_write_ofsm_regs(state, addr, data, len);
  1322. addr += FW_PACKET_MAX_DATA;
  1323. if (ret) {
  1324. err("firmware download failed at %d with %d", i, ret);
  1325. goto error_release;
  1326. }
  1327. }
  1328. /* request boot firmware */
  1329. ret = af9013_write_reg(state, 0xe205, 1);
  1330. if (ret)
  1331. goto error_release;
  1332. for (i = 0; i < 15; i++) {
  1333. msleep(100);
  1334. /* check firmware status */
  1335. ret = af9013_read_reg(state, 0x98be, &val);
  1336. if (ret)
  1337. goto error_release;
  1338. deb_info("%s: firmware status:%02x\n", __func__, val);
  1339. if (val == 0x0c || val == 0x04) /* success or fail */
  1340. break;
  1341. }
  1342. if (val == 0x04) {
  1343. err("firmware did not run");
  1344. ret = -1;
  1345. } else if (val != 0x0c) {
  1346. err("firmware boot timeout");
  1347. ret = -1;
  1348. }
  1349. error_release:
  1350. release_firmware(fw);
  1351. error:
  1352. exit:
  1353. if (!ret)
  1354. info("found a '%s' in warm state.", af9013_ops.info.name);
  1355. return ret;
  1356. }
  1357. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1358. {
  1359. int ret;
  1360. struct af9013_state *state = fe->demodulator_priv;
  1361. deb_info("%s: enable:%d\n", __func__, enable);
  1362. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
  1363. ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
  1364. else
  1365. ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);
  1366. return ret;
  1367. }
  1368. static void af9013_release(struct dvb_frontend *fe)
  1369. {
  1370. struct af9013_state *state = fe->demodulator_priv;
  1371. kfree(state);
  1372. }
  1373. static struct dvb_frontend_ops af9013_ops;
  1374. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1375. struct i2c_adapter *i2c)
  1376. {
  1377. int ret;
  1378. struct af9013_state *state = NULL;
  1379. u8 buf[3], i;
  1380. /* allocate memory for the internal state */
  1381. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1382. if (state == NULL)
  1383. goto error;
  1384. /* setup the state */
  1385. state->i2c = i2c;
  1386. memcpy(&state->config, config, sizeof(struct af9013_config));
  1387. /* chip version */
  1388. ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
  1389. if (ret)
  1390. goto error;
  1391. /* ROM version */
  1392. for (i = 0; i < 2; i++) {
  1393. ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
  1394. if (ret)
  1395. goto error;
  1396. }
  1397. deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
  1398. buf[2], buf[0], buf[1]);
  1399. /* download firmware */
  1400. if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
  1401. ret = af9013_download_firmware(state);
  1402. if (ret)
  1403. goto error;
  1404. }
  1405. /* firmware version */
  1406. for (i = 0; i < 3; i++) {
  1407. ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
  1408. if (ret)
  1409. goto error;
  1410. }
  1411. info("firmware version:%d.%d.%d", buf[0], buf[1], buf[2]);
  1412. /* settings for mp2if */
  1413. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
  1414. /* AF9015 split PSB to 1.5k + 0.5k */
  1415. ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
  1416. } else {
  1417. /* AF9013 change the output bit to data7 */
  1418. ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
  1419. if (ret)
  1420. goto error;
  1421. /* AF9013 set mpeg to full speed */
  1422. ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
  1423. }
  1424. if (ret)
  1425. goto error;
  1426. ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
  1427. if (ret)
  1428. goto error;
  1429. /* set GPIOs */
  1430. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1431. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1432. if (ret)
  1433. goto error;
  1434. }
  1435. /* create dvb_frontend */
  1436. memcpy(&state->frontend.ops, &af9013_ops,
  1437. sizeof(struct dvb_frontend_ops));
  1438. state->frontend.demodulator_priv = state;
  1439. return &state->frontend;
  1440. error:
  1441. kfree(state);
  1442. return NULL;
  1443. }
  1444. EXPORT_SYMBOL(af9013_attach);
  1445. static struct dvb_frontend_ops af9013_ops = {
  1446. .info = {
  1447. .name = "Afatech AF9013 DVB-T",
  1448. .type = FE_OFDM,
  1449. .frequency_min = 174000000,
  1450. .frequency_max = 862000000,
  1451. .frequency_stepsize = 250000,
  1452. .frequency_tolerance = 0,
  1453. .caps =
  1454. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  1455. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  1456. FE_CAN_QPSK | FE_CAN_QAM_16 |
  1457. FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  1458. FE_CAN_TRANSMISSION_MODE_AUTO |
  1459. FE_CAN_GUARD_INTERVAL_AUTO |
  1460. FE_CAN_HIERARCHY_AUTO |
  1461. FE_CAN_RECOVER |
  1462. FE_CAN_MUTE_TS
  1463. },
  1464. .release = af9013_release,
  1465. .init = af9013_init,
  1466. .sleep = af9013_sleep,
  1467. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1468. .set_frontend = af9013_set_frontend,
  1469. .get_frontend = af9013_get_frontend,
  1470. .get_tune_settings = af9013_get_tune_settings,
  1471. .read_status = af9013_read_status,
  1472. .read_ber = af9013_read_ber,
  1473. .read_signal_strength = af9013_read_signal_strength,
  1474. .read_snr = af9013_read_snr,
  1475. .read_ucblocks = af9013_read_ucblocks,
  1476. };
  1477. module_param_named(debug, af9013_debug, int, 0644);
  1478. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  1479. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1480. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1481. MODULE_LICENSE("GPL");