input.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  26. MODULE_DESCRIPTION("Input core");
  27. MODULE_LICENSE("GPL");
  28. #define INPUT_DEVICES 256
  29. /*
  30. * EV_ABS events which should not be cached are listed here.
  31. */
  32. static unsigned int input_abs_bypass_init_data[] __initdata = {
  33. ABS_MT_TOUCH_MAJOR,
  34. ABS_MT_TOUCH_MINOR,
  35. ABS_MT_WIDTH_MAJOR,
  36. ABS_MT_WIDTH_MINOR,
  37. ABS_MT_ORIENTATION,
  38. ABS_MT_POSITION_X,
  39. ABS_MT_POSITION_Y,
  40. ABS_MT_TOOL_TYPE,
  41. ABS_MT_BLOB_ID,
  42. ABS_MT_TRACKING_ID,
  43. 0
  44. };
  45. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  46. static LIST_HEAD(input_dev_list);
  47. static LIST_HEAD(input_handler_list);
  48. /*
  49. * input_mutex protects access to both input_dev_list and input_handler_list.
  50. * This also causes input_[un]register_device and input_[un]register_handler
  51. * be mutually exclusive which simplifies locking in drivers implementing
  52. * input handlers.
  53. */
  54. static DEFINE_MUTEX(input_mutex);
  55. static struct input_handler *input_table[8];
  56. static inline int is_event_supported(unsigned int code,
  57. unsigned long *bm, unsigned int max)
  58. {
  59. return code <= max && test_bit(code, bm);
  60. }
  61. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  62. {
  63. if (fuzz) {
  64. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  65. return old_val;
  66. if (value > old_val - fuzz && value < old_val + fuzz)
  67. return (old_val * 3 + value) / 4;
  68. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69. return (old_val + value) / 2;
  70. }
  71. return value;
  72. }
  73. /*
  74. * Pass event through all open handles. This function is called with
  75. * dev->event_lock held and interrupts disabled.
  76. */
  77. static void input_pass_event(struct input_dev *dev,
  78. unsigned int type, unsigned int code, int value)
  79. {
  80. struct input_handle *handle;
  81. rcu_read_lock();
  82. handle = rcu_dereference(dev->grab);
  83. if (handle)
  84. handle->handler->event(handle, type, code, value);
  85. else
  86. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  87. if (handle->open)
  88. handle->handler->event(handle,
  89. type, code, value);
  90. rcu_read_unlock();
  91. }
  92. /*
  93. * Generate software autorepeat event. Note that we take
  94. * dev->event_lock here to avoid racing with input_event
  95. * which may cause keys get "stuck".
  96. */
  97. static void input_repeat_key(unsigned long data)
  98. {
  99. struct input_dev *dev = (void *) data;
  100. unsigned long flags;
  101. spin_lock_irqsave(&dev->event_lock, flags);
  102. if (test_bit(dev->repeat_key, dev->key) &&
  103. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  104. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  105. if (dev->sync) {
  106. /*
  107. * Only send SYN_REPORT if we are not in a middle
  108. * of driver parsing a new hardware packet.
  109. * Otherwise assume that the driver will send
  110. * SYN_REPORT once it's done.
  111. */
  112. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  113. }
  114. if (dev->rep[REP_PERIOD])
  115. mod_timer(&dev->timer, jiffies +
  116. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  117. }
  118. spin_unlock_irqrestore(&dev->event_lock, flags);
  119. }
  120. static void input_start_autorepeat(struct input_dev *dev, int code)
  121. {
  122. if (test_bit(EV_REP, dev->evbit) &&
  123. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  124. dev->timer.data) {
  125. dev->repeat_key = code;
  126. mod_timer(&dev->timer,
  127. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  128. }
  129. }
  130. static void input_stop_autorepeat(struct input_dev *dev)
  131. {
  132. del_timer(&dev->timer);
  133. }
  134. #define INPUT_IGNORE_EVENT 0
  135. #define INPUT_PASS_TO_HANDLERS 1
  136. #define INPUT_PASS_TO_DEVICE 2
  137. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  138. static void input_handle_event(struct input_dev *dev,
  139. unsigned int type, unsigned int code, int value)
  140. {
  141. int disposition = INPUT_IGNORE_EVENT;
  142. switch (type) {
  143. case EV_SYN:
  144. switch (code) {
  145. case SYN_CONFIG:
  146. disposition = INPUT_PASS_TO_ALL;
  147. break;
  148. case SYN_REPORT:
  149. if (!dev->sync) {
  150. dev->sync = 1;
  151. disposition = INPUT_PASS_TO_HANDLERS;
  152. }
  153. break;
  154. case SYN_MT_REPORT:
  155. dev->sync = 0;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. break;
  158. }
  159. break;
  160. case EV_KEY:
  161. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  162. !!test_bit(code, dev->key) != value) {
  163. if (value != 2) {
  164. __change_bit(code, dev->key);
  165. if (value)
  166. input_start_autorepeat(dev, code);
  167. else
  168. input_stop_autorepeat(dev);
  169. }
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. }
  172. break;
  173. case EV_SW:
  174. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  175. !!test_bit(code, dev->sw) != value) {
  176. __change_bit(code, dev->sw);
  177. disposition = INPUT_PASS_TO_HANDLERS;
  178. }
  179. break;
  180. case EV_ABS:
  181. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  182. if (test_bit(code, input_abs_bypass)) {
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. break;
  185. }
  186. value = input_defuzz_abs_event(value,
  187. dev->abs[code], dev->absfuzz[code]);
  188. if (dev->abs[code] != value) {
  189. dev->abs[code] = value;
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. }
  193. break;
  194. case EV_REL:
  195. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. case EV_MSC:
  199. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. case EV_LED:
  203. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  204. !!test_bit(code, dev->led) != value) {
  205. __change_bit(code, dev->led);
  206. disposition = INPUT_PASS_TO_ALL;
  207. }
  208. break;
  209. case EV_SND:
  210. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  211. if (!!test_bit(code, dev->snd) != !!value)
  212. __change_bit(code, dev->snd);
  213. disposition = INPUT_PASS_TO_ALL;
  214. }
  215. break;
  216. case EV_REP:
  217. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  218. dev->rep[code] = value;
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_FF:
  223. if (value >= 0)
  224. disposition = INPUT_PASS_TO_ALL;
  225. break;
  226. case EV_PWR:
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. }
  230. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  231. dev->sync = 0;
  232. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  233. dev->event(dev, type, code, value);
  234. if (disposition & INPUT_PASS_TO_HANDLERS)
  235. input_pass_event(dev, type, code, value);
  236. }
  237. /**
  238. * input_event() - report new input event
  239. * @dev: device that generated the event
  240. * @type: type of the event
  241. * @code: event code
  242. * @value: value of the event
  243. *
  244. * This function should be used by drivers implementing various input
  245. * devices to report input events. See also input_inject_event().
  246. *
  247. * NOTE: input_event() may be safely used right after input device was
  248. * allocated with input_allocate_device(), even before it is registered
  249. * with input_register_device(), but the event will not reach any of the
  250. * input handlers. Such early invocation of input_event() may be used
  251. * to 'seed' initial state of a switch or initial position of absolute
  252. * axis, etc.
  253. */
  254. void input_event(struct input_dev *dev,
  255. unsigned int type, unsigned int code, int value)
  256. {
  257. unsigned long flags;
  258. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  259. spin_lock_irqsave(&dev->event_lock, flags);
  260. add_input_randomness(type, code, value);
  261. input_handle_event(dev, type, code, value);
  262. spin_unlock_irqrestore(&dev->event_lock, flags);
  263. }
  264. }
  265. EXPORT_SYMBOL(input_event);
  266. /**
  267. * input_inject_event() - send input event from input handler
  268. * @handle: input handle to send event through
  269. * @type: type of the event
  270. * @code: event code
  271. * @value: value of the event
  272. *
  273. * Similar to input_event() but will ignore event if device is
  274. * "grabbed" and handle injecting event is not the one that owns
  275. * the device.
  276. */
  277. void input_inject_event(struct input_handle *handle,
  278. unsigned int type, unsigned int code, int value)
  279. {
  280. struct input_dev *dev = handle->dev;
  281. struct input_handle *grab;
  282. unsigned long flags;
  283. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  284. spin_lock_irqsave(&dev->event_lock, flags);
  285. rcu_read_lock();
  286. grab = rcu_dereference(dev->grab);
  287. if (!grab || grab == handle)
  288. input_handle_event(dev, type, code, value);
  289. rcu_read_unlock();
  290. spin_unlock_irqrestore(&dev->event_lock, flags);
  291. }
  292. }
  293. EXPORT_SYMBOL(input_inject_event);
  294. /**
  295. * input_grab_device - grabs device for exclusive use
  296. * @handle: input handle that wants to own the device
  297. *
  298. * When a device is grabbed by an input handle all events generated by
  299. * the device are delivered only to this handle. Also events injected
  300. * by other input handles are ignored while device is grabbed.
  301. */
  302. int input_grab_device(struct input_handle *handle)
  303. {
  304. struct input_dev *dev = handle->dev;
  305. int retval;
  306. retval = mutex_lock_interruptible(&dev->mutex);
  307. if (retval)
  308. return retval;
  309. if (dev->grab) {
  310. retval = -EBUSY;
  311. goto out;
  312. }
  313. rcu_assign_pointer(dev->grab, handle);
  314. synchronize_rcu();
  315. out:
  316. mutex_unlock(&dev->mutex);
  317. return retval;
  318. }
  319. EXPORT_SYMBOL(input_grab_device);
  320. static void __input_release_device(struct input_handle *handle)
  321. {
  322. struct input_dev *dev = handle->dev;
  323. if (dev->grab == handle) {
  324. rcu_assign_pointer(dev->grab, NULL);
  325. /* Make sure input_pass_event() notices that grab is gone */
  326. synchronize_rcu();
  327. list_for_each_entry(handle, &dev->h_list, d_node)
  328. if (handle->open && handle->handler->start)
  329. handle->handler->start(handle);
  330. }
  331. }
  332. /**
  333. * input_release_device - release previously grabbed device
  334. * @handle: input handle that owns the device
  335. *
  336. * Releases previously grabbed device so that other input handles can
  337. * start receiving input events. Upon release all handlers attached
  338. * to the device have their start() method called so they have a change
  339. * to synchronize device state with the rest of the system.
  340. */
  341. void input_release_device(struct input_handle *handle)
  342. {
  343. struct input_dev *dev = handle->dev;
  344. mutex_lock(&dev->mutex);
  345. __input_release_device(handle);
  346. mutex_unlock(&dev->mutex);
  347. }
  348. EXPORT_SYMBOL(input_release_device);
  349. /**
  350. * input_open_device - open input device
  351. * @handle: handle through which device is being accessed
  352. *
  353. * This function should be called by input handlers when they
  354. * want to start receive events from given input device.
  355. */
  356. int input_open_device(struct input_handle *handle)
  357. {
  358. struct input_dev *dev = handle->dev;
  359. int retval;
  360. retval = mutex_lock_interruptible(&dev->mutex);
  361. if (retval)
  362. return retval;
  363. if (dev->going_away) {
  364. retval = -ENODEV;
  365. goto out;
  366. }
  367. handle->open++;
  368. if (!dev->users++ && dev->open)
  369. retval = dev->open(dev);
  370. if (retval) {
  371. dev->users--;
  372. if (!--handle->open) {
  373. /*
  374. * Make sure we are not delivering any more events
  375. * through this handle
  376. */
  377. synchronize_rcu();
  378. }
  379. }
  380. out:
  381. mutex_unlock(&dev->mutex);
  382. return retval;
  383. }
  384. EXPORT_SYMBOL(input_open_device);
  385. int input_flush_device(struct input_handle *handle, struct file *file)
  386. {
  387. struct input_dev *dev = handle->dev;
  388. int retval;
  389. retval = mutex_lock_interruptible(&dev->mutex);
  390. if (retval)
  391. return retval;
  392. if (dev->flush)
  393. retval = dev->flush(dev, file);
  394. mutex_unlock(&dev->mutex);
  395. return retval;
  396. }
  397. EXPORT_SYMBOL(input_flush_device);
  398. /**
  399. * input_close_device - close input device
  400. * @handle: handle through which device is being accessed
  401. *
  402. * This function should be called by input handlers when they
  403. * want to stop receive events from given input device.
  404. */
  405. void input_close_device(struct input_handle *handle)
  406. {
  407. struct input_dev *dev = handle->dev;
  408. mutex_lock(&dev->mutex);
  409. __input_release_device(handle);
  410. if (!--dev->users && dev->close)
  411. dev->close(dev);
  412. if (!--handle->open) {
  413. /*
  414. * synchronize_rcu() makes sure that input_pass_event()
  415. * completed and that no more input events are delivered
  416. * through this handle
  417. */
  418. synchronize_rcu();
  419. }
  420. mutex_unlock(&dev->mutex);
  421. }
  422. EXPORT_SYMBOL(input_close_device);
  423. /*
  424. * Prepare device for unregistering
  425. */
  426. static void input_disconnect_device(struct input_dev *dev)
  427. {
  428. struct input_handle *handle;
  429. int code;
  430. /*
  431. * Mark device as going away. Note that we take dev->mutex here
  432. * not to protect access to dev->going_away but rather to ensure
  433. * that there are no threads in the middle of input_open_device()
  434. */
  435. mutex_lock(&dev->mutex);
  436. dev->going_away = true;
  437. mutex_unlock(&dev->mutex);
  438. spin_lock_irq(&dev->event_lock);
  439. /*
  440. * Simulate keyup events for all pressed keys so that handlers
  441. * are not left with "stuck" keys. The driver may continue
  442. * generate events even after we done here but they will not
  443. * reach any handlers.
  444. */
  445. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  446. for (code = 0; code <= KEY_MAX; code++) {
  447. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  448. __test_and_clear_bit(code, dev->key)) {
  449. input_pass_event(dev, EV_KEY, code, 0);
  450. }
  451. }
  452. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  453. }
  454. list_for_each_entry(handle, &dev->h_list, d_node)
  455. handle->open = 0;
  456. spin_unlock_irq(&dev->event_lock);
  457. }
  458. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  459. {
  460. switch (dev->keycodesize) {
  461. case 1:
  462. return ((u8 *)dev->keycode)[scancode];
  463. case 2:
  464. return ((u16 *)dev->keycode)[scancode];
  465. default:
  466. return ((u32 *)dev->keycode)[scancode];
  467. }
  468. }
  469. static int input_default_getkeycode(struct input_dev *dev,
  470. int scancode, int *keycode)
  471. {
  472. if (!dev->keycodesize)
  473. return -EINVAL;
  474. if (scancode >= dev->keycodemax)
  475. return -EINVAL;
  476. *keycode = input_fetch_keycode(dev, scancode);
  477. return 0;
  478. }
  479. static int input_default_setkeycode(struct input_dev *dev,
  480. int scancode, int keycode)
  481. {
  482. int old_keycode;
  483. int i;
  484. if (scancode >= dev->keycodemax)
  485. return -EINVAL;
  486. if (!dev->keycodesize)
  487. return -EINVAL;
  488. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  489. return -EINVAL;
  490. switch (dev->keycodesize) {
  491. case 1: {
  492. u8 *k = (u8 *)dev->keycode;
  493. old_keycode = k[scancode];
  494. k[scancode] = keycode;
  495. break;
  496. }
  497. case 2: {
  498. u16 *k = (u16 *)dev->keycode;
  499. old_keycode = k[scancode];
  500. k[scancode] = keycode;
  501. break;
  502. }
  503. default: {
  504. u32 *k = (u32 *)dev->keycode;
  505. old_keycode = k[scancode];
  506. k[scancode] = keycode;
  507. break;
  508. }
  509. }
  510. clear_bit(old_keycode, dev->keybit);
  511. set_bit(keycode, dev->keybit);
  512. for (i = 0; i < dev->keycodemax; i++) {
  513. if (input_fetch_keycode(dev, i) == old_keycode) {
  514. set_bit(old_keycode, dev->keybit);
  515. break; /* Setting the bit twice is useless, so break */
  516. }
  517. }
  518. return 0;
  519. }
  520. /**
  521. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  522. * @dev: input device which keymap is being queried
  523. * @scancode: scancode (or its equivalent for device in question) for which
  524. * keycode is needed
  525. * @keycode: result
  526. *
  527. * This function should be called by anyone interested in retrieving current
  528. * keymap. Presently keyboard and evdev handlers use it.
  529. */
  530. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  531. {
  532. if (scancode < 0)
  533. return -EINVAL;
  534. return dev->getkeycode(dev, scancode, keycode);
  535. }
  536. EXPORT_SYMBOL(input_get_keycode);
  537. /**
  538. * input_get_keycode - assign new keycode to a given scancode
  539. * @dev: input device which keymap is being updated
  540. * @scancode: scancode (or its equivalent for device in question)
  541. * @keycode: new keycode to be assigned to the scancode
  542. *
  543. * This function should be called by anyone needing to update current
  544. * keymap. Presently keyboard and evdev handlers use it.
  545. */
  546. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  547. {
  548. unsigned long flags;
  549. int old_keycode;
  550. int retval;
  551. if (scancode < 0)
  552. return -EINVAL;
  553. if (keycode < 0 || keycode > KEY_MAX)
  554. return -EINVAL;
  555. spin_lock_irqsave(&dev->event_lock, flags);
  556. retval = dev->getkeycode(dev, scancode, &old_keycode);
  557. if (retval)
  558. goto out;
  559. retval = dev->setkeycode(dev, scancode, keycode);
  560. if (retval)
  561. goto out;
  562. /*
  563. * Simulate keyup event if keycode is not present
  564. * in the keymap anymore
  565. */
  566. if (test_bit(EV_KEY, dev->evbit) &&
  567. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  568. __test_and_clear_bit(old_keycode, dev->key)) {
  569. input_pass_event(dev, EV_KEY, old_keycode, 0);
  570. if (dev->sync)
  571. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  572. }
  573. out:
  574. spin_unlock_irqrestore(&dev->event_lock, flags);
  575. return retval;
  576. }
  577. EXPORT_SYMBOL(input_set_keycode);
  578. #define MATCH_BIT(bit, max) \
  579. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  580. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  581. break; \
  582. if (i != BITS_TO_LONGS(max)) \
  583. continue;
  584. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  585. struct input_dev *dev)
  586. {
  587. int i;
  588. for (; id->flags || id->driver_info; id++) {
  589. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  590. if (id->bustype != dev->id.bustype)
  591. continue;
  592. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  593. if (id->vendor != dev->id.vendor)
  594. continue;
  595. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  596. if (id->product != dev->id.product)
  597. continue;
  598. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  599. if (id->version != dev->id.version)
  600. continue;
  601. MATCH_BIT(evbit, EV_MAX);
  602. MATCH_BIT(keybit, KEY_MAX);
  603. MATCH_BIT(relbit, REL_MAX);
  604. MATCH_BIT(absbit, ABS_MAX);
  605. MATCH_BIT(mscbit, MSC_MAX);
  606. MATCH_BIT(ledbit, LED_MAX);
  607. MATCH_BIT(sndbit, SND_MAX);
  608. MATCH_BIT(ffbit, FF_MAX);
  609. MATCH_BIT(swbit, SW_MAX);
  610. return id;
  611. }
  612. return NULL;
  613. }
  614. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  615. {
  616. const struct input_device_id *id;
  617. int error;
  618. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  619. return -ENODEV;
  620. id = input_match_device(handler->id_table, dev);
  621. if (!id)
  622. return -ENODEV;
  623. error = handler->connect(handler, dev, id);
  624. if (error && error != -ENODEV)
  625. printk(KERN_ERR
  626. "input: failed to attach handler %s to device %s, "
  627. "error: %d\n",
  628. handler->name, kobject_name(&dev->dev.kobj), error);
  629. return error;
  630. }
  631. #ifdef CONFIG_PROC_FS
  632. static struct proc_dir_entry *proc_bus_input_dir;
  633. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  634. static int input_devices_state;
  635. static inline void input_wakeup_procfs_readers(void)
  636. {
  637. input_devices_state++;
  638. wake_up(&input_devices_poll_wait);
  639. }
  640. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  641. {
  642. poll_wait(file, &input_devices_poll_wait, wait);
  643. if (file->f_version != input_devices_state) {
  644. file->f_version = input_devices_state;
  645. return POLLIN | POLLRDNORM;
  646. }
  647. return 0;
  648. }
  649. union input_seq_state {
  650. struct {
  651. unsigned short pos;
  652. bool mutex_acquired;
  653. };
  654. void *p;
  655. };
  656. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  657. {
  658. union input_seq_state *state = (union input_seq_state *)&seq->private;
  659. int error;
  660. /* We need to fit into seq->private pointer */
  661. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  662. error = mutex_lock_interruptible(&input_mutex);
  663. if (error) {
  664. state->mutex_acquired = false;
  665. return ERR_PTR(error);
  666. }
  667. state->mutex_acquired = true;
  668. return seq_list_start(&input_dev_list, *pos);
  669. }
  670. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  671. {
  672. return seq_list_next(v, &input_dev_list, pos);
  673. }
  674. static void input_seq_stop(struct seq_file *seq, void *v)
  675. {
  676. union input_seq_state *state = (union input_seq_state *)&seq->private;
  677. if (state->mutex_acquired)
  678. mutex_unlock(&input_mutex);
  679. }
  680. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  681. unsigned long *bitmap, int max)
  682. {
  683. int i;
  684. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  685. if (bitmap[i])
  686. break;
  687. seq_printf(seq, "B: %s=", name);
  688. for (; i >= 0; i--)
  689. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  690. seq_putc(seq, '\n');
  691. }
  692. static int input_devices_seq_show(struct seq_file *seq, void *v)
  693. {
  694. struct input_dev *dev = container_of(v, struct input_dev, node);
  695. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  696. struct input_handle *handle;
  697. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  698. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  699. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  700. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  701. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  702. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  703. seq_printf(seq, "H: Handlers=");
  704. list_for_each_entry(handle, &dev->h_list, d_node)
  705. seq_printf(seq, "%s ", handle->name);
  706. seq_putc(seq, '\n');
  707. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  708. if (test_bit(EV_KEY, dev->evbit))
  709. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  710. if (test_bit(EV_REL, dev->evbit))
  711. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  712. if (test_bit(EV_ABS, dev->evbit))
  713. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  714. if (test_bit(EV_MSC, dev->evbit))
  715. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  716. if (test_bit(EV_LED, dev->evbit))
  717. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  718. if (test_bit(EV_SND, dev->evbit))
  719. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  720. if (test_bit(EV_FF, dev->evbit))
  721. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  722. if (test_bit(EV_SW, dev->evbit))
  723. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  724. seq_putc(seq, '\n');
  725. kfree(path);
  726. return 0;
  727. }
  728. static const struct seq_operations input_devices_seq_ops = {
  729. .start = input_devices_seq_start,
  730. .next = input_devices_seq_next,
  731. .stop = input_seq_stop,
  732. .show = input_devices_seq_show,
  733. };
  734. static int input_proc_devices_open(struct inode *inode, struct file *file)
  735. {
  736. return seq_open(file, &input_devices_seq_ops);
  737. }
  738. static const struct file_operations input_devices_fileops = {
  739. .owner = THIS_MODULE,
  740. .open = input_proc_devices_open,
  741. .poll = input_proc_devices_poll,
  742. .read = seq_read,
  743. .llseek = seq_lseek,
  744. .release = seq_release,
  745. };
  746. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  747. {
  748. union input_seq_state *state = (union input_seq_state *)&seq->private;
  749. int error;
  750. /* We need to fit into seq->private pointer */
  751. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  752. error = mutex_lock_interruptible(&input_mutex);
  753. if (error) {
  754. state->mutex_acquired = false;
  755. return ERR_PTR(error);
  756. }
  757. state->mutex_acquired = true;
  758. state->pos = *pos;
  759. return seq_list_start(&input_handler_list, *pos);
  760. }
  761. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  762. {
  763. union input_seq_state *state = (union input_seq_state *)&seq->private;
  764. state->pos = *pos + 1;
  765. return seq_list_next(v, &input_handler_list, pos);
  766. }
  767. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  768. {
  769. struct input_handler *handler = container_of(v, struct input_handler, node);
  770. union input_seq_state *state = (union input_seq_state *)&seq->private;
  771. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  772. if (handler->fops)
  773. seq_printf(seq, " Minor=%d", handler->minor);
  774. seq_putc(seq, '\n');
  775. return 0;
  776. }
  777. static const struct seq_operations input_handlers_seq_ops = {
  778. .start = input_handlers_seq_start,
  779. .next = input_handlers_seq_next,
  780. .stop = input_seq_stop,
  781. .show = input_handlers_seq_show,
  782. };
  783. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  784. {
  785. return seq_open(file, &input_handlers_seq_ops);
  786. }
  787. static const struct file_operations input_handlers_fileops = {
  788. .owner = THIS_MODULE,
  789. .open = input_proc_handlers_open,
  790. .read = seq_read,
  791. .llseek = seq_lseek,
  792. .release = seq_release,
  793. };
  794. static int __init input_proc_init(void)
  795. {
  796. struct proc_dir_entry *entry;
  797. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  798. if (!proc_bus_input_dir)
  799. return -ENOMEM;
  800. entry = proc_create("devices", 0, proc_bus_input_dir,
  801. &input_devices_fileops);
  802. if (!entry)
  803. goto fail1;
  804. entry = proc_create("handlers", 0, proc_bus_input_dir,
  805. &input_handlers_fileops);
  806. if (!entry)
  807. goto fail2;
  808. return 0;
  809. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  810. fail1: remove_proc_entry("bus/input", NULL);
  811. return -ENOMEM;
  812. }
  813. static void input_proc_exit(void)
  814. {
  815. remove_proc_entry("devices", proc_bus_input_dir);
  816. remove_proc_entry("handlers", proc_bus_input_dir);
  817. remove_proc_entry("bus/input", NULL);
  818. }
  819. #else /* !CONFIG_PROC_FS */
  820. static inline void input_wakeup_procfs_readers(void) { }
  821. static inline int input_proc_init(void) { return 0; }
  822. static inline void input_proc_exit(void) { }
  823. #endif
  824. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  825. static ssize_t input_dev_show_##name(struct device *dev, \
  826. struct device_attribute *attr, \
  827. char *buf) \
  828. { \
  829. struct input_dev *input_dev = to_input_dev(dev); \
  830. \
  831. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  832. input_dev->name ? input_dev->name : ""); \
  833. } \
  834. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  835. INPUT_DEV_STRING_ATTR_SHOW(name);
  836. INPUT_DEV_STRING_ATTR_SHOW(phys);
  837. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  838. static int input_print_modalias_bits(char *buf, int size,
  839. char name, unsigned long *bm,
  840. unsigned int min_bit, unsigned int max_bit)
  841. {
  842. int len = 0, i;
  843. len += snprintf(buf, max(size, 0), "%c", name);
  844. for (i = min_bit; i < max_bit; i++)
  845. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  846. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  847. return len;
  848. }
  849. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  850. int add_cr)
  851. {
  852. int len;
  853. len = snprintf(buf, max(size, 0),
  854. "input:b%04Xv%04Xp%04Xe%04X-",
  855. id->id.bustype, id->id.vendor,
  856. id->id.product, id->id.version);
  857. len += input_print_modalias_bits(buf + len, size - len,
  858. 'e', id->evbit, 0, EV_MAX);
  859. len += input_print_modalias_bits(buf + len, size - len,
  860. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  861. len += input_print_modalias_bits(buf + len, size - len,
  862. 'r', id->relbit, 0, REL_MAX);
  863. len += input_print_modalias_bits(buf + len, size - len,
  864. 'a', id->absbit, 0, ABS_MAX);
  865. len += input_print_modalias_bits(buf + len, size - len,
  866. 'm', id->mscbit, 0, MSC_MAX);
  867. len += input_print_modalias_bits(buf + len, size - len,
  868. 'l', id->ledbit, 0, LED_MAX);
  869. len += input_print_modalias_bits(buf + len, size - len,
  870. 's', id->sndbit, 0, SND_MAX);
  871. len += input_print_modalias_bits(buf + len, size - len,
  872. 'f', id->ffbit, 0, FF_MAX);
  873. len += input_print_modalias_bits(buf + len, size - len,
  874. 'w', id->swbit, 0, SW_MAX);
  875. if (add_cr)
  876. len += snprintf(buf + len, max(size - len, 0), "\n");
  877. return len;
  878. }
  879. static ssize_t input_dev_show_modalias(struct device *dev,
  880. struct device_attribute *attr,
  881. char *buf)
  882. {
  883. struct input_dev *id = to_input_dev(dev);
  884. ssize_t len;
  885. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  886. return min_t(int, len, PAGE_SIZE);
  887. }
  888. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  889. static struct attribute *input_dev_attrs[] = {
  890. &dev_attr_name.attr,
  891. &dev_attr_phys.attr,
  892. &dev_attr_uniq.attr,
  893. &dev_attr_modalias.attr,
  894. NULL
  895. };
  896. static struct attribute_group input_dev_attr_group = {
  897. .attrs = input_dev_attrs,
  898. };
  899. #define INPUT_DEV_ID_ATTR(name) \
  900. static ssize_t input_dev_show_id_##name(struct device *dev, \
  901. struct device_attribute *attr, \
  902. char *buf) \
  903. { \
  904. struct input_dev *input_dev = to_input_dev(dev); \
  905. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  906. } \
  907. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  908. INPUT_DEV_ID_ATTR(bustype);
  909. INPUT_DEV_ID_ATTR(vendor);
  910. INPUT_DEV_ID_ATTR(product);
  911. INPUT_DEV_ID_ATTR(version);
  912. static struct attribute *input_dev_id_attrs[] = {
  913. &dev_attr_bustype.attr,
  914. &dev_attr_vendor.attr,
  915. &dev_attr_product.attr,
  916. &dev_attr_version.attr,
  917. NULL
  918. };
  919. static struct attribute_group input_dev_id_attr_group = {
  920. .name = "id",
  921. .attrs = input_dev_id_attrs,
  922. };
  923. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  924. int max, int add_cr)
  925. {
  926. int i;
  927. int len = 0;
  928. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  929. if (bitmap[i])
  930. break;
  931. for (; i >= 0; i--)
  932. len += snprintf(buf + len, max(buf_size - len, 0),
  933. "%lx%s", bitmap[i], i > 0 ? " " : "");
  934. if (add_cr)
  935. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  936. return len;
  937. }
  938. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  939. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  940. struct device_attribute *attr, \
  941. char *buf) \
  942. { \
  943. struct input_dev *input_dev = to_input_dev(dev); \
  944. int len = input_print_bitmap(buf, PAGE_SIZE, \
  945. input_dev->bm##bit, ev##_MAX, 1); \
  946. return min_t(int, len, PAGE_SIZE); \
  947. } \
  948. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  949. INPUT_DEV_CAP_ATTR(EV, ev);
  950. INPUT_DEV_CAP_ATTR(KEY, key);
  951. INPUT_DEV_CAP_ATTR(REL, rel);
  952. INPUT_DEV_CAP_ATTR(ABS, abs);
  953. INPUT_DEV_CAP_ATTR(MSC, msc);
  954. INPUT_DEV_CAP_ATTR(LED, led);
  955. INPUT_DEV_CAP_ATTR(SND, snd);
  956. INPUT_DEV_CAP_ATTR(FF, ff);
  957. INPUT_DEV_CAP_ATTR(SW, sw);
  958. static struct attribute *input_dev_caps_attrs[] = {
  959. &dev_attr_ev.attr,
  960. &dev_attr_key.attr,
  961. &dev_attr_rel.attr,
  962. &dev_attr_abs.attr,
  963. &dev_attr_msc.attr,
  964. &dev_attr_led.attr,
  965. &dev_attr_snd.attr,
  966. &dev_attr_ff.attr,
  967. &dev_attr_sw.attr,
  968. NULL
  969. };
  970. static struct attribute_group input_dev_caps_attr_group = {
  971. .name = "capabilities",
  972. .attrs = input_dev_caps_attrs,
  973. };
  974. static const struct attribute_group *input_dev_attr_groups[] = {
  975. &input_dev_attr_group,
  976. &input_dev_id_attr_group,
  977. &input_dev_caps_attr_group,
  978. NULL
  979. };
  980. static void input_dev_release(struct device *device)
  981. {
  982. struct input_dev *dev = to_input_dev(device);
  983. input_ff_destroy(dev);
  984. kfree(dev);
  985. module_put(THIS_MODULE);
  986. }
  987. /*
  988. * Input uevent interface - loading event handlers based on
  989. * device bitfields.
  990. */
  991. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  992. const char *name, unsigned long *bitmap, int max)
  993. {
  994. int len;
  995. if (add_uevent_var(env, "%s=", name))
  996. return -ENOMEM;
  997. len = input_print_bitmap(&env->buf[env->buflen - 1],
  998. sizeof(env->buf) - env->buflen,
  999. bitmap, max, 0);
  1000. if (len >= (sizeof(env->buf) - env->buflen))
  1001. return -ENOMEM;
  1002. env->buflen += len;
  1003. return 0;
  1004. }
  1005. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1006. struct input_dev *dev)
  1007. {
  1008. int len;
  1009. if (add_uevent_var(env, "MODALIAS="))
  1010. return -ENOMEM;
  1011. len = input_print_modalias(&env->buf[env->buflen - 1],
  1012. sizeof(env->buf) - env->buflen,
  1013. dev, 0);
  1014. if (len >= (sizeof(env->buf) - env->buflen))
  1015. return -ENOMEM;
  1016. env->buflen += len;
  1017. return 0;
  1018. }
  1019. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1020. do { \
  1021. int err = add_uevent_var(env, fmt, val); \
  1022. if (err) \
  1023. return err; \
  1024. } while (0)
  1025. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1026. do { \
  1027. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1028. if (err) \
  1029. return err; \
  1030. } while (0)
  1031. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1032. do { \
  1033. int err = input_add_uevent_modalias_var(env, dev); \
  1034. if (err) \
  1035. return err; \
  1036. } while (0)
  1037. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1038. {
  1039. struct input_dev *dev = to_input_dev(device);
  1040. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1041. dev->id.bustype, dev->id.vendor,
  1042. dev->id.product, dev->id.version);
  1043. if (dev->name)
  1044. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1045. if (dev->phys)
  1046. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1047. if (dev->uniq)
  1048. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1049. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1050. if (test_bit(EV_KEY, dev->evbit))
  1051. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1052. if (test_bit(EV_REL, dev->evbit))
  1053. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1054. if (test_bit(EV_ABS, dev->evbit))
  1055. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1056. if (test_bit(EV_MSC, dev->evbit))
  1057. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1058. if (test_bit(EV_LED, dev->evbit))
  1059. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1060. if (test_bit(EV_SND, dev->evbit))
  1061. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1062. if (test_bit(EV_FF, dev->evbit))
  1063. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1064. if (test_bit(EV_SW, dev->evbit))
  1065. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1066. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1067. return 0;
  1068. }
  1069. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1070. do { \
  1071. int i; \
  1072. bool active; \
  1073. \
  1074. if (!test_bit(EV_##type, dev->evbit)) \
  1075. break; \
  1076. \
  1077. for (i = 0; i < type##_MAX; i++) { \
  1078. if (!test_bit(i, dev->bits##bit)) \
  1079. continue; \
  1080. \
  1081. active = test_bit(i, dev->bits); \
  1082. if (!active && !on) \
  1083. continue; \
  1084. \
  1085. dev->event(dev, EV_##type, i, on ? active : 0); \
  1086. } \
  1087. } while (0)
  1088. #ifdef CONFIG_PM
  1089. static void input_dev_reset(struct input_dev *dev, bool activate)
  1090. {
  1091. if (!dev->event)
  1092. return;
  1093. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1094. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1095. if (activate && test_bit(EV_REP, dev->evbit)) {
  1096. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1097. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1098. }
  1099. }
  1100. static int input_dev_suspend(struct device *dev)
  1101. {
  1102. struct input_dev *input_dev = to_input_dev(dev);
  1103. mutex_lock(&input_dev->mutex);
  1104. input_dev_reset(input_dev, false);
  1105. mutex_unlock(&input_dev->mutex);
  1106. return 0;
  1107. }
  1108. static int input_dev_resume(struct device *dev)
  1109. {
  1110. struct input_dev *input_dev = to_input_dev(dev);
  1111. mutex_lock(&input_dev->mutex);
  1112. input_dev_reset(input_dev, true);
  1113. mutex_unlock(&input_dev->mutex);
  1114. return 0;
  1115. }
  1116. static const struct dev_pm_ops input_dev_pm_ops = {
  1117. .suspend = input_dev_suspend,
  1118. .resume = input_dev_resume,
  1119. .poweroff = input_dev_suspend,
  1120. .restore = input_dev_resume,
  1121. };
  1122. #endif /* CONFIG_PM */
  1123. static struct device_type input_dev_type = {
  1124. .groups = input_dev_attr_groups,
  1125. .release = input_dev_release,
  1126. .uevent = input_dev_uevent,
  1127. #ifdef CONFIG_PM
  1128. .pm = &input_dev_pm_ops,
  1129. #endif
  1130. };
  1131. static char *input_devnode(struct device *dev, mode_t *mode)
  1132. {
  1133. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1134. }
  1135. struct class input_class = {
  1136. .name = "input",
  1137. .devnode = input_devnode,
  1138. };
  1139. EXPORT_SYMBOL_GPL(input_class);
  1140. /**
  1141. * input_allocate_device - allocate memory for new input device
  1142. *
  1143. * Returns prepared struct input_dev or NULL.
  1144. *
  1145. * NOTE: Use input_free_device() to free devices that have not been
  1146. * registered; input_unregister_device() should be used for already
  1147. * registered devices.
  1148. */
  1149. struct input_dev *input_allocate_device(void)
  1150. {
  1151. struct input_dev *dev;
  1152. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1153. if (dev) {
  1154. dev->dev.type = &input_dev_type;
  1155. dev->dev.class = &input_class;
  1156. device_initialize(&dev->dev);
  1157. mutex_init(&dev->mutex);
  1158. spin_lock_init(&dev->event_lock);
  1159. INIT_LIST_HEAD(&dev->h_list);
  1160. INIT_LIST_HEAD(&dev->node);
  1161. __module_get(THIS_MODULE);
  1162. }
  1163. return dev;
  1164. }
  1165. EXPORT_SYMBOL(input_allocate_device);
  1166. /**
  1167. * input_free_device - free memory occupied by input_dev structure
  1168. * @dev: input device to free
  1169. *
  1170. * This function should only be used if input_register_device()
  1171. * was not called yet or if it failed. Once device was registered
  1172. * use input_unregister_device() and memory will be freed once last
  1173. * reference to the device is dropped.
  1174. *
  1175. * Device should be allocated by input_allocate_device().
  1176. *
  1177. * NOTE: If there are references to the input device then memory
  1178. * will not be freed until last reference is dropped.
  1179. */
  1180. void input_free_device(struct input_dev *dev)
  1181. {
  1182. if (dev)
  1183. input_put_device(dev);
  1184. }
  1185. EXPORT_SYMBOL(input_free_device);
  1186. /**
  1187. * input_set_capability - mark device as capable of a certain event
  1188. * @dev: device that is capable of emitting or accepting event
  1189. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1190. * @code: event code
  1191. *
  1192. * In addition to setting up corresponding bit in appropriate capability
  1193. * bitmap the function also adjusts dev->evbit.
  1194. */
  1195. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1196. {
  1197. switch (type) {
  1198. case EV_KEY:
  1199. __set_bit(code, dev->keybit);
  1200. break;
  1201. case EV_REL:
  1202. __set_bit(code, dev->relbit);
  1203. break;
  1204. case EV_ABS:
  1205. __set_bit(code, dev->absbit);
  1206. break;
  1207. case EV_MSC:
  1208. __set_bit(code, dev->mscbit);
  1209. break;
  1210. case EV_SW:
  1211. __set_bit(code, dev->swbit);
  1212. break;
  1213. case EV_LED:
  1214. __set_bit(code, dev->ledbit);
  1215. break;
  1216. case EV_SND:
  1217. __set_bit(code, dev->sndbit);
  1218. break;
  1219. case EV_FF:
  1220. __set_bit(code, dev->ffbit);
  1221. break;
  1222. case EV_PWR:
  1223. /* do nothing */
  1224. break;
  1225. default:
  1226. printk(KERN_ERR
  1227. "input_set_capability: unknown type %u (code %u)\n",
  1228. type, code);
  1229. dump_stack();
  1230. return;
  1231. }
  1232. __set_bit(type, dev->evbit);
  1233. }
  1234. EXPORT_SYMBOL(input_set_capability);
  1235. /**
  1236. * input_register_device - register device with input core
  1237. * @dev: device to be registered
  1238. *
  1239. * This function registers device with input core. The device must be
  1240. * allocated with input_allocate_device() and all it's capabilities
  1241. * set up before registering.
  1242. * If function fails the device must be freed with input_free_device().
  1243. * Once device has been successfully registered it can be unregistered
  1244. * with input_unregister_device(); input_free_device() should not be
  1245. * called in this case.
  1246. */
  1247. int input_register_device(struct input_dev *dev)
  1248. {
  1249. static atomic_t input_no = ATOMIC_INIT(0);
  1250. struct input_handler *handler;
  1251. const char *path;
  1252. int error;
  1253. __set_bit(EV_SYN, dev->evbit);
  1254. /*
  1255. * If delay and period are pre-set by the driver, then autorepeating
  1256. * is handled by the driver itself and we don't do it in input.c.
  1257. */
  1258. init_timer(&dev->timer);
  1259. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1260. dev->timer.data = (long) dev;
  1261. dev->timer.function = input_repeat_key;
  1262. dev->rep[REP_DELAY] = 250;
  1263. dev->rep[REP_PERIOD] = 33;
  1264. }
  1265. if (!dev->getkeycode)
  1266. dev->getkeycode = input_default_getkeycode;
  1267. if (!dev->setkeycode)
  1268. dev->setkeycode = input_default_setkeycode;
  1269. dev_set_name(&dev->dev, "input%ld",
  1270. (unsigned long) atomic_inc_return(&input_no) - 1);
  1271. error = device_add(&dev->dev);
  1272. if (error)
  1273. return error;
  1274. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1275. printk(KERN_INFO "input: %s as %s\n",
  1276. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1277. kfree(path);
  1278. error = mutex_lock_interruptible(&input_mutex);
  1279. if (error) {
  1280. device_del(&dev->dev);
  1281. return error;
  1282. }
  1283. list_add_tail(&dev->node, &input_dev_list);
  1284. list_for_each_entry(handler, &input_handler_list, node)
  1285. input_attach_handler(dev, handler);
  1286. input_wakeup_procfs_readers();
  1287. mutex_unlock(&input_mutex);
  1288. return 0;
  1289. }
  1290. EXPORT_SYMBOL(input_register_device);
  1291. /**
  1292. * input_unregister_device - unregister previously registered device
  1293. * @dev: device to be unregistered
  1294. *
  1295. * This function unregisters an input device. Once device is unregistered
  1296. * the caller should not try to access it as it may get freed at any moment.
  1297. */
  1298. void input_unregister_device(struct input_dev *dev)
  1299. {
  1300. struct input_handle *handle, *next;
  1301. input_disconnect_device(dev);
  1302. mutex_lock(&input_mutex);
  1303. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1304. handle->handler->disconnect(handle);
  1305. WARN_ON(!list_empty(&dev->h_list));
  1306. del_timer_sync(&dev->timer);
  1307. list_del_init(&dev->node);
  1308. input_wakeup_procfs_readers();
  1309. mutex_unlock(&input_mutex);
  1310. device_unregister(&dev->dev);
  1311. }
  1312. EXPORT_SYMBOL(input_unregister_device);
  1313. /**
  1314. * input_register_handler - register a new input handler
  1315. * @handler: handler to be registered
  1316. *
  1317. * This function registers a new input handler (interface) for input
  1318. * devices in the system and attaches it to all input devices that
  1319. * are compatible with the handler.
  1320. */
  1321. int input_register_handler(struct input_handler *handler)
  1322. {
  1323. struct input_dev *dev;
  1324. int retval;
  1325. retval = mutex_lock_interruptible(&input_mutex);
  1326. if (retval)
  1327. return retval;
  1328. INIT_LIST_HEAD(&handler->h_list);
  1329. if (handler->fops != NULL) {
  1330. if (input_table[handler->minor >> 5]) {
  1331. retval = -EBUSY;
  1332. goto out;
  1333. }
  1334. input_table[handler->minor >> 5] = handler;
  1335. }
  1336. list_add_tail(&handler->node, &input_handler_list);
  1337. list_for_each_entry(dev, &input_dev_list, node)
  1338. input_attach_handler(dev, handler);
  1339. input_wakeup_procfs_readers();
  1340. out:
  1341. mutex_unlock(&input_mutex);
  1342. return retval;
  1343. }
  1344. EXPORT_SYMBOL(input_register_handler);
  1345. /**
  1346. * input_unregister_handler - unregisters an input handler
  1347. * @handler: handler to be unregistered
  1348. *
  1349. * This function disconnects a handler from its input devices and
  1350. * removes it from lists of known handlers.
  1351. */
  1352. void input_unregister_handler(struct input_handler *handler)
  1353. {
  1354. struct input_handle *handle, *next;
  1355. mutex_lock(&input_mutex);
  1356. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1357. handler->disconnect(handle);
  1358. WARN_ON(!list_empty(&handler->h_list));
  1359. list_del_init(&handler->node);
  1360. if (handler->fops != NULL)
  1361. input_table[handler->minor >> 5] = NULL;
  1362. input_wakeup_procfs_readers();
  1363. mutex_unlock(&input_mutex);
  1364. }
  1365. EXPORT_SYMBOL(input_unregister_handler);
  1366. /**
  1367. * input_handler_for_each_handle - handle iterator
  1368. * @handler: input handler to iterate
  1369. * @data: data for the callback
  1370. * @fn: function to be called for each handle
  1371. *
  1372. * Iterate over @bus's list of devices, and call @fn for each, passing
  1373. * it @data and stop when @fn returns a non-zero value. The function is
  1374. * using RCU to traverse the list and therefore may be usind in atonic
  1375. * contexts. The @fn callback is invoked from RCU critical section and
  1376. * thus must not sleep.
  1377. */
  1378. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1379. int (*fn)(struct input_handle *, void *))
  1380. {
  1381. struct input_handle *handle;
  1382. int retval = 0;
  1383. rcu_read_lock();
  1384. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1385. retval = fn(handle, data);
  1386. if (retval)
  1387. break;
  1388. }
  1389. rcu_read_unlock();
  1390. return retval;
  1391. }
  1392. EXPORT_SYMBOL(input_handler_for_each_handle);
  1393. /**
  1394. * input_register_handle - register a new input handle
  1395. * @handle: handle to register
  1396. *
  1397. * This function puts a new input handle onto device's
  1398. * and handler's lists so that events can flow through
  1399. * it once it is opened using input_open_device().
  1400. *
  1401. * This function is supposed to be called from handler's
  1402. * connect() method.
  1403. */
  1404. int input_register_handle(struct input_handle *handle)
  1405. {
  1406. struct input_handler *handler = handle->handler;
  1407. struct input_dev *dev = handle->dev;
  1408. int error;
  1409. /*
  1410. * We take dev->mutex here to prevent race with
  1411. * input_release_device().
  1412. */
  1413. error = mutex_lock_interruptible(&dev->mutex);
  1414. if (error)
  1415. return error;
  1416. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1417. mutex_unlock(&dev->mutex);
  1418. /*
  1419. * Since we are supposed to be called from ->connect()
  1420. * which is mutually exclusive with ->disconnect()
  1421. * we can't be racing with input_unregister_handle()
  1422. * and so separate lock is not needed here.
  1423. */
  1424. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1425. if (handler->start)
  1426. handler->start(handle);
  1427. return 0;
  1428. }
  1429. EXPORT_SYMBOL(input_register_handle);
  1430. /**
  1431. * input_unregister_handle - unregister an input handle
  1432. * @handle: handle to unregister
  1433. *
  1434. * This function removes input handle from device's
  1435. * and handler's lists.
  1436. *
  1437. * This function is supposed to be called from handler's
  1438. * disconnect() method.
  1439. */
  1440. void input_unregister_handle(struct input_handle *handle)
  1441. {
  1442. struct input_dev *dev = handle->dev;
  1443. list_del_rcu(&handle->h_node);
  1444. /*
  1445. * Take dev->mutex to prevent race with input_release_device().
  1446. */
  1447. mutex_lock(&dev->mutex);
  1448. list_del_rcu(&handle->d_node);
  1449. mutex_unlock(&dev->mutex);
  1450. synchronize_rcu();
  1451. }
  1452. EXPORT_SYMBOL(input_unregister_handle);
  1453. static int input_open_file(struct inode *inode, struct file *file)
  1454. {
  1455. struct input_handler *handler;
  1456. const struct file_operations *old_fops, *new_fops = NULL;
  1457. int err;
  1458. lock_kernel();
  1459. /* No load-on-demand here? */
  1460. handler = input_table[iminor(inode) >> 5];
  1461. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1462. err = -ENODEV;
  1463. goto out;
  1464. }
  1465. /*
  1466. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1467. * not "no device". Oh, well...
  1468. */
  1469. if (!new_fops->open) {
  1470. fops_put(new_fops);
  1471. err = -ENODEV;
  1472. goto out;
  1473. }
  1474. old_fops = file->f_op;
  1475. file->f_op = new_fops;
  1476. err = new_fops->open(inode, file);
  1477. if (err) {
  1478. fops_put(file->f_op);
  1479. file->f_op = fops_get(old_fops);
  1480. }
  1481. fops_put(old_fops);
  1482. out:
  1483. unlock_kernel();
  1484. return err;
  1485. }
  1486. static const struct file_operations input_fops = {
  1487. .owner = THIS_MODULE,
  1488. .open = input_open_file,
  1489. };
  1490. static void __init input_init_abs_bypass(void)
  1491. {
  1492. const unsigned int *p;
  1493. for (p = input_abs_bypass_init_data; *p; p++)
  1494. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1495. }
  1496. static int __init input_init(void)
  1497. {
  1498. int err;
  1499. input_init_abs_bypass();
  1500. err = class_register(&input_class);
  1501. if (err) {
  1502. printk(KERN_ERR "input: unable to register input_dev class\n");
  1503. return err;
  1504. }
  1505. err = input_proc_init();
  1506. if (err)
  1507. goto fail1;
  1508. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1509. if (err) {
  1510. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1511. goto fail2;
  1512. }
  1513. return 0;
  1514. fail2: input_proc_exit();
  1515. fail1: class_unregister(&input_class);
  1516. return err;
  1517. }
  1518. static void __exit input_exit(void)
  1519. {
  1520. input_proc_exit();
  1521. unregister_chrdev(INPUT_MAJOR, "input");
  1522. class_unregister(&input_class);
  1523. }
  1524. subsys_initcall(input_init);
  1525. module_exit(input_exit);