hfcsusb.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182
  1. /* hfcsusb.c
  2. * mISDN driver for Colognechip HFC-S USB chip
  3. *
  4. * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
  5. * Copyright 2008 by Martin Bachem (info@bachem-it.com)
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. *
  21. *
  22. * module params
  23. * debug=<n>, default=0, with n=0xHHHHGGGG
  24. * H - l1 driver flags described in hfcsusb.h
  25. * G - common mISDN debug flags described at mISDNhw.h
  26. *
  27. * poll=<n>, default 128
  28. * n : burst size of PH_DATA_IND at transparent rx data
  29. *
  30. */
  31. #include <linux/module.h>
  32. #include <linux/delay.h>
  33. #include <linux/usb.h>
  34. #include <linux/mISDNhw.h>
  35. #include "hfcsusb.h"
  36. static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
  37. static unsigned int debug;
  38. static int poll = DEFAULT_TRANSP_BURST_SZ;
  39. static LIST_HEAD(HFClist);
  40. static DEFINE_RWLOCK(HFClock);
  41. MODULE_AUTHOR("Martin Bachem");
  42. MODULE_LICENSE("GPL");
  43. module_param(debug, uint, S_IRUGO | S_IWUSR);
  44. module_param(poll, int, 0);
  45. static int hfcsusb_cnt;
  46. /* some function prototypes */
  47. static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
  48. static void release_hw(struct hfcsusb *hw);
  49. static void reset_hfcsusb(struct hfcsusb *hw);
  50. static void setPortMode(struct hfcsusb *hw);
  51. static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
  52. static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
  53. static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
  54. static void deactivate_bchannel(struct bchannel *bch);
  55. static void hfcsusb_ph_info(struct hfcsusb *hw);
  56. /* start next background transfer for control channel */
  57. static void
  58. ctrl_start_transfer(struct hfcsusb *hw)
  59. {
  60. if (debug & DBG_HFC_CALL_TRACE)
  61. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  62. if (hw->ctrl_cnt) {
  63. hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
  64. hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
  65. hw->ctrl_urb->transfer_buffer = NULL;
  66. hw->ctrl_urb->transfer_buffer_length = 0;
  67. hw->ctrl_write.wIndex =
  68. cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
  69. hw->ctrl_write.wValue =
  70. cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
  71. usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
  72. }
  73. }
  74. /*
  75. * queue a control transfer request to write HFC-S USB
  76. * chip register using CTRL resuest queue
  77. */
  78. static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
  79. {
  80. struct ctrl_buf *buf;
  81. if (debug & DBG_HFC_CALL_TRACE)
  82. printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
  83. hw->name, __func__, reg, val);
  84. spin_lock(&hw->ctrl_lock);
  85. if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE)
  86. return 1;
  87. buf = &hw->ctrl_buff[hw->ctrl_in_idx];
  88. buf->hfcs_reg = reg;
  89. buf->reg_val = val;
  90. if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
  91. hw->ctrl_in_idx = 0;
  92. if (++hw->ctrl_cnt == 1)
  93. ctrl_start_transfer(hw);
  94. spin_unlock(&hw->ctrl_lock);
  95. return 0;
  96. }
  97. /* control completion routine handling background control cmds */
  98. static void
  99. ctrl_complete(struct urb *urb)
  100. {
  101. struct hfcsusb *hw = (struct hfcsusb *) urb->context;
  102. struct ctrl_buf *buf;
  103. if (debug & DBG_HFC_CALL_TRACE)
  104. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  105. urb->dev = hw->dev;
  106. if (hw->ctrl_cnt) {
  107. buf = &hw->ctrl_buff[hw->ctrl_out_idx];
  108. hw->ctrl_cnt--; /* decrement actual count */
  109. if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
  110. hw->ctrl_out_idx = 0; /* pointer wrap */
  111. ctrl_start_transfer(hw); /* start next transfer */
  112. }
  113. }
  114. /* handle LED bits */
  115. static void
  116. set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
  117. {
  118. if (set_on) {
  119. if (led_bits < 0)
  120. hw->led_state &= ~abs(led_bits);
  121. else
  122. hw->led_state |= led_bits;
  123. } else {
  124. if (led_bits < 0)
  125. hw->led_state |= abs(led_bits);
  126. else
  127. hw->led_state &= ~led_bits;
  128. }
  129. }
  130. /* handle LED requests */
  131. static void
  132. handle_led(struct hfcsusb *hw, int event)
  133. {
  134. struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
  135. hfcsusb_idtab[hw->vend_idx].driver_info;
  136. __u8 tmpled;
  137. if (driver_info->led_scheme == LED_OFF)
  138. return;
  139. tmpled = hw->led_state;
  140. switch (event) {
  141. case LED_POWER_ON:
  142. set_led_bit(hw, driver_info->led_bits[0], 1);
  143. set_led_bit(hw, driver_info->led_bits[1], 0);
  144. set_led_bit(hw, driver_info->led_bits[2], 0);
  145. set_led_bit(hw, driver_info->led_bits[3], 0);
  146. break;
  147. case LED_POWER_OFF:
  148. set_led_bit(hw, driver_info->led_bits[0], 0);
  149. set_led_bit(hw, driver_info->led_bits[1], 0);
  150. set_led_bit(hw, driver_info->led_bits[2], 0);
  151. set_led_bit(hw, driver_info->led_bits[3], 0);
  152. break;
  153. case LED_S0_ON:
  154. set_led_bit(hw, driver_info->led_bits[1], 1);
  155. break;
  156. case LED_S0_OFF:
  157. set_led_bit(hw, driver_info->led_bits[1], 0);
  158. break;
  159. case LED_B1_ON:
  160. set_led_bit(hw, driver_info->led_bits[2], 1);
  161. break;
  162. case LED_B1_OFF:
  163. set_led_bit(hw, driver_info->led_bits[2], 0);
  164. break;
  165. case LED_B2_ON:
  166. set_led_bit(hw, driver_info->led_bits[3], 1);
  167. break;
  168. case LED_B2_OFF:
  169. set_led_bit(hw, driver_info->led_bits[3], 0);
  170. break;
  171. }
  172. if (hw->led_state != tmpled) {
  173. if (debug & DBG_HFC_CALL_TRACE)
  174. printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
  175. hw->name, __func__,
  176. HFCUSB_P_DATA, hw->led_state);
  177. write_reg(hw, HFCUSB_P_DATA, hw->led_state);
  178. }
  179. }
  180. /*
  181. * Layer2 -> Layer 1 Bchannel data
  182. */
  183. static int
  184. hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
  185. {
  186. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  187. struct hfcsusb *hw = bch->hw;
  188. int ret = -EINVAL;
  189. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  190. u_long flags;
  191. if (debug & DBG_HFC_CALL_TRACE)
  192. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  193. switch (hh->prim) {
  194. case PH_DATA_REQ:
  195. spin_lock_irqsave(&hw->lock, flags);
  196. ret = bchannel_senddata(bch, skb);
  197. spin_unlock_irqrestore(&hw->lock, flags);
  198. if (debug & DBG_HFC_CALL_TRACE)
  199. printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
  200. hw->name, __func__, ret);
  201. if (ret > 0) {
  202. /*
  203. * other l1 drivers don't send early confirms on
  204. * transp data, but hfcsusb does because tx_next
  205. * skb is needed in tx_iso_complete()
  206. */
  207. queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
  208. ret = 0;
  209. }
  210. return ret;
  211. case PH_ACTIVATE_REQ:
  212. if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
  213. hfcsusb_start_endpoint(hw, bch->nr);
  214. ret = hfcsusb_setup_bch(bch, ch->protocol);
  215. } else
  216. ret = 0;
  217. if (!ret)
  218. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
  219. 0, NULL, GFP_KERNEL);
  220. break;
  221. case PH_DEACTIVATE_REQ:
  222. deactivate_bchannel(bch);
  223. _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
  224. 0, NULL, GFP_KERNEL);
  225. ret = 0;
  226. break;
  227. }
  228. if (!ret)
  229. dev_kfree_skb(skb);
  230. return ret;
  231. }
  232. /*
  233. * send full D/B channel status information
  234. * as MPH_INFORMATION_IND
  235. */
  236. static void
  237. hfcsusb_ph_info(struct hfcsusb *hw)
  238. {
  239. struct ph_info *phi;
  240. struct dchannel *dch = &hw->dch;
  241. int i;
  242. phi = kzalloc(sizeof(struct ph_info) +
  243. dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
  244. phi->dch.ch.protocol = hw->protocol;
  245. phi->dch.ch.Flags = dch->Flags;
  246. phi->dch.state = dch->state;
  247. phi->dch.num_bch = dch->dev.nrbchan;
  248. for (i = 0; i < dch->dev.nrbchan; i++) {
  249. phi->bch[i].protocol = hw->bch[i].ch.protocol;
  250. phi->bch[i].Flags = hw->bch[i].Flags;
  251. }
  252. _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
  253. sizeof(struct ph_info_dch) + dch->dev.nrbchan *
  254. sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
  255. }
  256. /*
  257. * Layer2 -> Layer 1 Dchannel data
  258. */
  259. static int
  260. hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
  261. {
  262. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  263. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  264. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  265. struct hfcsusb *hw = dch->hw;
  266. int ret = -EINVAL;
  267. u_long flags;
  268. switch (hh->prim) {
  269. case PH_DATA_REQ:
  270. if (debug & DBG_HFC_CALL_TRACE)
  271. printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
  272. hw->name, __func__);
  273. spin_lock_irqsave(&hw->lock, flags);
  274. ret = dchannel_senddata(dch, skb);
  275. spin_unlock_irqrestore(&hw->lock, flags);
  276. if (ret > 0) {
  277. ret = 0;
  278. queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
  279. }
  280. break;
  281. case PH_ACTIVATE_REQ:
  282. if (debug & DBG_HFC_CALL_TRACE)
  283. printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
  284. hw->name, __func__,
  285. (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
  286. if (hw->protocol == ISDN_P_NT_S0) {
  287. ret = 0;
  288. if (test_bit(FLG_ACTIVE, &dch->Flags)) {
  289. _queue_data(&dch->dev.D,
  290. PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
  291. NULL, GFP_ATOMIC);
  292. } else {
  293. hfcsusb_ph_command(hw,
  294. HFC_L1_ACTIVATE_NT);
  295. test_and_set_bit(FLG_L2_ACTIVATED,
  296. &dch->Flags);
  297. }
  298. } else {
  299. hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
  300. ret = l1_event(dch->l1, hh->prim);
  301. }
  302. break;
  303. case PH_DEACTIVATE_REQ:
  304. if (debug & DBG_HFC_CALL_TRACE)
  305. printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
  306. hw->name, __func__);
  307. test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
  308. if (hw->protocol == ISDN_P_NT_S0) {
  309. hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
  310. spin_lock_irqsave(&hw->lock, flags);
  311. skb_queue_purge(&dch->squeue);
  312. if (dch->tx_skb) {
  313. dev_kfree_skb(dch->tx_skb);
  314. dch->tx_skb = NULL;
  315. }
  316. dch->tx_idx = 0;
  317. if (dch->rx_skb) {
  318. dev_kfree_skb(dch->rx_skb);
  319. dch->rx_skb = NULL;
  320. }
  321. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  322. spin_unlock_irqrestore(&hw->lock, flags);
  323. #ifdef FIXME
  324. if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
  325. dchannel_sched_event(&hc->dch, D_CLEARBUSY);
  326. #endif
  327. ret = 0;
  328. } else
  329. ret = l1_event(dch->l1, hh->prim);
  330. break;
  331. case MPH_INFORMATION_REQ:
  332. hfcsusb_ph_info(hw);
  333. ret = 0;
  334. break;
  335. }
  336. return ret;
  337. }
  338. /*
  339. * Layer 1 callback function
  340. */
  341. static int
  342. hfc_l1callback(struct dchannel *dch, u_int cmd)
  343. {
  344. struct hfcsusb *hw = dch->hw;
  345. if (debug & DBG_HFC_CALL_TRACE)
  346. printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
  347. hw->name, __func__, cmd);
  348. switch (cmd) {
  349. case INFO3_P8:
  350. case INFO3_P10:
  351. case HW_RESET_REQ:
  352. case HW_POWERUP_REQ:
  353. break;
  354. case HW_DEACT_REQ:
  355. skb_queue_purge(&dch->squeue);
  356. if (dch->tx_skb) {
  357. dev_kfree_skb(dch->tx_skb);
  358. dch->tx_skb = NULL;
  359. }
  360. dch->tx_idx = 0;
  361. if (dch->rx_skb) {
  362. dev_kfree_skb(dch->rx_skb);
  363. dch->rx_skb = NULL;
  364. }
  365. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  366. break;
  367. case PH_ACTIVATE_IND:
  368. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  369. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  370. GFP_ATOMIC);
  371. break;
  372. case PH_DEACTIVATE_IND:
  373. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  374. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  375. GFP_ATOMIC);
  376. break;
  377. default:
  378. if (dch->debug & DEBUG_HW)
  379. printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
  380. hw->name, __func__, cmd);
  381. return -1;
  382. }
  383. hfcsusb_ph_info(hw);
  384. return 0;
  385. }
  386. static int
  387. open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
  388. struct channel_req *rq)
  389. {
  390. int err = 0;
  391. if (debug & DEBUG_HW_OPEN)
  392. printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
  393. hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
  394. __builtin_return_address(0));
  395. if (rq->protocol == ISDN_P_NONE)
  396. return -EINVAL;
  397. test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
  398. test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
  399. hfcsusb_start_endpoint(hw, HFC_CHAN_D);
  400. /* E-Channel logging */
  401. if (rq->adr.channel == 1) {
  402. if (hw->fifos[HFCUSB_PCM_RX].pipe) {
  403. hfcsusb_start_endpoint(hw, HFC_CHAN_E);
  404. set_bit(FLG_ACTIVE, &hw->ech.Flags);
  405. _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
  406. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  407. } else
  408. return -EINVAL;
  409. }
  410. if (!hw->initdone) {
  411. hw->protocol = rq->protocol;
  412. if (rq->protocol == ISDN_P_TE_S0) {
  413. err = create_l1(&hw->dch, hfc_l1callback);
  414. if (err)
  415. return err;
  416. }
  417. setPortMode(hw);
  418. ch->protocol = rq->protocol;
  419. hw->initdone = 1;
  420. } else {
  421. if (rq->protocol != ch->protocol)
  422. return -EPROTONOSUPPORT;
  423. }
  424. if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
  425. ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
  426. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
  427. 0, NULL, GFP_KERNEL);
  428. rq->ch = ch;
  429. if (!try_module_get(THIS_MODULE))
  430. printk(KERN_WARNING "%s: %s: cannot get module\n",
  431. hw->name, __func__);
  432. return 0;
  433. }
  434. static int
  435. open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
  436. {
  437. struct bchannel *bch;
  438. if (rq->adr.channel > 2)
  439. return -EINVAL;
  440. if (rq->protocol == ISDN_P_NONE)
  441. return -EINVAL;
  442. if (debug & DBG_HFC_CALL_TRACE)
  443. printk(KERN_DEBUG "%s: %s B%i\n",
  444. hw->name, __func__, rq->adr.channel);
  445. bch = &hw->bch[rq->adr.channel - 1];
  446. if (test_and_set_bit(FLG_OPEN, &bch->Flags))
  447. return -EBUSY; /* b-channel can be only open once */
  448. test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
  449. bch->ch.protocol = rq->protocol;
  450. rq->ch = &bch->ch;
  451. /* start USB endpoint for bchannel */
  452. if (rq->adr.channel == 1)
  453. hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
  454. else
  455. hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
  456. if (!try_module_get(THIS_MODULE))
  457. printk(KERN_WARNING "%s: %s:cannot get module\n",
  458. hw->name, __func__);
  459. return 0;
  460. }
  461. static int
  462. channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
  463. {
  464. int ret = 0;
  465. if (debug & DBG_HFC_CALL_TRACE)
  466. printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
  467. hw->name, __func__, (cq->op), (cq->channel));
  468. switch (cq->op) {
  469. case MISDN_CTRL_GETOP:
  470. cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
  471. MISDN_CTRL_DISCONNECT;
  472. break;
  473. default:
  474. printk(KERN_WARNING "%s: %s: unknown Op %x\n",
  475. hw->name, __func__, cq->op);
  476. ret = -EINVAL;
  477. break;
  478. }
  479. return ret;
  480. }
  481. /*
  482. * device control function
  483. */
  484. static int
  485. hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  486. {
  487. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  488. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  489. struct hfcsusb *hw = dch->hw;
  490. struct channel_req *rq;
  491. int err = 0;
  492. if (dch->debug & DEBUG_HW)
  493. printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
  494. hw->name, __func__, cmd, arg);
  495. switch (cmd) {
  496. case OPEN_CHANNEL:
  497. rq = arg;
  498. if ((rq->protocol == ISDN_P_TE_S0) ||
  499. (rq->protocol == ISDN_P_NT_S0))
  500. err = open_dchannel(hw, ch, rq);
  501. else
  502. err = open_bchannel(hw, rq);
  503. if (!err)
  504. hw->open++;
  505. break;
  506. case CLOSE_CHANNEL:
  507. hw->open--;
  508. if (debug & DEBUG_HW_OPEN)
  509. printk(KERN_DEBUG
  510. "%s: %s: dev(%d) close from %p (open %d)\n",
  511. hw->name, __func__, hw->dch.dev.id,
  512. __builtin_return_address(0), hw->open);
  513. if (!hw->open) {
  514. hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
  515. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  516. hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
  517. handle_led(hw, LED_POWER_ON);
  518. }
  519. module_put(THIS_MODULE);
  520. break;
  521. case CONTROL_CHANNEL:
  522. err = channel_ctrl(hw, arg);
  523. break;
  524. default:
  525. if (dch->debug & DEBUG_HW)
  526. printk(KERN_DEBUG "%s: %s: unknown command %x\n",
  527. hw->name, __func__, cmd);
  528. return -EINVAL;
  529. }
  530. return err;
  531. }
  532. /*
  533. * S0 TE state change event handler
  534. */
  535. static void
  536. ph_state_te(struct dchannel *dch)
  537. {
  538. struct hfcsusb *hw = dch->hw;
  539. if (debug & DEBUG_HW) {
  540. if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
  541. printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
  542. HFC_TE_LAYER1_STATES[dch->state]);
  543. else
  544. printk(KERN_DEBUG "%s: %s: TE F%d\n",
  545. hw->name, __func__, dch->state);
  546. }
  547. switch (dch->state) {
  548. case 0:
  549. l1_event(dch->l1, HW_RESET_IND);
  550. break;
  551. case 3:
  552. l1_event(dch->l1, HW_DEACT_IND);
  553. break;
  554. case 5:
  555. case 8:
  556. l1_event(dch->l1, ANYSIGNAL);
  557. break;
  558. case 6:
  559. l1_event(dch->l1, INFO2);
  560. break;
  561. case 7:
  562. l1_event(dch->l1, INFO4_P8);
  563. break;
  564. }
  565. if (dch->state == 7)
  566. handle_led(hw, LED_S0_ON);
  567. else
  568. handle_led(hw, LED_S0_OFF);
  569. }
  570. /*
  571. * S0 NT state change event handler
  572. */
  573. static void
  574. ph_state_nt(struct dchannel *dch)
  575. {
  576. struct hfcsusb *hw = dch->hw;
  577. if (debug & DEBUG_HW) {
  578. if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
  579. printk(KERN_DEBUG "%s: %s: %s\n",
  580. hw->name, __func__,
  581. HFC_NT_LAYER1_STATES[dch->state]);
  582. else
  583. printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
  584. hw->name, __func__, dch->state);
  585. }
  586. switch (dch->state) {
  587. case (1):
  588. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  589. test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
  590. hw->nt_timer = 0;
  591. hw->timers &= ~NT_ACTIVATION_TIMER;
  592. handle_led(hw, LED_S0_OFF);
  593. break;
  594. case (2):
  595. if (hw->nt_timer < 0) {
  596. hw->nt_timer = 0;
  597. hw->timers &= ~NT_ACTIVATION_TIMER;
  598. hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
  599. } else {
  600. hw->timers |= NT_ACTIVATION_TIMER;
  601. hw->nt_timer = NT_T1_COUNT;
  602. /* allow G2 -> G3 transition */
  603. write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
  604. }
  605. break;
  606. case (3):
  607. hw->nt_timer = 0;
  608. hw->timers &= ~NT_ACTIVATION_TIMER;
  609. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  610. _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
  611. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  612. handle_led(hw, LED_S0_ON);
  613. break;
  614. case (4):
  615. hw->nt_timer = 0;
  616. hw->timers &= ~NT_ACTIVATION_TIMER;
  617. break;
  618. default:
  619. break;
  620. }
  621. hfcsusb_ph_info(hw);
  622. }
  623. static void
  624. ph_state(struct dchannel *dch)
  625. {
  626. struct hfcsusb *hw = dch->hw;
  627. if (hw->protocol == ISDN_P_NT_S0)
  628. ph_state_nt(dch);
  629. else if (hw->protocol == ISDN_P_TE_S0)
  630. ph_state_te(dch);
  631. }
  632. /*
  633. * disable/enable BChannel for desired protocoll
  634. */
  635. static int
  636. hfcsusb_setup_bch(struct bchannel *bch, int protocol)
  637. {
  638. struct hfcsusb *hw = bch->hw;
  639. __u8 conhdlc, sctrl, sctrl_r;
  640. if (debug & DEBUG_HW)
  641. printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
  642. hw->name, __func__, bch->state, protocol,
  643. bch->nr);
  644. /* setup val for CON_HDLC */
  645. conhdlc = 0;
  646. if (protocol > ISDN_P_NONE)
  647. conhdlc = 8; /* enable FIFO */
  648. switch (protocol) {
  649. case (-1): /* used for init */
  650. bch->state = -1;
  651. /* fall through */
  652. case (ISDN_P_NONE):
  653. if (bch->state == ISDN_P_NONE)
  654. return 0; /* already in idle state */
  655. bch->state = ISDN_P_NONE;
  656. clear_bit(FLG_HDLC, &bch->Flags);
  657. clear_bit(FLG_TRANSPARENT, &bch->Flags);
  658. break;
  659. case (ISDN_P_B_RAW):
  660. conhdlc |= 2;
  661. bch->state = protocol;
  662. set_bit(FLG_TRANSPARENT, &bch->Flags);
  663. break;
  664. case (ISDN_P_B_HDLC):
  665. bch->state = protocol;
  666. set_bit(FLG_HDLC, &bch->Flags);
  667. break;
  668. default:
  669. if (debug & DEBUG_HW)
  670. printk(KERN_DEBUG "%s: %s: prot not known %x\n",
  671. hw->name, __func__, protocol);
  672. return -ENOPROTOOPT;
  673. }
  674. if (protocol >= ISDN_P_NONE) {
  675. write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
  676. write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
  677. write_reg(hw, HFCUSB_INC_RES_F, 2);
  678. write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
  679. write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
  680. write_reg(hw, HFCUSB_INC_RES_F, 2);
  681. sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
  682. sctrl_r = 0x0;
  683. if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
  684. sctrl |= 1;
  685. sctrl_r |= 1;
  686. }
  687. if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
  688. sctrl |= 2;
  689. sctrl_r |= 2;
  690. }
  691. write_reg(hw, HFCUSB_SCTRL, sctrl);
  692. write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
  693. if (protocol > ISDN_P_NONE)
  694. handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
  695. else
  696. handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
  697. LED_B2_OFF);
  698. }
  699. hfcsusb_ph_info(hw);
  700. return 0;
  701. }
  702. static void
  703. hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
  704. {
  705. if (debug & DEBUG_HW)
  706. printk(KERN_DEBUG "%s: %s: %x\n",
  707. hw->name, __func__, command);
  708. switch (command) {
  709. case HFC_L1_ACTIVATE_TE:
  710. /* force sending sending INFO1 */
  711. write_reg(hw, HFCUSB_STATES, 0x14);
  712. /* start l1 activation */
  713. write_reg(hw, HFCUSB_STATES, 0x04);
  714. break;
  715. case HFC_L1_FORCE_DEACTIVATE_TE:
  716. write_reg(hw, HFCUSB_STATES, 0x10);
  717. write_reg(hw, HFCUSB_STATES, 0x03);
  718. break;
  719. case HFC_L1_ACTIVATE_NT:
  720. if (hw->dch.state == 3)
  721. _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
  722. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  723. else
  724. write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
  725. HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
  726. break;
  727. case HFC_L1_DEACTIVATE_NT:
  728. write_reg(hw, HFCUSB_STATES,
  729. HFCUSB_DO_ACTION);
  730. break;
  731. }
  732. }
  733. /*
  734. * Layer 1 B-channel hardware access
  735. */
  736. static int
  737. channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
  738. {
  739. int ret = 0;
  740. switch (cq->op) {
  741. case MISDN_CTRL_GETOP:
  742. cq->op = MISDN_CTRL_FILL_EMPTY;
  743. break;
  744. case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
  745. test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
  746. if (debug & DEBUG_HW_OPEN)
  747. printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
  748. "off=%d)\n", __func__, bch->nr, !!cq->p1);
  749. break;
  750. default:
  751. printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
  752. ret = -EINVAL;
  753. break;
  754. }
  755. return ret;
  756. }
  757. /* collect data from incoming interrupt or isochron USB data */
  758. static void
  759. hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
  760. int finish)
  761. {
  762. struct hfcsusb *hw = fifo->hw;
  763. struct sk_buff *rx_skb = NULL;
  764. int maxlen = 0;
  765. int fifon = fifo->fifonum;
  766. int i;
  767. int hdlc = 0;
  768. if (debug & DBG_HFC_CALL_TRACE)
  769. printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
  770. "dch(%p) bch(%p) ech(%p)\n",
  771. hw->name, __func__, fifon, len,
  772. fifo->dch, fifo->bch, fifo->ech);
  773. if (!len)
  774. return;
  775. if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
  776. printk(KERN_DEBUG "%s: %s: undefined channel\n",
  777. hw->name, __func__);
  778. return;
  779. }
  780. spin_lock(&hw->lock);
  781. if (fifo->dch) {
  782. rx_skb = fifo->dch->rx_skb;
  783. maxlen = fifo->dch->maxlen;
  784. hdlc = 1;
  785. }
  786. if (fifo->bch) {
  787. rx_skb = fifo->bch->rx_skb;
  788. maxlen = fifo->bch->maxlen;
  789. hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
  790. }
  791. if (fifo->ech) {
  792. rx_skb = fifo->ech->rx_skb;
  793. maxlen = fifo->ech->maxlen;
  794. hdlc = 1;
  795. }
  796. if (!rx_skb) {
  797. rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
  798. if (rx_skb) {
  799. if (fifo->dch)
  800. fifo->dch->rx_skb = rx_skb;
  801. if (fifo->bch)
  802. fifo->bch->rx_skb = rx_skb;
  803. if (fifo->ech)
  804. fifo->ech->rx_skb = rx_skb;
  805. skb_trim(rx_skb, 0);
  806. } else {
  807. printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
  808. hw->name, __func__);
  809. spin_unlock(&hw->lock);
  810. return;
  811. }
  812. }
  813. if (fifo->dch || fifo->ech) {
  814. /* D/E-Channel SKB range check */
  815. if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
  816. printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
  817. "for fifo(%d) HFCUSB_D_RX\n",
  818. hw->name, __func__, fifon);
  819. skb_trim(rx_skb, 0);
  820. spin_unlock(&hw->lock);
  821. return;
  822. }
  823. } else if (fifo->bch) {
  824. /* B-Channel SKB range check */
  825. if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
  826. printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
  827. "for fifo(%d) HFCUSB_B_RX\n",
  828. hw->name, __func__, fifon);
  829. skb_trim(rx_skb, 0);
  830. spin_unlock(&hw->lock);
  831. return;
  832. }
  833. }
  834. memcpy(skb_put(rx_skb, len), data, len);
  835. if (hdlc) {
  836. /* we have a complete hdlc packet */
  837. if (finish) {
  838. if ((rx_skb->len > 3) &&
  839. (!(rx_skb->data[rx_skb->len - 1]))) {
  840. if (debug & DBG_HFC_FIFO_VERBOSE) {
  841. printk(KERN_DEBUG "%s: %s: fifon(%i)"
  842. " new RX len(%i): ",
  843. hw->name, __func__, fifon,
  844. rx_skb->len);
  845. i = 0;
  846. while (i < rx_skb->len)
  847. printk("%02x ",
  848. rx_skb->data[i++]);
  849. printk("\n");
  850. }
  851. /* remove CRC & status */
  852. skb_trim(rx_skb, rx_skb->len - 3);
  853. if (fifo->dch)
  854. recv_Dchannel(fifo->dch);
  855. if (fifo->bch)
  856. recv_Bchannel(fifo->bch, MISDN_ID_ANY);
  857. if (fifo->ech)
  858. recv_Echannel(fifo->ech,
  859. &hw->dch);
  860. } else {
  861. if (debug & DBG_HFC_FIFO_VERBOSE) {
  862. printk(KERN_DEBUG
  863. "%s: CRC or minlen ERROR fifon(%i) "
  864. "RX len(%i): ",
  865. hw->name, fifon, rx_skb->len);
  866. i = 0;
  867. while (i < rx_skb->len)
  868. printk("%02x ",
  869. rx_skb->data[i++]);
  870. printk("\n");
  871. }
  872. skb_trim(rx_skb, 0);
  873. }
  874. }
  875. } else {
  876. /* deliver transparent data to layer2 */
  877. if (rx_skb->len >= poll)
  878. recv_Bchannel(fifo->bch, MISDN_ID_ANY);
  879. }
  880. spin_unlock(&hw->lock);
  881. }
  882. static void
  883. fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
  884. void *buf, int num_packets, int packet_size, int interval,
  885. usb_complete_t complete, void *context)
  886. {
  887. int k;
  888. usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
  889. complete, context);
  890. urb->number_of_packets = num_packets;
  891. urb->transfer_flags = URB_ISO_ASAP;
  892. urb->actual_length = 0;
  893. urb->interval = interval;
  894. for (k = 0; k < num_packets; k++) {
  895. urb->iso_frame_desc[k].offset = packet_size * k;
  896. urb->iso_frame_desc[k].length = packet_size;
  897. urb->iso_frame_desc[k].actual_length = 0;
  898. }
  899. }
  900. /* receive completion routine for all ISO tx fifos */
  901. static void
  902. rx_iso_complete(struct urb *urb)
  903. {
  904. struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
  905. struct usb_fifo *fifo = context_iso_urb->owner_fifo;
  906. struct hfcsusb *hw = fifo->hw;
  907. int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
  908. status, iso_status, i;
  909. __u8 *buf;
  910. static __u8 eof[8];
  911. __u8 s0_state;
  912. fifon = fifo->fifonum;
  913. status = urb->status;
  914. spin_lock(&hw->lock);
  915. if (fifo->stop_gracefull) {
  916. fifo->stop_gracefull = 0;
  917. fifo->active = 0;
  918. spin_unlock(&hw->lock);
  919. return;
  920. }
  921. spin_unlock(&hw->lock);
  922. /*
  923. * ISO transfer only partially completed,
  924. * look at individual frame status for details
  925. */
  926. if (status == -EXDEV) {
  927. if (debug & DEBUG_HW)
  928. printk(KERN_DEBUG "%s: %s: with -EXDEV "
  929. "urb->status %d, fifonum %d\n",
  930. hw->name, __func__, status, fifon);
  931. /* clear status, so go on with ISO transfers */
  932. status = 0;
  933. }
  934. s0_state = 0;
  935. if (fifo->active && !status) {
  936. num_isoc_packets = iso_packets[fifon];
  937. maxlen = fifo->usb_packet_maxlen;
  938. for (k = 0; k < num_isoc_packets; ++k) {
  939. len = urb->iso_frame_desc[k].actual_length;
  940. offset = urb->iso_frame_desc[k].offset;
  941. buf = context_iso_urb->buffer + offset;
  942. iso_status = urb->iso_frame_desc[k].status;
  943. if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
  944. printk(KERN_DEBUG "%s: %s: "
  945. "ISO packet %i, status: %i\n",
  946. hw->name, __func__, k, iso_status);
  947. }
  948. /* USB data log for every D ISO in */
  949. if ((fifon == HFCUSB_D_RX) &&
  950. (debug & DBG_HFC_USB_VERBOSE)) {
  951. printk(KERN_DEBUG
  952. "%s: %s: %d (%d/%d) len(%d) ",
  953. hw->name, __func__, urb->start_frame,
  954. k, num_isoc_packets-1,
  955. len);
  956. for (i = 0; i < len; i++)
  957. printk("%x ", buf[i]);
  958. printk("\n");
  959. }
  960. if (!iso_status) {
  961. if (fifo->last_urblen != maxlen) {
  962. /*
  963. * save fifo fill-level threshold bits
  964. * to use them later in TX ISO URB
  965. * completions
  966. */
  967. hw->threshold_mask = buf[1];
  968. if (fifon == HFCUSB_D_RX)
  969. s0_state = (buf[0] >> 4);
  970. eof[fifon] = buf[0] & 1;
  971. if (len > 2)
  972. hfcsusb_rx_frame(fifo, buf + 2,
  973. len - 2, (len < maxlen)
  974. ? eof[fifon] : 0);
  975. } else
  976. hfcsusb_rx_frame(fifo, buf, len,
  977. (len < maxlen) ?
  978. eof[fifon] : 0);
  979. fifo->last_urblen = len;
  980. }
  981. }
  982. /* signal S0 layer1 state change */
  983. if ((s0_state) && (hw->initdone) &&
  984. (s0_state != hw->dch.state)) {
  985. hw->dch.state = s0_state;
  986. schedule_event(&hw->dch, FLG_PHCHANGE);
  987. }
  988. fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
  989. context_iso_urb->buffer, num_isoc_packets,
  990. fifo->usb_packet_maxlen, fifo->intervall,
  991. (usb_complete_t)rx_iso_complete, urb->context);
  992. errcode = usb_submit_urb(urb, GFP_ATOMIC);
  993. if (errcode < 0) {
  994. if (debug & DEBUG_HW)
  995. printk(KERN_DEBUG "%s: %s: error submitting "
  996. "ISO URB: %d\n",
  997. hw->name, __func__, errcode);
  998. }
  999. } else {
  1000. if (status && (debug & DBG_HFC_URB_INFO))
  1001. printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
  1002. "urb->status %d, fifonum %d\n",
  1003. hw->name, __func__, status, fifon);
  1004. }
  1005. }
  1006. /* receive completion routine for all interrupt rx fifos */
  1007. static void
  1008. rx_int_complete(struct urb *urb)
  1009. {
  1010. int len, status, i;
  1011. __u8 *buf, maxlen, fifon;
  1012. struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
  1013. struct hfcsusb *hw = fifo->hw;
  1014. static __u8 eof[8];
  1015. spin_lock(&hw->lock);
  1016. if (fifo->stop_gracefull) {
  1017. fifo->stop_gracefull = 0;
  1018. fifo->active = 0;
  1019. spin_unlock(&hw->lock);
  1020. return;
  1021. }
  1022. spin_unlock(&hw->lock);
  1023. fifon = fifo->fifonum;
  1024. if ((!fifo->active) || (urb->status)) {
  1025. if (debug & DBG_HFC_URB_ERROR)
  1026. printk(KERN_DEBUG
  1027. "%s: %s: RX-Fifo %i is going down (%i)\n",
  1028. hw->name, __func__, fifon, urb->status);
  1029. fifo->urb->interval = 0; /* cancel automatic rescheduling */
  1030. return;
  1031. }
  1032. len = urb->actual_length;
  1033. buf = fifo->buffer;
  1034. maxlen = fifo->usb_packet_maxlen;
  1035. /* USB data log for every D INT in */
  1036. if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
  1037. printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
  1038. hw->name, __func__, len);
  1039. for (i = 0; i < len; i++)
  1040. printk("%02x ", buf[i]);
  1041. printk("\n");
  1042. }
  1043. if (fifo->last_urblen != fifo->usb_packet_maxlen) {
  1044. /* the threshold mask is in the 2nd status byte */
  1045. hw->threshold_mask = buf[1];
  1046. /* signal S0 layer1 state change */
  1047. if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
  1048. hw->dch.state = (buf[0] >> 4);
  1049. schedule_event(&hw->dch, FLG_PHCHANGE);
  1050. }
  1051. eof[fifon] = buf[0] & 1;
  1052. /* if we have more than the 2 status bytes -> collect data */
  1053. if (len > 2)
  1054. hfcsusb_rx_frame(fifo, buf + 2,
  1055. urb->actual_length - 2,
  1056. (len < maxlen) ? eof[fifon] : 0);
  1057. } else {
  1058. hfcsusb_rx_frame(fifo, buf, urb->actual_length,
  1059. (len < maxlen) ? eof[fifon] : 0);
  1060. }
  1061. fifo->last_urblen = urb->actual_length;
  1062. status = usb_submit_urb(urb, GFP_ATOMIC);
  1063. if (status) {
  1064. if (debug & DEBUG_HW)
  1065. printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
  1066. hw->name, __func__);
  1067. }
  1068. }
  1069. /* transmit completion routine for all ISO tx fifos */
  1070. static void
  1071. tx_iso_complete(struct urb *urb)
  1072. {
  1073. struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
  1074. struct usb_fifo *fifo = context_iso_urb->owner_fifo;
  1075. struct hfcsusb *hw = fifo->hw;
  1076. struct sk_buff *tx_skb;
  1077. int k, tx_offset, num_isoc_packets, sink, remain, current_len,
  1078. errcode, hdlc, i;
  1079. int *tx_idx;
  1080. int frame_complete, fifon, status;
  1081. __u8 threshbit;
  1082. spin_lock(&hw->lock);
  1083. if (fifo->stop_gracefull) {
  1084. fifo->stop_gracefull = 0;
  1085. fifo->active = 0;
  1086. spin_unlock(&hw->lock);
  1087. return;
  1088. }
  1089. if (fifo->dch) {
  1090. tx_skb = fifo->dch->tx_skb;
  1091. tx_idx = &fifo->dch->tx_idx;
  1092. hdlc = 1;
  1093. } else if (fifo->bch) {
  1094. tx_skb = fifo->bch->tx_skb;
  1095. tx_idx = &fifo->bch->tx_idx;
  1096. hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
  1097. } else {
  1098. printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
  1099. hw->name, __func__);
  1100. spin_unlock(&hw->lock);
  1101. return;
  1102. }
  1103. fifon = fifo->fifonum;
  1104. status = urb->status;
  1105. tx_offset = 0;
  1106. /*
  1107. * ISO transfer only partially completed,
  1108. * look at individual frame status for details
  1109. */
  1110. if (status == -EXDEV) {
  1111. if (debug & DBG_HFC_URB_ERROR)
  1112. printk(KERN_DEBUG "%s: %s: "
  1113. "-EXDEV (%i) fifon (%d)\n",
  1114. hw->name, __func__, status, fifon);
  1115. /* clear status, so go on with ISO transfers */
  1116. status = 0;
  1117. }
  1118. if (fifo->active && !status) {
  1119. /* is FifoFull-threshold set for our channel? */
  1120. threshbit = (hw->threshold_mask & (1 << fifon));
  1121. num_isoc_packets = iso_packets[fifon];
  1122. /* predict dataflow to avoid fifo overflow */
  1123. if (fifon >= HFCUSB_D_TX)
  1124. sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
  1125. else
  1126. sink = (threshbit) ? SINK_MIN : SINK_MAX;
  1127. fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
  1128. context_iso_urb->buffer, num_isoc_packets,
  1129. fifo->usb_packet_maxlen, fifo->intervall,
  1130. (usb_complete_t)tx_iso_complete, urb->context);
  1131. memset(context_iso_urb->buffer, 0,
  1132. sizeof(context_iso_urb->buffer));
  1133. frame_complete = 0;
  1134. for (k = 0; k < num_isoc_packets; ++k) {
  1135. /* analyze tx success of previous ISO packets */
  1136. if (debug & DBG_HFC_URB_ERROR) {
  1137. errcode = urb->iso_frame_desc[k].status;
  1138. if (errcode) {
  1139. printk(KERN_DEBUG "%s: %s: "
  1140. "ISO packet %i, status: %i\n",
  1141. hw->name, __func__, k, errcode);
  1142. }
  1143. }
  1144. /* Generate next ISO Packets */
  1145. if (tx_skb)
  1146. remain = tx_skb->len - *tx_idx;
  1147. else
  1148. remain = 0;
  1149. if (remain > 0) {
  1150. fifo->bit_line -= sink;
  1151. current_len = (0 - fifo->bit_line) / 8;
  1152. if (current_len > 14)
  1153. current_len = 14;
  1154. if (current_len < 0)
  1155. current_len = 0;
  1156. if (remain < current_len)
  1157. current_len = remain;
  1158. /* how much bit do we put on the line? */
  1159. fifo->bit_line += current_len * 8;
  1160. context_iso_urb->buffer[tx_offset] = 0;
  1161. if (current_len == remain) {
  1162. if (hdlc) {
  1163. /* signal frame completion */
  1164. context_iso_urb->
  1165. buffer[tx_offset] = 1;
  1166. /* add 2 byte flags and 16bit
  1167. * CRC at end of ISDN frame */
  1168. fifo->bit_line += 32;
  1169. }
  1170. frame_complete = 1;
  1171. }
  1172. /* copy tx data to iso-urb buffer */
  1173. memcpy(context_iso_urb->buffer + tx_offset + 1,
  1174. (tx_skb->data + *tx_idx), current_len);
  1175. *tx_idx += current_len;
  1176. urb->iso_frame_desc[k].offset = tx_offset;
  1177. urb->iso_frame_desc[k].length = current_len + 1;
  1178. /* USB data log for every D ISO out */
  1179. if ((fifon == HFCUSB_D_RX) &&
  1180. (debug & DBG_HFC_USB_VERBOSE)) {
  1181. printk(KERN_DEBUG
  1182. "%s: %s (%d/%d) offs(%d) len(%d) ",
  1183. hw->name, __func__,
  1184. k, num_isoc_packets-1,
  1185. urb->iso_frame_desc[k].offset,
  1186. urb->iso_frame_desc[k].length);
  1187. for (i = urb->iso_frame_desc[k].offset;
  1188. i < (urb->iso_frame_desc[k].offset
  1189. + urb->iso_frame_desc[k].length);
  1190. i++)
  1191. printk("%x ",
  1192. context_iso_urb->buffer[i]);
  1193. printk(" skb->len(%i) tx-idx(%d)\n",
  1194. tx_skb->len, *tx_idx);
  1195. }
  1196. tx_offset += (current_len + 1);
  1197. } else {
  1198. urb->iso_frame_desc[k].offset = tx_offset++;
  1199. urb->iso_frame_desc[k].length = 1;
  1200. /* we lower data margin every msec */
  1201. fifo->bit_line -= sink;
  1202. if (fifo->bit_line < BITLINE_INF)
  1203. fifo->bit_line = BITLINE_INF;
  1204. }
  1205. if (frame_complete) {
  1206. frame_complete = 0;
  1207. if (debug & DBG_HFC_FIFO_VERBOSE) {
  1208. printk(KERN_DEBUG "%s: %s: "
  1209. "fifon(%i) new TX len(%i): ",
  1210. hw->name, __func__,
  1211. fifon, tx_skb->len);
  1212. i = 0;
  1213. while (i < tx_skb->len)
  1214. printk("%02x ",
  1215. tx_skb->data[i++]);
  1216. printk("\n");
  1217. }
  1218. dev_kfree_skb(tx_skb);
  1219. tx_skb = NULL;
  1220. if (fifo->dch && get_next_dframe(fifo->dch))
  1221. tx_skb = fifo->dch->tx_skb;
  1222. else if (fifo->bch &&
  1223. get_next_bframe(fifo->bch)) {
  1224. if (test_bit(FLG_TRANSPARENT,
  1225. &fifo->bch->Flags))
  1226. confirm_Bsend(fifo->bch);
  1227. tx_skb = fifo->bch->tx_skb;
  1228. }
  1229. }
  1230. }
  1231. errcode = usb_submit_urb(urb, GFP_ATOMIC);
  1232. if (errcode < 0) {
  1233. if (debug & DEBUG_HW)
  1234. printk(KERN_DEBUG
  1235. "%s: %s: error submitting ISO URB: %d \n",
  1236. hw->name, __func__, errcode);
  1237. }
  1238. /*
  1239. * abuse DChannel tx iso completion to trigger NT mode state
  1240. * changes tx_iso_complete is assumed to be called every
  1241. * fifo->intervall (ms)
  1242. */
  1243. if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
  1244. && (hw->timers & NT_ACTIVATION_TIMER)) {
  1245. if ((--hw->nt_timer) < 0)
  1246. schedule_event(&hw->dch, FLG_PHCHANGE);
  1247. }
  1248. } else {
  1249. if (status && (debug & DBG_HFC_URB_ERROR))
  1250. printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
  1251. "fifonum=%d\n",
  1252. hw->name, __func__,
  1253. symbolic(urb_errlist, status), status, fifon);
  1254. }
  1255. spin_unlock(&hw->lock);
  1256. }
  1257. /*
  1258. * allocs urbs and start isoc transfer with two pending urbs to avoid
  1259. * gaps in the transfer chain
  1260. */
  1261. static int
  1262. start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
  1263. usb_complete_t complete, int packet_size)
  1264. {
  1265. struct hfcsusb *hw = fifo->hw;
  1266. int i, k, errcode;
  1267. if (debug)
  1268. printk(KERN_DEBUG "%s: %s: fifo %i\n",
  1269. hw->name, __func__, fifo->fifonum);
  1270. /* allocate Memory for Iso out Urbs */
  1271. for (i = 0; i < 2; i++) {
  1272. if (!(fifo->iso[i].urb)) {
  1273. fifo->iso[i].urb =
  1274. usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
  1275. if (!(fifo->iso[i].urb)) {
  1276. printk(KERN_DEBUG
  1277. "%s: %s: alloc urb for fifo %i failed",
  1278. hw->name, __func__, fifo->fifonum);
  1279. }
  1280. fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
  1281. fifo->iso[i].indx = i;
  1282. /* Init the first iso */
  1283. if (ISO_BUFFER_SIZE >=
  1284. (fifo->usb_packet_maxlen *
  1285. num_packets_per_urb)) {
  1286. fill_isoc_urb(fifo->iso[i].urb,
  1287. fifo->hw->dev, fifo->pipe,
  1288. fifo->iso[i].buffer,
  1289. num_packets_per_urb,
  1290. fifo->usb_packet_maxlen,
  1291. fifo->intervall, complete,
  1292. &fifo->iso[i]);
  1293. memset(fifo->iso[i].buffer, 0,
  1294. sizeof(fifo->iso[i].buffer));
  1295. for (k = 0; k < num_packets_per_urb; k++) {
  1296. fifo->iso[i].urb->
  1297. iso_frame_desc[k].offset =
  1298. k * packet_size;
  1299. fifo->iso[i].urb->
  1300. iso_frame_desc[k].length =
  1301. packet_size;
  1302. }
  1303. } else {
  1304. printk(KERN_DEBUG
  1305. "%s: %s: ISO Buffer size to small!\n",
  1306. hw->name, __func__);
  1307. }
  1308. }
  1309. fifo->bit_line = BITLINE_INF;
  1310. errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
  1311. fifo->active = (errcode >= 0) ? 1 : 0;
  1312. fifo->stop_gracefull = 0;
  1313. if (errcode < 0) {
  1314. printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
  1315. hw->name, __func__,
  1316. symbolic(urb_errlist, errcode), i);
  1317. }
  1318. }
  1319. return fifo->active;
  1320. }
  1321. static void
  1322. stop_iso_gracefull(struct usb_fifo *fifo)
  1323. {
  1324. struct hfcsusb *hw = fifo->hw;
  1325. int i, timeout;
  1326. u_long flags;
  1327. for (i = 0; i < 2; i++) {
  1328. spin_lock_irqsave(&hw->lock, flags);
  1329. if (debug)
  1330. printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
  1331. hw->name, __func__, fifo->fifonum, i);
  1332. fifo->stop_gracefull = 1;
  1333. spin_unlock_irqrestore(&hw->lock, flags);
  1334. }
  1335. for (i = 0; i < 2; i++) {
  1336. timeout = 3;
  1337. while (fifo->stop_gracefull && timeout--)
  1338. schedule_timeout_interruptible((HZ/1000)*16);
  1339. if (debug && fifo->stop_gracefull)
  1340. printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
  1341. hw->name, __func__, fifo->fifonum, i);
  1342. }
  1343. }
  1344. static void
  1345. stop_int_gracefull(struct usb_fifo *fifo)
  1346. {
  1347. struct hfcsusb *hw = fifo->hw;
  1348. int timeout;
  1349. u_long flags;
  1350. spin_lock_irqsave(&hw->lock, flags);
  1351. if (debug)
  1352. printk(KERN_DEBUG "%s: %s for fifo %i\n",
  1353. hw->name, __func__, fifo->fifonum);
  1354. fifo->stop_gracefull = 1;
  1355. spin_unlock_irqrestore(&hw->lock, flags);
  1356. timeout = 3;
  1357. while (fifo->stop_gracefull && timeout--)
  1358. schedule_timeout_interruptible((HZ/1000)*3);
  1359. if (debug && fifo->stop_gracefull)
  1360. printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
  1361. hw->name, __func__, fifo->fifonum);
  1362. }
  1363. /* start the interrupt transfer for the given fifo */
  1364. static void
  1365. start_int_fifo(struct usb_fifo *fifo)
  1366. {
  1367. struct hfcsusb *hw = fifo->hw;
  1368. int errcode;
  1369. if (debug)
  1370. printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
  1371. hw->name, __func__, fifo->fifonum);
  1372. if (!fifo->urb) {
  1373. fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
  1374. if (!fifo->urb)
  1375. return;
  1376. }
  1377. usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
  1378. fifo->buffer, fifo->usb_packet_maxlen,
  1379. (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
  1380. fifo->active = 1;
  1381. fifo->stop_gracefull = 0;
  1382. errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
  1383. if (errcode) {
  1384. printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
  1385. hw->name, __func__, errcode);
  1386. fifo->active = 0;
  1387. }
  1388. }
  1389. static void
  1390. setPortMode(struct hfcsusb *hw)
  1391. {
  1392. if (debug & DEBUG_HW)
  1393. printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
  1394. (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
  1395. if (hw->protocol == ISDN_P_TE_S0) {
  1396. write_reg(hw, HFCUSB_SCTRL, 0x40);
  1397. write_reg(hw, HFCUSB_SCTRL_E, 0x00);
  1398. write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
  1399. write_reg(hw, HFCUSB_STATES, 3 | 0x10);
  1400. write_reg(hw, HFCUSB_STATES, 3);
  1401. } else {
  1402. write_reg(hw, HFCUSB_SCTRL, 0x44);
  1403. write_reg(hw, HFCUSB_SCTRL_E, 0x09);
  1404. write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
  1405. write_reg(hw, HFCUSB_STATES, 1 | 0x10);
  1406. write_reg(hw, HFCUSB_STATES, 1);
  1407. }
  1408. }
  1409. static void
  1410. reset_hfcsusb(struct hfcsusb *hw)
  1411. {
  1412. struct usb_fifo *fifo;
  1413. int i;
  1414. if (debug & DEBUG_HW)
  1415. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1416. /* do Chip reset */
  1417. write_reg(hw, HFCUSB_CIRM, 8);
  1418. /* aux = output, reset off */
  1419. write_reg(hw, HFCUSB_CIRM, 0x10);
  1420. /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
  1421. write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
  1422. ((hw->packet_size / 8) << 4));
  1423. /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
  1424. write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
  1425. /* enable PCM/GCI master mode */
  1426. write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
  1427. write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
  1428. /* init the fifos */
  1429. write_reg(hw, HFCUSB_F_THRES,
  1430. (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
  1431. fifo = hw->fifos;
  1432. for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
  1433. write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
  1434. fifo[i].max_size =
  1435. (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
  1436. fifo[i].last_urblen = 0;
  1437. /* set 2 bit for D- & E-channel */
  1438. write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
  1439. /* enable all fifos */
  1440. if (i == HFCUSB_D_TX)
  1441. write_reg(hw, HFCUSB_CON_HDLC,
  1442. (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
  1443. else
  1444. write_reg(hw, HFCUSB_CON_HDLC, 0x08);
  1445. write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
  1446. }
  1447. write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
  1448. handle_led(hw, LED_POWER_ON);
  1449. }
  1450. /* start USB data pipes dependand on device's endpoint configuration */
  1451. static void
  1452. hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
  1453. {
  1454. /* quick check if endpoint already running */
  1455. if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
  1456. return;
  1457. if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
  1458. return;
  1459. if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
  1460. return;
  1461. if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
  1462. return;
  1463. /* start rx endpoints using USB INT IN method */
  1464. if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
  1465. start_int_fifo(hw->fifos + channel*2 + 1);
  1466. /* start rx endpoints using USB ISO IN method */
  1467. if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
  1468. switch (channel) {
  1469. case HFC_CHAN_D:
  1470. start_isoc_chain(hw->fifos + HFCUSB_D_RX,
  1471. ISOC_PACKETS_D,
  1472. (usb_complete_t)rx_iso_complete,
  1473. 16);
  1474. break;
  1475. case HFC_CHAN_E:
  1476. start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
  1477. ISOC_PACKETS_D,
  1478. (usb_complete_t)rx_iso_complete,
  1479. 16);
  1480. break;
  1481. case HFC_CHAN_B1:
  1482. start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
  1483. ISOC_PACKETS_B,
  1484. (usb_complete_t)rx_iso_complete,
  1485. 16);
  1486. break;
  1487. case HFC_CHAN_B2:
  1488. start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
  1489. ISOC_PACKETS_B,
  1490. (usb_complete_t)rx_iso_complete,
  1491. 16);
  1492. break;
  1493. }
  1494. }
  1495. /* start tx endpoints using USB ISO OUT method */
  1496. switch (channel) {
  1497. case HFC_CHAN_D:
  1498. start_isoc_chain(hw->fifos + HFCUSB_D_TX,
  1499. ISOC_PACKETS_B,
  1500. (usb_complete_t)tx_iso_complete, 1);
  1501. break;
  1502. case HFC_CHAN_B1:
  1503. start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
  1504. ISOC_PACKETS_D,
  1505. (usb_complete_t)tx_iso_complete, 1);
  1506. break;
  1507. case HFC_CHAN_B2:
  1508. start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
  1509. ISOC_PACKETS_B,
  1510. (usb_complete_t)tx_iso_complete, 1);
  1511. break;
  1512. }
  1513. }
  1514. /* stop USB data pipes dependand on device's endpoint configuration */
  1515. static void
  1516. hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
  1517. {
  1518. /* quick check if endpoint currently running */
  1519. if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
  1520. return;
  1521. if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
  1522. return;
  1523. if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
  1524. return;
  1525. if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
  1526. return;
  1527. /* rx endpoints using USB INT IN method */
  1528. if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
  1529. stop_int_gracefull(hw->fifos + channel*2 + 1);
  1530. /* rx endpoints using USB ISO IN method */
  1531. if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
  1532. stop_iso_gracefull(hw->fifos + channel*2 + 1);
  1533. /* tx endpoints using USB ISO OUT method */
  1534. if (channel != HFC_CHAN_E)
  1535. stop_iso_gracefull(hw->fifos + channel*2);
  1536. }
  1537. /* Hardware Initialization */
  1538. static int
  1539. setup_hfcsusb(struct hfcsusb *hw)
  1540. {
  1541. int err;
  1542. u_char b;
  1543. if (debug & DBG_HFC_CALL_TRACE)
  1544. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1545. /* check the chip id */
  1546. if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
  1547. printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
  1548. hw->name, __func__);
  1549. return 1;
  1550. }
  1551. if (b != HFCUSB_CHIPID) {
  1552. printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
  1553. hw->name, __func__, b);
  1554. return 1;
  1555. }
  1556. /* first set the needed config, interface and alternate */
  1557. err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
  1558. hw->led_state = 0;
  1559. /* init the background machinery for control requests */
  1560. hw->ctrl_read.bRequestType = 0xc0;
  1561. hw->ctrl_read.bRequest = 1;
  1562. hw->ctrl_read.wLength = cpu_to_le16(1);
  1563. hw->ctrl_write.bRequestType = 0x40;
  1564. hw->ctrl_write.bRequest = 0;
  1565. hw->ctrl_write.wLength = 0;
  1566. usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
  1567. (u_char *)&hw->ctrl_write, NULL, 0,
  1568. (usb_complete_t)ctrl_complete, hw);
  1569. reset_hfcsusb(hw);
  1570. return 0;
  1571. }
  1572. static void
  1573. release_hw(struct hfcsusb *hw)
  1574. {
  1575. if (debug & DBG_HFC_CALL_TRACE)
  1576. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1577. /*
  1578. * stop all endpoints gracefully
  1579. * TODO: mISDN_core should generate CLOSE_CHANNEL
  1580. * signals after calling mISDN_unregister_device()
  1581. */
  1582. hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
  1583. hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
  1584. hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
  1585. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  1586. hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
  1587. if (hw->protocol == ISDN_P_TE_S0)
  1588. l1_event(hw->dch.l1, CLOSE_CHANNEL);
  1589. mISDN_unregister_device(&hw->dch.dev);
  1590. mISDN_freebchannel(&hw->bch[1]);
  1591. mISDN_freebchannel(&hw->bch[0]);
  1592. mISDN_freedchannel(&hw->dch);
  1593. if (hw->ctrl_urb) {
  1594. usb_kill_urb(hw->ctrl_urb);
  1595. usb_free_urb(hw->ctrl_urb);
  1596. hw->ctrl_urb = NULL;
  1597. }
  1598. if (hw->intf)
  1599. usb_set_intfdata(hw->intf, NULL);
  1600. list_del(&hw->list);
  1601. kfree(hw);
  1602. hw = NULL;
  1603. }
  1604. static void
  1605. deactivate_bchannel(struct bchannel *bch)
  1606. {
  1607. struct hfcsusb *hw = bch->hw;
  1608. u_long flags;
  1609. if (bch->debug & DEBUG_HW)
  1610. printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
  1611. hw->name, __func__, bch->nr);
  1612. spin_lock_irqsave(&hw->lock, flags);
  1613. mISDN_clear_bchannel(bch);
  1614. spin_unlock_irqrestore(&hw->lock, flags);
  1615. hfcsusb_setup_bch(bch, ISDN_P_NONE);
  1616. hfcsusb_stop_endpoint(hw, bch->nr);
  1617. }
  1618. /*
  1619. * Layer 1 B-channel hardware access
  1620. */
  1621. static int
  1622. hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  1623. {
  1624. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  1625. int ret = -EINVAL;
  1626. if (bch->debug & DEBUG_HW)
  1627. printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
  1628. switch (cmd) {
  1629. case HW_TESTRX_RAW:
  1630. case HW_TESTRX_HDLC:
  1631. case HW_TESTRX_OFF:
  1632. ret = -EINVAL;
  1633. break;
  1634. case CLOSE_CHANNEL:
  1635. test_and_clear_bit(FLG_OPEN, &bch->Flags);
  1636. if (test_bit(FLG_ACTIVE, &bch->Flags))
  1637. deactivate_bchannel(bch);
  1638. ch->protocol = ISDN_P_NONE;
  1639. ch->peer = NULL;
  1640. module_put(THIS_MODULE);
  1641. ret = 0;
  1642. break;
  1643. case CONTROL_CHANNEL:
  1644. ret = channel_bctrl(bch, arg);
  1645. break;
  1646. default:
  1647. printk(KERN_WARNING "%s: unknown prim(%x)\n",
  1648. __func__, cmd);
  1649. }
  1650. return ret;
  1651. }
  1652. static int
  1653. setup_instance(struct hfcsusb *hw, struct device *parent)
  1654. {
  1655. u_long flags;
  1656. int err, i;
  1657. if (debug & DBG_HFC_CALL_TRACE)
  1658. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1659. spin_lock_init(&hw->ctrl_lock);
  1660. spin_lock_init(&hw->lock);
  1661. mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
  1662. hw->dch.debug = debug & 0xFFFF;
  1663. hw->dch.hw = hw;
  1664. hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
  1665. hw->dch.dev.D.send = hfcusb_l2l1D;
  1666. hw->dch.dev.D.ctrl = hfc_dctrl;
  1667. /* enable E-Channel logging */
  1668. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  1669. mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
  1670. hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
  1671. (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
  1672. hw->dch.dev.nrbchan = 2;
  1673. for (i = 0; i < 2; i++) {
  1674. hw->bch[i].nr = i + 1;
  1675. set_channelmap(i + 1, hw->dch.dev.channelmap);
  1676. hw->bch[i].debug = debug;
  1677. mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
  1678. hw->bch[i].hw = hw;
  1679. hw->bch[i].ch.send = hfcusb_l2l1B;
  1680. hw->bch[i].ch.ctrl = hfc_bctrl;
  1681. hw->bch[i].ch.nr = i + 1;
  1682. list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
  1683. }
  1684. hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
  1685. hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
  1686. hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
  1687. hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
  1688. hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
  1689. hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
  1690. hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
  1691. hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
  1692. err = setup_hfcsusb(hw);
  1693. if (err)
  1694. goto out;
  1695. snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
  1696. hfcsusb_cnt + 1);
  1697. printk(KERN_INFO "%s: registered as '%s'\n",
  1698. DRIVER_NAME, hw->name);
  1699. err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
  1700. if (err)
  1701. goto out;
  1702. hfcsusb_cnt++;
  1703. write_lock_irqsave(&HFClock, flags);
  1704. list_add_tail(&hw->list, &HFClist);
  1705. write_unlock_irqrestore(&HFClock, flags);
  1706. return 0;
  1707. out:
  1708. mISDN_freebchannel(&hw->bch[1]);
  1709. mISDN_freebchannel(&hw->bch[0]);
  1710. mISDN_freedchannel(&hw->dch);
  1711. kfree(hw);
  1712. return err;
  1713. }
  1714. static int
  1715. hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
  1716. {
  1717. struct hfcsusb *hw;
  1718. struct usb_device *dev = interface_to_usbdev(intf);
  1719. struct usb_host_interface *iface = intf->cur_altsetting;
  1720. struct usb_host_interface *iface_used = NULL;
  1721. struct usb_host_endpoint *ep;
  1722. struct hfcsusb_vdata *driver_info;
  1723. int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
  1724. probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
  1725. ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
  1726. alt_used = 0;
  1727. vend_idx = 0xffff;
  1728. for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
  1729. if ((le16_to_cpu(dev->descriptor.idVendor)
  1730. == hfcsusb_idtab[i].idVendor) &&
  1731. (le16_to_cpu(dev->descriptor.idProduct)
  1732. == hfcsusb_idtab[i].idProduct)) {
  1733. vend_idx = i;
  1734. continue;
  1735. }
  1736. }
  1737. printk(KERN_DEBUG
  1738. "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
  1739. __func__, ifnum, iface->desc.bAlternateSetting,
  1740. intf->minor, vend_idx);
  1741. if (vend_idx == 0xffff) {
  1742. printk(KERN_WARNING
  1743. "%s: no valid vendor found in USB descriptor\n",
  1744. __func__);
  1745. return -EIO;
  1746. }
  1747. /* if vendor and product ID is OK, start probing alternate settings */
  1748. alt_idx = 0;
  1749. small_match = -1;
  1750. /* default settings */
  1751. iso_packet_size = 16;
  1752. packet_size = 64;
  1753. while (alt_idx < intf->num_altsetting) {
  1754. iface = intf->altsetting + alt_idx;
  1755. probe_alt_setting = iface->desc.bAlternateSetting;
  1756. cfg_used = 0;
  1757. while (validconf[cfg_used][0]) {
  1758. cfg_found = 1;
  1759. vcf = validconf[cfg_used];
  1760. ep = iface->endpoint;
  1761. memcpy(cmptbl, vcf, 16 * sizeof(int));
  1762. /* check for all endpoints in this alternate setting */
  1763. for (i = 0; i < iface->desc.bNumEndpoints; i++) {
  1764. ep_addr = ep->desc.bEndpointAddress;
  1765. /* get endpoint base */
  1766. idx = ((ep_addr & 0x7f) - 1) * 2;
  1767. if (ep_addr & 0x80)
  1768. idx++;
  1769. attr = ep->desc.bmAttributes;
  1770. if (cmptbl[idx] != EP_NOP) {
  1771. if (cmptbl[idx] == EP_NUL)
  1772. cfg_found = 0;
  1773. if (attr == USB_ENDPOINT_XFER_INT
  1774. && cmptbl[idx] == EP_INT)
  1775. cmptbl[idx] = EP_NUL;
  1776. if (attr == USB_ENDPOINT_XFER_BULK
  1777. && cmptbl[idx] == EP_BLK)
  1778. cmptbl[idx] = EP_NUL;
  1779. if (attr == USB_ENDPOINT_XFER_ISOC
  1780. && cmptbl[idx] == EP_ISO)
  1781. cmptbl[idx] = EP_NUL;
  1782. if (attr == USB_ENDPOINT_XFER_INT &&
  1783. ep->desc.bInterval < vcf[17]) {
  1784. cfg_found = 0;
  1785. }
  1786. }
  1787. ep++;
  1788. }
  1789. for (i = 0; i < 16; i++)
  1790. if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
  1791. cfg_found = 0;
  1792. if (cfg_found) {
  1793. if (small_match < cfg_used) {
  1794. small_match = cfg_used;
  1795. alt_used = probe_alt_setting;
  1796. iface_used = iface;
  1797. }
  1798. }
  1799. cfg_used++;
  1800. }
  1801. alt_idx++;
  1802. } /* (alt_idx < intf->num_altsetting) */
  1803. /* not found a valid USB Ta Endpoint config */
  1804. if (small_match == -1)
  1805. return -EIO;
  1806. iface = iface_used;
  1807. hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
  1808. if (!hw)
  1809. return -ENOMEM; /* got no mem */
  1810. snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
  1811. ep = iface->endpoint;
  1812. vcf = validconf[small_match];
  1813. for (i = 0; i < iface->desc.bNumEndpoints; i++) {
  1814. struct usb_fifo *f;
  1815. ep_addr = ep->desc.bEndpointAddress;
  1816. /* get endpoint base */
  1817. idx = ((ep_addr & 0x7f) - 1) * 2;
  1818. if (ep_addr & 0x80)
  1819. idx++;
  1820. f = &hw->fifos[idx & 7];
  1821. /* init Endpoints */
  1822. if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
  1823. ep++;
  1824. continue;
  1825. }
  1826. switch (ep->desc.bmAttributes) {
  1827. case USB_ENDPOINT_XFER_INT:
  1828. f->pipe = usb_rcvintpipe(dev,
  1829. ep->desc.bEndpointAddress);
  1830. f->usb_transfer_mode = USB_INT;
  1831. packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1832. break;
  1833. case USB_ENDPOINT_XFER_BULK:
  1834. if (ep_addr & 0x80)
  1835. f->pipe = usb_rcvbulkpipe(dev,
  1836. ep->desc.bEndpointAddress);
  1837. else
  1838. f->pipe = usb_sndbulkpipe(dev,
  1839. ep->desc.bEndpointAddress);
  1840. f->usb_transfer_mode = USB_BULK;
  1841. packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1842. break;
  1843. case USB_ENDPOINT_XFER_ISOC:
  1844. if (ep_addr & 0x80)
  1845. f->pipe = usb_rcvisocpipe(dev,
  1846. ep->desc.bEndpointAddress);
  1847. else
  1848. f->pipe = usb_sndisocpipe(dev,
  1849. ep->desc.bEndpointAddress);
  1850. f->usb_transfer_mode = USB_ISOC;
  1851. iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1852. break;
  1853. default:
  1854. f->pipe = 0;
  1855. }
  1856. if (f->pipe) {
  1857. f->fifonum = idx & 7;
  1858. f->hw = hw;
  1859. f->usb_packet_maxlen =
  1860. le16_to_cpu(ep->desc.wMaxPacketSize);
  1861. f->intervall = ep->desc.bInterval;
  1862. }
  1863. ep++;
  1864. }
  1865. hw->dev = dev; /* save device */
  1866. hw->if_used = ifnum; /* save used interface */
  1867. hw->alt_used = alt_used; /* and alternate config */
  1868. hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
  1869. hw->cfg_used = vcf[16]; /* store used config */
  1870. hw->vend_idx = vend_idx; /* store found vendor */
  1871. hw->packet_size = packet_size;
  1872. hw->iso_packet_size = iso_packet_size;
  1873. /* create the control pipes needed for register access */
  1874. hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
  1875. hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
  1876. hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
  1877. driver_info =
  1878. (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
  1879. printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
  1880. hw->name, __func__, driver_info->vend_name,
  1881. conf_str[small_match], ifnum, alt_used);
  1882. if (setup_instance(hw, dev->dev.parent))
  1883. return -EIO;
  1884. hw->intf = intf;
  1885. usb_set_intfdata(hw->intf, hw);
  1886. return 0;
  1887. }
  1888. /* function called when an active device is removed */
  1889. static void
  1890. hfcsusb_disconnect(struct usb_interface *intf)
  1891. {
  1892. struct hfcsusb *hw = usb_get_intfdata(intf);
  1893. struct hfcsusb *next;
  1894. int cnt = 0;
  1895. printk(KERN_INFO "%s: device disconnected\n", hw->name);
  1896. handle_led(hw, LED_POWER_OFF);
  1897. release_hw(hw);
  1898. list_for_each_entry_safe(hw, next, &HFClist, list)
  1899. cnt++;
  1900. if (!cnt)
  1901. hfcsusb_cnt = 0;
  1902. usb_set_intfdata(intf, NULL);
  1903. }
  1904. static struct usb_driver hfcsusb_drv = {
  1905. .name = DRIVER_NAME,
  1906. .id_table = hfcsusb_idtab,
  1907. .probe = hfcsusb_probe,
  1908. .disconnect = hfcsusb_disconnect,
  1909. };
  1910. static int __init
  1911. hfcsusb_init(void)
  1912. {
  1913. printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
  1914. hfcsusb_rev, debug, poll);
  1915. if (usb_register(&hfcsusb_drv)) {
  1916. printk(KERN_INFO DRIVER_NAME
  1917. ": Unable to register hfcsusb module at usb stack\n");
  1918. return -ENODEV;
  1919. }
  1920. return 0;
  1921. }
  1922. static void __exit
  1923. hfcsusb_cleanup(void)
  1924. {
  1925. if (debug & DBG_HFC_CALL_TRACE)
  1926. printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
  1927. /* unregister Hardware */
  1928. usb_deregister(&hfcsusb_drv); /* release our driver */
  1929. }
  1930. module_init(hfcsusb_init);
  1931. module_exit(hfcsusb_cleanup);